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ABSTRACT 

Advances in sensor technology and image processing have made it possible to equip unmanned aerial vehicles (UAVs) 

with economical, high-resolution, energy-efficient sensors. Despite the improvements, current UAVs lack autonomous 

and collaborative operation capabilities, due to limited bandwidth and limited on-board image processing abilities. The 

situation, however, is changing. In the next generation of UAVs, much image processing can be carried out onboard and 

communication bandwidth problem will improve. More importantly, with more processing power, collaborative 

operations among a team of autonomous UAVs can provide more intelligent event detection capabilities. In this paper, 

we present ideas for developing a system enabling target recognitions by collaborative operations of autonomous UAVs. 

UAVs are configured in three stages: manufacturing, mission planning, and deployment. Different sets of information 

are needed at different stages, and the resulting outcome is an optimized event detection code deployed onto a UAV. The 

envisioned system architecture and the contemplated methodology, together with problems to be addressed, are 

presented. 
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1. FUTURE UNMANNED AERIAL VEHICLES 

Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft that can carry cameras, sensors, 

communications equipment or other payloads [7, 14]. In a recent Defense Science Board report [5], UAVs have been 

attributed to “provide vastly improved acquisition and more rapid dissemination of Intelligence, Surveillance and 

Reconnaissance (ISR) data”. 

During the past several decades, advances in sensor technology and image processing have made it possible to apply 

sensors to detect targets that are fixed or moving under a variety of environmental conditions. Moreover, as sensors are 

becoming miniaturized and their production costs reduced, it has become increasingly feasible to equip UAVs with 

economical, high-resolution, energy-efficient sensors [5]. 

Despite the continuous improvements, current UAVs lack autonomous and collaborative operation capabilities [5], 

due to limited bandwidth and limited on-board image processing abilities. The situation, however, is changing. In the 

next generation of UAVs, much image processing can be carried out onboard and communication bandwidth problem 

will improve. More importantly, with more processing power, collaborative operations among a team of autonomous 

UAVs can provide more intelligent event detection capabilities. 

By an event we mean a complex situation that can be derived from the processing results (which we call signatures) 

extracted from images taken by UAVs. Probabilistic, contextual and other reasoning techniques will be necessary to 

derive an event from signatures. For example, a signature may be a soldier appearing in a scene, and an event may be an 

increasing number of soldiers appearing in the same scene – the staging of a troop. In another example, a signature may 

be a moving vehicle, and an event may be multiple vehicles moving in a row, with approximately equal distance among 

them – a convoy. The following example illustrates collaborative UAVs detecting complex events. 

Example 1. (See Figure 1.) In this example, since UAVs equipped with only visual sensors are less expensive, many of 

them are deployed to scout an interested area; in contrast, since UAVs with infrared (IR) sensors are more expensive, 



 

only a few of them are deployed to respond to requests only in special scenarios. Now, a UAV with visual sensors 

detects a possible convoy in the current image (see the subfigure a and the subfigure b; the image in b is the result of, for 

instance, contextual scene analysis of the image in a.) However, for conclusion with high enough detection confidence, it 

needs to see an additional convoy unit with certain statistical confidence in a particular location in the image. This 

missing unit may be present but obscured in the visual image by dust or fog. The UAV then communicates with a UAV 

with IR sensors, which then takes an IR image of the region of interest, to detect the missing unit in the convoy (see the 

subfigure c).  

 

Another example of collaborative use of visual and IR imagery to detect complex events is shown in the following 

figure. 

 

The above examples show a powerful and effective way of using collaborative UAVs to achieve effective event 

detection. Obviously, it is only one of many possible ways. Many different strategies can be designed for different types 

of events and for different situations. Thus, the following questions and observations arise naturally: 

1. How do we configure UAVs so that it uses a particular strategy when detecting a particular type of event in a 

particular situation? It may not be realistic to build multiple strategy variations into all UAVs at manufacturing time 

so that we are ready for all foreseeable situations. Instead, certain strategies may need to be coded into UAVs at 

(a) Visual sensor image.  

The middle convoy unit is 

obscured in the image.  

(b) Image analysis result. 

The rectangle is a potential 

convoy. T1, T2, T3, and T4 

are potential vehicles. The 

circle is a possible undetected 

vehicle. 

(c) IR sensor image. 

The middle convoy unit 

shows up in this image. 

Figure 1:. Convoy detection example. 

(a) Visible band image of a scene. 

This image shows a truck. The dust cloud 

is hiding the airplane and people. 

 

(b) Infrared image of same scene. 

This image shows portions (high 

temperature areas) of a truck, an 

airplane and several people in the 

background. 

 
Figure 2: Visual and IR images of a scene. 



 

deployment time, based on the situation at hand for a particular mission. In this case, we need an event detection 

coding environment that is flexible enough for mission-time strategy development. Furthermore, for each event 

definition, it will be desirable that the system automatically generates collaborative detection strategies (as in the 

convoy detection example) with minimum help from the users. 

2. Suppose that, in addition to the existence of the Infrared (IR) UAV, there is also a Synthetic Aperture Radar (SAR) 

UAV available in the above convoy detection problem. How does the visual UAV decide whose help is more 

desirable between an IR UAV and a SAR UAV? How does the UAV reason about the situation and decide? What 

kind of “knowledge” does a UAV need and have in order to make such decisions? Even for a simple decision like 

whether to transmit certain messages back to the controller, due to the limited spectrum available in a particular 

theatre (and multiple UAVs in action) we will need to build into the UAV the necessary knowledge. How can we 

provide the UAV with a flexible system coded with such knowledge and reasoning rules? 

2. ENVISIONED SYSTEM ARCHITECTURE 

Inspired by the above questions and observations, we envision a system that is highly configurable for event-detection 

with future collaborative UAVs. We call the system an adaptive knowledge-based system for even detection, or AKSED 

(pronounced „axed‟) for short. See Figure 3. 

With AKSED, a UAV may be configured at three different stages. In general, at manufacturing time, UAV basic 

capabilities  (<1> in Figure 3), such as feature extraction algorithms using signal and image processing techniques, 

communication capabilities, and maneuvering capabilities, are provided as software modules. These modules can be 

coded in efficient programming languages like C and FORTRAN. At mission planning time, event descriptions (<2> in 

Figure 3) are provided in a high-level declarative language (provided by AKSED). At deployment time, situation 

descriptions and quality-of-service (QoS) requirements (<3> in Figure 3) are given to the system through a checkbox 

and form-filling interface (provided by AKSED). Given all these inputs provided in different stages, AKSED generates 

deployment code with necessary knowledge bases for onboard reasoning. The knowledge bases are in the form of base 

facts and inference rules. This division of tasks into three stages allows coding and testing of difficult and detailed 

algorithms to be done at manufacturing time, and allows flexible event-detection strategies to be coded easily at mission 

planning and deployment time, when coding resources (e.g., time and expertise) may be lacking. 

 

The AKSED runtime engine is responsible to execute the event detection code deployed on a UAV. The event 

detection code also contains necessary knowledge for the reasoning engine. Figure 4 shows its architecture. The runtime 

engine continuously monitors the external scene with sensors. The event detection manager controls the sensors and 

other components of the UAV. Feature extraction algorithms (e.g., image processing) will generate necessary features to 

be used by the reasoning engine. The reasoning engine is responsible to perform necessary probabilistic, contextual and 

other reasoning and QoS optimization (based on the event detection code). Possible output of the runtime system is a 

Figure 3:. AKSED system for collaborative UAVs. 
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Figure 3. AKSED system for collaborative UAVs. 



 

detected event report (to the UAV controller) and some recommendation for collaborative UAVs. The runtime engine 

will also receive recommendations from other UAVs as input. 

 

3. PROJECT OBJECTIVES 

The project ideas are being established at the present time. The objective is to develop an AKSED system with the above 

system architecture. Specifically, the project will involve the following steps to materialize AKSED. 

1. Study and explore the language for UAV/sensor capability description. This language is to interface between the 

lower-level image processing and UAV operation code.  

2. Study and explore the language for event description. This language will have the ability to incorporate 

probabilistic, contextual and other reasoning. The goal is to describe the event to be detected using the 

UAV/sensor capabilities (from 1 above) and its own reasoning capability (afforded by its logic language 

constructs). 

3. Develop a deployment engine prototype. 

4. Develop a runtime engine prototype. 

5. Develop a mockup UAV simulation to demonstrate the system ability. 

4. METHODOLOGY 

The central component of AKSED is the AKSED Deployment Engine (See Figure 3). It takes the three kinds of 

descriptions (i.e., basic capabilities, event, situation and QoS) as inputs and produces optimized event detection code (for 

UAVs) as the output to be executed by the AKSED runtime engine.  In this section we outline key methodologies 

needed in each part of the AKSED system. The concrete methodologies are subject to change as they mature, and are 

open to suggestions. 

4.1 UAV basic capability descriptions 

For UAV basic capability description, our methodology is to use probabilistic predicates in the following form: 

p(x1, …, xn): [v1, v2] 

Figure 4:. AKSED runtime engine architecture. 



 

where p represents the capability name with parameters x1, …, xn, and v1 and v2 are the minimum and maximum 

confidences (i.e., probabilities that the predicate is true) given the parameter values. For example, the predicate 

VehicleInIRimage(x1, y1, x2, y2): [v1, v2] 

means that the IR sensor recognizes a vehicle with a confidence of at least v1 and at most v2 in the rectangular region 

denoted by the two coordinates (x1, y1) and (x2, y2). In many cases, either v1=0 or v2=1. Specifically, for the [v1, 1] case, 

we have at least v1 probability that the predicate is true; while for the [0, v2] case, we have at most v2 probability that the 

predicate is true. These predicates will be used in an event description (see Section 4.2 below) to describe complex 

events. 

The above notation has its root in the probabilistic logic programming [6, 13]. Note that deterministic predicates are 

special cases of probabilistic predicates with [1, 1] (i.e., True) or [0, 0] (i.e., False). 

There are two possible implementations of capability predicate evaluations: push and pull. The push method will let the 

sensors (and other UAV operations) generate data for the feature extractor to populate a database with values of 

predicates (including all the corresponding parameter values and confidence values); then, the runtime reasoning engine 

simply looks at (i.e., query) the database to deduce events using the rules given in the event description. In the pull 

method, the sensors (and other UAV operations) will accept commands from the reasoning engine to produce values of 

the corresponding predicates. In this pull mode, it is possible that some of the parameters and/or the confidence values 

are partially instantiated. In the convoy detection example, the visual sensors are in the push mode (since they are on 

board the UAV) while the IR sensor is in the pull mode (since it is on another UAV). In this case, the reasoning engine 

will send a command to the IR UAV to see if indeed it can determine a vehicle at the said location with certain 

confidence. The predicate sent to the IR UAV is partially instantiated with only the location information, and the IR 

UAV returns with the confidence instantiated. How to determine which UAV capability should be in a pull or push 

mode is a research problem, and should be related to the events to be detected. 

4.2 Event descriptions 

We will study the use of probabilistic logic programming [6, 13] combined with techniques from Datalog with 

constraints [10, 15] to represent complex events. Probabilistic logic programming provides the basis for probabilistic 

reasoning, while the Datalog with constraints provides the basic tools to handle spatiotemporal information. For example, 

the following rule describes the Convoy event: 

(1)         Convoy(x, y, x’, y’):[v1, v2] (Vehicle(x1, y1), …, Vehicle(x5, y5)):[v1, v2], Spatial_constraint 

In the above, Spatial_constraint is a formula that relates all the location coordinates such that the distance between each 

pair of consecutive vehicles is about the same, and (x, y, x’, y’) is the smallest rectangle region containing all the five 

vehicles. This rule reads that if we have the confidence of [v1, v2] to have detected five vehicles (with said spatial 

relationship among them), then we have the same confidence of having detected a convoy. To connect the above rule to 

the UAV capabilities, we may set up the following rules: 

(2)         Vehicle(x, y):[v, v’]  VehicleInVisualImage(x1, y1, x2, y2):[v, v’], Spatial_constr 

(3)         Vehicle(x, y):[v, v’]  IRUAV(x1, y1, x2, y2):[v, v’], Spatial_constr 

In the above, the Spatial_constr specifies that (x, y) is within the rectangular region indicated by the two coordinates (x1, 

y1) and (x2, y2).  

A question arises on how to determine the confidence interval of recognizing a five-vehicle convoy (required by rule 

1) from the confidence intervals of recognizing individual vehicles (rules 2 and 3). This is in the domain of probabilistic 

reasoning. Simple independence assumption (i.e., each vehicle appears independently) may not be a realistic assumption. 

Probabilistic logic programming [6, 13] provides some basic techniques for solving this problem. In this project, since 

we use a combined language of probabilistic logic programming and Datalog with constraints, we will need to study the 

syntax and semantics of the above rules, as well as strategies to compute combined probabilities. Computational 

complexity of this language (or its sublanguages) is also an important topic. 

Note that the IRUAV predicate is not from sensors. Instead, it is from an underlying communication capability of the 

UAV. When rule 3 is invoked, the UAV is to communicate with an IR UAV to determine if there is a vehicle at certain 



 

location with certain confidence. This is a quite costly operation and should be used judiciously. This is the topic of 

situation description and QoS requirements below. 

4.3 Situation descriptions and QoS requirements 

Situation description is expressed as metadata given to predicates, like the evaluation cost and availability. For example, 

we may specify the cost of IRUAV predicate (in rule 3) to be much more expensive than the VehicleInVisualImage 

predicate (in rule 2). This will guide the reasoning engine to evaluate the VehicleInVisualImage predicate before IRUAV 

predicate whenever it has a choice between the two. Another situation description may indicate that IRUAV predicate is 

not available at all; in this case, IR UAV is not an option when detecting the obscured vehicle. We will study situation 

descriptions needed for various event detection tasks. 

QoS is also expressed as metadata specifying user preferences on the outcomes of event detection. An example is a 

preference between the speed of event detection and the precision of detected event. QoS requirements affect the 

generation of event detection code as well as its execution. We will study what kind of metadata and QoS requirement 

are necessary and sufficient for various event detection tasks. 

4.4 AKSED deployment engine 

For the output (detection code) generation, we will achieve code optimization through query optimization and 

transformation techniques, including QoS based query planning and transformation. The basic idea is to provide 

multiple execution possibilities of the same set of rules so that at runtime one is chosen based on the situation. This 

provides a clear advantage, namely, that the runtime engine does not have to perform the costly operations of choosing 

plans from vast possibilities (but only from the execution plans deployed into it) and that possibilities have already been 

explored to make sure that any execution plan used by the runtime engine will be a good one. The deployment engine 

also needs to take the resource availability of the UAV into consideration. For example, if IR UAV is not available, then 

rule 3 will be disabled. 

Furthermore, there is a clear optimization problem of how to balance the complexity of the deployed code and the 

possibility of runtime optimization. On one hand, run time optimization can be done best when the actual data have 

become available but, in this case, the deployed code may have to be very complex and hence take longer to run. On the 

other hand, some runtime optimization opportunities may be lost if we do not have complete “intelligence” included in 

the deployed code. We will study this issue further in this project. 

4.5 AKSED runtime engine 

The AKSED runtime engine will be based on optimized evaluation strategies for constraint-based probabilistic Datalog 

programs, which is the output of the AKSED deployment engine. The runtime engine is also responsible to manage the 

limited memory and bandwidth based on the user QoS requirements. A challenging aspect of this part of the project is to 

deal with data streams [4]. Indeed, when a UAV capability predicate is in a push mode, the reasoning engine will 

receive a stream of facts (i.e., feature predicate values with probability intervals). Many techniques for data stream 

processing [1, 8, 11] will be applicable. In particular, we will be able to take advantage of certain continuity property of 

the data (e.g., same vehicle appearing at slightly different locations at consecutive times) in order to expedite the 

processing. In addition, feature prediction will be useful to provide some pre-processing before some specific features 

appear in images. Forecasting techniques [2, 3] and predictive data mining [9, 12] techniques will be useful for such 

feature prediction. These are all research problems we need to address in this project.  

5. UNIQUENESS 

To our knowledge, this is the first project for enhancing UAV operations to the next level. If successful, it will enable 

UAVs to cooperatively and autonomously detect a complex event in an adaptive and efficient way. We believe the three-

stage (i.e., manufacturing, mission planning, and deployment) approach of this project is very useful. Indeed, in contrast 

to monolithic development efforts resulting in UAVs that are not easily customizable, this approach allows fast and 



 

flexible event definition with a high-level declarative language using concepts closer to the mission at hand. This way, 

UAVs can be quickly adjusted based on the mission requirements to detect events that were not predicted at the 

manufacturing time. The use of QoS concept is also unique and beneficial since UAVs will need to decide how to 

balance different requirements autonomously.  

6. CONCLUSIONS 

In this paper, ideas for developing a system (called AKSED) for detecting events using UAVs have been presented. The 

envisioned UAVs operate autonomously and collaboratively in their reconnaissance mission. The operation is adaptive 

to the situations and the quality of service (QoS) requirements.  The necessary intelligence (or knowledge) for these 

operations is instilled in the code loaded onto the runtime engine. The knowledge is tuned for specific mission the UAVs 

are launched to perform. The code to be loaded onto the runtime engine is generated by the deployment engine. This 

engine generates an optimal code made to adapt to various situations and QoS requirements that are expected during a 

specific mission. The system is characterized by its separation of UAV configurations into three stages of manufacturing, 

mission planning, and deployment.  This separation facilitates efficient and economical development efforts. We believe 

this will be the first project aiming to develop a system supporting a collaborative UAV mission in this manner. 
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