

Distributed Adaptive Windowed Stream Join Processing

Tri Minh Tran

Department of Computer Science

University of Vermont

Burlington VT 05405, USA

ttran@cems.uvm.edu

Byung Suk Lee

Department of Computer Science

University of Vermont

Burlington VT 05405, USA

bslee@cems.uvm.edu

Abstract

This paper presents an adaptive framework for processing a window-based multi-way join query over

distributed data streams. The framework integrates distributed plan modification and distributed plan

migration within the same scope by using a building block called the node operator set (NOS). An NOS is

housed in each node that participates in the join execution, and specifies the set of atomic operations to be

performed locally at the host node to execute its share of the global execution plan. The plan modification

and migration techniques in this paper are presented for the case of updating the NOSs centralized at a

single node and the case of updating them distributed at each node. The plan modification is triggered by

the change of stream statistics and adjusts the join execution order and placement greedily to satisfy a cost

invariant. The plan migration uses what is called the distributed track strategy to accelerate the migration

of window extents to new nodes. The migration of all window extents is synchronized. Experiments

confirm the effectiveness of the developed adaptive framework on reducing the join execution cost and

indicate a small additional adaptation-overhead for distributing the NOS update.

Keywords: multi-way join query, adaptive query processing, data streams, distributed database

management systems.

1 Introduction

Distributed data stream processing (Amini, Jain, Sehgal, Silber, and Verscheure 2006; Cormode,

Muthukrishnan, and Zhuang 2006; Das, Ganguly, Garofalakis, and Rastogi 2004; Kumar, Cooper, and

Schwan 2005; Kumar, Cooper, Cai, Eisenhauer, and Schwan 2005; Olston, Jiang, and Widom 2003;

Seshadri, Kumar, and Cooper 2006; Sharfman, Schuster, and Keren 2006) is a fast growing research area

mailto:ttran@cems.uvm.edu
mailto:bslee@cems.uvm.edu

in the data stream field. The driving force behind this growth is the widely deployed and utilized diverse

distributed computing environments such as the telecommunication networks, web, sensor networks, and

P2P networks as well as the evermore performance-demanding intelligence and monitoring applications

in various sectors of the society.

In this paper, we focus on multi-way window-based stream join query which is an important class of

queries in distributed stream applications. For example, in network packet monitoring, the network

administrator may want to monitor the traffic of data packets passing though different routers with the

objective of finding packets with the same destination IP address. For this task, a distributed stream join

query is needed to join the streams of packets from those routers. As another example, in building-

monitoring using sensor networks, one may want to keep track of the temperature, humidity, and light

intensity measured by sensors in a room. The sensor readings of each measurement type are sent to their

respective sinks as a stream. The monitoring task in each room can be specified as a distributed stream

join query that joins on the same room id from three sensor reading streams. Similar distributed join

queries are also needed in many other stream applications such as financial stock ticker analysis,

telephone call monitoring, and news article filtering.

An important aspect of query processing today is the adaptivity, that is, adjusting the query execution

plan adaptively to the changing data profile and system environment. In light of data stream query

processing, the fluctuations of stream statistics (e.g., stream rates, join selectivity) or available system

resources (e.g., memory, CPU time) are the changes to adapt to. This paper focuses on the former, i.e.,

stream statistics.

To the best of our knowledge, all existing research on adaptive stream join processing have been

done in the centralized environment (Babu, Motwani, Munagala, Nishizawa, and Widom 2004; Babu,

Munagala, Widom, and Motwani 2005; Zhu, Rundensteiner, and Heineman 2004) and none in the

distributed environment. In the distributed environment, a different query processing model is needed

because some or all join steps are performed at different nodes across the network and the communication

overhead for these join steps should be taken into consideration in query execution planning, and thus the

solutions developed in the centralized environment are not applicable.

Moreover, there is a division in the scope of the existing work. Adaptive query processing

framework encompasses query plan modification and query plan migration. Query plan modification

involves the process of updating current execution plan to a new, better plan, and query plan migration

handles the switch from the current execution plan to the new plan. As far as we know, however, there

does not exist any work done on adaptive stream query processing with both in one scope. All the existing

work address either the query plan modification (Babu, Motwani, Munagala, Nishizawa, and Widom

2004; Babu, Munagala, Widom, and Motwani 2005) or the query plan migration (Zhu, Rundensteiner,

and Heineman 2004), not to mention they are not distributed. This disconnection naturally misses out the

interaction between the two key aspects of adaptive query processing.

This paper aims to advance the state of the art by providing a solution to the distributed plan

modification and migration problem for executing stream join queries adaptively within the same

framework as the stream statistics change in a distributed environment.

The adaptation of query processing in this paper is triggered by an event defined as a significant

change of stream statistics such as stream rate, join selectivity, and tuple size. One challenge in achieving

this adaptivity in a distributed environment comes from the fact that the query execution plan specifies

only the steps for executing a query but not specifically what each node needs to do. Thus, each node has

to make its own local decision on what part of the distributed global plan it needs to execute, when to

adjust its own part, and how to adjust it.

Our approach to meeting this challenge is to use an abstract data type called the node operator set

(NOS). An instance of the NOS is stored in each node and used to specify what each node needs to do

toward generating the global query result. Specifically, the elements of an NOS are the basic operators

executed locally at the node as part of a distributed join execution plan. The operators include a one-way

join operator, a window-update operator, and a tuple-shipping operator, and collectively represent the

state of the node during the event-driven distributed join execution. Each node has a set of operators like

these for executing its part of all execution plans.

Using the notion of NOS as a common building block, we develop an integrative solution that covers

both distributed query plan modification and distributed query plan migration in an adaptive framework.

The distributed plan modification is centered on updating the NOSs housed at individual nodes. The

update of NOSs can be done either at a central node or distributed at individual nodes. In the centralized

update, one node (usually the query site) maintains and updates the NOSs and sends updated NOSs to the

nodes housing them (referred to as the affected nodes). In the distributed update, individual nodes

communicate with their neighboring nodes and update their own NOSs locally if necessary. We address

both update approaches in this paper. Both approaches are founded on the same greedy algorithm for plan

generation, and thus always generate the same plan.

The distributed plan migration is executed at each node affected by the plan modification. The key

requirement is to switch the current NOS to a new NOS locally without duplicating or missing any output

tuple globally. The challenge comes from the fact that the switch-over is distributed, that is, when the plan

changes, windows need to move to new nodes without disrupting the join execution. We call it the

distributed track strategy. The approach used is to run the old NOSs and new NOSs together until the

new NOSs start generating the query output using full window contents and then have all affected nodes

migrate to the new plan synchronously. In order to avoid the delay incurred until the new NOSs are ready,

any window that needs to move to a different node during the switch-over is copied over as soon as

possible so that the new NOSs do not have to start with empty windows. To enable the synchronized

migration, we use a somewhat simple two-phase migration protocol.

A set of experiments has been done to evaluate how effective the proposed adaptive framework is

compared with a non-adaptive one and to observe the extra adaptation-overhead of the distributed NOS-

update approach (as opposed to the central) in return for the distributivity. The results show a significant

reduction in the execution cost in the adaptive case despite substantial fluctuations of the stream rate and

show an arguably small additional overhead of the distributed update approach.

Main contributions of this paper include, first, introducing the notion of a node operator set (NOS)

which is a set of operators stored in each node to execute a join execution plan; second, proposing

distributed plan modification and migration techniques with both centralized and distributed NOS update

approaches; third, studying the performance of the adaptive framework through a set of experiments. To

the best of our knowledge, this is the first work done to address the integrated problem of plan

modification and plan migration for adaptively processing distributed windowed stream joins.

The rest of this paper is organized as follows. Section 2 presents the processing model and the cost

model of distributed windowed stream join queries. Section 3 presents a basic plan generation algorithm

for finding an efficient join execution plan. Section 4 introduces the concept of the node operator set and

discusses the proposed distributed plan modification and migration techniques based on centralized and

distributed NOS updates. Section 5 evaluates the performance of the proposed adaptive framework.

Section 6 discusses related work. Section 7 concludes the paper and suggests future work.

2 Preliminaries

This section provides two models associated with distributed stream join processing: query

processing model and cost model.

2.1 Distributed stream join processing model

Queries are distributed window-based multi-way stream joins. A stream Si is a sequence of tuples

arriving in order. Each tuple in the stream has a timestamp, ts, and a join attribute, J, as part of the schema.

In a distributed environment, a set of nodes (or sites) N1, N2,…,Nn are connected through a communication

network. The model assumes only one stream per node, assuming all local processing (e.g., selection,

projection) has been done at each node. It also assumes that the timestamp is synchronized across all

nodes in the network.

All joins are window-based. For a given multi-way join, S1 S2 … Sm, there is a window Wi on

each stream Si (i = 1, 2,…, m). This join (Golab and Ozsu 2003) is processed as follows. For each new

tuple si arriving in Si, probe the other m-1 windows in sequence and output the matching tuples, and then

insert si into Wi and remove any expired tuples from Wi. Any type of join condition – equijoin or non-

equijoin – is supported in our model. Note that, in a distributed environment, the join processing model

needs to consider other issues as well, such as the node synchronization over network latency and the

batch processing of buffered tuples. These issues have already been addressed in our prior work on

distributed stream join processing (Tran and Lee 2010), and thus are not addressed in this paper.

A distributed multi-way join execution plan is characterized by join ordering, join placement, and

join method (Ceri and Pelagatti 1984). First, join ordering determines the sequence of joins in a multi-

way join. We assume linear ordering (Viglas, Naughton, and Burger 2003) which has proven to be

effective in streaming scenarios (Gedik, Wu, Yu, and Liu 2007; Zhou, Yan, Yu, and Zhou 2006; Babu,

Motwani, Munagala, Nishizawa, andWidom 2004; Babu, Munagala, Widom, and Motwani 2005;

Srivastava, Munagala, and Widom 2005). For a given m-way join query, linear ordering determines

separate join sequences for each stream (which we call a head stream), thus m join sequences altogether.

The join sequence associated with a head stream Si is defined as an ordered set Oi of the other m-1

streams that are joined in sequence for each new tuple si arriving in Si. That is, Oi = [Si1, Si2,…, Sim-1]

which is one of the (m-1)! possible orderings of S1,…,Si-1, Si+1,… and Sm.

Given such a join sequence (or ordering) Oi, a new tuple si arriving on the head stream Si is used to

probe the window Wi1 on the first stream Si1 in Oi to find matching tuples; if matching tuples are found,

then each join output tuple is used to probe the window Wi2 on the next stream Si2 in Oi, and the same

process repeats until the window Wim-1 on the last stream Sim-1 in Oi or no matching tuple is found. In this

paper we refer to the probing of a window Wik as a one-way join from the output stream of matching

tuples from the previous probing (denoted as S
i
ik-1) to Sik. (The head stream Si is equivalent to Si0 here.)

Thus, given a linear join sequence Oi, there are m-1 one-way joins executed to generate the output for

each set of new arrival tuples.

Second, for each join in the sequence, join placement determines the node (or site) at which the join

is processed. Specifically, a one-way join from Ss at Ns to Sd at Nd can be processed either at Ns by

shipping the window Wd on the stream Sd to Ns (called the source placement) or at Nd by shipping the new

tuples ss arriving at Ss to Nd (called the destination placement). Note that there may be delay or loss of

tuple, and thus the join output might be not exact. However, in the scope of this paper, we assume no

delay or tuple loss. Since there are m-1 one-way joins in a join sequence Oi, there are m-1 join placements,

one for each one-way join. Thus, for each join ordering Oi, there is an associated sequence of join

placement values. We call it the join placement sequence of Oi and denote it as Pi = [pi1, pi2,…, pim-1]

where pik = {0,1}. Here, pik indicates whether the one-way join from S
i
ik-1 to Sik is processed at the source

node (i.e., pik = 0) or the destination node (i.e., pik = 1).

Third, for the join method, we consider only the nested loop join in this work, as considering other

join methods only requires expanding the search space for finding an optimal plan and does not affect the

plan modification and migration algorithms. Thus, only join ordering and join placement are the factors

considered in the join execution plan.

To summarize, the execution plan of a multi-way stream join S1 … Sm is defined as follows.

Definition 1: [Join execution plan (JEP)] The plan of an m-way join query is a set of m per-stream

execution plans (SEPs), that is {SEP1, SEP2,…, SEPm}. Here each SEPi (i = 1,2,…,m) is headed by stream

Si and is defined as the pair (Oi,Pi) where (Oi,Pi) = ([Si1, Si2,…, Sim-1], [pi1, pi2,…, pim-1]).

Example 1: Figure 1 illustrates one possible JEP of a three-way join query S1 S2 S3. It consists of the

following three SEPs, one for each head stream S1, S2, and S3.

SEP1 = (O1, P1) = ([S2, S3], [1,1])

SEP2 = (O2, P2) = ([S1, S3], [0,1])

SEP3 = (O3, P3) = ([S1, S2], [0,0])

Figure 1. An example join execution plan of a three-way join.

2.2 Distributed stream join cost model

Table 1 summarizes the notations used to build the cost model.

Since data streams arrive continuously and unboundedly, we use the unit-time cost model proposed

by Kang et al. (Kang, Naughton, and Viglas 2003). That is, the cost is the time it takes to process the

tuples arriving in unit time. Based on this, at any point in time, the execution cost of SEPi is modeled as

the sum of the total processing cost and the total transmission cost per unit time over all one-way join

steps. That is, the cost of SEPi, CSEPi, is computed as the sum of the costs of m-1 one-way joins: CSEPi

=

1

1

m

k
C

i
ik-1,ik .

The one-way join cost C
i
ik-1,ik is formulated as follows. On one hand, if the one-way join is executed

at the source Nik-1 (i.e., pik = 0), then the cost comprises the cost of shipping rik tuples from Nik to Nik-1 per

unit time, the cost of updating Wik at Nik-1 per unit time, and the cost of probing Wik at Nik-1 per unit time.

That is,

C
i
ik-1,ik |[pik = 0] = T(rik × tik) + rik × cu + r

i
ik-1 × cp × wik (1)

Notation Meaning (i = 1,..,m and k = 1,..,m-1)
Join input streams and statistics
ri

fi

ti
wi

Sik

rik

The stream rate of Si.

The join attribute selectivity factor of Si, i.e., the average fraction of Si tuples with the same

join attribute value.

The size of a tuple in Si.
The number of tuples in the window Wi of Si.

The k
th

 stream in SEPi

The stream rate of Sik

Join output streams and statistics

S
i
ik

r
i
ik

f
i
ik

t
i
ik

C
i
ik-1,ik

The output stream of the one-way join Sik. (S
i
i0 = Si)

The stream rate of Sik. (r
i
i0 = ri)

The join attribute selectivity factor of Sik. (f
i
i0 = fi)

The size of a tuple in Sik. (t
i
i0 = ti)

The cost of a one-way join from S
i
ik-1 to Sik.

Join cost parameters

cp

cu

cl

cr

Per-tuple window-probing cost.

Per-tuple window-update cost.

The latency of communication link in the network.

The transmission rate of communication link in the network.

Table 1. Notations used in the cost model.

where T(.) is a function T(x) = cl + x/cr used as a model of the cost of transmitting x bytes of data between

two nodes and the value of r
i
ik-1 is computed r

i
ik-1 = r

i
ik-2 × min(f

i
ik-2, fik-1) × wik-1 where f

i
ik-2 is estimated

as the larger value between the two selectivity factors of the two streams that are joined, that is, as

max(f
i
ik-3, fik-2). On the other hand, if the join is executed at the destination Nik (i.e., pik = 1), then the cost

comprises the cost of shipping r
i
ik-1 tuples from Nik-1 to Nik per unit time, the cost of updating Wik at Nik per

unit time, and the cost of probing Wik at Nik per unit time. That is,

C
i
ik-1,ik |[pik = 1] = T(r

i
ik-1 × t

i
ik-1) + rik × cu + r

i
ik-1 × cp × wik (2)

where t
i
ik-1=t

i
ik-2 + tik-1. Given these two cost formulas (Equations 1 and 2), the join placement value pik is

determined depending on which one incurs the lower cost. In other words, if C
i
ik-1,ik |[pik = 0] ≤ C

i
ik-1,ik |[pik

= 1], then pik = 0 and otherwise pik = 1. Thus, the one-way join cost C
i
ik-1,ik is computed as

C
i
ik-1,ik = min(C

i
ik-1,ik |[pik = 0], C

i
ik-1,ik |[pik = 1]) (3)

3 Basic Plan Generation Algorithm

Algorithm 1 is a plan generation algorithm which finds SEPi associated with each head stream Si.

The algorithm is used in two stages in the adaptive query processing framework. The first stage is to

generate an initial plan which is disseminated to all participating nodes in the network. The second stage

varies depending on the NOS update mechanism (either centralized or distributed, to be discussed in

Section 4.2) – the entire algorithm is used as is if centralized whereas only the greedy property is used if

distributed.

Algorithm 1: Basic plan generation algorithm.

The algorithm takes the join graph and information about the participating streams as the input and

returns the set of SEPs with each input stream as the head stream. For each head stream Si, Oi and Pi are

constructed together using a greedy approach to add the next stream and the next join placement value in

each step. The next stream picked in each step is the one Sik that has the lowest one-way join cost C
i
ik-1,ik

among streams Sik,…,Sim-1.

C
i
ik-1,ik ≤ C

i
ik-1,ip for all p s.t. 1 ≤ k < p ≤ m-1 (4)

Equation 4 is an invariant condition that should be satisfied throughout the continuous stream join

processing despite the change of cost due to the fluctuation of stream statistics. The objective of the

adaptive framework in this paper is to maintain the invariant condition online in a distributed environment.

The next section presents the techniques developed to achieve it.

Note that the number of possible join execution plans is O(n!) (n is the number of joins in the query)

which is exponential. In general, an optimal join plan generation is an intractable problem (Aho, Sagiv

and Ullman 1979). For instance, the best known algorithm using dynamic programming approach (e.g.,

System R) takes O(n2
n-1

). In contrast, the greedy approach used in this paper finds an efficient (but not

necessarily optimal) plan in polynomial time O(n
2
) in the worst case. Note that this is the same whether

the NOS update mechanism is centralized or distributed (to be discussed in Section 4.2), as both are based

on the same greedy property.

4 Distributed Adaptive Stream Join Processing

In this section, NOS is explained in Section 4.1 with a focus on its formal definition and the

construction algorithm. Section 4.2 describes the distributed plan modification with the centralized NOS-

update strategy (Section 4.2.1) and the distributed NOS-update strategy (Section 4.2.2), respectively.

Section 4.3 discusses the distributed plan migration strategy.

4.1 Node operator set

Given a JEP, each node extracts the set of relevant operations needed to execute the JEP. There are

three possible operators needed at each node, as summarized in Table 2. Join(Si ,Sj) is the one-way join

from Si to Sj upon the arrival of a set of tuples of Si. Update(Si) is the update of window Wi upon the

arrival of a set of tuples of Si. Ship(Si ,Nk) is the shipment of a set of tuples of Si to the node Nk. Thus,

given the JEP of an m-way join, the NOS of a node Nk (k = 1,2,…,m) is composed of the sets of

operations extracted from every SEPi (i = 1,2,…,m) of the JEP. We denote the set extracted from SEPi in

Nk as NOS
i
k.

Notation Meaning

join(Si ,Sj)

update(Si)

ship(Si ,Nk)

Perform one-way join from Si to Sj .

Update the window on Si.

Ship tuples of Si to node Nk.

Table 2. Notations of operations.

Definition 2: [Node operator set of Nk (NOSk)] NOSk = NOS
1
k U… U NOS

m
k where NOS

i
k is the set of

operators needed at the node Nk to execute SEPi.

Example 2: Continuing from Example 1, the NOS of each node is as follows.

NOS1 = NOS
1

1 U NOS
2

1 U NOS
3
1

= {ship(S1 ,N2)} U {ship(S1 ,N2)} U {ship(S1 ,N3)}

= {ship(S1 ,N2), ship(S1 ,N3)}

NOS2 = NOS
2
1 U NOS

2
2 U NOS

3
2

= {join(S1 ,S2), update(S2), ship(S
1
2 ,N3), update(S1), join(S2 ,S1), ship(S

2
1 ,N3),

 ship(S2 ,N3)}

NOS3 = NOS
1
3 U NOS

2
3 U NOS

3
3

= {join(S
1
2 ,S3), update(S3), ship(S

1
3 N0), join(S

2
1 , S3), ship(S

2
3 ,N0), join(S3 ,S1),

 join(S
3

1 , S2), update(S1), update(S2), ship(S
3

2 N0)}

NOS construction algorithm

In order to build the NOS for any give node, the algorithm constructs NOS
i
k from each SEPi and then

combines them to obtain NOSk. Specifically, it locates the stream Sk in Oi and constructs NOS
i
k based on

the join placement values of the one-way joins to Sk and its succeeding stream, respectively. The details of

the algorithm for a given SEPi are as follows.

Figure 2. Construction of operators based on join placement.

First, consider the one-way join to Sk in Oi. Let Sp and Ss be respectively the streams immediately

preceding and immediately succeeding Sk in Oi. Let Np- be the node at which S
i
p is generated. Note that

Np- can be any node, not necessarily Np, because the placement of the one-way join to Sp may not be at Np.

Depending on the join placement (pk) of the one-way join to Sk, there are two alternative ways to construct

the NOS operators. If pk = 0 (Figure 2a), it means the one-way join to Sk is executed at Np-. In this case, Nk

needs to ship tuples to Np- for the join execution there and, thus, an operator ship(Sk ,Np-) is added to NOS
i
k.

If pk = 1 (Figure 2b), it means the one-way join to Sk is executed at Nk. In this case, upon receiving tuples

of S
i
p, Nk joins them with tuples in Wk on Sk and, thus, the operator join(S

i
p ,Sk) is added to NOS

i
k;

additionally, Wk needs to be maintained at Nk and, thus, the operator update(Sk) is added to NOS
i
k as well.

Next, consider the one-way join to Ss in Oi. Like the one-way join to Sk, there are two alternative

ways to construct the operators. If ps = 0 (Figure 2c), it means the one-way join to Ss is executed at Nk. In

this case, Ns ships tuples to Nk and the join is executed at Nk and, thus, join(S
i
k ,Ss) and update(Ss) are

added to NOS
i
k. If ps = 1 (Figure 2d), it means the one-way join to Ss is executed at node Ns. In this case,

Nk ships the tuples of S
i
k to Ns and, thus, the operator ship(S

i
k ,Ns) is added to NOS

i
k; additionally, if Sk is

the last stream (Sim-1) in the join sequence, then the ship operator ship(S
i
k ,N0) is added to NOS

i
k as well.

Note that if ps = 0, that is, the one-way join to Ss is executed at Nk, then we need to consider the one-

way join to the stream succeeding Ss, denoted as Ss+1, as well. The reason for this is that if ps+1 = 0 then

this one-way join is executed at Nk as well and, thus, join(S
i
s ,Ss+1) and update(Ss+1) also need to be added

to NOS
i
k. This step proceeds with all succeeding streams (Ss+j, j = 0,1,…,l ≤ m-k-1) until the first one-way

join to a stream Ss+l with ps+l = 1 is encountered or the last stream (Sim-1) is encountered.

Given the NOSs constructed in that manner, the node Nk executes the operators in NOSk upon the

arrival of a set of tuples. The set of tuples comes from either the local node Nk or another node, and

belongs to either the local stream Sk or the output stream S
i
p. Each set of arrival tuples is associated with

the stream identifier (streamID) of either Sk or S
i
p, depending on where it is coming from. Upon the arrival

of a set of tuples, the query executor executes all operators in NOSk whose first argument matches the

streamID.

4.2 Distributed plan modication

When the stream statistics at a node change significantly enough, any of the current SEPs (i.e., SEP1,

SEP2, ...,SEPm) may become less efficient and in this case a new SEP needs to be generated to replace the

current one for those affected SEPi (i = 1,2,…,m). With the NOS in use for query processing, the plan

modification involves updating the NOS at each affected node. In this section we discuss the centralized

and the distributed approaches to making these updates.

As mentioned in Section 3, the invariant cost-condition (Equation 4) should always be satisfied by

every SEP. Thus, the NOS update is essentially to adjust the NOS of the affected node so that all SEPs

satisfy the cost condition again. The adjustment is triggered through a threshold mechanism, that is, when

the change in the execution cost at a node exceeds the threshold. The threshold value is a system

parameter and can be used to control the plan-modification frequency of the system.

4.2.1 Centralized node-operator-set update

The centralized NOS update is triggered whenever any of the participating nodes reports a change of

stream statistics above the threshold. Once triggered, it generates a new JEP (comprising SEPs) based on

the new stream statistics provided by the reporting nodes. For this, Algorithm 1 is used. It then extracts

from the new SEPs the new NOSk for each node Nk and if the new NOSk is different from the old one then

ships it to Nk to replace the old one. Algorithm 2 summarizes these steps taken after the NOS update is

triggered.

Algorithm 2: Centralized NOS update.

The computation cost of this algorithm in terms of the number of messages sent is O(n) where n is

the number of nodes. This is the worst case cost, in which every node needs to be updated with a new

NOS and thus Nq sends a new NOS to every node. Note that, in the algorithm, only those nodes whose old

NOSs are different from the new NOSs receive the new NOSs from Nq. They are the only affected nodes.

An affected node needs to switch from the old NOS to the new NOS after receiving a new NOS, and this

switch-over should be handled online while not disrupting the generation of the correct output. This

technique is presented in Section 4.3.

In the centralized update approach, the information about the stream statistics as well as the NOSs of

participating nodes is maintained all at the centralized node, and thus there is no cost of gathering the

information from participating nodes; each participating node only needs to send a message to report the

change of its stream statistics (so the NOS update is triggered) whenever the change exceeds the threshold.

However, there always exists a possibility that the central node may be overloaded with too frequent

update tasks in a volatile environment with frequent fluctuations of stream statistics. In a situation like

this, the distributed NOS update strategy, in which each node communicates with only the neighboring

nodes and updates its own NOS locally, is preferable.

4.2.2 Distributed node-operator-set update

The distributed NOS update is triggered locally at each node when its stream statistics change more

than a threshold. Then, the plan modification is to reorder the streams in Oi and adjust the join placements

in Pi so that the invariant cost-condition is satisfied again for every SEP. This is done at each node

through communication with the neighboring nodes.

Let us consider a stream Sik at node Nik. Remember that a SEPi is constructed based on the greedy

strategy that a stream Sik is joined with Sp if and only if Sp has the lowest cost among all the streams that it

can join to. A natural outcome of this strategy is that a stream with a lower join cost tends to be placed

closer to the beginning of the join sequence and a stream with a higher cost tends to be placed farther

from it. Thus, if the change of stream statistics makes C
i
ik-1,ik increase, then the position of Sik in Oi may

need to shift toward the end, and if decrease then toward the beginning. Once the position of Sik changes

in Oi, other streams in Oi may need to be reordered as well to make sure the invariant cost-condition is

satisfied by all streams. The reordering mechanism is similar to what happens during the insertion sorting.

Algorithm 3 outlines the steps of modifying each SEP through distributed updates of NOSs. The

algorithm is executed in two stages. The first stage is to move the stream that triggered the algorithm

execution to the right position in Oi. The second stage is to continue to update the other streams affected

by the move. The update of NOSs involves three steps. First, it determines the stream Sir to be swapped

with Sik in the join sequence Oi. Second, it updates NOS
i
ik and NOS

i
ir and also the NOSs of the nodes of

Sik-1 and Sik+1 in the join sequence. Third, it computes the join placements and, if necessary, updates NOS
i
k

and NOSir to reflect new join placements. Details of each step are presented now.

Algorithm 3: Distributed NOS update.

Stage 1: Update on the triggering stream

Step 1: Determine the stream to be swapped with Sik in Oi

If C
i
ik-1,ik has increased, one of the succeeding streams Sik+1,…,Sim-1 replaces Sik in Oi. Let Sir be the

one that replaces Sik . Then Sir must be the one for which C
i
ik-1,ir ≤ C

i
ik-1,ik+ holds for all ik+ in {ik,ik+1,…,im-1}.

In order to find such an Sir, streams in Oi are processed sequentially as follows. The initial lowest cost is

the new cost of one-way join to Sik, C
i
ik-1,ik. Nik first sends a message to Nik+1 with the instruction that Nik+1

computes the cost C
i
ik-1,ik+1 and compares it with C

i
ik-1,ik. If C

i
ik-1,ik+1 < C

i
ik-1,ik, then the cost of the join to

Sik+1 is the lowest so far and thus, the lowest-cost stream is updated to Sik+1 (at the node Nik+1) and the

lowest cost is updated to C
i
ik-1,ik+1. Then, Nik+1 sends a message to its succeeding stream in Oi with the

same instruction. This relay propagates until the message reaches Nim-1 while the lowest cost and the

lowest-cost stream (and its node) are updated as necessary along the way. Then, Nim-1 informs Nir that Sr

should be swapped with Sk.

Figure 3a illustrates the process of determining the new position of S2 when C
1

1,2 increases. N2 first

sends a message to N3 to compute C
1

1,3 and compare it with C
1
1,2. If C

1
1,3 < C

1
1,2, then N3 is recorded as

the node with the lowest cost. Then N3 will communicate with N2 to swap the position.

Figure 3. Illustration of determining the stream to switch with S3 in the join sequence O1.

On the other hand, if C
i
ik-1,ik has decreased, one of the preceding streams Si1,…,Sik-1 replaces Sik . Let

Sir be the one that swaps with Sik. Then, C
i
ir-1,ik < C

i
ir-1,ir must hold. Finding Sir needs more than

considering the immediate preceding stream Sik-1. The reason is that, even if C
i
ik-2,ik < C

i
ik-2,ik-1, it is

possible that C
i
i(k-)-1,ik < C

i
i(k-)-1,ik- holds for some preceding stream Sik- (ik- in {i1,i2,…,ik-1}). Therefore, in

order to find Sir, we need to compare C
i
ij-1,ij with C

i
ij-1,ik for all Sij starting from Si1 until the first Sij

satisfying C
i
ij-1,ik < C

i
ij-1,ij is found. This Sj is the wanted Sr. Figure 3b illustrates the process of

determining the new position of S3 when C
1

1,3 decreases.

In order to compute the execution costs using Equation 3 and compare them, each node Nik maintains

metadata which includes the stream rate r
i
ik-1 and the tuple size t

i
ik-1 of S

i
ik-1 and the cost C

i
ik-1,ik. In the case

of increased C
i
ik-1,ik, Nik+ needs to know r

i
ik-1 and t

i
ik-1 to compute C

i
ik-1,ik+, and thus the message sent from

Nik includes the two values. In addition, the message includes the information about the lowest cost and

the lowest-cost stream (and its node) so that Nik+ can compare the computed C
i
ik-1,ik+ with the lowest cost.

In the case of decreased C
i
ik-1,ik, Nik- needs to compare its cost C

i
i(k-)-1,ik- with C

i
ik-1,ik, and thus the message

sent to Nik- includes rik, tik and Wik.

Step 2: Update NOSs to reflect the swap

Since each node maintains its NOS for join execution, in order to reflect the swap between Sik and Sir

in Oi, the NOS
i
k at Nik and the NOSir of Nir are updated. The update is done by swapping NOS

i
k of Nik and

NOSir of Nir and then replacing the streamID of the operators. Specifically, when Nir receives NOS
i
k from

Nik, it replaces its NOSir by NOS
i
k and changes the streamID of Sik to the streamID of Sir in each operator.

Similarly, when Nik receives NOSir from Nir, Nik replaces its NOS
i
k by NOSir and changes the streamID of

Sir to the streamID of Sik in each operator. When Nik and Nir finish updating their NOSs, they send

messages to the nodes of the preceding stream and succeeding stream to instruct them to update their

NOS by changing the streamID in the operators.

Note that the effect of swapping the positions of Sik and Sir is to swap the roles of these two streams

in Oi and thus to swap NOS
i
k and NOSir. The replacement of the streamID of operators is necessary

because NOSir is at Nik after the swap of NOSs but there is Sir at Nik and, thus, the streamID of Sir should

be changed to the streamID of Sik. The streamID of Sik should be replaced by the streamID of Sir at Nir for

the same reason. The nodes of the preceding stream and succeeding stream need to change the streamIDs

because the succeeding stream and the preceding stream (i.e., either Sik or Sir) respectively are swapped

with the other stream (i.e., either Sir or Sik).

Step 3: Update NOSs to reflect a new join placement

As we see from Equation 3, the join placement of a one-way join is determined by the smaller

execution cost between the placements at the source and at the destination. This join placement may

change when the stream statistics change. Thus, the nodes need to compute the execution costs to

determine the new join placement and then update the NOSs if it is different from the old one. Note that

the join placement computed during the step 1 (while the stream to be swapped with is found) is not

shipped all the way through the nodes in the sequence, as it can be simply recomputed at the swapped

nodes.

The join placement may change from the source node to the destination node or the other way

around. To accommodate these changes, the join operator and the update operator in the NOS of each

affected node should be moved to the other node. Thus, the node from which the join operator is moved

out adds a ship operator to its NOS for shipping the input stream of the join operator to the other node.

Example 3 below illustrates updating NOSs to reflect the update of join ordering (Oi) and join

placement (Pi).

Example 3: Continuing from Examples 1 and 2, consider SEP1 = (O1, P1) = ([S2, S3], [1,1]). In this SEP1,

C
1
1,2 < C

1
1,3 holds. Now suppose C

1
1,2 has increased and as a result the invariant cost-condition is violated.

Further suppose that the ensuing plan modification tells that S2 needs to be swapped with S3 in O1 and the

new join from S1 to S3 needs to be executed in the source node. In other words, the new SEP1 is (O1, P1) =

([S3, S2], [0,1]). In order to implement this change, the NOS in each node is updated as follows.

Before modification:

NOS
1
1 = {ship(S1,N2)}

NOS
1
2 = {join(S1, S2), update(S2), ship(S

1
2, N3)}

NOS
1
3 = {join(S

1
2, S3), update(S3), ship(S

1
3,N0)}

After modification:

NOS
1
1 = {join(S1, S3), update(S3), ship(S

1
3, N2)}

NOS
1
2 = {join(S

1
3, S2), update(S2), ship(S

1
2, N0)}

NOS
1
3 = {ship(S3, N1)}

Stage 2: Update on the other affected streams

After the swap of Sik and Sir, depending on whether C
i
ik-1,ik has increased or decreased, the positions

of the other streams in Oi may need to change as well. Specifically, if C
i
ik-1,ik has increased, it may happen

that the subsequence {Si1,…,Sik-1,Sir} satisfies the invariant cost-condition but the rest {Sik+1,…, Sir-

1,Sik,Sir+1,…,Sim-1} does not. Thus, the update needs to continue from Sik+1. In the same manner, if C
i
ik-1,ik

has decreased, it may happen that the subsequence {Si1,…,Sir-1,Sik} satisfies the invariant cost-condition

but the rest of the sequence {Sir+1,…, Sik-1,Sir,Sik+1,…,Sim-1} does not because the substitution of Sik for Sir

affects the join cost to its succeeding streams. Thus, the update needs to continue from Sir+1. Each update

is performed following the stage 1 steps used in the case of increased cost (i.e., the steps 6 to 8 in

Algorithm 3), as any necessary swaps are with another stream succeeding in the sequence.

The complexity of the algorithm in terms of the number of messages sent is O(n
3
) where n is the

number of nodes, as there are n SEPs (one for each stream) and in the worst case there are n
2
 NOS-swaps

performed for each sequence.

4.3 Distributed plan migration

As mentioned in Introduction, the main challenge in the distributed plan migration is that windows

are distributed over the nodes and thus, when the plan changes, the windows need to move to new nodes

without disrupting the join execution. There should be no tuple missing or duplicated in the output. The

proposed distributed track strategy is using the parallel track idea proposed by Zhu et al. (Zhu,

Rundensteiner, and Heineman 2004) as the basis and exceeds its limit to address the distribution

challenge.

In this strategy, window contents are moved to new nodes as soon as possible and each node runs the

new NOS and the old NOS in parallel until the new NOS is ready, and at that point the old NOS is

dropped and only the new NOS is used for join execution. In order to guarantee no missing tuple in the

output, the new NOS is not ready until the old plan and the new plan generate the same output for every

SEP. Note that the same output is generated only if for every window its content in the new node is the

same as its content in the old node. In order to guarantee no duplicate tuples, join operators in a new plan

are not executed until the window extent in the new node is filled up after the parallel runs of the new and

old plans.

There are two technical issues to address in the distributed track strategy. One issue is the delay until

the window content of the new plan is filled up, until when the plan migration cannot be completed. The

delay is as long as the window size, which is inapplicable for large window sizes. Our approach is to

jump start the migration by copying the window extent from the old nodes to the new nodes as soon as

the new nodes are identified during the plan modification. For this, for each stream the node that is

maintaining its window should be kept track of, so that a new node can send a request to the old node and

ask for the window content. The details are discussed below. The other issue is to make sure all the

affected nodes start their own migration synchronously. This synchronized migration is important because

otherwise one node may execute a new plan (after migration) while another node executes an old plan

(before migration), thereby corrupting the distributed join result. This kind of synchronization has been

well studied in the distributed computing area (e.g., two-phase commit), and we adopt a simple protocol

approach described below.

Keeping track of the nodes maintaining windows

The distributed plan migration needs to keep track of which node currently maintains a window so

that a request can be sent to the right node to ask for the window content. This issue is handled differently

depending on the NOS update approach used in the distributed plan modification (see Section 4.2). In the

centralized approach, all NOS updates are determined at the central node and thus the information on the

window maintenance node is kept at a central node as well. In the distributed approach, the old node that

currently has a window needs to communicate directly with the new node that will need the window.

More specific steps are discussed next.

When the centralized NOS update approach is used, the central node Nq first compares the old NOS

and the new NOS for each node to determine if a new window (e.g,. Wi) is needed by the new NOS. A

new window is needed by an NOS if it contains an update operator (e.g., update(Si)). Then, the central

node looks for the update operator in the old NOS. If found, it sends to the node of the old NOS a request

to make the window (e.g., Wi) accessible to its new NOS. If not found, then it means the node of the new

NOS needs to obtain the window content from another node. To identify the node that currently maintains

the window, the central node checks the old NOSs of all nodes to find the NOS that contains the update

operator (e.g., update(Si)). Suppose NOSp is the one. The central node then sends to the node of NOSp (i.e.,

Np) a request to move the window (e.g., Wi) to the node of the new NOS. Additionally, the central node

makes the list of all affected nodes by comparing the new NOS and old NOS in each node. This list is

needed in the synchronization step to be discussed below.

When the distributed NOS update approach is used, the information on the window maintenance

node is recorded while NOSs are updated to reflect the NOS swap and the new join placement (see Step 2

and Step 3 in Section 4.2.2). More specifically, during the swapping of the new NOS in a node Nik and the

old NOS in a node Nir, if the new NOS contains an update operator (e.g., update(Si)) that is in the old

NOS, then Nik sends a request to Nir to move the window (e.g., Wi) to Nik. Likewise, during the update of

an NOS to reflect a new join placement, if an update operator (e.g., update(Si)) is moved from one node

(e.g., Nip) to another node (e.g., Nik), then Nik sends to Nip a request to move the window (e.g., Wi) to Nik.

Additionally, each node (e.g., Nik) records the list of affected nodes which consists of the swapped node

(i.e., Nir) and the nodes of the preceding stream and the succeeding stream of Nik (i.e., Nik-1 and Nik+1).

This list is used for the synchronization step, discussed next.

Synchronizing the migration among the nodes

The NOS switch-over performed by all affected nodes should be synchronized. For this we use a

two-phase migration protocol. Each node participating in the migration maintains two states, local-ready

and global-ready, and follows the protocol outlined below.

1. When the window specified in the NOS at the node becomes full, the node enters the local-ready

state. In this state, it sends a “local-ready” message to all the other affected nodes and waits to receive

“local-ready” messages from them.

2. When the number of received “local-ready” messages becomes equal to the number of affected nodes,

the first phase is complete, and the node enters the global-ready state. In this state, it sends a “global-

ready” message to all the other affected nodes and waits to receive “global-ready” messages from

them.

3. When the number of received “global-ready” messages becomes equal to the number of the other

affected nodes, the second phase is complete, and the node starts performing the migration.

The first phase of this protocol guarantees that all affected nodes are ready to perform the migration and

the second phase guarantees that all affected nodes start performing the migration altogether. There may

be technical issues pertaining to distributed computing, such as dealing with lost messages or network

partitioning, but these issues are beyond the scope of this paper.

This protocol assumes that every affected node knows which the other affected nodes in the plan

modification are and the messages are exchanged point to point among the nodes. An alternative would

be to elect a coordinator, in which case the total number of messages can be reduced in return for the

overhead of electing a new coordinator every time a new plan migration is to be done.

5 Performance Evaluation

There are two objectives in the performance evaluation. One is to see how effective the proposed

adaptive processing mechanism is compared with non-adaptive processing. The other is to examine the

additional overhead paid by the distributed NOS update approach compared with the centralized approach.

In this section we describe the design, setup, and results of these two sets of experiments.

5.1 Experiment design

A prototype distributed data stream processing system has been built for the experiments. It runs on

each node and comprises the three modules of optimizer, executor, and communicator. The optimizer

generates the initial JEP, modifies the JEP, and extracts NOSs from a JEP. The executor performs the

operations in the NOS, monitors the stream statistics, and notifies the optimizer if the change exceeds the

threshold. The communicator delivers messages between the optimizers and the executors running on the

distributed nodes. The prototype software program is written in Java 2 SDK 1.6.2 and uses TCP/IP as the

communication protocol.

We have conducted the experiments in a network environment simulated using VMWare

(VMWARE 1998). VMWare allows us to create multiple virtual machines that are connected through a

virtual fully connected network in which the network bandwidth can be adjusted as needed. The network

latency is not supported by VMWare, so we simulate it by injecting a fixed delay in every packet sent out

to the virtual network. All virtual machines are created on a 2.0GHz Pentium Core 2 Duo computer with

2GB RAM; each virtual machine is configured to use the same CPU of the host computer and equally

divided 192MB RAM of the host computer and runs Linux OS. We run multiple instances of the

prototype on separate virtual machines which are the nodes participating in a multi-way join execution.

We have written a data generator to generate a stream data set as a sequence of tuples. Inputs to the

data generator are the number of tuples to be in the data set, the stream rate, the tuple size (given as the

number of 5-byte attributes in the stream schema), and the name, size, and join selectivity factor of each

attribute in the schema. The values of the join attributes are assigned randomly with the uniform

distribution. We use the string data type for all attributes. Each tuple has a timestamp, the value of which

is determined based on the stream rate.

The performance metric is the total execution cost across all nodes, and is measured as follows. For a

given query issued at a certain node (called the query node), the optimizer of the node generates a plan

and disseminates it to all the nodes. Then, the executor of each node extracts its NOS and executes it. The

execution cost, which includes the processing cost and the communication cost, is recorded at each node

and sent to the query node for calculating the total execution cost.

5.2 Experiment results

Experiment 1: Effectiveness of the adaptive processing

The approach in this set of experiments is to compare the total execution costs between the adaptive

case and the non-adaptive case while changing the stream statistics. For the purpose of this experiment, it

is adequate enough to switch between low and high for the rate of one stream. Thus, we have changed the

stream rate at one arbitrary node between 50 tuples/sec and 200 tuples/sec. A four-way join query and an

eight-way join query have been used, with a fully-connected join topology.
1
 For this, we set up 4 nodes

and 8 nodes for the four-way join query and the eight-way join query, respectively.

Figure 4 shows how the execution time of the non-adaptive and the adaptive processing changes as

the stream rate changes at the interval of 2000 msec starting from the time 1500 mec. Both four- and

eight-way join cases show the same performance curves, except for magnitude of the costs. (The eight-

way join involves more nodes in the processing and, thus, the total execution cost is larger.) The costs

fluctuate more in the eight-way join case.

In the figure we see that initially both non-adaptive and adaptive processing use the same execution

plan, and thus they show the same execution cost. However, when the stream rate changes from low to

high (at time 1500 msec), the non-adaptive processing cost increases by a much larger margin than the

adaptive processing cost. Evidently, the reason is that the non-adaptive processing is still using the initial

plan, while the adaptive processing has changed it to a more efficient plan. By the same token, when the

stream rate changes from high to low (at time 3500 msec), the adaptive processing switches back to the

initial plan, which is the same plan the non-adaptive processing is using, and thus they have the same

execution cost again.

We also see that there is hardly any difference between the two NOS update approaches (i.e.,

adaptive-CNU and adaptive-DNU) in the adaptive processing. It confirms that they always produce

identical execution plans, since both NOS update approaches are based on the same greedy property.

The spike of the two costs when the stream rate changes from high to low in Figure 4(a) is

interesting. This phenomenon can be explained as follows. During the plan migration in this case, a

window content on the higher rate stream is copied from one node to another node and then the old NOS

is switched to the new NOS for execution; at the beginning of the transition, however, the new NOS

(generated for the lower-rate stream) is processing the higher-rate stream tuples still remaining in the

window extent; this mismatch causes the cost to increase until the window content is replaced with the

right (i.e., lower-rate stream) tuples. Another observation is that the spike in the adaptive-DNU is higher

than in adaptive-CNU. The reason is that the former may need several rounds of NOS updates to reach a

new efficient plan (see Stage 2 in Section 5.2) and, thus, may be using a less efficient plan than the latter

during the stage 2. The spike is less visible in the eight-way join case (Figure 4(b)). This comes from the

fact that we vary the rate of only one stream in our experiment setup and, therefore, the transient overhead

is due to the migration of one window; as a result, the impact of the transient overhead caused by one out

1
 This join topology is common in stream join queries. Examples are joins on IP addresses for network monitoring applications

and joins on sensor IDs for sensor monitoring applications.

of eight windows (in the eight-way join case) is lower than that caused by one out of four windows (in the

four-way join case).

Figure 4. Comparison between adaptive processing and non-adaptive processing.

Experiment 2: Overhead of the adaptive processing

Adaptivity requires plan modification and plan migration every time stream statistic changes at any

node participating in the join. The objective of this set of experiments is to examine the overhead in terms

of the costs of plan modification and migration. The plan modification cost is measured as the total time

all nodes spend to obtain new NOSs, and the plan migration cost is measured as the total time all nodes

spend to switch over from old NOSs to new NOSs.

Figure 5 shows the experimental results. Each bar in the figure shows the sum of the plan

modification cost and the plan migration cost, with the two distinguished using different patterns. The

setup of the experiments is the same as the setup of Experiment 1, and thus the 1st and the 3rd pairs of

bars in the figure look similar and so do the 2nd and the 4th. This is evident from the fact that those pairs

are for the same changes of stream rates (see the changes at times 1500 msec and 5500 msec and at times

3500 msec and 7500 msec in Figure 4).

The figure shows that the total overhead (considering both plan modification and migration) of the

adaptation using the distributed NOS update (DNU) approach is larger than the overhead in the

centralized node update (CNU) approach by a factor of approximately 1.4 to 2.5 in the four-way join case

and 2.1 to 2.7 in the eightway join case. There is no objective baseline to use to judge how acceptable

these additional overheads are. Nonetheless, considering the facts that during query plan modification the

NOS update at each node may occur multiple times in DNU but only once in CNU and that with the

fully-connected topology there are 6 and 28 alternative join execution plans in the networks of four and

eight nodes, respectively, we assert that the additional overhead to be paid for the distributivity is

marginal.
2

Figure 5. Plan modification and migration overheads.

We make a number of additional observations in the figure. First, the plan modification cost is

significantly higher for the eight-way join than for the four-way join. This is obvious from the fact that

there are more nodes involved in the modification process. Second, the plan modification cost is higher

when the stream rate increases (the 1st and 3rd bars) than when it decreases (the 2nd and 4th bars). (It

shows more clearly in the eight-way join case (Figure 5b).) This difference indicates that, given the

parameter settings, there are more nodes whose NOSs are updated when the stream rate increases than

when it decreases. Third, the plan modification cost is higher with DNU than CNU. This expected from

the fact that the computation cost is O(n
3
) for DNU and O(n) for CNU (where n is the number of nodes).

Fourth, the plan migration cost is higher with DNU than CNU in the four-way join case (Figure 5a) but

lower in the eight-way join case. This difference indicates that the migration overhead in DNU due to

multiple rounds of NOS updates is higher than the one-time NOS update overhead of CNU in the four-

way join case but lower in the eight-way join case. (The migration cost depends on the number of

2
 We may as well say that the overhead of the DNU approach over the CNU approach is a factor of 0.25 to 0.6 times per node in

the four-way join case and 0.26 to 3.34 times per node in the eight-way join case.

shipments of window contents, and this number varies depending on the number of rounds of NOS

updates.)

 When the stream rate increases When the stream rate decreases

Number of

modification

messages

Number of

migration

messages

Number of

synchronization

messages

Number of

modification

messages

Number of

migration

messages

Number of

synchronization

messages

4 way

join

CNU 4 34 24 4 27 24

DNU 65 61 44 59 55 32

8 way

join

CNU 8 131 112 8 115 112

DNU 561 181 152 283 83 48

(The number of migration messages includes the number of synchronization messages. The number of messages

reported in this table is measured each time the plan modification and plan migration algorithms are triggered. The

measured numbers do not change through different repetitions, since the same steps in the algorithms are executed

for each repetition.)

Table 3. Number of messages for plan modification and migration.

Table 3 summarizes the number of massages sent through the network for plan modification and plan

migration, respectively. We now discuss a number of observations from this table.

In the plan modification part, first, the number of messages in CNU is the same as the number of

nodes, n. This is because the messages consist of the message sent by a node to the central node to notify

the change of its stream rate and n-1 messages sent by the central node to all the other nodes (which are

all affected nodes with the experiment setting) to update their NOSs. Second, the messages in DNU

consist of the messages sent through the nodes in a join sequence to determine the nodes to be swapped,

the messages sent to update the NOSs of the other nodes to realize node swapping, and the messages sent

to update the NOSs to realize join placement changes. The complexity of the DNU approach in term of

the number of messages sent is O(n
3
).

In the plan migration part, the table shows the total number of migration messages and the number of

synchronization messages. (Note the former includes the latter.) In CNU, the migration messages consist

of the messages for requesting window movements and the messages for synchronization. With the two-

phase synchronization in place, the number of synchronization messages is 2n(n-1) since each node sends

messages to all the other nodes in each of the two phases. In DNU, the migration messages consist of the

messages for requesting the window movement each time NOSs swap or join placement changes and the

messages for synchronization. The number of synchronization messages varies depending on the number

of synchronized nodes and the number of synchronizations performed.

6 Related Work

Major research on adaptive query processing has been for relational databases (Markl, Raman,

Simmen, Lohman, and Pirahesh 2004; Kabra and DeWitt 1998; Cole and Graefe 1994; Ioannidis, Ng,

Shim, and Sellis 1997; Antoshenkov and Ziauddin 1996; Avnur and Hellerstein 2000; Deshpande and

Hellerstein 2004; Babu, Bizarro, and DeWitt 2005), and recently for data streams (Zhu, Rundensteiner,

and Heineman 2004; Tian and DeWitt 2003; Babu, Motwani, Munagala, Nishizawa, and Widom 2004;

Babu, Munagala, Widom, and Motwani 2005). In this section we give an overview of the related research

in these two areas.

Adaptive database query processing

We find two approaches based on re-optimization, which is the base of our proposed approach.

Kabra et al. (Kabra and DeWitt 1998) introduce a dynamic re-optimization approach which detects the

sub-optimality of a plan while executing the query and re-optimizes the plan in the midst of query

execution if there is a significant difference between estimated and actual values. Similar to Kabra el al.’s

approach, Markl et al. (Markl, Raman, Simmen, Lohman, and Pirahesh 2004) propose a technique called

progressive query optimization which adds one or more checkpoint operators to a plan to compare the

optimizer’s estimates with the actual values and triggers reoptimization if a pre-determined threshold on

the estimation error is exceeded. There have been other approaches to adaptive query processing as well,

such as the competition model (Antoshenkov and Ziauddin 1996), parametric optimization (Cole and

Graefe 1994; Ioannidis, Ng, Shim, and Sellis 1997), tuple-routing (Avnur and Hellerstein 2000;

Deshpande and Hellerstein 2004), and proactive optimization (Babu, Bizarro, and DeWitt 2005). In the

competition model approach, multiple plans are executed together until one of the plans becomes better

than the others and then the executions of the sub-optimal plans are stopped. The parametric optimization

approach is to prepare separate plans optimal for different partitions of the parameter domain and choose

a plan when the actual parameter values are known at run-time. The tuple-routing approach handles the

query processing by routing tuples through a pool of operators. This mechanism is handled by an operator

called eddy which continuously reorders operators in a query as it is running. In the proactive

optimization approach, query plans are selected with possible re-optimization in mind, that is, to

minimize it. The authors introduce bounding boxes to determine the uncertainty in the estimates of

statistics and use these bounding boxes during optimization to generate robust and switchable plans that

minimize the need for re-optimization as well as the cost of switching plans.

There has been some work done in distributed databases as well. Scheuermann and Chong

(Scheuermann and Chong 1997) present an adaptive algorithm for finding a query execution plan. This

work, however, is not about adaptive query processing and does not address the problem of modifying a

plan when the statistics or computing resources change. Zhou (Zhou 2003) proposes an adaptive

distributed query processing framework. It, however, only focuses on the scheme for learning the

selectivity and workload of distributed servers. Besides, the adaptive mechanism is based on the eddy

approach to reorder the operations at runtime.

All these adaptive approaches are for databases and are not geared for handling data stream query

processing.

Adaptive data stream query processing

Adaptive query processing of data streams pose unique challenges due to the requirement of

continuous and unbounded processing of arriving data. There have been some research done to address

these challenges using the re-optimization approach (Babu, Motwani, Munagala, Nishizawa, and Widom

2004; Babu, Munagala, Widom, and Motwani 2005; Zhu, Rundensteiner, and Heineman 2004; Yang,

Kr¨amer, Papadias, and Seeger 2007). Babu et al. (Babu, Motwani, Munagala, Nishizawa, and Widom

2004; Babu, Munagala, Widom, and Motwani 2005) study the problem of quickly detecting the change in

stream statistics and efficiently switching to an equivalent yet more efficient plan. Specifically, the focus

of (Babu, Motwani, Munagala, Nishizawa, and Widom 2004) is on adaptively ordering pipelined filters,

where they introduce the A-Greedy algorithm which uses a greedy strategy to reorder the filters when the

greedy property is violated. Then, the focus of (Babu, Munagala,Widom, and Motwani 2005) is on

handling the migration between join execution plans of a multi-way join query, where they introduce the

A-Caching algorithm which stores the intermediate results of join subsequences to support the plan

migration. These algorithms assume a centralized environment, and they do not work in a distributed

environment because it requires a different model and techniques.

Zhu et al. (Zhu, Rundensteiner, and Heineman 2004) focus on the problem of plan migration and

propose two solutions for the plan migration, a moving state strategy and a parallel track strategy. The

moving state strategy temporarily suspends the query execution in order to produce an intermediate result

for the new plan and then switches over to the new plan. The parallel track strategy runs both the new

plan and the old plan in parallel and drops the old plan when it is not needed anymore. Yang et al. (Yang,

Kramer, Papadias, and Seeger 2007) proposes an improvement over Zhu et al.’s approach by combining

the two strategies. Besides the fact that these approaches are for centralized processing environment, the

proposed techniques assume the tree ordering when moving an intermediate result during plan migration,

which is inapplicable in our problem as we use the linear join ordering.

Another line of research on adaptive stream query processing is based on the tuple-routing

mentioned above. This approach is different from the re-optimization approach. Tian and DeWitt (Tian

and DeWitt 2003) consider the adaptive processing of stateful operators in a distributed environment.

They use the tuple-routing approach (i.e,, eddies (Avnur and Hellerstein 2000)) as the basis and extend it

to work in a distributed environment with multiple eddies. Each eddy at a local node takes the input tuples

and, based on pre-defined policies, determines the next operator (in another node) to forward the output

tuples to. This technique requires metadata for each tuple to keep track of its processing progress, and it

makes the system prohibitively expensive in terms of the communication overhead. Claypool et al.

(Claypool and Claypool 2008) present an improvement over the eddies, called trained eddies (TEddies).

TEddies processes tuples in a batch instead of single tuples and has an adaptive scheduler module to adapt

to the changes of the stream statistics and the number of tuples in a batch. TEddies is meant for a

centralized environment.

Another work in distributed databases that has a similar distributed data model to our work is

OGSA-DAI (OGSA-DAI 2002). In their model, multiple databases are placed in different nodes

distributed over the network and can be queried through a server which makes the queried databases

appear as one logical database. That is, given a query, the distributed query processor generates an initial

query plan and then breaks it into operators that need to be executed at each node. Their work is

fundamentally different from ours in two aspects. First, their query optimizer is rule-based, that is, the

plan is optimized based on a set of predefined rules, whereas our query optimization algorithm is cost-

based. Second, our work focuses on the adaptive query processing which modifies the execution plan

when the stream statistics change, while their work does not.

7 Conclusion

In this paper, we have addressed the problem of adaptively processing multi-way windowed stream

joins over distributed data streams. The key idea is to use a node operator set (NOS) to support the

adaptivity locally while ensuring the correctness globally over the network. Based on the notion of NOS,

we have presented two distributed plan modification techniques depending on whether the NOSs in all

nodes are updated centrally or distributed. In the centralized update, one node maintains and updates the

NOSs and sends updated NOSs to affected nodes. In the distributed update, individual nodes

communicate with their neighboring nodes to update their own NOSs by themselves. Further, we have

presented distributed plan migration techniques for centralized and distributed NOS updates. Both

techniques guarantee a correct switch-over from an old plan to a new plan. Finally, we have conducted

two sets of experiments to test the adaptivity of the developed techniques as a whole and to study the time

overheads of the plan modification part and plan migration part in one view.

There are some directions we are considering for future work. First, the proposed adaptive

framework assumes the entire window contents are migrated from one node to another as a result of plan

modification. A more efficient mechanism that requires only a part of the window content would be more

desirable. Second, the framework considers only the stream statistics as something to adapt to. The

change of available system resources (e.g., memory, CPU time) is another factor commonly considered

for adaptivity. If the system resources become short, then approximating the join results may be necessary.

In this case, finding an adequate quality metric of the approximate result in a distributed environment and

computing it efficiently will be an interesting problem. Third, the join processing model assumes the

linear ordering in which intermediate join results are not buffered. Extending the model to maintain

intermediate join results may improve the efficiency of join processing. The solution requires a technique

to maintain and migrate intermediate results efficiently in our adaptive framework. Fourth, a variation of

the distributed NOS update algorithm can be developed by limiting the number of streams to be searched

in determining the stream to be swapped; in this way, the quality of the query plan (i.e., the execution

time) might not be as good as that of our proposed algorithm, but the number of messages exchanged can

be reduced.

References

 Aho, A. V., Y. Sagiv, and J. D. Ullman (1979). Efficient optimization of a class of relational

expressions. ACM Transactions on Database Systems 4(4), 435-454.

 Amini, L., N. Jain, A. Sehgal, J. Silber, and O. Verscheure (2006). Adaptive control of extreme-scale

stream processing systems. In Proceedings of the 26th IEEE International Conference on Distributed

Computing Systems, Number 71 (CD).

 Antoshenkov, G. and M. Ziauddin (1996). Query processing and optimization in Oracle RDB. The

Very Large Databases Journal 5(4), 229–237.

 Avnur, R. and J. M. Hellerstein (2000). Eddies: Continuously adaptive query processing. In

Proceedings of the 19th International Conference on Management of Data, pp. 261–272.

 Babu, S., P. Bizarro, and D. J. DeWitt (2005). Proactive re-optimization. In Proceedings of the 24th

International Conference on Management of Data, pp. 107–118.

 Babu, S., R. Motwani, K. Munagala, I. Nishizawa, and J.Widom (2004). Adaptive ordering of

pipelined stream filters. In Proceedings of the 23rd International Conference on Management of Data,

pp. 407–418.

 Babu, S., K. Munagala, J. Widom, and R. Motwani (2005). Adaptive caching for continuous queries.

In Proceedings of the 21st International Conference on Data Engineering, pp. 118–129.

 Ceri, S. and G. Pelagatti (1984). Distributed Databases: Principles and Systems.

 Claypool, K. T. and M. Claypool (2008). Teddies: Trained eddies for reactive stream processing. In

Proceedings of the 11st International Conference on Database Systems for Advanced Applications,

pp. 220–234.

 Cole, R. L. and G. Graefe (1994). Optimization of dynamic query evaluation plans. In Proceedings of

the 13rd International Conference on Management of Data, pp. 150–160.

 Cormode, G., S. Muthukrishnan, and W. Zhuang (2006). What’s different: Distributed, continuous

monitoring of duplicate-resilient aggregates on data streams. In Proceedings of the 22nd International

Conference on Data Engineering, pp. 57.

 Das, A., S. Ganguly, M. N. Garofalakis, and R. Rastogi (2004). Distributed set expression cardinality

estimation. In Proceedings of the 30th International Conference on Very Large Data Bases, pp. 312.

 Deshpande, A. and J. M. Hellerstein (2004). Lifting the burden of history from adaptive query

processing. In Proceedings of the 30th International Conference on Very Large Data Bases, pp. 948–

959.

 Gedik, B., K.-L. Wu, P. S. Yu, and L. Liu (2007). A load shedding framework and optimizations for

m-way windowed stream joins. In Proceedings of the 23rd International Conference on Data

Engineering, pp. 536–545.

 Golab, L. and M. T. Ozsu (2003). Processing sliding window multi-joins in continuous queries over

data streams. In Proceedings of the 29th International Conference on Very Large Data Bases, pp.

500–511. ACM Press.

 Ioannidis, Y. E., R. T. Ng, K. Shim, and T. K. Sellis (1997). Parametric query optimization. The Very

Large Databases Journal 6(2), 132–151.

 Kabra, N. and D. J. DeWitt (1998). Efficient mid-query re-optimization of sub-optimal query

execution plans. In Proceedings of the 17th International Conference on Management of Data, pp.

106–117.

 Kang, J., J. F. Naughton, and S. D. Viglas (2003). Evaluating window joins over unbounded streams.

In Proceedings of the 19th International Conference on Data Engineering, pp. 341–352. IEEE

Computer Society.

 Kumar, V., B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan (2005). Resource-aware distributed

stream management using dynamic overlays. In Proceedings of the 25th IEEE International

Conference on Distributed Computing Systems, pp. 783.

 Kumar, V., B. F. Cooper, and K. Schwan (2005). Distributed stream management using utility-driven

self adaptive middleware. In Proceedings of the 2nd International Conference on Autonomic

Computing, pp. 3.

 Markl, V., V. Raman, D. E. Simmen, G. M. Lohman, and H. Pirahesh (2004). Robust query

processing through progressive optimization. In Proceedings of the 23rd International Conference on

Management of Data, pp. 659–670.

 OGSA-DAI (2002). http://www.ogsadai.org.uk/

 Olston, C., J. Jiang, and J. Widom (2003). Adaptive filters for continuous queries over distributed

data streams. In Proceedings of the 22nd International Conference on Management of Data, pp. 563.

 Scheuermann, P. and E. I. Chong (1997). Adaptive algorithms for join processing in distributed

database systems. Distributed and Parallel Databases 5(3), 233–269.

 Seshadri, S., V. Kumar, and B. F. Cooper (2006). Optimizing multiple queries in distributed data

stream systems. In Proceedings of Workshop of the 22nd International Conference on Data

Engineering, pp. 25.

 Sharfman, I., A. Schuster, and D. Keren (2006). A geometric approach to monitoring threshold

functions over distributed data streams. In Proceedings of the 25th International Conference on

Management of Data, pp. 301.

 Srivastava, U., K. Munagala, and J.Widom (2005). Operator placement for in-network stream query

processing. In Proceedings of the 24th Symposium on Principles of Database Systems, pp. 250–258.

 Tian, F. and D. J. DeWitt (2003). Tuple routing strategies for distributed eddies. In Proceedings of the

29
th
 International Conference on Very Large Data Bases, pp. 333–344.

 Tran, T. M. and B. S. Lee (2010). Distributed stream join query processing with semijoins.

Distributed Parallel Databases 27(3), 211–254.

 Viglas, S., J. F. Naughton, and J. Burger (2003). Maximizing the output rate of multi-way join queries

over streaming information sources. In Proceedings of the 29th International Conference on Very

Large Data Bases, pp. 285–296.

 VMWARE (1998). VMWare Workstation 6.0: http://www.vmware.com/.

 Yang, Y., J. Kramer, D. Papadias, and B. Seeger (2007). Hybmig: A hybrid approach to dynamic plan

migration for continuous queries. IEEE Transactions on Knowledge and Data Engineering 19(3),

398–411.

 Zhou, Y. (2003). Adaptive distributed query processing. In Proceedings of PhD Workshop of the 29th

International Conference on Very Large Databases.

 Zhou, Y., Y. Yan, F. Yu, and A. Zhou (2006). Pmjoin: Optimizing distributed multi-way stream joins

by stream partitioning. In Proceedings of the 9th International Conference on Database Systems for

Advanced Applications, pp. 325–341.

 Zhu, Y., E. A. Rundensteiner, and G. T. Heineman (2004). Dynamic plan migration for continuous

queries over data streams. In Proceedings of the 23rd International Conference on Management of

Data, pp. 431–442.

