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Abstract

Reservoir sampling is a well-known technique for se-
quential random sampling over data streams. Conventional
reservoir sampling assumes a fixed-size reservoir. There are
situations, however, in which it is necessary and/or advan-
tageous to adaptively adjust the size of a reservoir in the
middle of sampling due to changes in data characteristics
and/or application behavior. This paper studies adaptive-
size reservoir sampling over data streams considering two
main factors: reservoir size and sample uniformity. First,
the paper conducts a theoretical study on the effects of ad-
justing the size of a reservoir while sampling is in progress.
The theoretical results show that such an adjustment may
bring a negative impact on the probability of the sample be-
ing uniform (called uniformity confidence herein). Second,
the paper presents a novel algorithm for maintaining the
reservoir sample after the reservoir size is adjusted such
that the resulting uniformity confidence exceeds a given
threshold. Third, the paper extends the proposed algorithm
to an adaptive multi-reservoir sampling algorithm for a
practical application in which samples are collected from
memory-limited wireless sensor networks using a mobile
sink. Finally, the paper empirically examines the adaptiv-
ity of the multi-reservoir sampling algorithm with regard to
reservoir size and sample uniformity using real sensor net-
works data sets.

1. Introduction
Uniform random sampling has been known for its use-

fulness and efficiency for generating consistent and unbi-
ased estimates of an underlying population. In this sam-
pling scheme, every possible sample of a given size has the
same chance to be selected. Uniform random sampling has
been heavily used in a wide range of application domains
such as statistical analysis [17] [37], computational geome-
try [15] [16], graph optimization [31], knowledge discovery
[34] [35], approximate query processing [3] [14] [22] [23]
[45] [59], and data stream processing [6] [7] [28] [49].

When data subject to sampling come in the form of a
data stream (e.g. stock price analysis [2], and sensor net-
works monitoring [8]), sampling should be processed se-
quentially. Sequential sampling has two main challenges.
First, the input stream must be processed in a single pass.
Second, the size of the stream is usually unknown before-
hand. A technique commonly used in this scenario is reser-
voir sampling [42] [53], which selects a uniform random
sample of a given size from an input stream of an unknown
size. Reservoir sampling has been used in many database
applications including clustering [25] [32] [33], data ware-
housing [10], spatial data management [46], and approxi-
mate query processing [13] [14] [19] [23] [45] [59].

The conventional reservoir sampling assumes a fixed-
size reservoir (i.e., the size of a sample is fixed). There are
situations, however, in which it is necessary and/or advan-
tageous to adaptively adjust the reservoir size in the middle
of sampling. Key factors characterizing such a situation in-
clude changes in sample variance and application behavior.
We provide three motivating examples below.

Example 1 In data collection over wireless sensor net-
works using a mobile sink [11] [12] [18] [27] [30] [47]
[48] [52] [57], a mobile sink roves the area covered by
the sensors and collects data from sensors in its proxim-
ity. Consider the following scenario (see Figure 1). Sensors
are spatially clustered. Each cluster is associated with a
sensor proxy which stores readings from sensors in the cor-
responding cluster and acts as a data cache point. Period-
ically, a mobile sink navigates the network to collect read-
ings from the proxies. A proxy, however, has limited mem-
ory and, therefore, may store only samples of the readings.
Each proxy may very well keep multiple reservoir samples,
one for each sensor. An application may demand that the
size of a reservoir be in proportion to the number of read-
ings generated so far by the corresponding sensor. If the
sampling rates of sensors change over time, the reservoir
sizes should be adjusted dynamically as the sampling rates
of sensors change.



Figure 1. Data collection over a wireless sen-
sor network using a mobile sink.

Example 2 Reservoir sampling is commonly used in ap-
proximate query processing [13] [14] [19] [23] [45] [59]
as an efficient sampling technique. For instance, Chaudhuri
et al. [14] adapt reservoir sampling to sample the result of
a join operation. Random sampling over joins requires in-
formation about the statistics of base relations. However,
such information may not be available [14] and, therefore,
it may not be possible to pre-estimate the size of an interme-
diate join result and accordingly pre-allocate an appropri-
ate reservoir size. Even if available, such statistics are often
inaccurate at run time [9], and the size of an intermediate
join result may be much larger than estimated [9]. If, while
the sampling is in progress, the reservoir size becomes too
small to represent the intermediate join result adequately,
then the reservoir size should be increased. Furthermore, if
the total available memory for the query processor is lim-
ited [9] [44] [60], increasing the size of a reservoir would
force the release of some memory elsewhere, possibly de-
creasing the size of another reservoir.

Example 3 Periodic queries [55], a variation of continu-
ous queries [5], is appropriate for many real-time stream-
ing applications such as security surveillance and health
monitoring. In the periodic query model, once a query is
registered to the system, query instances are instantiated
periodically by the system. Upon instantiation, a query in-
stance takes a snapshot of tuples that arrived since the last
instantiation of the query. Consider a common situation in
which, due to the nature of data streams and their poten-
tially high arrival rates, a technique like random sampling
is used to reduce the stream rate [6]. As the query is instan-
tiated periodically, the system may keep a reservoir sam-
ple of stream data arriving between the execution times of
two consecutive query instances. If at some time point, the
reservoir size has become too small to represent the stream
adequately, the system should provide a way to increase the
reservoir size for better representing the stream data at the
execution time of the next query instance. Moreover, it is
not uncommon that multiple queries run simultaneously in

the system [39] [49] [51] [54]. In this case, each query
may have its own reservoir sample maintained. Besides, at
any point in time, one or more queries can be registered to
or expired from the system. In order to adapt to this dy-
namic change of the query set, the system should be able to
adaptively reallocate the memory among all reservoirs of
the current query set.

Adjusting the reservoir size while the sampling is in
progress does not come for free. As shown in Section 2,
such an adjustment may have a negative impact on the sta-
tistical quality of the sample in terms of the probability of
the sample being uniform.

Motivated by this observation, in this paper we address
adaptive-size reservoir sampling over data streams consid-
ering the following two main factors: reservoir size (or
equivalently sample size) and sample uniformity. An ap-
propriate sample size depends on data characteristics such
as the size, mean, and variance of the population [17] [37].
Sample uniformity brings an unbiased representation of the
population, and is especially desirable if it is not clear in
advance how the sample will be used [20].

Specifically, we introduce the notion of uniformity con-
fidence in a sampling algorithm. Uniformity confidence is
the probability that a sampling algorithm generates a uni-
form random sample. Based on this notion, we conduct a
theoretical study on the effect of adjusting the reservoir size
in the middle of sampling. The study leads to the following
conclusions. On one hand, if the reservoir size decreases,
we can maintain the sample in the reduced reservoir with
a 100% uniformity confidence; on the other hand, if the
reservoir size increases, it is not possible to maintain the
sample in the enlarged reservoir with a 100% uniformity
confidence and, in this case, there is a tradeoff between the
size of the enlarged reservoir and the uniformity confidence.

Based on the above theoretical results, we propose a
novel algorithm (called adaptive reservoir sampling) for
maintaining the reservoir sample after the reservoir size is
adjusted. If the size decreases, the algorithm maintains a
sample in the reduced reservoir with a 100% uniformity
confidence by randomly evicting tuples from the original
reservoir. If the size increases, the algorithm finds the min-
imum number of incoming tuples that should be considered
in the input stream to refill the enlarged reservoir such that
the resulting uniformity confidence exceeds a given thresh-
old. Then, the algorithm decides probabilistically on the
number of tuples to retain in the enlarged reservoir and ran-
domly evicts the remaining number of tuples. Eventually,
the algorithm fills the available room in the enlarged reser-
voir using the incoming tuples.

To our knowledge, there does not exist an algorithm
comparable to the proposed algorithm. Thus, we evaluate
the proposed algorithm by extending it for a practical appli-
cation and empirically examining the adaptivity of the algo-



rithm with regard to reservoir size and sample uniformity.
For this, we extend the proposed algorithm to what we call
adaptive multi-reservoir sampling algorithm for an applica-
tion in which samples are collected from memory-limited
wireless sensor networks using a mobile sink (see Exam-
ple 1), and conduct experiments using real sensor networks
data sets. The experimental results demonstrate the adap-
tivity of the algorithm through two sets of experiments. The
first set of experiments shows the sizes of multiple reser-
voirs changing adaptively to the change in the sampling rate
of sensors and the second set of experiments shows the ef-
fects of these changes on the samples’ uniformity.

This paper makes the following contributions:

1. Identifies and motivates the problem of adaptive-size
reservoir sampling in which the reservoir size is ad-
justed while the sampling is in progress.

2. Introduces the notion of uniformity confidence and,
based on this notion, examines theoretical results on
adjusting the reservoir size in the middle of sampling.

3. Proposes the adaptive reservoir sampling algorithm for
maintaining the reservoir sample after the reservoir
size is adjusted.

4. Extends the proposed algorithm to the adaptive multi-
reservoir sampling algorithm, and, using real sensor
networks data sets, empirically demonstrates the adap-
tivity of the algorithm with regard to reservoir size and
sample uniformity.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the notion of uniformity confidence and
presents the adaptive reservoir sampling algorithm. Sec-
tion 3 presents the adaptive multi-reservoir sampling algo-
rithm, and Section 4 empirically demonstrates the adaptiv-
ity of the algorithm. Section 5 briefly reviews related work.
Section 6 concludes this paper and suggests future work.

2. Adaptive Reservoir Sampling
In this section, we briefly review the reservoir sampling

algorithm. Then, we introduce the notion of uniformity con-
fidence (denoted as UC) and conduct a theoretical study on
the effects of decreasing or increasing a reservoir size in the
middle of sampling on the uniformity confidence. Finally,
we propose our adaptive reservoir sampling algorithm.

2.1. Reservoir sampling
The conventional reservoir sampling [42] selects a uni-

form random sample of a fixed size, without replacement,
from an input stream of an unknown size (see Algorithm 1).
Initially, the algorithm places all tuples in the reservoir un-
til the reservoir (of the size of r tuples) becomes full. Af-
ter that, each kth tuple is sampled with the probability r

k .

A sampled tuple replaces a randomly selected tuple in the
reservoir. It is easy to verify that the reservoir always holds
a uniform random sample of the k tuples seen so far [42].

Algorithm 1 conventional reservoir sampling
Inputs: r {reservoir size}

1: k = 0
2: for each tuple arriving from the input stream do
3: k = k + 1
4: if k ≤ r then
5: add the tuple to the reservoir
6: else
7: sample the tuple with the probability r

k
and replace a

randomly selected tuple in the reservoir with the sam-
pled tuple

8: end if
9: end for

2.2. Uniformity confidence
A sample is a uniform random sample if it is produced

using a sampling scheme in which all statistically possible
samples of the same size are equally likely to be selected.
In this case, we say the uniformity confidence in the sam-
pling algorithm equals 100%. In contrast, if some statis-
tically possible samples cannot be selected using a certain
sampling algorithm, then we say the uniformity confidence
in the sampling algorithm is below 100%. Thus, we define
uniformity confidence as follows.

the number of different samples of the same size
possible with the algorithm

the number of different samples of the same size
possible statistically

× 100

(1)
For reservoir sampling, the uniformity confidence in a

reservoir sampling algorithm which produces a sample S of
size r (denoted as S[r]) is defined as the probability that S[r]

is a uniform random sample of all the tuples seen so far.
That is, if k tuples have been seen so far, then the unifor-
mity confidence is 100% if and only if every statistically
possible S[r] has an equal probability to be selected from
the k tuples. As we show in Sections 2.2.1 and 2.2.2 below,
if the reservoir size is decreased from r to r − δ (δ > 0),
then there is a way to maintain the sample in the reduced
reservoir such that every statistically possible S[r−δ] has an
equal probability of being in the reduced reservoir, whereas
if the reservoir size is increased from r to r+δ (δ > 0), then
some statistically possible S[r+δ]’s cannot be selected.

2.2.1 Decreasing the reservoir size

Suppose the size of a reservoir is decreased from r to r − δ
(δ > 0) immediate after the kth tuple arrives (see Figure 2).
Then, the sample in the reduced reservoir can be maintained
by randomly evicting δ tuples from the original reservoir.



Figure 2. Decreasing the reservoir size.

With this random eviction in place, there are
(

r
r−δ

)
differ-

ent S[r−δ]’s that can be selected in the reduced reservoir
from the original reservoir. Note that there are

(
k
r

)
differ-

ent S[r]’s that can be selected in the original reservoir from

the k tuples and there are
(
k−(r−δ)
r−(r−δ)

)
duplicate S[r−δ]’s that

can be selected in the reduced reservoir from the different
S[r]’s. Therefore, there are (

(
k
r

)(
r

r−δ

)
)/

(
k−(r−δ)
r−(r−δ)

)
different

S[r−δ]’s that can be selected in the reduced reservoir from
the k tuples. On the other hand, the number of different
samples of size r − δ that should be statistically possible
from sampling k tuples is

(
k

r−δ

)
. Hence, the uniformity

confidence is expressed as follows:

UC(k, r, δ) =
(
(
k
r

)(
r

r−δ

)
)/

(
k−(r−δ)
r−(r−δ)

)
(

k
r−δ

) ×100 =

(
k

r−δ

)
(

k
r−δ

)×100

(2)
which clearly shows the the uniformity confidence is 100%.

The following theorem summarizes the uniformity con-
fidence property of reservoir sampling in the event of de-
creasing the reservoir size during sampling.

Theorem 1 If the size of a reservoir is decreased from r
to r − δ (δ > 0) while sampling from an input stream is in
progress, it is possible to maintain the sample in the reduced
reservoir with a 100% uniformity confidence.

Proof To prove that the uniformity confidence is 100%, we
only need to show that every tuple among the k tuples seen
so far has an equal probability to be selected in the reduced
reservoir. Following the conventional reservoir sampling,
each of the k tuples has the equal probability r

k to be se-
lected in the original reservoir. Once the reservoir size de-
creases to r-δ, we can sample the tuples in the original reser-
voir with the equal probability r−δ

r to select r-δ tuples for
the reduced reservoir. Thus, every tuple among the k tuples
has the equal probability r

k× r−δ
r = r−δ

k to be selected in
the reduced reservoir.

2.2.2 Increasing the reservoir size

Suppose the size of a reservoir is increased from r to r+δ
(δ > 0) immediately after the kth tuple arrives (see Fig-
ure 3). Then, the reservoir has room for δ additional tuples.
Clearly, there is no way to fill this room from sampling the
k tuples as they have already passed by. We can only use
incoming tuples to fill the room. The number of incoming
tuples used to fill the enlarged reservoir is denoted as m and
called the uniformity confidence recovery tuple count.

Figure 3. Increasing the reservoir size.

For the sake of better uniformity, we allow some of the r
existing tuples to be evicted probabilistically and replaced
by some of the incoming m tuples. In our work, we ran-
domly pick the number of tuples evicted (or equivalently,
the number of tuples retained). Clearly, the number of tu-
ples that are retained, x, can be no more than r. Besides, x
should not be less than (r + δ) − m if m < r + δ (because
otherwise, with all m incoming tuples the enlarged reservoir
cannot be refilled), and no less than 0 otherwise. Hence, we
can have x tuples, where x ∈ [max{0, (r + δ) − m}, r],
from the k tuples and the other r + δ − x tuples from the m
tuples. This eviction scheme allows for

(
k
x

)(
m

r+δ−x

)
differ-

ent S[r+δ]’s for each x in the range [max{0, (r+δ)−m}, r].
On the other hand, the number of different samples of size
r + δ that should be statistically possible from sampling
k + m tuples is

(
k+m
r+δ

)
. Hence, with the eviction in place,

the uniformity confidence is expressed as follows:

UC(k, r, δ,m) =

∑r
x=max {0,(r+δ)−m}

(
k
x

)(
m

r+δ−x

)
(
k+m
r+δ

) × 100

(3)
where m ≥ δ.

Examining this formula shows that the uniformity confi-
dence increases monotonously and saturates as m increases.
Figure 4 shows this pattern for one setting of k, r, and δ.
Note that the uniformity confidence never reaches 100%,
as exemplified by Figure 5 which magnifies the uniformity
confidence curve of Figure 4 for m ≥ 9000.

The following theorem summarizes the uniformity con-
fidence property of reservoir sampling in the event of in-
creasing the reservoir size during sampling.

Theorem 2 If the size of a reservoir is increased from r to
r + δ (δ > 0) while sampling from an input stream is in
progress (after seeing more than r tuples), it is not possi-
ble to maintain the sample in the enlarged reservoir with a
100% uniformity confidence.

Proof Let x be the number of tuples that can be selected
in the enlarged reservoir (of size r + δ) from the k tuples
seen so far in the input stream. Then, the uniformity con-
fidence is equal to 100% if and only if x can be any value
in the range of [0,r + δ]. However, x cannot be more than
r since we have only r tuples from the k tuples seen so far.
From this we conclude that the uniformity confidence can-
not reach 100%.



Figure 4. UC with respect to m (Equation 3).

2.3. Adaptive reservoir sampling algorithm

Algorithm 2 Adaptive reservoir sampling
Inputs: r {reservoir size}

k {number of tuples seen so far}
ζ {uniformity confidence threshold}

1: while true do
2: while reservoir size does not change do
3: conventional reservoir sampling (Algorithm 1).
4: end while
5: if reservoir size is decreased by δ then
6: randomly evicts δ tuples from the reservoir.
7: else
8: {i.e., reservoir size is increased by δ}
9: Find the minimum value of m (using Equation 3 with the

current values of k, r, δ) that causes the UC to exceed ζ.
10: flip a biased coin to decide on the number, x, of tuples

to retain among r tuples already in the reservoir (Equa-
tion 4).

11: randomly evict r − x tuples from the reservoir.
12: select r+δ−x tuples from the incoming m tuples using

conventional reservoir sampling (Algorithm 1).
13: end if
14: end while

Based on the above discussion, our adaptive reservoir
sampling algorithm works as shown in Algorithm 2. As
long as the size of the reservoir does not change, it uses the
conventional reservoir sampling to sample the input stream
(Line 3). If the reservoir size decreases by δ, the algorithm
evicts δ tuples from the reservoir randomly (Line 6). After
that, the algorithm continues sampling using the conven-
tional reservoir sampling (Line 3). On the other hand, if
the reservoir size increases by δ, the algorithm computes
the minimum value of m (using Equation 3) that causes the
UC to exceed a given threshold (ζ) (Line 9). Then, the
algorithm flips a biased coin to decide on the number of tu-
ples (x) to retain among the r tuples already in the reservoir
(Line 10). The probability of choosing the value x, where
max {0, (r + δ) − m} ≤ x ≤ r, is defined as:

p(x) =

(
k
x

)(
m

r+δ−x

)
(
k+m
r+δ

) (4)

After that, the algorithm randomly evicts r − x tuples
from the reservoir (Line 11) and refills the remaining reser-

Figure 5. Figure 4 magnified for m ≥ 9000.

voir space with r + δ − x tuples from the arriving m tuples
using the conventional reservoir sampling (Line 12). Even-
tually, the algorithm continues sampling the input stream
using the conventional reservoir sampling (Line 3) as if the
sample in the enlarged reservoir were a uninform random
sample of the k + m tuples.

3. Application to Adaptive Multi-reservoir
Sampling

In this section, we extend the adaptive reservoir sampling
algorithm for a practical application of multi-reservoir sam-
pling in which samples are collected from memory-limited
wireless sensor networks using a mobile sink. Applications
of data collection over wireless sensor networks using a mo-
bile sink have recently received a significant research at-
tention [11] [12] [18] [27] [30] [47] [48] [52] [57]. These
applications take advantage of the mobility to improve the
process of data gathering. A mobile sink roves the network
and collects data from sensors in its proximity, thereby re-
ducing the in-network communications and increasing the
lifetime of the network.

We consider the application scenario described in Exam-
ple 1, assuming that the processing power of each proxy is
sufficient to carry the required computations. For this sce-
nario, we propose an adaptive multi-reservoir sampling al-
gorithm that is based one the following key ideas. First, the
objective of the algorithm is to adaptively adjust the mem-
ory allocation in each proxy so that the size of each reser-
voir is allocated in proportion to the number of readings
(i.e., tuples) generated so far by the corresponding sensor.
Second, the algorithm adjusts the memory allocation only
if the relative change in the size of at least one reservoir is
above a given memory adjustment threshold and the result-
ing uniformity confidence for all reservoirs exceeds a given
uniformity confidence threshold.

3.1. Problem formulation
The objective is to allocate the memory of size M to the

reservoirs (R1,R2,...,Rv) of v input streams (S1,S2,...,Sv)
so that at the current time point t, the size ri(t) of each
reservoir Ri is proportional to the total number of tuples,
ki(t), seen so far from Si. The rationale behind this objec-
tive is explained below. (Table 1 summarizes the notations
used in the problem formulation.)



Table 1. Notations used in the problem formu-
lation.

Symbol Description
v number of streams (i.e., number of reservoirs)
Si stream i
Ri the reservoir allocated to Si

M total available memory for v reservoirs
t current time point

ri(t) computed size of Ri at t
rM
i (t) computed size of Ri at t with limited memory M

ri(tu) size of Ri adjusted at time point tu (tu < t)
δi(t) change in the size of Ri at t
ki(t) number of tuples seen up to t from Si

mi(t) number of tuples to be seen from Si, starting
from t, to fill an enlarged reservoir Ri

λi(t) the average stream rate of Si

� time period left until the next data collection time
ζ uniformity confidence threshold
ϕ memory adjustment threshold (0 ≤ ϕ ≤ 1)

Three criteria are typically used to determine a statisti-
cally appropriate sample size for a given population. These
criteria are the confidence interval, the confidence level, and
the degree of variability in the population [43]. Confidence
interval is the range in which the true value of the population
is estimated to be. Confidence level is the probability value
associated with a confidence interval. Degree of variability
in the population is the degree in which the attributes being
measured are distributed throughout the population. A more
heterogeneous population requires larger sample to achieve
a given confidence interval. Based on these criteria, Yamane
[58] provides the following simplified formula to calculate
a statistically appropriate sample size, assuming 95% con-
fidence level and 50% degree of variability (note that 50%
indicates the maximum variability in a population):

n =
N

1 + N e2
(5)

where n is the sample size, N is the population size, and e
is 1−confidence interval.

Adapting this formula to our problem, we compute the
size ri(t) of Ri as:

ri(t) =
ki(t)

1 + ki(t) e2
(6)

subject to the following limit on the total memory M :
v∑

i=1

ri(t) ≤ M (7)

We assume that M may not be large enough for all reser-
voirs. In this case, we use the heuristic of allocating the
memory to each reservoir Ri in proportion to the value of

ri(t) computed using Equation 6. That is:

rM
i (t) = �M(

ri(t)∑v
i=1 ri(t)

)� (8)

Algorithm 3 Adaptive multi-reservoir sampling
Inputs: ζ, ϕ, M , �, {r1(tu), r2(tu), ..., rv(tu)},

{k1(t), k2(t), ..., kv(t)}, {λ1(t), λ2(t), ..., λv(t)}
1: while true do
2: while there is no tuples arriving from any stream do
3: {do nothing.}
4: end while

{one or more tuples arrived from some streams}
5: compute ri(t) (Equation 6) for the streams from which tu-

ples arrived.
6: for each Ri ∈ {R1, R2, ..., Rv} do
7: compute rM

i (t) (Equation 8).
8: compute δi(t) = rM

i (t) − ri(tu).
9: end for

10: if Equation 11 holds for any Ri ∈ {R1, R2, ..., Rv} then
11: Lreduced = set of all Ri whose δi(t) < 0
12: Lenlarged = set of all Ri whose δi(t) > 0
13: compute mi(t) (Equation 9) for all Ri ∈ Lenlarged.
14: L′

enlarged = set of all Ri ∈ Lenlarged whose
UCi(ki(t), ri(tu), δi(t), mi(t)) ≤ ζ

15: if L′
enlarged is empty then

16: for each Ri ∈ (Lreduced ∪ Lenlarged) do
17: if Ri ∈ Lreduced then
18: randomly evicts δi(t) tuples from Ri.
19: else
20: flip a biased coin to decide on the number of tu-

ples, x, to retain in Ri (using Equation 4 with
ki(t),ri(tu),δi(t),mi(t) substituting k,r,δ,m,
respectively).

21: randomly evict ri(tu) − x tuples from Ri.
22: select ri(tu)+ δi(t)−x tuples from the incom-

ing mi(t) tuples using Algorithm 1.
23: end if
24: ri(tu) = rM

i (t)
25: end for
26: end if
27: end if
28: end while

At the current time point t, this computed reservoir size
rM
i (t) may be different from the reservoir size ri(tu) ad-

justed at time point tu (tu < t). Let δi(t) denotes the
difference. As concluded in Section 2, if δi(t) < 0, the
uniformity confidence is 100%. In contrast, if δi(t) > 0,
the uniformity confidence is below 100%; in this case, as in
Algorithm 2, we maintain the sample in an enlarged reser-
voir Ri using incoming tuples from the input stream. In our
problem formulation, the number of incoming tuples mi(t)
used to fill an enlarged reservoir Ri is computed as a prod-
uct of the average stream rate, λi(t), and the time period,
�, left to the next data collection time as follows:

mi(t) = λi(t) ×� (9)



For an enlarged reservoir Ri, the uniformity confidence
expressed in Equation 3 is refined here as follows:

UCi(ki(t), ri(tu), δi(t),mi(t)) =

∑ri(tu)
x=max {0,(ri(tu)+δi(t))−mi(t)}

(
ki(t)

x

)(
mi(t)

ri(tu)+δi(t)−x

)

(
ki(t)+mi(t)
ri(tu)+δi(t)

) ×100

(10)
where mi(t) ≥ δi(t).

To control the frequency of memory allocation adjust-
ment, we consider the adjustment only if the relative change
in the computed size (Equation 8) exceeds a given thresh-
old (denoted as ϕ) for some Ri, that is, the adjustment is
considered if Equation 11 holds for some i ∈ {1, 2, ...v}.∣∣rM

i (t) − ri(tu)
∣∣

ri(tu)
> ϕ (11)

where 0 ≤ ϕ ≤ 1.

3.2. Adaptive multi-reservoir sampling al-
gorithm

Based on the problem formulation in Section 3.1, the
algorithm works as follows (see Algorithm 3). As long
as there is no tuples arriving from any stream, the algo-
rithm stays idle (Lines 2-4). Upon the arrival of a new
tuple from any stream, it computes ri(t) for those streams
from which tuples arrived (Line 5) and computes rM

i (t) and
δi(t) for all streams (Lines 6-9). Then, it checks the rela-
tive change in the size of each reservoir (Line 10). If the
relative change in the size of any reservoirs is larger than
the memory adjustment threshold ϕ (using Equation 11),
the algorithm computes mi(t) for all of the enlarged reser-
voirs (Lines 11 and 13). Then, it checks if the uniformity
confidence computed using Equation 10 exceeds the given
threshold for every enlarged reservoir (Lines 14-15). If
so, for each of the adjusted reservoirs, it applies the corre-
sponding steps of the adaptive reservoir sampling algorithm
(see Algorithm 2), and updates ri(tu) to the current rM

i (t)
(Lines 16-25).

4. Performance Evaluations
The purpose of the evaluations is to empirically examine

the adaptivity of the the multi-reservoir sampling algorithm
with regard to reservoir size and sample uniformity. We
have conducted two sets of experiments. The objective of
the first set of experiments is to observe how the reservoirs
sizes change as data arrive. The objective of the second set
of experiments is to observe the uniformity of the reservoir
samples as the reservoirs sizes change.

4.1. Setup
4.1.1 Data setup
We use a real data set collected from sensors deployed
in the Intel Berkeley Research lab between February 28th

Figure 6. Total number of readings from each
mote between February 28th and April 5th.

and April 5th, 2004 [1]. Sensors mounted with weather
boards collected timestamped topology information, along
with humidity, temperature, light and voltage values once
every 31 seconds. Collection of data was done using the
TinyDB in-network query processing system, built on the
TinyOS platform.

The resulting data file includes a log of about 2.3 mil-
lion readings collected from these sensors. The schema of
records is 〈date: yyyy-mm-dd, time: hh:mm:ss.xxx, epoch:
int, moteid: int, temperature: real, humidity: real, light:real,
voltage:real〉. In this schema, epoch is a monotonically in-
creasing sequence number unique for each mote. Moteid
range from 1 to 58. Data from three motes (of ID=5, ID=28,
and ID=57) have incomplete readings, and thus discarded.
This leaves readings from 55 motes used in the experiments.
(Figure 6 reports the total number of readings from each
mote.) Temperature is in degrees Celsius. Humidity is
temperature-corrected relative humidity, ranging from 0 to
100%. Light is in Lux.Voltage is expressed in volts, ranging
from 2.0 to 3.0 volts.

4.1.2 Algorithm setup
In Algorithm 3, we set the uniformity confidence thresh-
old ζ to 0.90. We believe this value is adequately large
to constrain the frequency of adjusting the memory alloca-
tion. To check the effect of the total available memory size
on the frequency of change in reservoir sizes, we range the
value of M from 1000 (tuples) to 5000 (tuples) and range
the memory adjustment threshold ϕ from 0.1 to 0.5. Read-
ings acquired for the whole day of February 28th are used
in the experiments. We assume data collection is done ev-
ery 1 hour and, accordingly, report results on the change in
reservoir size and sample uniformity every hour.

4.2. Change in reservoir size
Figure 7 shows the changes in the sizes of the 55 reser-

voirs. For better visibility, Figure 8 shows the changes for
5 selected reservoirs. In the beginning (i.e., by the end of
the 2nd hour), the total available memory is enough to store
all reading from all motes and, therefore, the reservoir sizes
increase linearly. Then, the reservoir sizes start fluctuat-
ing. The fluctuations are smooth and small in the first stage



Figure 7. Change in sizes of reservoirs.

(from the 2nd to the 4th hour), larger in the second stage
(from the 4th to the 21st hour), and eventually diminish in
the last stage (after the 21st hour). This pattern of changes
is attributed to the characteristics of data sets used in the
experiments. In the first stage, there is no tangible differ-
ence between the numbers of readings acquired by different
motes. Therefore, reservoir sizes stay almost constant. In
the second stage, the differences start increasing and, there-
fore, the changes in reservoir sizes become more frequent
and more tangible. The saturations in reservoir sizes in the
last stage indicate that the number of readings acquired by
each mote is large enough and, therefore, does not cause a
change in the computed reservoir size (see Equation 6).

With a larger value of the memory adjustment threshold
ϕ (= 0.5), Figure 9 shows a similar pattern except that the
changes in reservoir sizes happen less frequently, and satu-
rate earlier. The reason for these observations can be easily
seen from Equations 6 and 11. Results obtained for varying
other parameters (M and ζ) show similar patterns, and are
omitted due to space constraint.

4.3. Sample uniformity

We use χ2 statistics [24] [37] as a metric of the sample
uniformity. Higher χ2 indicates lower uniformity and vice
versa. For each value v in a domain D, χ2 statistics mea-
sures the relative difference between the observed number
of tuples (o(v)) and the expected number of tuples (e(v))
that contain the value v. That is:

χ2 =
∑

∀v∈D

(e(v) − o(v))2

e(v)
(12)

In our experiments, we measure χ2 statistics for the hu-
midity attribute. For this, we round the original real value
of humidity to return the closest int to that original value.

Figure 10 shows the changes in size and the resulting
sample uniformity for one selected reservoir. It shows that
when the reservoir size increases, the sample uniformity de-
grades (i.e., decreases) and then starts recovering (i.e., in-
creasing). The degree of uniformity degradation and recov-
ery varies due to randomness in the data sets used in exper-
iments.

Figure 8. Changes in sizes for selected reser-
voirs (motes IDs: 2, 15, 31, 49, and 54).

5. Related Work
This work builds on two main research: adaptive sam-

pling and sampling over data streams. In this section, we
briefly review related work to each of these research.

Adaptive sampling: In statistics literature [50], adaptive
sampling refers to a design technique for statistical exper-
iments, where data acquired from experiments are used to
adjust the experiment as it is being run. In the database
community, adaptive sampling has been mainly used in
query size estimation. Lipton et al. give an adaptive sam-
pling algorithm for query size estimation, where the number
of samples taken depends on the information obtained from
each sample [36]. Lynch in [38] introduce detailed theoret-
ical results on using adaptive sampling to compute an ap-
proximate size of the query. The study conducts an analysis
of the average run time of different adaptive sampling algo-
rithms. In [59], Yi-Leh Wu et al. propose a query estima-
tion technique, based on random sampling, that can adapt
to user query patterns to estimate the size of selection or
range queries over databases. Recently Gemulla et al. [20]
proposed an algorithm for resizing a bounded-size sample
assuming that tuples are archived in the system for possi-
ble further accesses. In sensor networks research, adaptive
sampling techniques provide adaptive control mechanisms
to change the sampling rate at each sensor in an adaption to
changes in the streaming-data characteristics [26] [41] [56].

Sampling over Data Streams: In addition to reservoir
sampling [42] [53], there are several special-purpose algo-
rithms for sampling over data streams, such as heavy hitters
[40] and distinct counts [21]. Heavy hitters find those ele-
ments in a data stream that appear for at least a certain frac-
tion of all tuples, and distinct counts estimate the number
of distinct values for a given target attribute over an input
stream. In [7], Babcock et al. present memory-efficient al-
gorithms for the problem of maintaining a uniform random
sample of a specified size from a moving window over a
data stream. In [29], Johnson et al. abstract the process
of sampling from a stream and design a generic sampling
operator which can be specialized to implement a wide va-
riety of stream sampling algorithms. With the objective of



Figure 9. Changes in sizes for selected reser-
voirs (motes IDs: 2, 15, 31, 49, and 54).

minimizing answers inaccuracy in sliding-window aggrega-
tion queries where processing power is limited, Babcock et
al. [6] propose a load shedding technique which includes
random sampling operators in a query plan. Srivastava et
al. introduce a random sampling algorithm to stream out
a uniform random sample over stream join with limited
memory [49]. In [4], we present a progressive reservoir
join-sampling algorithm for sampling over memory-limited
stream joins. The algorithm increases the reservoir size dur-
ing the join-sampling process by releasing memory from the
join buffer and allocating it to the reservoir.

6. Conclusion and Future Work
In this paper, we addressed the problem of adaptive-size

reservoir sampling over data streams. We introduced the
notion of uniformity confidence and conducted a theoret-
ical study on the effects of adjusting the reservoir size in
the middle of sampling. The study concludes that if the
reservoir size decreases, we can maintain the sample in the
reduced reservoir with a 100% confidence uniformity. In
contrast, if the reservoir size increases, it is not possible to
maintain the sample in the enlarged reservoir with a 100%
uniformity confidence. We proposed an algorithm for main-
taining the reservoir sample after the reservoir size is ad-
justed such that the resulting uniformity confidence exceeds
a given threshold. We extended the proposed algorithm to
an adaptive multi-reservoir sampling algorithm, and empir-
ically examined the adaptivity of the multi-reservoir sam-
pling algorithm with regard to reservoir size and sample
uniformity using real sensor networks data sets.

Several issues are still open for future work. Alterna-
tive algorithms for adaptive sampling may be developed and
compared, and more real-world applications may be inves-
tigated for practical usefulness of the algorithms.
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