
Approximate Ad-hoc Query Engine for Simulation Datai
Ghaleb Abdulla, Chuck Baldwin, Terence

Critchlow, Roy Kamimura, Ida Lozares, Ron
Musick, Nu Ai Tang

CASC, Lawrence Livermore National Laboratory
Livermore, CA 94551

{abdulla1, baldwin5, critchlow, kamimura1,
ilozares, tangn}@llnl.gov

Byung S. Lee, Robert Snapp
Department of Computer Science

University of Vermont
Burlington, VT 05405

(802) 656-1919

{bslee,snapp}@cs.uvm.edu

ABSTRACT
In this paper, we describe AQSim, an ongoing effort to design and
implement a system to manage terabytes of scientific simulation
data. The goal of this project is to reduce data storage
requirements and access times while permitting ad-hoc queries
using statistical and mathematical models of the data. In order to
facilitate data exchange between models based on different
representations, we are evaluating using the ASCI common data
model which is comprised of several layers of increasing semantic
complexity. To support queries over the spatial-temporal mesh
structured data we are in the process of defining and
implementing a grammar for MeshSQL

KEYWORDS
Mesh Data, Scientific Data Management (SDM), Visualization,
Data Integration, Query, Data Retrieval.

1. INTRODUCTION
Scientific data is commonly represented as a mesh. Mesh data is
one of the most basic conceptual models for describing physical
systems within computer models. A mesh breaks a surface or a
volume down into an interconnected grid of 2D or 3D zones, each
storing a set of computed variables. If the zones are small enough,
the micro-scale properties and interactions can be modeled with
sufficient accuracy to provide sufficient predictions of macro scale
events. Storage and computation power requirements, however,
increase with the number of zones. Current capabilities have
simulations running for weeks, if not months, on massively
parallel machines and produce meshes in the scale of a few billion
zones; a more typical range is between tens of thousands, to tens
of millions of zones. Saving these data sets for query processing is
not an option because of storage limitations. For an elaborate
description of the simulation mesh data please refer to [1].

Querying tera-scale data requires addressing several research
challenges including the size of the data, multiple data formats,
and supporting complex spatio-temporal queries. We are pursuing
a multi-pronged approach to these issues. First, we create a
hierarchical partitioning of the data, and model each partition, to
create a multi resolution view. Currently we generate a statistical
model and a wavelet model. Since obtaining a highly accurate
response can require significant time, we provide the capability to
trade accuracy for response time. Second, we use metadata
associated with these models to facilitate processing the ad-hoc
queries. This metadata helps match the user query to the
appropriate model, allowing us to generate the most accurate
answer within a user-specified error tolerance. We use the term

“approximate” for the ad-hoc queries because of the described
constraints. Third, we are evaluating a mathematical model that
will take into account the relationship between physical systems
and mathematics. It considers the relationship between common
mathematical entities in simulation and discrete representations of
them employed in computer algorithms. This model can be
exploited for data management and, in particular, we will use it
for query optimization purposes.

The rest of the paper will describe the current system architecture
and the research challenges we hope to address.

2. SYSTEM ARCHITECTURE

User Query Mesh file

FV
partitioner
& modeler

Model files

Index files Parser &
index searcher

Data
reconstructor

Predicate
Processor

Mesh Generator

Visualizer

Figure 1 A simplified diagram of the current system
architecture

Figure 1 shows a simplified diagram of the current architecture.
On the right side of the diagram, we start with a mesh file, which
is used to create a matrix of Feature Vectors (FVs) that contains
all the spatio-tempora data. The matrix is then partitioned into
smaller sets, generating an index tree of nodes. Each node may
have one or more data models describing the current partition.
Each model contains the specific parameters required to
regenerate the data and the accuracy of the regenerated data has.
The results of this initial phase are the index file, describing the
partitions, and the associated model data files. The generated files
are smaller than the originals, however, they retain the
information content of the original data at several resolutions.

These files will be used for query processing, while the original
data is moved to tertiary storage.

The left side of Figure 1 shows the query engine, from which
queries are entered in SQL syntax. The query statement is passed
to a parser, and the resulting predicate is used by the index
searcher to locate a set of candidate partitions. The partitions are
then passed to the Data Reconstructor (DR), which uses model
information to reconstruct data points in the required partition.
The predicate processor evaluates the user query against these
points and creates mesh data that can be viewed by a visualization
application. The user query can include functions that use several
variables to generate an implicit relationship. The DR uses the
information from the user query, metadata, and the error tolerance
specified by the user to pick the suitable model for data
reconstruction.

3. RESEARCH CHALLENGES
3.1 MODELIN AND PARTITIONING
ALGORITHMS
Partitioning has an obvious effect on model accuracy, but
determining the best partitioning for a collection of models is a
challenge. In our approach, a variety of models will be examined -
some more for their data compression capability others for their
ability to address a wide variety of queries. Optimal model
performance may be impacted by the partitioning scheme selected
and this interaction needs to be examined. The current
partitioning uses an octree-like structure using the spatial and time
coordinates as inputs (see Figure 2). We are using the current
partitioning method as at test-bed to evaluate the initial set of
models, which include wavelets and b-splines:

Figure 2 The partition algorithm.

3.2 DATA REDUCTION AND MODELING
TECHNIQUES
Different data models are capable of answering different types of
queries with different speeds. For example, users might be
interested in following a certain region of the data over a certain
period. Currently we are using statistical summary and wavelets to
model the data. The statistical model allows us to quickly generate
the data points, which can then be used to directly answer simple
range queries. The Wavelet model allows us to easily identify
areas of high variability, at varying resolutions, which are often of
interest to the scientists.

We will be adding other modeling techniques in the future as
needed.

3.3 ERROR METRICS
Since not all queries need to be highly accurate, we will
investigate the relationship between the expected error, query
speed, and the use of different levels of multi-resolution models.
We will perform a series of experiments to determine the
difference between the time for theoretical cost models and the
observed time. We will use the results to improve error metrics
(partition and model errors) at the nodes. We will fine-tune the
models and the retrieval algorithms based on the obtained results.

3.4 THE QUERY ENGINE
Scientists often want to perform complex analysis of their data,
not just perform simple selections over it, so the ability to include
user-defined functions as part of the predicate is required. This
increases the complexity of the query engine and requires
supporting queries that do not include explicit relationships
between variables. The solution is to capture and characterize as
much as we can about the models, and heuristically define
mappings from queries to the models that can provide for the best
answer.

4. CONCLUSIONS
We are currently developing the prototype as described in this
paper. Initial results are promising and validate the concepts
introduced here. Results imply that we can create a system that
will support approximate ad-hoc queries over large data sets.
Because of this work we will be able to save the time and space
needed to ask complex queries over large simulation data sets.

5. REFERENCES
[1] R. Musick, T. Critchlow, “Practical Lessons in

Supporting Large-Scale Computational Science” ,
SIGMOD Record Vol 28 Num 4, Dec 1999.

[2] Data Engineering Bulletin: Special Issue on data
reduction techniques, Vol. 20, No. 4, Dec 1997.

i This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-ENG-48. UCRL-JC-138042

