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a b s t r a c t

Reservoir sampling is a known technique for maintaining a random sample of a fixed size

over a data stream of an unknown size. While reservoir sampling is suitable for

applications demanding a sample over the whole data stream, it is not designed for

applications in which an input stream is composed of sub-streams with heterogeneous

statistical properties. For this class of applications, the conventional reservoir sampling

technique can lead to a potential damage in the statistical quality of the sample because

it does not guarantee the inclusion of a statistically sufficient number of tuples in the

sample from each sub-stream. In this paper, we address this heterogeneity problem by

stratifying the reservoir sample among the underlying sub-streams. This stratification

poses two challenges. First, a fixed-size reservoir should be allocated to individual sub-

streams optimally, specifically to have the stratified reservoir sample used to generate

estimates at the level of either the whole data stream or the individual sub-streams.

Second, the allocation should be adjusted adaptively if and when new sub-streams

appear in or existing sub-streams disappear from the input stream and as their

statistical properties change. We propose a novel adaptive stratified reservoir sampling

algorithm designed to meet these challenges. An extensive performance study shows

the superiority of the achieved sample quality and demonstrates the adaptivity of the

proposed sampling algorithm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sampling is the process of selecting members of a
population to derive some estimates representing the
entire population [1]. Random sampling is the most basic
sampling scheme under which all possible samples of the
same size have an equal chance to be selected. Since
random sampling usually generates consistent and
unbiased estimates of the population, it has been used
in a wide range of application domains such as computa-
tionals geometry [2,3], graph optimization [4], knowledge
ll rights reserved.

ateb),
discovery [5,6], approximate query processing [7–12], and
data stream processing [13–16].

When the data subject to sampling comes in the form
of a stream, two fundamental challenges occur. First, the
size of a data stream is typically unknown in advance.
Hence, the sample fraction (or sampling rate) cannot be
determined before the sampling begins. Second, in most
cases the data arriving in a stream cannot be stored.
Consequently, the data must be processed sequentially in
a single pass. A common technique to overcome these
challenges is the reservoir sampling [17,18], which selects
a random sample of a fixed size without replacement
from a stream of an unknown size. The utility and
efficiency of the reservoir sampling brought about its
use in a wide range of database applications including
clustering [19–21], data warehousing [22], spatial data
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management [23], and approximate query processing
[8,10–12,24–26].

One key assumption in the reservoir sampling algo-
rithm is that the sample always represents the whole

stream. This assumption, however, is not valid for many
stream applications. In those applications, an input
stream is composed of sub-streams which correspond to
different groups with significantly different statistical
properties (i.e., mean and variance). (We refer to this class
of data streams as heterogeneous data streams.) Moreover,
those applications use a sample to derive estimates at the
level of either the entire data stream or the individual
sub-streams. An example of such an application is dis-
cussed in Section 2.

Using the conventional reservoir sampling technique
over a heterogeneous data stream does not guarantee that
every sub-stream will have a statistically sufficient num-
ber of tuples in the reservoir. That is, the statistical quality
of the sample is compromised for some sub-streams.
Moreover, the technique maintains one random sample
of a fixed size from all tuples seen so far in an input
stream. Therefore, it is not suitable when multiple ran-
dom sub-samples are needed to obtain the estimates of
individual sub-streams.1

A concern for such heterogeneity naturally leads to the
idea of stratified sampling [1]. Stratified sampling is
designed to take a sample from a population made of
heterogeneous groups. Specifically, the population is clus-
tered into disjoint homogenous groups (or strata), and
then a sample is taken randomly from each group
(or stratum).2 To the best of our knowledge, while stratified
sampling has been used in the context of database systems
(e.g., [27,28]), in no existing work have data streams been the
target of a stratified sampling algorithm.

The streaming nature of the heterogeneous data intro-
duces the following additional challenges. First, usually
neither the number of sub-streams nor their statistical
properties are known in advance. So, it is not possible to
optimally allocate a stratified sample to sub-streams prior
to sampling. Second, the membership of a data stream
and the statistical properties of the member sub-streams
may change over time. So, the allocation should have the
ability to adapt to these changes.

This paper addresses the problem of maintaining a
stratified reservoir sample over heterogeneous data streams
for applications that demand reliable estimates at the level of
either the whole data stream or individual sub-streams. There
are two technical issues in this problem. The first issue is to
allocate a given fixed-size reservoir optimally among sub-
streams. To solve this issue, we adopt a statistical method
known as the power allocation [29]. By controlling what is
called the power parameter, this method allows for allocating
a given sample size optimally [29] whether the estimates are
required from the whole data stream or from the individual
sub-streams. The second issue is to adjust the allocation as
1 Terminology: we say that a sub-sample is produced from a sub-

stream and is stored in a sub-reservoir.
2 The statistical properties (i.e., mean and variance) of each stratum

is often replaced by the coefficient of variation (CV), defined as the ratio of

the standard deviation to the mean.
the data stream membership changes (i.e., new sub-streams
appear or existing sub-streams disappear) or their statistical
properties change over time. To solve this issue, the uni-
formity of the sample of each sub-stream should be main-
tained as the corresponding sample size changes over time.
For this we use a simple variation of the adaptive-size

reservoir sampling technique (from our prior work) [30] which
maintains the uniformity of a reservoir sample with a
required degree of confidence after the reservoir size is
adjusted in the middle of sampling. We call the algorithm
solving these two issues the adaptive stratified reservoir

sampling (ASRS) algorithm.
We evaluate the proposed ASRS algorithm through two

sets of experiments with respect to the achieved sample
quality and the adaptivity of the algorithm. More specifi-
cally, in the first set of experiments, the sample quality (i.e.,
precision and accuracy3) is compared against the conven-
tional reservoir sampling (RS) algorithm and a basic strati-
fied reservoir sampling (BSRS) algorithm for different
number of input sub-streams and for varying degree of
heterogeneity among the sub-streams. The experiment
results show that our proposed algorithm outperforms the
RS algorithm by nearly an order of magnitude and achieves
about twice higher sample quality than the BSRS algorithm.
In the second set of experiments, we examine how the
proposed algorithm adaptively adjusts the reservoir alloca-
tion. The results show that the algorithm adjusts the sub-
sample sizes as the membership of a data stream and CVs of
the member sub-streams change over time.

The contributions from this paper can be summarized
as follows. First, it identifies stratified reservoir sampling
over heterogeneous data streams as an important pro-
blem with real needs. Second, it proposes stratification as
the key approach, and presents an algorithm for main-
taining a stratified reservoir sample adaptively over a
heterogeneous data stream while flexibly assuming the
sample can be used for one estimate from the whole
stream or multiple estimates from individual sub-
streams. Third, through experiments it demonstrates the
superiority of the achieved sample quality and the adap-
tivity of the proposed algorithm.

The rest of the paper is organized as follows. Section 2
discusses a motivating example application. Section 3
provides an overview of the reservoir sampling and
stratified sampling techniques. Section 4 formulates the
research problem and presents the proposed adaptive
stratified reservoir sampling algorithm. Section 5 presents
performance study and discusses experiment results.
Section 6 reviews related work. Section 7 concludes this
paper and suggests future work.
2. Motivating example

The Federal Communications Commission (FCC) runs
an auction system [31] through which auctions for
3 Sample accuracy is the degree of closeness of the estimate to its

true value, whereas sample precision is the degree to which the

estimates from different samples taken from the same data set vary

from one another (see Fig. 5 in Section 5 for an illustration).
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obtaining the licenses of electromagnetic spectrum are
conducted electronically over the Internet. Any prospec-
tive bidder can submit an application and, once approved
as a qualified bidder, can place bids any time via a web
browser and follow the progress and outcome of each
auction.

In this auction system, bids placed on multiple con-
current auctions form a stream. This stream is composed
of multiple sub-streams each of which represents the
bidding records of a particular auction. The auction data
stream is heterogeneous, as the mean and the variance of
bidding amounts vary significantly from one auction to
another depending on the type of an auction item. Table 1
and Fig. 1 illustrate this heterogeneity with respect to two
selected FCC auction datasets (i.e., sub-streams). The
Guard Band is a lower price item with no bidding amount
higher than $100K and with the mean and standard
deviation of all bidding amounts around $74K and
$24.6K, respectively. In contrast, the Broadband Personal
Communication Service (PCS) is a higher price item with
no bidding amount lower than $100K and with the mean
and standard deviation of all bidding amounts around
$5.7M and $9M, respectively. (Interestingly, the distribu-
tions of the bidding amounts are opposite – they are
skewed to the higher end of the range for the Guard Band
and to the lower end of the range for the Broadband PCS.)

From a practical viewpoint, the scope of sampling is
twofold in this auction system. On one hand, for an
aggregated analysis of all auction items, a sample is
needed from all bidding amounts in the entire auction
data stream – for example, to estimate the median of
bidding amounts across all auction items. On the other
hand, for an itemized analysis of auction items, a sample
is needed from the bidding amounts in individual auction
data streams to generate the estimate for each auction.
Table 1
Mean and variance of bidding amounts (US dollars) in two FCC auctions [31].

Auction Item Mean Standard
deviation

Variance

FCC 700 MHz Guard

Band

73,964 24,591 6:0� 108

FCC Broadband PCS 5,737,987 9,001,320 8:1� 1013
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Fig. 1. Histograms of the bidding amounts of two FCC auctions. (a) FCC
This dual sampling-scope is a feature appreciated in many
other applications as well.
3. Background

This section provides the necessary backgrounds on
reservoir sampling and stratified sampling.

3.1. Reservoir sampling

Algorithm 1. Conventional reservoir sampling (RS).
0

700 MH
Require 9r9 // the size of a reservoir r
1:
 k¼0;
2:
 for each tuple sk arriving from the input stream do

3:
 k¼ kþ1;
4:
 if kr9r9 then
5:
 r½k�1� ¼ sk; // add the tuple to the reservoir
6:
 else

7:
 n1¼rand(0,1); // generate a random number between 0

and 1
8:
 if n1 r
9r9
k then
9:
 n2¼rand(0, 9r9�1); // generate a random number

between 0 and 9r9�1
10:
 r½n2� ¼ sk; // replace a randomly selected tuple in reservoir

with the accepted tuple
11:
 end if

12:
 end if

13:
 end for
Reservoir sampling [17,18] is a technique for selecting
a uniform random sample of a fixed size without replace-
ment from an input stream of an unknown size. Let r

denote a reservoir of size 9r9 tuples and let k denote the
number of tuples seen so far from the input stream.
Initially, the conventional reservoir sampling algorithm
(see Algorithm 1) places all tuples in the fixed-size
reservoir r until the reservoir becomes full (Lines 4 and
5). After that, each kth tuple is accepted for inclusion in
the reservoir with the probability of 9r9=k and an accepted
tuple replaces a randomly selected tuple in the reservoir
(Lines 6–12).

Fig. 2 gives an illustration of the conventional reservoir
sampling algorithm. Fig. 2(a) shows the reservoir of three
tuples after being filled with the first three tuples – s1, s2,
and s3 – from the input stream S. At this point, all
three tuples have the same probability of 1 to be in
the reservoir. Fig. 2(b) shows that the fourth tuple, s4,
10M 20M 30M 40M 50M 60M

z Guard Band auction and (b) FCC Broadband PCS auction.



Fig. 2. An illustration of the conventional reservoir sampling. (a) Upon the arrival of tuple s3. (b) Upon the arrival of tuple s4 and (c) Upon the arrival of

tuple s5.
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is sampled with the probability 3/4 and accepted to be
included in the reservoir, randomly replacing one of the
three tuples already in the reservoir (in this example it is
the tuple s2). Fig. 2(c) shows that the fifth tuple, s5, is
sampled with the probability 3/5, but it is not accepted to
be included in the reservoir.

This reservoir sampling algorithm guarantees that the
reservoir always holds a uniform random sample of the k

tuples seen so far [17]. After the kth tuple arrives, each of
the k tuples has the equal probability 9r9=k to be included
in the reservoir. We can use induction to prove the
uniformity of conventional reservoir sampling as shown
below.

Proof (by induction). Base case (kr9r9): This case is
trivial. Since all tuples are accepted until the reservoir is
full, all of the first k (r9r9) tuples have the same
probability 1 to be in the reservoir.

Induction case (k49r9): Assume the induction hypoth-
esis that, upon the arrival of the kth tuple, each of the k

tuples has the same probability 9r9=k to be in the reser-
voir. Now, it needs to be shown that, upon the arrival of
the next (i.e., ðkþ1Þth) tuple, each of the kþ1 tuples has
the same probability 9r9=ðkþ1Þ to be in the reservoir. This
can be shown as follows.

The probability of the ðkþ1Þth tuple to be in the
reservoir is 9r9=ðkþ1Þ by the design of the algorithm. The
probability of any other arbitrary tuple si (i¼ 1;2, . . . ,k) to
be in the reservoir is 9r9=k (from the induction hypothesis)
multiplied by the sum of the probabilities of the following
two cases.
Case 1:
 The ðkþ1Þth tuple is not accepted for inclusion
in the reservoir. The probability of this case is
1�ð9r9=ðkþ1ÞÞ.
Case 2:
 The ðkþ1Þth tuple is accepted for inclusion in
the reservoir but some other tuple than si is
selected to be replaced. The probability of this
case is ð9r9=ðkþ1ÞÞð9r�19=9r9Þ.
Adding these two probabilities gives the following prob-
ability:

9r9
k

1�
9r9

kþ1

� �
þ

9r9
kþ1

9r�19
9r9

 ! !
¼

9r9
kþ1

&

3.2. Stratified sampling

Stratified sampling [1] is a sampling scheme in which a
heterogeneous population R is initially clustered into n

disjoint homogeneous strata, R1,R2, . . . ,Ri, . . . ,Rn, and then
a sample ri is taken randomly from each stratum Ri. Every
member of R should belong to one and only one stratum
(i.e., Ri \ Rj ¼fðiajÞ and R1 [ R2 [ � � � [ Ri [ � � � [ Rn ¼ R).
A stratified sample of a given size is expected to have
higher statistical precision (i.e., lower sampling error)
than a random sample of the same size taken from the
same population when the statistical properties (i.e.,
mean and variance) of strata vary considerably.

Allocating a given sample size 9r9 to different strata is a
fundamental issue in stratified sampling. Obviously, the
allocation is subject to the maximum 9r9 constraint on the
sum of sub-sample sizes assigned to individual strata,
9r19,9r29, . . . ,9rn9:

Xn

i ¼ 1

9ri9r9r9 ð1Þ

There are two allocation methods commonly used for a
stratified sample, the proportional allocation [1] and the
Neyman allocation [32]. Under the proportional allocation,
the sample size of each stratum is determined in
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proportion to the size of the stratum:

9ri9¼ 9r9�
9Ri9
9R9

ð2Þ

where R denotes the whole population, Ri denotes a
stratum, and 9R9 and 9Ri9 denote the sizes of R and Ri,
respectively. Under the Neyman allocation, the sample
size of each stratum is determined in proportion to the
standard deviation as well as the size of the stratum:

9ri9¼ 9r9�
si9Ri9Pn

j ¼ 1 sj9Rj9
ð3Þ

where si denotes the standard deviation of Ri.
Fig. 3. An illustration of adaptive stratified reservoir sampling.
4. Adaptive stratified reservoir sampling

The proposed adaptive stratified reservoir sampling
algorithm is described in this section. As mentioned in
Section 1, there are two technical issues handled by the
proposed algorithm: (1) determining the optimal sizes of
sub-samples for each sub-stream and (2) maintaining the
uniformity of each sub-sample as its size changes. In this
section, we first formulate the problem formally in
Section 4.1 and discuss our approaches to the two
technical issues in Sections 4.2 and 4.3, respectively, and
then summarize them into one algorithm in Section 4.4.
4.1. Problem formulation

The problem of allocating a fixed-size reservoir to sub-
streams is an adaptive optimization problem formulated
as follows. An input data stream S consists of n sub-
streams S1,S2, . . . ,Sn. Each sub-stream Siði¼ 1;2, . . . ,nÞ is a
sequence of tuples si1 ,si2 , . . . such that Si \ Sj ¼f (iaj) andS

Si
¼ S. Given a total available size of 9r9 tuples in a

reservoir r, the objective is to allocate 9r9 optimally among
the n sub-streams subject to the following constraint at
any point in time t:

Xn

i ¼ 1

9riðtÞ9r9r9 ð4Þ

where riðtÞ denotes the sample allocated for Si at time
point t and 9riðtÞ9 denotes its size. The optimality criterion
is the sample quality, and there is some minor difference
in the specific criteria depending on which purpose (i.e.,
one whole sample or individual sub-samples) the sample
is used for (details in Section 4.2).

Fig. 3 illustrates the processing of the adaptive strati-
fied reservoir sampling. It shows that at time t1, the
reservoir r is divided into r1 of size 3 for tuples that
belong to sub-stream S1, r2 of size 2 for tuples that belong
to sub-stream S2, and r3 of size 3 for tuples that belong to
sub-stream S3. At time t2, the sizes of r1, r2, and r3 have
decreased, increased, and decreased, respectively, while
the total size of the reservoir r remains the same.
4.2. Optimal allocation of the stratified reservoir

to sub-samples

For the flexible aim of generating estimates from the
whole sample or from separate sub-samples, the com-
monly used Neyman allocation is not adequate enough
since it is geared for the former case only. To overcome
this limit, we adopt another statistical method known as
power allocation [29]. The power allocation method pro-
vides a way to allocate the sample to different strata
whether the sample is used to generate a single estimate
for the underlying population as a whole or multiple
estimates separately for each of the underlying strata.
This flexibility is enabled by a control parameter called
the power of allocation.

Formally, the size of a sample, 9ri9, assigned to a
stratum Ri is computed as

9ri9¼ 9r9�

si

�P9Ri9
j ¼ 1 yij

�q
P9Ri9

j ¼ 1 yij

9Ri9

,

Pn
k ¼ 1 sk

�P9Rk9
j ¼ 1 ykj

�q
P9Rk9

j ¼ 1 ykj

9Rk9

, ð5Þ

where yij denotes the sampling attribute value of the jth
member in Ri, si denotes the standard deviation of the
sampling attribute values in Ri, and q denotes the power
of allocation.

When the stratified sample is used of the entire

population, power allocation aims to minimize the sam-
pling variance of the estimator of the whole stratified
sample, where the sampling variance is formulated as

Xn

i ¼ 1

si
9Ri9ð9Ri9�9ri9Þ

9ri9
ð6Þ

In this case, it achieves an optimal allocation by setting
the power value to 1. Note that this results in the exact
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Fig. 4. The effect of the value of the power q on sampling variance. (a) The entire stream of all FCC auctions and (b) A single sub-stream (for FCC

Broadband PCS auction).
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Neyman allocation (see Eq. (3)), that is

9ri9¼ 9r9�

sið
P9Ri9

j ¼ 1 yijÞ
1

P9Ri9
j ¼ 1 yij

9Ri9

,

Pn
k ¼ 1 skð

P9Rk9
j ¼ 1 ykjÞ

1

P9Rk9
j ¼ 1 ykj

9Rk9

, ¼ 9r9�
si9Ri9Pn

k ¼ 1 sk9Rk9

ð7Þ

When the stratified sample is used at the level of
individual strata, Neyman allocation may cause the sam-
pling variances of some strata to be larger than those
achievable by considering strata individually. For an
illustration, let us examine the sampling variance
achieved using the Neyman allocation method when the
sample is used at the level of the entire stream and at the
level of the individual strata. For this purpose, we use the
FCC auction example (introduced in Section 1). Fig. 4
shows the sampling variance of a sample taken from the
auction bid streams when the power allocation method is
used with three different power values, q¼0.0, 0.5, and 1.0.
Note that the Neyman allocation is identical to the power
allocation for q¼1 (see Eq. (7)). Fig. 4(a) shows that the
Neyman allocation indeed produces the smallest sampling
variance among the three power-value cases when the entire
stream is considered. In contrast, Fig. 4(b) shows that the
Neyman allocation does cause the sampling variance of some
sub-streams (the FCC Broadband PCS auction sub-stream in
this case) to be the largest among the three power-value
cases – larger by an order of magnitude.

Power allocation’s remedy for this deficiency of the
Neyman allocation is to allocate sub-sample sizes in
proportion to CV (i.e., the ratio of the standard deviation
to the mean) of each stratum, which is achieved by setting
the power to 0. In this case,

9ri9¼ 9r9�

si

�P9Ri9
j ¼ 1 yij

�0
P9Ri9

j ¼ 1 yij

9Ri9

,

Pn
k ¼ 1 sk

�P9Rk9
j ¼ 1 ykj

�0
P9Rk9

j ¼ 1 ykj

9Rk9

,

¼ 9r9�

si

P9Ri9
j ¼ 1 yij

9Ri9

,

Pn
k ¼ 1 sk

P9Rk9
j ¼ 1 ykj

9Rk9

, ð8Þ
Applying this power allocation to data stream gives the
following formula for determining sub-sample sizes at
any point in time t:

9riðtÞ9¼ 9r9�

siðtÞ
�P9SiðtÞ9

j ¼ 1 yij

�q
P9SiðtÞ9

j ¼ 1 yij

9SiðtÞ9

,

Pn
k ¼ 1 skðtÞ

�P9SkðtÞ9
j ¼ 1 ykj

�q
P9SkðtÞ9

j ¼ 1 ykj

9SkðtÞ9

, ð9Þ

where 9riðtÞ9 denotes the size of a sub-sample allocated
for a sub-stream Si at time point t, siðtÞ denotes the
running standard deviation of the sampling attribute
values in Si up to t, and 9SiðtÞ9 denotes the number of
tuples processed from Si up to t. Note that a running

standard deviation is required for the calculations over a
data stream. For this, we use an efficient recurrence
relation [33], known as the updating method which is
capable of calculating the standard deviation in a single
scan of the data and providing precise calculation even
when the data values are large. Details on this method can
be found in Appendix A.
4.3. Maintaining the uniformity of each sub-sample

Since the size of a sub-sample may change as a result
of the optimal allocation, the uniformity of each sub-
sample must be maintained across the change of size. To
this end, we use the notion of uniformity confidence (UC),
introduced in our prior study [30], and use it as the basis
for designing a reservoir sampling algorithm which can
adapt to the change of a sub-sample size.
4.3.1. Uniformity confidence

Uniformity confidence refers to the probability that a
sampling algorithm generates a uniform random sample
after the sample size changes in the middle of sampling. It
is based on the definition that a sample is said to be a
uniform random sample if produced by a sampling algo-
rithm in which all statistically possible samples of the
same size are equally likely to be selected; in this case, we
say the uniformity confidence in the sampling algorithm
equals 100%. In contrast, if some of the statistically
possible samples cannot be selected using a sampling algo-
rithm, then we say the uniformity confidence in the sampling
algorithm is less than 100%. Thus, the uniformity confidence
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is defined as follows:

The number of different samples of the same size
possible with the algorithm

The number of different samples of the same size
possible statistically

� 100 ð10Þ

Specifically for reservoir sampling, the uniformity
confidence is defined as the probability that the produced
sample is a uniform random sample of all the tuples seen

so far. That is, if k tuples have been seen so far, then the
uniformity confidence is 100% if and only if all statistically
possible reservoir samples of the same size have an equal
probability to be selected from the k tuples.

4.3.2. Adaptive reservoir sampling algorithm

The theoretical study in [30] concludes that if the
reservoir size decreases then the sample uniformity can
be maintained in the reduced reservoir with 100% con-
fidence by randomly evicting tuples from the original
reservoir. It also concludes that if the reservoir size
increases then it is not possible to attain 100% confidence
in the enlarged reservoir but it is possible to ensure the
uniformity confidence above a given threshold by sam-
pling from upcoming tuples in the input stream. Appendix
B provides additional details with theorems.

For maintaining the uniformity confidence for an
enlarged reservoir, one seemingly intuitive approach
would be to just fill up the added room in the reservoir
from the incoming tuples, with all the existing tuples
retained. The resulting uniformity confidence can be
expressed as follows:

UCðk,9r9,d,mÞ ¼

k
9r9

� �
m
d

� �
kþm
9r9þd

� � � 100 ð11Þ

where d is the amount of increased reservoir size and m

(Zd) is the number of upcoming tuples from which the
increased reservoir is filled. Unfortunately, however, this
approach has the side effect of producing a stratified

sample (of size 9r9þd) consisting of two strata: one
stratum (of size 9r9) obtained by sampling k tuples
randomly with the sampling probability 9r9=k and another
stratum (of size d) obtained by sampling m tuples ran-
domly with the sampling probability d=m. Undoubtedly,
stratifying a single sub-sample is statistically inadequate.

Algorithm 2. Adaptive-size reservoir sampling (ARS).
Require: 9r9 // original size of a reservoir r

k // number of tuples seen so far

z // uniformity confidence threshold
1:
 while true do

2:
 calculate 9rnew9 // new size of a reservoir r
3:
 while 9r9¼ ¼ 9rnew9 do
4:
 continue sampling using RS (i.e., Algorithm 1);
5:
 end while

6:
 if 9rnew9o9r9 then
7:
 // i.e., reservoir size is decreased by d

8:
 d¼ 9r9�9rnew9

9:
 randomly evicts d tuples from the reservoir;
10:
 else

11:
 // i.e., reservoir size is increased by d

12:
 d¼ 9rnew9�9r9

13:
 find the minimum value of m (Eq. (12)) such that UCZz;
14:
 flip a biased coin to decide on x, the number of tuples to retain

in the reservoir (Eq. (13));
15:
 randomly evict 9r9�x tuples from the reservoir;
16:
 select dþ9r9�x tuples from the incoming m tuples using RS;
17:
 end if

18:
 end while
Algorithm 2, also introduced in our prior work [30],
has no such a drawback and achieves better uniformity.
The steps of the algorithm are as follows. First, it finds the
minimum number (m) of incoming tuples that should be
considered to refill the enlarged reservoir such that the
resulting uniformity confidence (calculated using Eq. (12))
exceeds the given threshold (Line 13). Then, it decides
probabilistically (using Eq. (13)) the number (x) of tuples to
retain in the enlarged reservoir (Line 14) and randomly evicts
the remaining number (9r9�x) of tuples (Line 15). Then, it
fills the room available in the enlarged reservoir from the
incoming tuples (Line 16):

UCðk,9r9,d,mÞ ¼

P9r9
x ¼ maxf0,ð9r9þdÞ�mg

k
x

� �
m

9r9þd�x

� �
kþm
9r9þd

� � 100 ð12Þ

pðxÞ ¼

k
x

� �
m

9r9þd�x

� �
kþm
9r9þd

� � ð13Þ

In this paper, we use a simple variation of Algorithm 2
(ARS) in which the number of incoming tuples required to
refill an enlarged reservoir is computed as follows:

m¼
d� k

9r9
ð14Þ

The rationale for computing the value of m this way is a
simple heuristic that, since r has been filled from k tuples
so far, the room for additional d tuples should be filled in
proportion to k=9r9, that is, dk=9r9 tuples. This heuristic
facilitates the use of the algorithm by eliminating the
need to conduct an expensive search to find the optimum
value of m using Eq. (12), which is an inverse-mapping
problem.
4.4. Adaptive stratified reservoir sampling algorithm

Based on the discussions above, our adaptive stratified
reservoir sampling algorithm works as shown in
Algorithm 3. In this algorithm, the input stream S is
treated as a set of sub-streams S1, S2, etc. and ALGi refers
to the sampling algorithm – either Algorithm 1 (RS) or
Algorithm 2 (ARS) – currently in use for the sub-stream Si.

Algorithm 3. Adaptive stratified reservoir sampling (ASRS).
Require: 9r9 // original size of a reservoir r

q // power of allocation

D // sample reallocation time interval
// ***************INITIALIZATION PHASE***************
1:
 for each new tuple s arriving from a sub-stream Si do

2:
 if reservoir r is not full then

3:
 add s to r;
4:
 update the running statistics of Si;
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5:
 if Si=2S // i.e., Si is a new sub-stream then

6:
 S¼ SUfSig;
7:
 ALGi¼RS; // start sampling using CRS
8:
 end if

9:
 else

10:
 break; // go to line 13
11:
 end if

12:
 end for

13:
 for each Si 2 S do

14:
 9ri9¼size(Si); // initialize sub-reservoir sizes
15:
 end for

// *****************SAMPLING PHASE*****************
16:
 while true do

17:
 for each new tuple s arriving from a sub-stream Si do

18:
 if Si=2S // i.e., Si is a new sub-stream then

19:
 S¼ SUfSig;
20:
 ALGi¼RS; // start sampling using Algorithm 1
21:
 end if

22:
 sample s into the sub-reservoir ri using ALGi; // either RS or ARS
23:
 update the running statistics of Si;
24:
 if the time interval D has passed then

25:
 break; // go to line 28 to calculate sub-reservoir sizes
26:
 end if

27:
 end for

28:
 for each sample ri allocated to sub-stream Si do

29:
 if Si expires from S // e.g., due to a punctuation then

30:
 S¼ S�fSig;
31:
 9riðtÞ9¼0;
32:
 else

33:
 calculate 9riðtÞ9 for Si using Eq. (9) with the given value of q;
34:
 if 9riðtÞ9 has changed as a result then
35:
 ALGi¼ARS; // Algorithm 2
36:
 else

37:
 ALGi¼RS; // Algorithm 1
38:
 end if

39:
 end if

40:
 end for

41:
 end while
Fig. 5. An illustration of the performance metrics: accuracy vs precision.

(a) Low accuracy, low precision. (b) Low accuracy, high precision.

(c) High accuracy, low precision and (d) High accuracy, high precision.

The solid circle indicates the actual value and the shaded circles indicate

estimated values.
In the initialization phase of the algorithm (Lines 1–15),
the first 9r9 tuples in a data stream S are added to the
reservoir while the running statistics of sub-streams are
being updated (Lines 3 and 4). The sampling starts using RS
for all new sub-streams (Lines 5–8) and, once the reservoir
becomes full, the size of a sub-reservoir is initialized in
proportion to the number of tuple seen so far from the
corresponding sub-stream (Lines 13–15).

In the sampling phase (Lines 16–41), each time a new
tuple s arrives from a sub-stream Si, the algorithm decides to
sample s using RS if Si is a new sub-stream (Lines 18–21).
Then, the algorithm samples s into ri using the correspond-
ing sampling algorithm (i.e., either RS or ARS) while updat-
ing its running statistics (Lines 22 and 23 and 28–40).
Periodically, the algorithm reallocates the reservoir size
optimally among sub-streams (Lines 24–26). Specifically, if
a sub-stream has expired from the input stream (e.g., due to
the presence of a punctuation), the memory of the sub-
reservoir of that sub-stream is released (Lines 29–31).
Otherwise, the algorithm calculates the optimal sample size
for the sub-stream (Line 33). If the size of ri changes as a
result, then the algorithm switches over to ARS to continue
sampling the incoming Si tuples (Lines 34 and 35). Note that
ARS quickly resumes RS once the size adjustment is
handled. If the size of ri does not change, then the algorithm
samples the incoming Si tuples using RS (Line 37).
5. Performance evaluation

We conduct two sets of experiments. The first set of
experiment evaluates the performance of the adaptive

stratified reservoir sampling (ASRS) algorithm against the
conventional reservoir sampling (RS) algorithm and a basic

stratified reservoir sampling (BSRS) algorithm which uses
the proportional allocation method [1], with respect to
the sample quality. The second set of experiments
demonstrates the adaptivity of the ASRS to the changes
of data stream membership and the statistical character-
istics of member sub-streams. In this section, the design
and setup of the experiments are described in Section 5.1
and the results of the experiments are presented in
Section 5.2.

5.1. Experiment design and setup

Intuitively, two factors affect the performances of
algorithms over a data stream consisting of multiple
heterogeneous sub-streams: the number of sub-streams
and the degree of heterogeneity among the sub-streams.
These two parameters are thus used in the comparisons
between ASRS, RS, and BSRS.

5.1.1. Performance metrics

The two kinds of sample quality mentioned in Section 1
are used to compare the performances of ASRS, RS, and
BSRS: accuracy and precision (see Fig. 5 for an illustration).
Sample accuracy is a measure of how close the estimated
value is to its true value. Sample precision is a measure of
how close the estimates measured from different samples
taken from the same set of data are to one another.
Specifically, we use the error in estimated mean (EEM), the
difference between the mean value estimated from the
sample and the actual mean value, as the metric of sample
accuracy. The estimated mean for a random sample is
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calculated as

1

9r9

X9r9
i ¼ 1

yi ð15Þ

where yi denotes the value of the sampling attribute of the
ith tuple in a sample r [1]. Extended from it, the estimated
mean for a stratified sample is calculated as

Xn

i ¼ 1

9Si9
9S9

1

9ri9

X9ri9

j ¼ 1

yij

0
@

1
A ð16Þ

where yij denotes the value of sampling attribute of the jth
tuple in a sub-sample ri [1].

On the other hand, we use the standard error (SE), a
common statistical quantification of the sample precision,
as the metric of sample precision. The SE is a measure of
how precise the sample is; the larger the SE, the lower the
statistical precision of the sample is, and vice versa. The
SE for a random sample is computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
9r9
9S9

 !
s2

9S9

vuut ð17Þ

where s2 denotes the variance of the entire sample [1].
Extended from it, the SE for a stratified sample is com-
puted as

1

9S9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i ¼ 1

9Si9
2

1�
9ri9
9Si9

 !
s2

i

9ri9

vuut ð18Þ

where s2
i denotes the variance of the ith sub-sample [1].

5.1.2. Datasets

Experiments are conducted using both synthetic and
real datasets. Synthetic datasets are used to examine the
effect of the statistical characteristics of an input data
stream on the quality of the sample. Now, we describe the
process of synthetic dataset generation and outline the
profile of the real datasets.

Synthetic datasets

A synthetic data stream is generated bottom up, that
is, by first generating sub-streams and then combining
them to form one stream. The sampling attribute value in
each sub-stream Si has the doubly-truncated normal dis-

tribution [34], i.e., the normal distribution with bounded
lower and upper ends. Formally, if a random variable
XHNðm,sÞ has the normal distribution such that
�1r lrXrur1, then X is considered to have a dou-
bly-truncated normal distribution with the probability
density function:

pdf ðx;m,s,l,uÞ ¼

1

s
f

x�m
s

� �
F

u�m
s

� �
�F

l�m
s

� � ð19Þ

where fðxÞ is the probability density function of the
standard normal distribution (i.e., fðxÞ ¼ ð1=s

ffiffiffiffiffiffi
2p
p
Þ

e�ðx�mÞ
2=2s2

) and FðxÞ is its cumulative distribution func-
tion (i.e., FðxÞ ¼

R u
l fðxÞ dx) [34]. This distribution is used

in many applications like inventory management and
financial applications, in which the values are naturally
constrained within a certain bound [35].

The datasets are synthesized from a different number
of sub-streams (n) and with a varying degree of hetero-
geneity among the sub-streams (DH). DH is defined as the
ratio of the inter-sub-stream variability to the intra-sub-

stream variability. With the variability expressed in terms
of CV [29], we define DH as the ratio of the standard

deviation among the CVs of sub-streams (s½CV �) to the
average of the CVs of sub-streams (m½CV �). With the doubly
truncated normal distribution in place, we know that the
standard deviation of the sampling attribute values of a
sub-stream Si is bounded by half the range of these values.
This means that each CVi is bounded within the range of
0–1. Consequently, DH is also bounded within the range
of 0–1.

Given the values of n and DH, the synthetic dataset
generator works as follows. First, it sets the value of m½CV �

to 0.5 (note 0om½CV �r1) and calculates the value of s½CV �

accordingly (s½CV � ¼DH � m½CV �). Second, it generates n

random numbers from a doubly truncated normal dis-
tribution with m½CV �, s½CV �, l½CV � ¼ m½CV ��s½CV �, and
u½CV � ¼ m½CV � þs½CV �. The n random numbers generated cor-
respond to the CVs of the n sub-streams. Third, for Si, the
synthetic dataset generator uses the value of CVi to assign the
values of m½Si �

and s½Si �
randomly such that s½Si�=m½Si �

¼ CVi.
Finally, the generator produces the values of Si from a doubly
truncated normal distribution with m½Si �

, s½Si �
, li ¼ m½Si �

�s½Si �
,

and ui ¼ m½Si �
þs½Si �

.
Fig. 6 shows an example of different datasets with

varying degree of heterogeneity. In this example, the
number of sub-streams is 10 and the values of DH are
set to 30%, 50%, and 70%. When DH is relatively low (e.g.,
30% in Fig. 6(a)), we see that most of the sub-streams have
wide and similar spreads of sampling attribute values. The
wide spread of each sub-stream indicates that the varia-
bility within each sub-stream is high, and the similar
spreads among sub-streams indicates that the variability
across sub-streams is low. These two combined indicate a
low degree of heterogeneity in the entire stream. In
contrast, when the DH is relatively high (e.g., 70% in
Fig. 6(c)), we see that most sub-streams have narrow
and dissimilar spreads of the sampling attribute values.
This is the converse of Fig. 6(a) case above, and thus
indicates a high degree of heterogeneity in the entire
stream.

Real datasets

Two kinds of real datasets are used, one (SENS) in the
wireless sensor networks application and one (AUCT) in
the auction application.
�
 The sens real dataset is weather measurements from
sensors deployed through the Intel Berkeley Research
lab to gather time-stamped topology information,
along with humidity, temperature, light and voltage
values [36]. SENS is a projection of this data on two
attributes, sensor mote id and temperature measurement

acquired from 55 motes. (Data from three motes have
incomplete readings and thus have been discarded.)
SENS is characterized with a low degree of heterogeneity.
The low degree of heterogeneity among the temperature
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Fig. 6. Scatter plots of synthetic datasets with different degrees of

heterogeneity. (a) Degree of heterogeneity¼30%. (b) Degree of hetero-

geneity¼50% and (c) Degree of heterogeneity¼70%.
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readings of different motes is due to the fact that
temperatures of nearby regions are expected to be close
to each other.

�

4 In the experiments, q is assigned the values of 1 and 0 for the

WHOLE-SAMPLE case and the SUB-SAMPLE case, respectively. (Recall Section

4.2.)
The AUCT real dataset is for auctions conducted over
the Internet through the Federal Communications
Commission (FCC) [31]. The entire dataset consists of
55 auction sub-datasets. Each sub-dataset contains
bidding information of one auction. We have merged
the 55 auction sub-datasets (from the bidding results
of round 1) into one single dataset. The order of tuples
in the resulting dataset is shuffled and the resulting
tuples are projected on two attributes, auction ID and
bidding amount. AUCT is characterized with a high

degree of heterogeneity. The high degree of
heterogeneity of the bidding amounts is intuitive since
the bidding amounts can vary to a large extent
depending on the auction item.
5.2. Experiment results

5.2.1. Sample quality

In this set of experiments, we compare sample accu-
racy and precision among ASRS, RS, and BSRS. Given that
ASRS is meant to support both the case of using a sample
to obtain the estimate of the entire data stream and the
case of using a sample to obtain the estimates of indivi-
dual sub-streams, experiments are done to report the
results in both cases. We refer to the former case as the
whole-sample case and the latter case as the sub-sample
case.4 In the sub-sample case, the results are reported as
the average square value of the sample quality metric
used. The results of the experiments demonstrate that in
both cases ASRS outperforms both RS and BSRS in sample
accuracy as well as precision.

WHOLE-SAMPLE case

Fig. 7(a) and (b) show the ASRS accuracy against the RS
accuracy, and Fig. 7(c) and (d) show the ASRS accuracy
against the BSRS accuracy, using the synthetic datasets for
different degrees of heterogeneity and for different num-
ber of sub-streams. Fig. 7(a) and (c) show that the degree
of heterogeneity has a major influence on the sample
accuracy. For a low degree of heterogeneity (e.g., 10%), we
observe that there is only a minor improvement of ASRS
accuracy over both RS accuracy and BSRS accuracy. The
degree of improvement, however, increases as the degree
of heterogeneity increases. For a high degree of hetero-
geneity (e.g., 70% or higher), we see that the ASRS
accuracy is higher than the RS accuracy by more than an
order of magnitude. The reason for this is that RS does not
consider any heterogeneity between sub-streams
whereas ASRS does. For the same high degree of hetero-
geneity, Fig. 7(c) shows that ASRS achieves an accuracy
that is nearly as twice as that achieved by BSRS. These
results, which demonstrate that BSRS achieves better
accuracy than RS, is reasonable since the basic stratified
sampling with proportional allocation is expected to be
more appropriate than simple random sampling when the
data stream is heterogenous and when the sample is used
for the entire data stream. On the other hand, Fig. 7(b)
and (d) show that the performance improvement of ASRS
over RS and BSRS is more or less constant regardless of
the number of sub-streams. This makes sense because the
accuracy of ASRS is primarily influenced by the hetero-
geneity of the data stream (in terms of the size and the
values of sub-streams), rather than the actual number of
sub-streams.

Fig. 8(a)–(d) show similar results for the sample
precision by demonstrating that the degree of heteroge-
neity has dominant effect on the precision.
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Fig. 9 shows the results from using the real datasets
AUCT and SENS. The results are consistent with the results
from using the synthetic datasets. The figure shows that
the improvement of ASRS over RS and BSRS is higher for
the AUCT dataset than SENS with regard to both sample
accuracy and sample precision. This is due to the higher
degree of heterogeneity of the AUCT dataset.

SUB-SAMPLE case

Figs. 10 and 11 show the results for sub-sample
accuracy and sub-sample precision, respectively, using
the synthetic dataset. These results report the average
square value of EEM (for accuracy) and SE (for precision)
per sub-sample. As we see in Fig. 10(a) and (c), the sub-
sample accuracy of ASRS improves over the accuracy of RS
and BSRS linearly with the degree of heterogeneity. Like-
wise, Fig. 11(a) and (c) show a similar trend for the sub-
sample precision. We also observe from Figs. 10(b), (d)
and 11(b), (d) that the number of sub-streams is irrele-
vant to the performance of ASRS, RS, and BSRS at the level
of individual sub-samples.

The results from using the SENS and AUCT real
datasets in Fig. 12 are similar to those in Figs. 10 and 11.

5.2.2. ASRS adaptivity

In this set of experiments, we demonstrate the adap-
tivity of the ASRS by showing the change in the allocation
of a stratified reservoir sample as a new sub-stream
appears in, or an exiting sub-stream expires from, the
input stream (i.e., with respect to data stream membership)
and as the statistical properties of individual sub-streams
change over time (i.e., with respect to sub-streams’ statio-

nariness). Results presented in this section show the
change in sub-reservoir sizes over time for five sub-
streams synthetically generated and for five sub-streams
selected from the AUCT and SENS real datasets. (Only five
sub-streams are used for better visibility. Results for a
larger number of sub-streams look similar.)

Fig. 13 shows the adaptivity of ASRS from using
synthetic datasets. When DH is low (10%) (Fig. 13(a)),
the sub-reservoir sizes for the sub-streams are relatively
close to one another compared with the case of a higher
DH (90%) (Fig. 13(b)). The observed influence of the DH on
the closeness of the sub-reservoir sizes is reasonable since
the allocation of sub-reservoir size is subject to the
heterogeneity of the sub-streams.

Fig. 13(a) and (b) also show that the sizes of sub-
reservoirs change more frequently in the early stages of
sampling and less frequently as the sampling progresses.
The frequent change in the early stages is attributed to the
significance of the difference in the sub-streams running
statistics. As the sampling progresses, the change in a sub-
stream statistics relative to the changes in the statistics of
other sub-streams becomes smaller and, therefore, does
not cause so much frequent changes in sub-reservoir
sizes. This trend is in part due to the fact that the
underlying sub-streams are stationary in their statistical
properties.

In order to conduct experiments to study the influence
of data stream membership and non-stationariness,
we modify the generation of synthetic datasets as follows.
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For data stream membership, we make the sub-streams
appear in sequence. For non-stationariness, we periodi-
cally re-generate n random numbers that correspond to
the CVs of n sub-streams such that the overall DH among
them is preserved (recall Section 5.1.2).

Fig. 13(c) shows that when a new sub-stream appears in a
data stream, the ASRS adapts to this situation by releasing
memory from the sub-reservoirs of existing sub-streams and
allocating the released memory to the sub-reservoirs of the
new sub-stream. Fig. 13(d) shows that when the running
statistics of some sub-streams change over time, ASRS
decreases (or increases) the sizes of some exiting sub-
reservoirs and increases (or decreases) the sizes of other
exiting sub-reservoirs. A reduced sub-reservoir size may
increase afterwards, and vice versa. The frequency of the
change in sub-reservoir sizes is relative to the frequency of
the change in the running statistics of sub-streams. (Fig. 13(e)
shows the case of more frequent change in the running
statistics compared to Fig. 13(d).)

Fig. 14(a) shows the change of sub-reservoir sizes
using SENS real dataset. This dataset represents the case
in which sub-streams all exist from the beginning of the
input stream and their statistics remain stationary over
time. In other words, readings from different sensors
scattered to collect temperature information in a certain
area are likely to be generated altogether from the time
the data collection begins. Besides, the change of tem-
perature readings is expected to be similar at any time of
the day. Consequently, all sub-reservoir sizes show little
change over time.

Fig. 14(b) shows the change of sub-reservoir sizes
using AUCT real dataset. This dataset represents the case
in which sub-streams are added one after another and
their statistics change over time. Indeed, in auctions
applications, it is unlikely that all auctions (represented
by sub-streams) start simultaneously; they are expected
to start one after another. Besides, the bidding amount of
an auction item naturally increases over time, making the
statistics of an auction sub-stream non-stationary. As a
consequence, we see significant changes of sub-reservoir
sizes over time.

Fig. 14(c) further shows the adaptivity of ASRS under
the scenario of auctions going open and then closed while
sampling progresses. When a new auction opens, memory
has to be released from existing sub-reservoirs and
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allocated to the sub-reservoir of the newly opened auc-
tion sub-stream (see the point marked with n). When an
auction closes from further bids (because the auction is
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0

20

40

60

80

100

real dataset

(%
)

ASRS EEM / RS EEM
ASRS SE / RS SE
ASRS EEM / BSRS EEM
ASRS SE / BSRS SE

Fig. 12. SUB-SAMPLE accuracy and precision – real datasets.

0

20

40

60

80

100

120

140

160

Time −>

su
b−

re
se

rv
oi

r s
iz

e

|r|=250; n=5;DH=50%

su
b−

re
se

rv
oi

r s
iz

e

0
10
20
30
40
50
60
70
80
90

100

Time −>

su
b−

re
se

rv
oi

r s
iz

e

|r|=250; n=5;DH=10%

0

50

100

150

200

250

300

Tim

su
b−

re
se

rv
oi

r s
iz

e

|r|=250; n

Fig. 13. ASRS adaptivity – synthetic datasets. (a) Low degree of heterogeneity. (

stationariness: less frequent change in running statistics and (e) Stream non-s
forced to close, the auction expires, the auction item is
sold, etc.), the sub-reservoir size of the closed auction
sub-stream is released and allocated to the sub-reservoirs
of the sub-streams of auctions still open (see the point
marked with þ).
6. Related work

Existing research on data streams processing includes
systems architectures (e.g., [37]), data models (e.g., [38]),
query processing (e.g., [39]), data mining (e.g., [40]), data
warehousing (e.g., [41]), etc. Our work in this paper
pertains to data streams sampling. It is directly related
to two main sampling stratified sampling and reservoir
sampling, and is generally related to sampling algorithms
over data streams.
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6.1. Stratified sampling

Stratified sampling has been used for approximate
query processing in database systems [42,25,27,28]. Con-

gressional sampling [42] proposes a stratified sampling
approach to solve the problem of providing accurate
approximate answers of a set of grouped aggregation
queries using pre-computed biased samples of the data.
The idea is to employ stratified sampling to obtain a
biased sample in which each stratum corresponds to one
of the groups in a given grouped aggregation query. In
[25], stratified sampling is used in the problem of identi-
fying a statistically appropriate sample selection for
approximate aggregation queries answering. The utility
of stratified sampling contributes to the objective of
minimizing the overall error in the query result under a
given query workload. A comprehensive study of the
work proposed in [25] is presented in [27]. The work in
[28] solves the problem of using stratified sampling to
calculate approximate results of low selectivity aggrega-
tion queries. It specifically proposes a Bayesian-based
stratified sampling technique that takes the underlying
data characteristics into consideration for a better sam-
pling outcome.

All this work on stratified sampling mainly pertains to
databases, which makes our work in this paper different
as it addresses stratified sampling over data streams.

6.2. Reservoir sampling

Reservoir sampling technique was proposed by McLeod
[17] and has been used in many database applications
including clustering [19], data warehousing [22], spatial
data management [23], and approximate query proces-
sing [12]. Vitter [18] improves the algorithm’s perfor-
mance through more optimization studies, thus achieving
the sampling in optimum time with a constant space
complexity. The basic idea of the Vitter’s algorithm is to
repeatedly generate a random number as a function of the
reservoir size and the number of tuples seen so far and
use the generated number to select the next tuple for
inclusion in the reservoir.

Besides the conventional reservoir algorithm, various
reservoir-based sampling algorithms have been proposed
in the research literature for various applications. Aggar-
wal [43] proposes a mechanism for biased reservoir
sampling over data streams to bias the sample over time
using a given temporal bias function. The objective of
biased reservoir sampling is to give higher chance for
recent data over older data to be included in the reservoir.
Gemulla et al. [44,45] address the problem of sampling
from an evolving dataset in the presence of insertions and
deletions for transactional databases. Specifically, they
propose an algorithm for resizing a bounded-size sample
assuming that tuples (i.e., transactions) are archived in
the system for possible further accesses. In [30], Al-Kateb
et al. conduct a theoretical study on the influence of
adjusting the size of reservoir in the middle of sampling.
Based on these results, they propose a mechanism for
maintaining the reservoir sample after the reservoir size
is adjusted such that the confidence in the sampling
resulting in a uniform sample maintained in the reservoir
exceeds a given threshold.

While the conventional reservoir algorithm and its
aforementioned variations assume sampling without
replacement, other work address the problem of reservoir
sampling with replacement in order to allow duplicates in
the sample. Park et al. [46] introduce a reservoir sampling
algorithm for maintaining a random sample with replace-
ment and show that the performance of the algorithm can
be improved by skipping a probabilistically-chosen num-
ber of tuples in a fashion similar to Vitter’s mechanism [18].
Along the same line, Efraimidis [47] presented reservoir-
based algorithms for various weighted random sampling



M. Al-Kateb, B.S. Lee / Information Systems 39 (2014) 199–216214
schemes over data streams. Efraimidis examined how the
proposed algorithms can handle basic weighted random
sampling either with replacement or without replacement
and how the algorithms can be further extended to handle
the situation in which there is an upper bound on the
number of times an item can be replaced.

In contrast to the existing research on reservoir sam-
pling, our work addresses the problem of stratifying a
reservoir sample rather than maintaining a single reser-
voir sample.

6.3. Sampling algorithms over data streams

Besides reservoir sampling and stratified sampling, there
are other stream sampling algorithms proposed in the
research literature either to generate a random sample for
a specific stream application or for estimating specific
aggregates over data streams. Srivastava et al. [15] introduce
a random sampling algorithm, known as UNIFORM algo-
rithm, to stream out a uniform random sample over stream
joins with limited memory. The UNIFORM algorithm works
with two prediction models that provide the number of
join-probe tuples produced by each stream tuple. Given this
number, the algorithm decides probabilistically if and when
a tuple will participate in the sampled join result. In [48],
Babcock et al. present two memory-efficient algorithms for
the problem of maintaining a uniform random sample of a
specified size from a moving window over a data stream.
The first algorithm, referred to as chain-sample algorithm, is
for sampling from a tuple-based window, and the second
algorithm, referred to as priority-sample algorithm, is for
sampling from a time-based window. In a recent study,
Cohen et al. [49] propose a stream sampling framework for
answering subset and rang queries over data streams. The
key idea is build up and utilize knowledge of the structure
of the data to maintain structure-aware samples. Such
samples can then be used to efficiently obtain unbiased
estimates for answering arbitrary subset queries, while
achieving higher accuracy on range-sum queries than sam-
pling methods that lacks structure-awareness.

Other stream sampling algorithms for estimating spe-
cific aggregates include algorithms for distinct values
sampling and approximate frequency count. In [50],
Gibbons introduces an algorithm for estimating the num-
ber of distinct values of a certain attribute (or a group of
attributes) over an input stream. Specifically, Gibbons
proposes a single-scan sampling algorithm which pro-
vides reliable estimates for distinct values queries. The
work on approximate frequency counts over data streams
[51] deals with the problem of finding tuples that appear
in a data stream with a minimum frequency. The pro-
posed algorithm guarantees that tuples included in the
output are those that appear in a data stream with a
frequency that exceeds a user-given threshold and that
the error in estimated frequency does not exceed another
user-given threshold.

In contrast to the aforementioned algorithms for
sampling over data streams, Johnson et al. [52] abstract
the process of sampling from a stream by defining the
semantics of a generic stream sampling operator. They
examine how such an operator can be instantiated to
implement various stream sampling algorithms including
distinct values sampling and approximate frequency
count outlined above, and demonstrate how it can be
implemented efficiently in a real data stream manage-
ment system.

7. Conclusion

In this paper, we studied the problem of maintaining a
stratified sample over data streams which consist of multi-
ple sub-streams with large statistical variations. First, we
discussed the motivation of this new research problem in
real-world applications. Second, we discussed an optimal
allocation method of a fixed-size reservoir, which can be
used whether the sample is needed to generate estimates of
the whole data stream or the sub-streams on an individual
basis. Third, we presented a sampling algorithm which uses
the proposed allocation method to adjust the allocation of a
stratified reservoir sample among sub-streams adaptively as
sub-streams appear in, or disappear from, the input stream
and as their statistical properties change over time. Finally,
through experiments, we demonstrated the adaptivity of
the proposed algorithm and its superiority over the conven-
tional reservoir sampling algorithm with regard to the
sample quality.

Several issues are open for future work. One issue is to
extend the proposed algorithm to handle multi-variate

sampling situation in which an input stream has multiple
sampling attributes and an estimate is needed from each
sampling attribute. In this situation, it may be required to
compromise the allocation of a stratified reservoir sample
with respect to the target estimates. Another issue is to
explore the utility of the proposed algorithm in more real-
world applications.
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Appendix A. Calculating a running standard deviation

A straightforward way to compute the standard devia-
tion is the standard two-pass method [33], which requires
two passes over the underlying data – once to compute
the mean and once to compute the variance. This method
is not usable for data streams because it requires all data
values to be stored.

Naturally, we need a way to compute a running

standard deviation in a single pass as tuples are arriving
over data stream. The textbook one-pass method [33] does
it by keeping track of two values, that is, the sum of
squares and the square of sum of the variable values



M. Al-Kateb, B.S. Lee / Information Systems 39 (2014) 199–216 215
(
P

y2
ij and ð

P
yijÞ

2) over incoming data values. That is,

siðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9SiðtÞ9
9SiðtÞ9

X9SiðtÞ9

j ¼ 1

y2
ij�

X9SiðtÞ9

j ¼ 1

yij

0
@

1
A

2
0
B@

1
CA

vuuuut ðA:1Þ

This method, however, has a major drawback. If yijs have
large values but small differences, then the calculation may
generate very small numbers as a result of subtracting
between two large numbers. This may cause a loss of
numerical precision to the extent of the subtraction produ-
cing a negative number [33]. Thus, we use another method,
known as the updating method [33], which features both the
single-pass and the precise computation. This method
employs a recurrence relation that is capable of calculating
the standard deviation in a single scan of the data and
providing precise calculation even when the data values are
large. The recurrence relation of this method is as follows:

Wi ¼Wi�1þ
1

i
yi�Wi�1

� �
ðA:2Þ

Zi ¼ Zi�1þði�1Þðyi�Wi�1Þ
yi�Wi�1

i

� �
ðA:3Þ

where W1¼y1 and Z1¼0.

Appendix B. Adjusting the reservoir size

B.1. Decreasing the reservoir size

Suppose the size of a reservoir is decreased from 9r9 to

9r9�d (d40) immediately after the kth tuple arrives.

Then, the sample in the reduced reservoir can be main-

tained by randomly evicting d tuples from the original
reservoir. With this random eviction in place, there are

9r9
9r9�d

� �
samples that can be selected in the reduced

reservoir from the original reservoir.

Note that there are k
9r9

� �
different samples of size 9r9 that

can be selected in the original reservoir from the k tuples and

there are k�ð9r9�dÞ
9r9�ð9r9�dÞ

� �
duplicate samples of size 9r9�d that can

be selected in the reduced reservoir from the different

samples of size 9r9. Therefore, there are ð k
9r9

� �
9r9

9r9�d

� �
Þ=

k�ð9r9�dÞ
9r9�ð9r9�dÞ

� �
different samples of size 9r9�d that can be

selected in the reduced reservoir from the k tuples. On the

other hand, the number of different samples of size 9r9�d
that should be statistically possible from sampling k tuples is

k
9r9�d

� �
. Hence, the uniformity confidence is expressed as

follows:

UCðk,9r9,dÞ ¼
k
9r9

� �
9r9

9r9�d

� �
= k�ð9r9�dÞ

9r9�ð9r9�dÞ

� �
k

9r9�d

� � 100¼

k
9r9�d

� �
k

9r9�d

� �100

ðB:1Þ

which clearly shows that the uniformity confidence is 100%.
The following theorem summarizes the uniformity

confidence property of reservoir sampling in the event
of decreasing the reservoir size during sampling.
Theorem 1. If the size of a reservoir is decreased from 9r9 to

9r9�d (d40) while sampling from an input stream is in

progress, it is possible to maintain the sample in the reduced

reservoir with a 100% uniformity confidence.

Proof. To prove that the uniformity confidence is 100%, we
only need to show that every tuple among the k tuples seen
so far has an equal probability to be selected in the reduced
reservoir. Following the conventional reservoir sampling,
each of the k tuples has the equal probability 9r9=k to be
selected in the original reservoir. Once the reservoir size
decreases to 9r9�d, we can sample the tuples in the original
reservoir with the equal probability ð9r9�dÞ=9r9 to select 9r9-d
tuples for the reduced reservoir. Thus, every tuple among the
k tuples has the equal probability

9r9
k
�

9r9�d
9r9

¼
9r9�d

k

to be selected in the reduced reservoir. &

B.2. Increasing the reservoir size

Suppose the size of a reservoir is increased from 9r9 to
9r9þd (d40) immediately after the kth tuple arrives.
Then, the reservoir has room for d additional tuples.
Clearly, there is no way to fill this room from sampling
the k tuples as they have already passed by. We can only
use incoming tuples to fill the room. Hence, the unifor-
mity confidence is definitely less than 100%.

The following theorem summarizes the uniformity
confidence property of reservoir sampling in the event
of increasing the reservoir size during sampling.

Theorem 2. If the size of a reservoir is increased from 9r9 to

9r9þd (d40) while sampling from an input stream is in

progress (after seeing more than 9r9 tuples), it is not possible

to maintain the sample in the enlarged reservoir with a 100%
uniformity confidence.

Proof. Let i be the number of tuples that can be selected
in the enlarged reservoir (of size 9r9þd) from the k tuples
seen so far in the input stream. Then, the uniformity
confidence is equal to 100% if and only if i can be any
value in the range of [0, 9r9þd]. However, i cannot be
more than 9r9 since we have only 9r9 tuples from the k

tuples seen so far. From this we conclude that the
uniformity confidence cannot reach 100%. &
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