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Abstract

We present our approach to enabling approximate ad hoc queries on terabyte-scale mesh data gener-
ated from large scientific simulations through the extension and integration of database, statistical, and
data mining techniques. There are several significant barriers to overcome in achieving this objective.
First, large-scale simulation data is already at the multi-terabyte scale and growing quickly, thus render-
ing traditional forms of interactive data exploration and query processing untenable. Second, a priori
knowledge of user queries is not available, making it impossible to tune special-purpose solutions. Third,
the data has spatial and temporal aspects, as well as arbitrarily high dimensionality, which exacerbates
the task of finding compact, accurate, and easy-to-compute data models.

Our approach is to preprocess the mesh data to generate highly compressed, lossy models that are used
in lieu of the original data to answer users’ queries. This approach leads to interesting challenges. The
model (equivalently, the content-oriented metadata) being generated must be smaller than the original
data by at least an order of magnitude. Second, the metadata representation must contain enough
information to support a broad class of queries. Finally, the accuracy and speed of the queries must be
within the tolerances required by users. In this paper we give an overview of ongoing development efforts
with an emphasis on extracting metadata and using it in query processing.

1 Introduction

As computing power increases, the availability and size of simulation data is growing rapidly.
Scientific efforts, such as the DOE Accelerated Scientific Computing Initiative (ASCI), are
simulating, with ever increasing precision, large-scale physical systems (e.g., hydrodynamical
systems). Simulation data has steadily grown from gigabyte to terabyte scales, with today’s
largest runs approaching 100 terabytes. Simply moving that much data between two systems
is a problem, let alone attempting to analyze and interpret it using conventional visualization
tools and database methods. Current approaches require scientists to manually direct the search
for anomalies, underlying patterns, and events of interest by visually identifying regions while
browsing through various representations of the mesh. This becomes infeasible when a single
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simulation can produce a multi-terabyte dataset with thousands of time steps and billions of
zones. It is imperative to develop an interactive ad hoc query mechanism that allows scientists
to locate regions of interest by specifying them declaratively. Realizing this capability over
terabytes of computational data is beyond the reach of current technology.

Visualization tools [6, 7] available to date provide a few fixed forms of primitive query
operations such as finding points, and displaying iso-surfaces, orthogonal slices, and vector
fields. For efficiency’s sake, the data is stored as collections of binary files and accessed with
special-purpose engines that provide no support for ad hoc queries. Storing the original terabyte-
scale data instead in a database management system (DBMS) may rectify this problem, but such
an approach carries a high cost [2]. For example, the data throughput requirements (in terms of
megabytes/sec) of visualization applications on large mesh data are substantially higher than what
current relational DBMSs can support, so this leads to a significant reduction in performance.
Besides, storing the original data in a database multiplies disk storage requirements, thus further
aggravating query performance. In short, this straightforward approach is simply not practical.

We approach this problem by building compact, approximate, multi-resolution models of the
mesh data and then using the models to support high-fidelity ad hoc queries. The models, along
with the access methods needed for using the models, are constructed in a preprocessing phase.
Statistical and mathematical data analysis and compression methods such as spline-based fitting
[16, 19], wavelets [20, 21], and clustering [8, 9] are all suitable in the preprocessing phase.

Our goal is to produce a suite of metadata (including both the models and the access methods
pertinent to them) that are at least an order of magnitude smaller than the original mesh data, thus
making the use of DBMS technology feasible. The metadata is stored and accessed through an
object-relational DBMS (ORDBMS), and the ORDBMS’s query engine plays an important role
in helping support ad hoc queries. ORDBMSs have the potential to provide high data throughput
rates, and allow great flexibility in where and how the metadata is stored and accessed. The
metadata-based query processing engine is interfaced to existing mesh visualization packages
so that query results can be displayed graphically to the user. Figure 2 in Section 4.2 describes
the architecture of the system that realizes these ideas.

There are many challenges to overcome for this approach to work, some of which are listed
below. Resolving them involves investigating and making complex tradeoffs between prepro-
cessing time, compression level, query speed, query accuracy, and the range of queries the
metadata supports.

• Scalable solutions: all aspects of the preprocessing phase must be scalable to terabyte
mesh data, and the algorithms must be amenable to efficient parallelization on machines
with hundreds to thousands of processors.

• Complete models: little is known about what makes an effective model of mesh data
that is capable of supporting arbitrarily complicated ad hoc queries. There are many
alternatives which have varying degrees of accuracy and descriptive power. For example, if
the metadata supplied is based on averages of variable values over all time steps, answering
a rate-of-change query becomes impossible. The models must be compact, yet contain
enough information to answer a wide range of possible queries.

• Compact, efficient, multi-resolution metadata: we allow the scientists to trade query re-
sponse time for accuracy, allowing interactive ad hoc queries at one extreme, and slower,
more accurate responses at the other. This places several hard constraints on the metadata.



It must provide a highly compressed multi-resolution model of the mesh data without
sacrificing efficient operations for compressibility. Different models not only lead to a
variety of query processing mechanisms and speeds but also potentially require different
mechanisms for providing multi-resolution support.

• Accurate models and high dimensionality: including spatial and temporal coordinates
(e.g., x, y, z, t) along with the field variables computed by the simulation, mesh dimen-
sionalities typically range between 10 and 100. High dimensionality makes the problem
of building accurate models much more difficult, adversely impacting the time to solution,
compressibility, and modeling error.

• Quantitative error models: a framework for quantifying expected query errors is needed
if users are to be able to trade accuracy for query performance. The challenge is to design
a framework that can accurately measure the expected error incurred by a query over
multiple models both within and across partitions.

Currently, an effort is under way to build a series of prototypes that will eventually be
applied to terabyte-scale mesh data. The prototypes are extensible to allow for the addition of
new preprocessing methods as well as their associated metadata, access methods, and rules for
choosing access methods for a given query type. The rules mentioned above also help determine
which level in the multi-resolution representation should be used in order to generate an answer
within a specified error tolerance.

The prototype is usable not only with simulation data but also for experimental data with grid
structures in it (for example, sensor data aligned in a grid), and GIS systems in general. We also
see a great potential for enhancing the scalability of business intelligence and data warehousing
applications, which share the need to process large-scale multi-dimensional data.

In the rest of the paper, we first provide a simplified model of mesh data in Section 2. Then,
in Section 3 and Section 4 we sketch the ongoing implementation of our metadata approach to
ad hoc mesh query processing. Related work is described in Section 5, and conclusion follows
in Section 6.

2 Simulation mesh data model

Simulation mesh data is generated through numerical calculations, typically in a sequence of
time steps. The data point grid may be either regular or irregular, time-variant or time-invariant,
and sparse or dense [1]. A mesh data model comprises the topology of data points as well as the
spatiotemporal configuration of them. In this paper we focus on the spatiotemporal aspects only.
(Readers are referred to [2] for a more detailed discussion of mesh data.) The data structure
and query semantics of mesh data overlap those of spatial data significantly. Nonetheless, there
exist distinctions in the following aspects: (1) mesh data points form an explicit grid structure;
(2) simulation time step, if treated separately from spatial variables, implies the semantics of
time series data; (3) generated simulation data is used for read-only, maybe replaced but never
updated.

Let us define mesh data as a discrete representation of continuous data, which can be defined
as an ordered set of tuples as follows. (Mesh data represented in this manner is called a “point



mesh”[3], which is just a collection of data points with no topological connection among them.)

{< t, x1, x2, · · · , xn, v1, v2, · · · , vm >} (1)

where t denotes a temporal variable defining a time step, xi, i ∈ [1..n], denotes a spatial variable
defining the geometrical coordinates in an n-dimensional space, and vj , j ∈ [1..m], denotes a
field variable defined at each node (positioned at < t, x1, x2, · · · , xn >) or each zone in the mesh
at time step t . A zone in a regular mesh is an n-dimensional cubic bounded by the surrounding
2n mesh nodes whereas a zone in an irregular mesh is surrounded by an indeterminate number
of nodes.

3 Metadata extraction

In this section we first describe the configuration of metadata – what makes up the elements
and how are they organized. Then we introduce our approach to creating it, for which we first
elaborate on the spline-based modeling and then skim other alternative modeling methods.

Recall that the goal of preprocessing the mesh data is to generate a representation of model
that is much smaller and yet can be used to support approximate ad hoc queries. Here we
adopt a flexible approach that allows the metadata to be constructed in a piecewise fashion.
First the entire mesh is decomposed into an appropriate partition, then the mesh data within
each partition is concisely approximated using an appropriate parametric model (e.g., splines,
wavelets, or clusters). Algorithms to generate this metadata typically iterate through two phases:
mesh partitioning and partition characterization. Iteration between these phases takes place to
revise the actual partitioning based on a similarity (or error) metric that measures the difference
between the characterization of the data in a partition and the actual mesh data itself.

3.1 Metadata content and organization

We organize the metadata in two levels. The lower level contains two elements. The first
element is a multi-resolution model of mesh data, modeled per partition of mesh data, as well
as a collection of summary information that is generated as the result of preprocessing. For
example, the summary information includes, per variable, information on min, max, mean,
median, standard deviation, and the first several moments for each variable. The actual models
(described in more depth below) vary from cluster prototypes, to regression equations, to matrixes
of equations, and so on. The second element of metadata is a set of indexes that define the
structure that must be traversed to reach the first element data. More specifically, each node of
an index contains the summary information and model information of the corresponding mesh
partition. The summary information contains pre-calculated aggregate values at different levels
of grouping, analogously to materialized views [25] in data warehousing. The model information
contains the preprocessing method used to model that partition, the generated model data, and
the modeling error. Each index node also contains the bounding box information, i.e., the
size and location of the mesh partition covered by the node. Additionally, an internal node in
the index contains the links for binding all child nodes in a manner similar to that of a multi-
dimensional spatial access method such as the R* tree [26]. Figure 1(a) illustrates the structure
of a two-dimensional index tree, where each index node is depicted by a rectangle indicating



Index node {
Summary information:  <min, max,

mean, median, standard deviation,
1st derivative, 2nd derivative, …>

Model information:
{<prep-processing method,

model data, modeling error>}
Bounding box information:

<mint, maxt, minx, maxx,
miny, maxy, minz, maxz>

Links to children:
(for internal nodes only)

}

(a) A two-dimensional index structure. (b) An index node structure.

Figure 1: An example of index tree structure.

the corresponding quadtree partition of mesh data. The structure of an index node is shown in
Figure 1(b).

The higher level metadata contains information that is independent of the particulars of differ-
ent preprocessing approaches and is used to help organize the query processor. More specifically,
it contains the following three elements. The first is information about the most efficient access
paths that can be used to expedite queries of a given type (see Table 2 in Section 4.2) as well
as parameters for estimating query response times. The second element is the mapping from a
preprocessing method to a preferred program object (called “metadata processor”). A program
object “knows” how to reconstruct approximate mesh data from the model that is generated in
the preprocessing stage. The third element is semantic information such as locations of empty
regions on the mesh and dependency information between correlated field variables.

3.2 Spline-based modeling

The spline-based fitting is one approach to generating an approximate replica of the data.
Splines are essentially a set of basis functions which can be found at the root of many wavelet basis
functions and regression approximations. Splines serve as a useful polynomial model of data
that originates from the smooth dynamical systems often encountered in scientific applications.
Polynomials are computationally efficient: they are easy to store, manipulate, and evaluate.
Derivatives and integrals, which may need to be evaluated in order to answer certain queries, can
be obtained for splines algebraically. Similarly, the roots (or zeros) of polynomials are readily
obtained by standard numerical methods. The use of splines to model piecewise-continuous
phenomena is supported by a large body of theory [17]. For instance, every function that is
continuous over a finite interval can be approximated to arbitrary accuracy using splines of
fixed order, provided that a sufficient number of knots (i.e., polynomial segments) is allowed.
Furthermore, rates of convergence of spline approximations, and their derivatives for large classes
of continuous functions are also well known.

There are several different splines, but B-splines [19] are used most popularly. Of particular
interest is that they have been used as a method for compressing large observational data sets [18].
Multivariate surfaces can be defined in n dimensions in terms of tensor-product splines [16],
where the vector-valued control points are estimated by minimizing the sum of squared errors



between the tensor-product spline and the mesh data. For example, consider a data set defined on
an n-dimensional rectangular mesh �V (x1, . . . , xn) where the coordinate variable xj , j ∈ [1..n],
independently assumes ρj values {xj,1, . . . , xj,ρj

}. For i = 1, . . . , n, let ki denote the number
of knots along the xi coordinate axis, and let{Bi,1(u), . . . , Bi,ki

(u)} denote the corresponding
set of B-splines. A tensor-product spline can then be defined as:

�F(x1, . . ., xn)=
k1∑

i1=1

· · ·
kn∑

in=1

�pi1...inB1,i1(x1)· · ·Bn,in(xn) (2)

where the control points �pi1...in specify the shape of the generated surface. The values of the
control points are chosen to minimize the approximation error

ρ1∑

j1

· · ·
ρn∑

jn

‖ �F(x1,j1, . . ., xn,jn
) − �V (x1,j1, . . ., xn,jn

)‖2 (3)

A variety of statistical techniques (i.e., regression) have been studied, including efficient imple-
mentation strategies and methods for adaptively modifying the number and location of knots.

Our spline-based modeling algorithm has two phases – partitioned spline-based fitting and
index tree construction – that are interleaved in an actual implementation. The former phase
has two steps: partition and fit. In the partition step we multi-dimensionally bisect the mesh
data, and in the fit step we perform spline-based fitting against the data in each partition. For
mesh data in an n-dimensional space, each “multisected” partition is 2n-th the size of its parent
partition. (This makes an octree structure if n = 3.) If the fitting error of a partition exceeds the
specified maximum allowed error, we partition it further into subpartitions. This partition-and-fit
is repeated recursively until every partition of data is fitted within the maximum allowed error.
In the index tree construction phase, we create one node for each partition. A node contains,
as the model data, the control points (i.e., { �pi1···in}) and knot locations of the B-splines used in
the corresponding partition. In addition, it contains the summary information and bounding box
information described in Section 3.1.

The granularity of the fitted data can be a field variable or a vector of field variables (e.g,
�v ≡< v1, v2, v3, ... >). A key question is which set of indexes to create over the vector of
variables. The most elementary approach is to create one index per field variable. This supports
a wide range of queries, but better compression and error modeling is likely to result from
modeling highly correlated variables together. Since the potential number of unique mulitiple-
variable combinations is exponential with the number of variables, we need an organized way to
limit the number of composite indexes in consideration. To this end, we either use probabilistic
reasoning such as the qualitative structure of a belief net [24] learned from sample points or
in the tuning phase wait and see which queries are common, and then jointly index the highly
correlated variables that tend to appear together.

3.3 Alternative modeling methods

Alternative characterizations: Tradeoffs exist between different approaches to modeling the
data in each partition. All these methods share the theme of providing a compressed, approximate
representation of the original data. Note that in most cases the characterization of the data is
tied to the error metric used in the partitioning phase.



The simplest model we consider is a prototype object that depicts the centroid of each parti-
tion. This model consists of, for example, the mean and several moments of each field variable
in the cluster. Since in fact this data is already a part of our summary metadata, representing
such cluster prototypes requires no additional effort. Of course, the model it provides is also
the least informative, and so likely requires very small clusters before being able to satisfy the
error constraints. This model can be made more complex and informative by representing the
prototype components with mixtures of distributions. Data permitting, we can use the data to
form sufficient statistics for a mixture of beta or Gaussian distributions per variable.

An alternative characterization method that is more complex and informative than the spline-
based fitting (described in Section 3.2) is the use of wavelets. Data in each partition can be
modeled with the wavelet representation resulting from lossy wavelet-based compression of the
data. A wavelet representation can be viewed as a matrix of locally dependent linear equations
composed of different basis functions. Wavelet-based methods for compressed multi-resolution
representations of mesh data have been successfully used for large-scale visualization problems
[22].

Among the tradeoffs between the alternative methods is how the cost of partitioning the data
(as well as the size and number of partitions) varies with the complexity and accuracy of the
resulting model. The issue of tuning is also important here. Since we are dealing with simulation
data, it is likely that several variables in the mesh are functionally related. If we know a priori
that such relationships exist, and the scientists can pass those relationships on, those functions
can be represented explicitly in the metadata, thus in effect reducing the dimensionality of the
overall problem.

Alternative partition spaces: The partitioning we have described in Section 3.2 has been along
spatiotemporal axes. There are many other ways to break up mesh data into smaller collections
of objects. The mesh data can be mapped into a long time series aligned by the simulation time
step, which could then be compressed with techniques like principal components analysis [5].
This modification would require non-trivial changes to the approach we described for indexing
and querying the multi-resolution metadata.

A different approach is to treat the spatial and temporal variables no differently than the
field variables. In this case, a mesh is converted to a large set of hyper-dimensional points, or
feature vectors, identical to the typical datasets found in the data mining community. We are
exploring clustering over a sample of points in this space, iteratively refining clusters as the rest
of the data is read in. The advantage of this approach is that clusters may be more compact in
this space, leading to better compression rates. The disadvantage is that we need to associate
the hyper-dimensional clusters to spatial/temporal regions in order to answer region-dependent
queries. Vector quantization combined with bit map indexing is likely to make this feasible.

4 Query support using metadata

4.1 Query classification

In order to rationally choose between different types of compact models, it is important to
understand the types of queries that can be addressed to mesh data. We categorize queries into



the orthogonal types shown in Table 1 to better understand how the metadata we produce and
the algorithms for producing the metadata impact the types of ad hoc queries we can ask.

Query forms w. r. to the target objects and the predicated objects:
SR Find summaries of variables given the specification of mesh regions.

RS Find a mesh region given the specification of mesh subregions.

SS Find summaries of variables given the specification of mesh subregions

Query condition w. r. to the number of time steps:
1T One time step.

NT N serial time steps, where N > 1.

Query condition w. r. to the number of predicate variables (M):
NV No variable (i.e., M = 0)
UV Univariate (i.e., M = 1)
MV Multivariate (i.e., M > 1)

Table 1: Classification of query types.

First, the query form is determined by three possible combinations of the target (i.e., retrieved)
objects and the predicated objects: SR, RS, and SS. The first letter, either ‘S’or ‘R,’distinguishes
the target objects into summaries and regions, where a summary refers to variables, functions
of them, or aggregations of them, and a region refers to mesh data points that are connected
together. The second letter, either ‘R’ or ‘S,’ distinguishes the predicated object into regions
and subregions, where regions are specified with predicates solely on only the spatiotemporal
variables and subregions are further specified with predicates on field variables as well. Note
that a query form ‘RR’ is pointless because of its tautological semantics of “finding the regions
of mesh data in the specified regions.” Second, the query condition is determined by the number
of specified time steps (i.e., 1T and NT) in one way and by the number of predicate variables
(i.e., NV, UV, MV) in the other way. Combining the three categories gives us eighteen query
types resulting from the following product: { SR, RS, SS } × { 1T, NT } × { NV, UV, MV }.
The rationale behind these classifications will become clear as we discuss query processing in
Section 4.2.

Example queries are shown below using SQL-like syntax on the mesh data of Equation 1
along with an explanation of what is returned and how the query is classified. We assume the
following in these examples: the mesh data filename is “Meshdata”; the system supports a
data type “region” and its internal implementation such as a region identity; the system uses
“timestep” as a reserved keyword for the simulation time step, which is a temporal variable;
x1, x2, and x3 are spatial variables; v1, v2 and v3 are field variables.

Q1 select avg(v1), avg(v2) from Meshdata where timestep = 8 and x1 between 200.0 and 300.0
andx2 between 1000.0 and 2000.0 andx3 between 500.0 and 800.0; ⇒ returns the summary
(i.e., average) of the fields v1 and v2 in the mesh region bounded by the predicates on
x1, x2, and x3 at time step 8. This query runs at one time step, therefore 1T, and involves
multiple (one temporal, three spatial, and zero field) variables, therefore MV with M = 4.
[SR.1T.MV]



Q2 select region from Meshdata where timestep between 4 and 1000 and x2 > 1000.0 and (x3

between 500.0 and 800.0 or x1 < 200.0) and v1 between 0.0 and 100.0 and v2 between
50.0 and 150.0 and v3 between 100.0 and 250.0; ⇒ returns the subregions that are confined
within the regions defined by the predicates on timestep, x1, x2, and x3 and further bounded
to subregions where the predicates on v1, v2, and v3 are satisfied. This query runs in 995
time steps, therefore NT, and involves multiple (one temporal, three spatial, and three
field) variables, therefore MV with M = 7. [RS.NT.MV]

Q3 select min(v1), avg(v1), max(v1) from Meshdata where timestep = 13 and x1 between 200.0
and 300.0 andx2 > 1000.0 andv2 between 123.0 and 234.0; ⇒ returns the three summaries
of v1 in the mesh subregions confined within the regions defined by the predicates on x1 and
x2 at time step 13 and further bounded to subregions where the predicate on v2 is satisfied.
This query runs at one time step, therefore 1T, and involves multiple (one temporal, two
spatial, and one field) variables, therefore MV with M = 4. [SS.1T.MV]

4.2 Query processing

Architecture: Figure 2 shows the architecture of the prototype we are building incrementally.
In the metadata extraction stage, the preprocessor generates a collection of indexes built upon
the mesh data, while using possibly different methods on different partitions of the same mesh
data. The preprocessor generates other metadata elements as well, as described in Section 3.1,
and stores them in the two layers of metadata. Remember that the higher level metadata contains
information for mapping from preprocessing methods to metadata processors.
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Mesh data
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visualization
query result

scan data

message:result

Query processor
(mediator)

metadata
processor

metadata
processor

metadata
processor

ad-hoc query

metadata
Higher level

interface
common

Figure 2: Architecture of the prototype.

In the query processing stage, a scientist uses the query user interface to compose an ad
hoc query. The query processor then parses the query and categorizes it into one of the pre-
defined query types described in Table 1, and determines which indexes to use based on the rules
described in Table 2. The query processor then searches the chosen indexes for the nodes that are
needed to satisfy query predicates within the limit of a user-specified modeling error. Then, if the
query is not answered completely from the pre-calculated summaries stored in the index nodes,
it identifies the preprocessing methods from the accessed nodes. It then looks up the mapping



Query forms w. r. to the target objects and predicated objects:

SR

Search indexes available on the target field variables for the nodes encompassing the
mesh regions specified by the predicate on spatial variables. For each found node,
retrieve the target summaries if pre-calculated, otherwise calculate them from the model
(e.g., coefficients) stored in the node.

RS

Separate the predicate variables into spatial variables and field variables. Search indexes
available on the field variables for the nodes whose contained min-max range falls within
the specified range of values. Consolidate all the mesh regions covered by the found
nodes and then intersect the resulting regions with those bounded by the predicates on
the spatial variables.

SS
Given the predicate variables, find mesh regions in the same manner as in RS and, given
the resulting mesh regions, find the target summaries in the same manner as in SR. (Note
that SS is equivalent to RS followed by SR.)

Query condition w. r. to the number of time steps:
1T Prefer separate indexes for each time step.
NT Prefer one index across time steps.

Query condition w. r. to the number of predicate variables (M):
NV Use no index, in effect performing an exhaustive scan of the entire mesh data.

UV Use simple indexes on the predicate variables.

MV Prefer composite indexes on the predicate variables and, if none exists, simple indexes
on individual variables.

Table 2: Rules for using indexes for query classes shown in Table 1.

information in the high level metadata and decides which metadata processors to invoke for
the identified preprocessing methods. Each metadata processor knows how to regenerate the
mesh data (approximately) and calculate summaries. Metadata processors return the results (i.e.,
regions or summaries, depending on the query type) to the query processor, which then integrate
the results and sends the integrated data to the visualization engine on the desktop for display.

All metadata processors have a common interface (i.e., public methods) that defines a meta-
data model. We store the metadata within an object-relational DBMS if performance require-
ments can be met, otherwise outside the DBMS storage manager and link to the data using the
ORDBMS’s mechanisms for tying external data into the DBMS’s query engine.

Procedure: Queries are processed using the index trees built in the preprocessing stage as
follows: choose one of indexes that is optimum for a given selection condition, search the tree
down to find a set of nodes that satisfy the query condition and meet the error constraint, and
regenerate the mesh data of the corresponding partitions. Table 2 summarizes our approach to
managing different types of queries when given a rich set of indexes from which to potentially
answer the query. Specifically, the table lists the appropriate indexes to be searched by a query
processor given associated query classes in each category.

A few points are worth mentioning regarding indexes in Table 2. First, an “index” denotes
a database index that stores data (e.g., coefficients) generated from preprocessing mesh data
and is accessed (i.e., searched) by a query processor. Second, the same index can be used for



searching based on either variable values or mesh regions, or both. This dual usage is possible
because an index node stores the size and location of the mesh regions the node covers as well as
the min–max range of the indexed variable or vector. Third, we always prefer to use a composite
index (i.e., an index created on a vector) when applicable, for efficiency reasons. Fourth, we
assume that indexes are created on the values of a variable, not functions of values.

If there are highly correlated variables vi and vj , an index may only need to be created on
either variable, not both, and this fact is recorded as part of the higher level metadata. If the
correlation is quantifiable, that is, can be modeled as an invertible conversion function, then the
query processor uses an index on one variable even if the other variable is predicated in the query
condition. For example, if vi = 2 × vj + 1 and an index exists on vi , then a query selection
condition vj > 4 can be processed using an index on vi for a condition vi > 1.5.

In the example below, we suggest the most preferred index and then sketch the query pro-
cessing using the index for each of the query examples shown in Section 4.1.

Q1 The best is to have a composite index on v1 and v2 at time step 8, with pre-calculated averages
of v1 and v2 stored in the index nodes. Given all the found index nodes, which overlap
the spatial bounding box predicated on x1, x2, and x3, calculate avg(v1) and avg(v2) from
the stored value assuming the uniform distribution of the values of v1 and v2. Knowing
the actual distribution certainly contributes to the accuracy but to the computational cost
as well. If there is no pre-calculated avg(v1) or avg(v2), calculate it from the model stored
in the index node.

Q2 The best is a composite index on v1, v2, and v3 across time steps including 4 to 1000. As the
index search returns a set of nodes based on the predicates on v1, v2, and v3, subregions of
the partitions corresponding to the nodes are selected from the spatiotemporal bounding
boxes specified with timestep,x1, x2, and x3 by applying the field predicates on v1, v2, and
v3. Applying a field predicate requires using a numeric solver.

Q3 The best is a simple index on v2 at time step 13, with pre-calculated min, avg, and max of v1

stored in each index node. As in Q2, select mesh subregions based on the spatial bounding
boxes specified with x1 and x2 at time step 13 and the field predicate on v2. Then, as in
Q1, calculate the summaries of v1 in the selected subregions out of the stored values under
the assumption of a uniform distribution.

In the unavailability of the desired index, we should compare different options to make the
next best choice. We consider two cases of comparisons here. First is between a composite
index without pre-calculated summaries and a simple index with pre-calculated summaries. The
former leads to accessing fewer index nodes but doing more computations (for calculating the
summaries) than the latter. One heuristic rule in this case is to favor the former over the latter
assuming that calculating summaries in main memory is cheaper than fetching index nodes from
the disk. Under this rule, the second best in Q1, for instance, is a composite index on v1 and v2

without the pre-calculated averages, and the next best is a simple index on either v1 or v2 with
the pre-calculated averages. (Making a systematic choice between v1 and v2 requires knowing
the distribution of their values relative to the predicates on them, similarly to a conventional
query optimization.)

The second case is between a 1T composite index, created per time step, and an NT simple
index, created across multiple time steps. (Figure 3 illustrates this with a two-dimensional index.)



The former leads to searching more indexes (i.e., as many as the number of queried time steps)
but accessing fewer nodes per index than the latter. The number of 1T simple indexes searched
for a given query is bounded by the number of actually indexed variables. The choice of an
index in this case depends on the expected number of accessed index nodes, which increases
logarithmically with the number of queried time steps for the NT simple indexes whereas linearly
for the 1T composite index. For instance, the second best in Q2 may well be three simple indexes
on each of v1, v2, and v3 created across time steps including 1 to 1000.

x

timestep

(a) one composite index per time step. (b) one simple index across time steps.

Figure 3: An example of 1T composite indexes and an NT simple index.

5 Related work

To the best of our knowledge, there is no existing system with the capability to support ad
hoc queries on large-scale mesh data. There is an extensive body of literature in the visualization
community that focuses on enabling the visual exploration of computational data. Many current
efforts are, for example, exploring schemes to generate multi-resolution representations of large
surfaces [22, 23] to characterize mesh data of varying topology. There is an essential distinction,
however, between typical visualization efforts and the goals outlined in this paper. Visualization
efforts are not aimed at supporting ad hoc queries, but rather at supporting a much more restrictive
set of pre-defined visualization “queries”. While many of the underlying algorithms for modeling
the data are useful in either setting, this difference in goals results in differences in approach that
range from the initial partitioning of the data to its final characterization.

The STING project as described by Wang et. al. in [4] is a closer fit to the challenges outlined
in this proposal. STING is described as a spatial data mining approach based on a statistical
information grid. STING uniformly partitions the data into rectangular cells, builds a hierarchy
on top of them by integrating four cells into one at the higher level of the hierarchy, and stores some
pre-calculated summary information (e.g., min, max, mean) in each cell. In addition, STING
supports two types of “region queries” – one is to find regions given conditions on variables in
the region, the other is to find a summary of data in a region. Our query classification scheme
(in Section 4.1) extends this into a multidimensional classification, while our mesh partitioning
and characterization approaches focus on satisfying more stringent compression, scalability, and
usability metrics.

The support for region queries is closely associated with partitioning mesh data. STING
builds uniform partitions of data and characterizes the content of each partition. There are a
multitude of other approaches that can be applied to the problem of partitioning data into smaller,
more manageable pieces. Graph partitioning algorithms such as METIS [11] and a parallelized
version parMETIS [12] are commonly used for domain decomposition problems in scientific



computing. While interesting, these algorithms are optimized for minimizing the number of
edges that are cut in a partitioning, which is hard to map to more generalized error (or similarity)
metrics required for the partitioning we need to carry out. Of more immediate applicability
are clustering approaches. Clusters are formed by maximizing inter-cluster similarity and intra-
cluster differences between groups of objects, as measured by a similarity metric. Clustering
approaches can be grouped into two categories, agglomerative and divisive. Agglomerative
methods such as Birch [10] and CLARANS [13] are based on K-means, which builds clusters
by merging one object or cluster at a time. Divisive approaches such as CLIQUE [15] and the
adaptive binning used in MAFIA [14] build partitions by starting with the full set of objects, then
dividing or adjusting the partitions recursively. In both cases, decisions on modifying cluster
membership are made based on the change that improves the similarity metric the most.

6 Conclusion

We have described an ongoing effort for providing approximate answers to ad hoc queries
on mesh data generated through numerical simulations. The approach is to preprocess the mesh
data to generate metadata and then use the metadata to answer users’ queries approximately.
Based on a simplified view of mesh data as a collection of spatiotemporal data points, we
have described the configuration and extraction mechanism of metadata. Specifically, we have
given an overview of multi-resolution index construction that uses mesh partitioning and partition
characterization recursively, presented the spline-based fitting as one viable modeling technique,
and sketched other alternative modeling methods. Then, we have classified query types based
on anticipated uses of the metadata, and presented query processing architecture and procedure
associated with the query types. The architecture has been designed to incorporate multiple
modeling techniques as the system evolves. We have also provided an example for making a
logical connection between the metadata, query types, and query processing.
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