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ABSTRACT 
In this paper, we describe AQSim, an ongoing effort to design and 
implement a system to manage terabytes of scientific simulation 
data. The goal of this project is to reduce data storage 
requirements and access times while permitting ad-hoc queries 
using statistical and mathematical models of the data. In order to 
facilitate data exchange between models based on different 
representations, we are evaluating using the ASCI common data 
model which is comprised of several layers of increasing semantic 
complexity. To support queries over the spatial-temporal mesh 
structured data we are in the process of defining and 
implementing a grammar for MeshSQL  
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1. INTRODUCTION 
Scientific data is commonly represented as a mesh. Mesh data is 
one of the most basic conceptual models for describing physical 
systems within computer models. A mesh breaks a surface or a 
volume down into an interconnected grid of 2D or 3D zones, each 
storing a set of computed variables. If the zones are small enough, 
the micro-scale properties and interactions can be modeled with 
sufficient accuracy to provide sufficient predictions of macro scale 
events. Storage and computation power requirements, however, 
increase with the number of zones. Current capabilities have 
simulations running for weeks, if not months, on massively 
parallel machines and produce meshes in the scale of a few billion 
zones; a more typical range is between tens of thousands, to tens 
of millions of zones. Saving these data sets for query processing is 
not an option because of storage limitations. For an elaborate 
description of the simulation mesh data please refer to [1]. 

Querying tera-scale data requires addressing several research 
challenges including the size of the data, multiple data formats, 
and supporting complex spatio-temporal queries. We are pursuing 
a multi-pronged approach to these issues. First, we create a 
hierarchical partitioning of the data, and model each partition, to 
create a multi resolution view.   Currently we generate a statistical 
model and a wavelet model. Since obtaining a highly accurate 
response can require significant time, we provide the capability to 
trade accuracy for response time. Second, we use metadata 
associated with these models to facilitate processing the ad-hoc 
queries. This metadata helps match the user query to the 
appropriate model, allowing us to generate the most accurate 
answer within a user-specified error tolerance. We use the term 

“approximate”  for the ad-hoc queries because of the described 
constraints. Third, we are evaluating a mathematical model that 
will take into account the relationship between physical systems 
and mathematics. It considers the relationship between common 
mathematical entities in simulation and discrete representations of 
them employed in computer algorithms.  This model can be 
exploited for data management and, in particular, we will use it 
for query optimization purposes. 

The rest of the paper will describe the current system architecture 
and the research challenges we hope to address. 

2. SYSTEM ARCHITECTURE  
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Figure 1 A simplified diagram of the current system 
architecture 

Figure 1 shows a simplified diagram of the current architecture. 
On the right side of the diagram, we start with a mesh file, which 
is used to create a matrix of Feature Vectors (FVs) that contains 
all the spatio-tempora data. The matrix is then partitioned into 
smaller sets, generating an index tree of nodes.  Each node may 
have one or more data models describing the current partition. 
Each model contains the specific parameters required to 
regenerate the data and the accuracy of the regenerated data has. 
The results of this initial phase are the index file, describing the 
partitions, and the associated model data files.  The generated files 
are smaller than the originals, however, they retain the 
information content of the original data at several resolutions. 



These files will be used for query processing, while the original 
data is moved to tertiary storage. 

 

The left side of Figure 1 shows the query engine, from which 
queries are entered in SQL syntax. The query statement is passed 
to a parser, and the resulting predicate is used by the index 
searcher to locate a set of candidate partitions. The partitions are 
then passed to the Data Reconstructor (DR), which uses model 
information to reconstruct data points in the required partition. 
The predicate processor evaluates the user query against these 
points and creates mesh data that can be viewed by a visualization 
application. The user query can include functions that use several 
variables to generate an implicit relationship. The DR uses the 
information from the user query, metadata, and the error tolerance 
specified by the user to pick the suitable model for data 
reconstruction. 
 

3. RESEARCH CHALLENGES 
3.1 MODELIN AND PARTITIONING 
ALGORITHMS 
Partitioning has an obvious effect on model accuracy, but 
determining the best partitioning for a collection of models is a 
challenge. In our approach, a variety of models will be examined - 
some more for their data compression capability others for their 
ability to address a wide variety of queries.  Optimal model 
performance may be impacted by the partitioning scheme selected 
and this interaction needs to be examined. The current 
partitioning uses an octree-like structure using the spatial and time 
coordinates as inputs (see Figure 2). We are using the current 
partitioning method as at test-bed to evaluate the initial set of 
models, which include wavelets and b-splines:  

 

 

 

Figure 2 The partition algorithm. 

3.2 DATA REDUCTION AND MODELING 
TECHNIQUES   
Different data models are capable of answering different types of 
queries with different speeds. For example, users might be 
interested in following a certain region of the data over a certain 
period. Currently we are using statistical summary and wavelets to 
model the data. The statistical model allows us to quickly generate 
the data points, which can then be used to directly answer simple 
range queries. The Wavelet model allows us to easily identify 
areas of high variability, at varying resolutions, which are often of 
interest to the scientists.  

We will be adding other modeling techniques in the future as 
needed.  

3.3 ERROR METRICS  
Since not all queries need to be highly accurate, we will 
investigate the relationship between the expected error, query 
speed, and the use of different levels of multi-resolution models. 
We will perform a series of experiments to determine the 
difference between the time for theoretical cost models and the 
observed time. We will use the results to improve error metrics 
(partition and model errors) at the nodes. We will fine-tune the 
models and the retrieval algorithms based on the obtained results.  

3.4 THE QUERY ENGINE 
Scientists often want to perform complex analysis of their data, 
not just perform simple selections over it, so the ability to include 
user-defined functions as part of the predicate is required. This 
increases the complexity of the query engine and requires 
supporting queries that do not include explicit relationships 
between variables. The solution is to capture and characterize as 
much as we can about the models, and heuristically define 
mappings from queries to the models that can provide for the best 
answer. 

4. CONCLUSIONS 
We are currently developing the prototype as described in this 
paper. Initial results are promising and validate the concepts 
introduced here. Results imply that we can create a system that 
will support approximate ad-hoc queries over large data sets. 
Because of this work we will be able to save the time and space 
needed to ask complex queries over large simulation data sets. 
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