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Abstract

This paper presents the first time series clustering benchmark utilizing all time series datasets
currently available in the University of California Riverside (UCR) archive — the state of
the art repository of time series data. Specifically, the benchmark examines eight popu-
lar clustering methods representing three categories of clustering algorithms (partitional,
hierarchical and density-based) and three types of distance measures (Euclidean, dynamic
time warping, and shape-based), while adhering to six restrictions on datasets and meth-
ods to make the comparison as unbiased as possible. A phased evaluation approach was
then designed for summarizing dataset-level assessment metrics and discussing the results.
The benchmark study presented can be a useful reference for the research community on its
own; and the dataset-level assessment metrics reported may be used for designing evaluation
frameworks to answer different research questions.
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1. Introduction

A time series is a sequence of variable values ordered by time. These data are analyzed
using a variety of statistical techniques, such as classification, clustering, and anomaly de-
tection. This paper focuses on clustering. Clustering is a well-known unsupervised machine
learning method for dividing data points (i.e., observations) into groups (called “clusters”)
such that observations within the same cluster tend to be more similar (according to a
pre-specified criteria) than those in different clusters (Wu and Kumar, 2009). Time series
data and its clustering applications abound in many disciplines. Examples include financial
portfolio building (Iorio et al., 2018) and enhanced index tracking (Gupta and Chatterjee,
2018) using financial data, personalized drug design (Pirim et al., 2012) and cancer sub-type
identification (Souto et al., 2008) using gene expression data, watershed management and
conservation efforts (Javed et al., 2019; Minaudo et al., 2017; Dupas et al., 2015; Mather
and Johnson, 2015; Bende-Michl et al., 2013) using environmental sensor-generated sample
data, and anomaly detection (Flanagan et al., 2017) using network traffic data.
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With the increasing prevalence of time series data, time series clustering has been gain-
ing much attention over the past decade in order to identify previously unknown trends
(Aghabozorgi et al., 2015; Paparrizos and Gravano, 2016, 2017; Du et al., 2019; Begum
et al., 2015). The evaluation of clustering algorithms, however, is inherently challenging
because these statistical algorithms are, by design, exploratory in nature. For this reason,
the algorithm evaluation must rely on empirical study, essentially assessing how well the
algorithm “rediscovers” already known classifications (Paparrizos and Gravano, 2016, 2017;
Begum et al., 2015) of a given time series data.

The University of California (UCR) time series archive (Dau et al., 2018b) is arguably the
most popular and largest labeled time series data archive, with thousands of citations and
downloads. At the time of this writing, the archive had a total of 128 datasets comprising
a variety of synthetic, real, raw and pre-processed data. The archive was originally born
out of frustration, with classification research papers reporting error rates on a single time
series dataset and implying that the results would generalize to other datasets. In order to
standardize the evaluation of algorithms, each dataset in the UCR archive has been split into
training and test data. Additionally, each dataset is accompanied by three baseline straw
man classification accuracy scores obtained using the K-nearest neighbor algorithm and
different input parameter settings (window size) for dynamic time warping (DTW) (Sakoe
and Chiba, 1978).

Despite extensive use of the archive in creating, validating and evaluating some of the
most recently popular time series clustering algorithms (Paparrizos and Gravano, 2016, 2017;
Begum et al., 2015), at the time of this writing, the archive provides no equivalent assessment
metrics for assisting with evaluation or validation of the clustering algorithms. The latter
is the single largest limitation of the archive when used for assessing clustering algorithms.
Different researchers must repeat the process of implementing and benchmarking clustering
algorithms over the same data sets. At a minimum, this may cost months or longer of run
time (Paparrizos and Gravano, 2017); and when benchmark tests are repeated, the subjective
nature of test details (e.g., pre-processing) may introduce bias that affects the objectivity
and re-producibility of the test results.

The work presented in this paper aims to address the limitation associated with testing
time series clustering algorithms by providing a clustering benchmark. The intent of this
benchmark is similar to the classification benchmark of Dau et al. (2018b), that is to
provide comparison with several established methods in order to reduce both the repetition
of experiments and time to publication. We would add to this another goal, that is to study
the impact of changing design choices that occur within a given clustering method (i.e.,
a combination of clustering algorithm and distance measure). Additionally, the discussion
highlights the value of considering a pool of clustering methods for use in cluster analysis
and provides guidance on how to select individual algorithms in such a pool. To this end, we
select eight clustering methods in this benchmark study that span three types of clustering
algorithms and three distance measures, and assess each while adhering to the six restrictions
laid out below.

1. No pre-processing. All datasets in the archive were used without any additional pre-
processing (e.g., normalization in magnitude, filtering, smoothing). The reason is that,
while pre-processing is common and is shown to improve results (Rakthanmanon et al.,
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2012), any improvement resulting from the pre-processing should not be attributed to
the clustering method itself (Dau et al., 2018b; Keogh and Kasetty, 2003) and, even if
it were, the same pre-processing may have different performance impacts on different
clustering methods.

2. Only uniform length time series. Only datasets in which all time series have equal
length are used. The reason is that some of the clustering methods used in this bench-
mark were designed to work only with time series of equal length. (Only 11 out of 128
datasets in the archive have varying time series length.)

3. Known number of clusters. The clustering methods used in this work require that the
number of clusters, k, be provided as input. The value of k is known from the class
labels annotated in the datasets. There are several techniques for estimating k (e.g.,
Bholowalia and Kumar, 2014; Patil and Baidari, 2019; Subbalakshmi et al., 2015;
Bezdek and Pal, 1998), but evaluating those techniques is not part of this benchmark.

4. Minimum two classes. Only datasets with k = 2 or more classes (other than a class
designated as “noise”) are used, as clustering time series data that all belong to the
same class (i.e., k = 1) is not meaningful. (Five datasets have less than two classes.)

5. Established methods. All clustering methods used in this work are well-established or
have survived the test of time. They are treated with equal merit with no effort to
identify one as “superior” or “inferior” to another.

6. Dataset-level assessment metrics. The assessment metrics are reported for each clus-
tering method on each of the 112 remaining datasets. Using assessment metrics at the
dataset level enables evaluation frameworks to be designed with the research questions
in mind, eliminating repetitive experimentation.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the benchmark methods. Section 4 presents the benchmark test results.
Section 5 highlights the limitations and related opportunities of the benchmark. Section 6
concludes the paper.

2. Related work

Benchmarking, in general, has been recognized as an important step in advancing the
knowledge of both supervised and unsupervised learning (Keogh and Kasetty, 2003; Mechelen
et al., 2018; Ding et al., 2010; Fränti and Sieranoja, 2018). See Keogh and Kasetty (2003)
for a nice summary on the need to benchmark time series algorithms. They highlight many
studies that use straw man algorithms to compare time series classification algorithms, and
note that many of these algorithms provide little value because the levels of improvement are
completely dwarfed by the variance observed when tested on real datasets or when minor
unstated implementation details change. After a thorough survey of more than 350 time
series data mining papers, they concluded that a median of only 1.0 (or an average of 0.91)
rival methods were compared against a “novel” method (e.g., clustering algorithm, distance
measure, pre-processing); and on average, each method was tested on only 1.85 datasets.
While their summary is based on time series classification, the same concerns apply to time
series clustering.

Works that compare time series clustering methods suggest that these comparisons have
either been done qualitatively, using a theoretical approach (e.g., Liao, 2005; Ali et al.,
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2019; Roddick and Spiliopoulou, 2002), or quantitatively using an empirical approach (e.g.,
Paparrizos and Gravano, 2016, 2017; Begum et al., 2015). Only the empirical approaches
provide evidence of performance measured on external datasets. The UCR archive has been
used for that purpose in most of the recent time series clustering comparisons (e.g., Paparrizos
and Gravano, 2016, 2017; Begum et al., 2015). However, none of them reports assessment
metrics at the dataset level accounting for all datasets in the archive because the goal was
to evaluate a novel method in the context of unique research questions/objectives. While
it may serve individual research goals, the summarized results are often difficult and time-
consuming to re-produce because of missing details (e.g., parameter settings, pre-processing
details) and non-deterministic nature of the algorithm (e.g., K-means).

The absence of assessment metrics at the dataset level means that researchers must
repeat experiments in order to view the tradeoffs among methods, thereby wasting precious
resources and often delaying publications. The benchmark provided in this paper is intended
to relax some of the burdens on researchers to foster more objective benchmark studies.

3. Benchmark Methods

The benchmark methods comprise clustering methods (Section 3.1) and evaluation meth-
ods (Section 3.2).

3.1. Clustering methods

There are two major design criteria in clustering methods: the clustering algorithm and
the distance measure. Eight clustering methods are used in this benchmark (see Table 1).
They represent three categories of clustering algorithms — partitional, density-based, and
hierarchical — and three distance measures — Euclidean, dynamic time warping (DTW), and
shape-based. This subsection summarizes the clustering algorithms and distant measures.

Table 1: Eight benchmark clustering methods. [1] (Paparrizos and Gravano, 2016), [2] (Sakoe and Chiba,
1978),[3] (Du et al., 2019), and [4] (Begum et al., 2015)

Clustering Method
Category

Clustering algorithm Distance measure
K-means Euclidean

Partitional
K-medoids Euclidean

Fuzzy C-means Euclidean
K-means Shape-based [1]
K-means DTW [2]

Density Peaks [3] Euclidean
Density-based

Density Peaks DTW (TADPole [4])
Agglomerative Euclidean Hierarchical

3.1.1. Clustering algorithms

Choice of clustering algorithms may depend on the strategy used to maximize the intra-
group similarity and minimize the inter-group similarity. The algorithms considered in this
benchmark cover three popularly used categories of such strategies, each described below.
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(a) (b) (c)

Figure 1: Different types of centroids: (a) medoid in K-medoids, (b) centroid in K-means, and (c) density
peak in Density Peaks.

Partitional

Three partitional clustering algorithms, K-means (MacQueen, 1967), K-medoids (Kauf-
man and Rousseeuw, 1990), and Fuzzy C-means (Bezdek, 1981), are selected based on their
popularity (Ali et al., 2019) and known accuracy for time series data clustering (Paparrizos
and Gravano, 2017). Note K-means with shape-based distance is K-shape (Paparrizos and
Gravano, 2017). These partitional algorithms generate spherical clusters that are similar in
size (Liao, 2005); and optimize clustering by minimizing the distance between each cluster
center (a.k.a. centroid) and the data points within that cluster. A centroid may or may
not be an actual data point, depending on the algorithm – it is for K-medoids and not for
K-means and Fuzzy C-means (see Figure 1a and Figure 1b).

All three of these partitional algorithms require that one input parameter be specified
– the number of clusters (k). Given k, the algorithm iterates over two phases: (1) calcu-
late centroids, and (2) assign data points to their closest centroid, until some termination
condition (e.g., number of iterations or convergence) is met. For all three algorithms used
in this benchmark, the initial centroids are chosen at random, making the algorithm non-
deterministic; all subsequent centroids are calculated so as to minimize the distance to all
other data points within the given cluster.

While K-means and K-medoids are hard clustering algorithms (i.e., producing non-
overlapping partitions), Fuzzy C-means is a soft clustering algorithm (i.e., producing over-
lapping partitions). In this benchmark, the Fuzzy C-means clustering results are similar to
that of a hard clustering algorithm, as each data point is assigned to the cluster that has
the highest probability. There are several techniques for improving the clustering accuracy
of these algorithms including—performing z-score normalization4 on the input (Mohamad
and Usman, 2013), or invoking the algorithm multiple times using different random seeds
to select the clusters with the highest intra-cluster similarity and the lowest inter-cluster
similarity. This benchmark excludes using such techniques, per restrictions 1 and 5 (see
Section 1).

Density-based

Density Peaks (Du et al., 2019) was selected as the representative for density-based
algorithms due to its recent popularity, particularly for time series clustering (Begum et al.,

4About 80% of datasets in the UCR archive are z-score normalized.
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Figure 2: Agglomerative clustering.

2015). Unlike other density-based algorithms (Ester et al., 1996), Density Peaks is not
sensitive to the “density parameter” but needs the number of clusters, k, as one of the
inputs. This makes it a good fit for this benchmark, where k is assumed to be known and
no assumptions are made for other input parameters.

The Density Peaks algorithm generates cluster centroids (called “density peaks”) that
are surrounded by neighboring data points that have lower local density (see Figure 1c) and
are relatively farther from data points with a higher local density (Du et al., 2019). The
algorithm has two phases. It first finds centroids (density peaks), and then assigns data
points to the closest centroid. The algorithm requires two input parameters: the number of
clusters (k) and the local neighborhood distance d (wherein the local density of a data point
is calculated). While the value of k is assumed to be known in this benchmark, the value
of d is determined as the distance wherein the average number of neighbors is 1 to 2% of
the total number of observations in the dataset, following a rule of thumb proposed by the
original authors (Rodriguez and Laio, 2014).

Hierarchical

A hierarchical clustering algorithm can be Agglomerative (bottom-up) or divisive (top-
down). In the former, each data point begins as its own cluster and cluster pairs are merged
as the algorithm moves up the hierarchy. In the latter, all data points are initially assigned
to a single cluster and clusters are split as the algorithm moves down the hierarchy. Because
of its popularity over divisive clustering (Liao, 2005), Agglomerative clustering is used in
this benchmark.

The algorithm has two phases. It first initializes each data point into its own cluster
and then repeatedly merges the two nearest clusters into one until there are k clusters (see
Figure 2). The value of k is an input to the algorithm. There are several options for mea-
suring the distance between pairs of clusters. Ward’s linkage, which minimizes the variance
of data points in the merged clusters (Großwendt et al., 2019), is used in this benchmark
due to its popularity and also its similarity to the optimization strategy of the partitional
clustering methods. Other popular distance measures include single-linkage (minimum dis-
tance between a pair of data points belonging to different clusters) and complete-linkage
(maximum distance between a pair of data points belonging to different clusters) (Li and
de Rijke, 2017).
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3.1.2. Distance measures

The choice of distance measure is the other criterion that has a direct impact on the
clustering performance. This section discusses the three distance measures used in this
benchmark.

Euclidean distance

The most common distance measure used in a broad range of application is the Euclidean
distance (Faloutsos et al., 1994). Equation 1 shows how the Euclidean distance d(T1, T2) is
calculated between two time series T1 = (T11, T12, ..., T1n) and T2 = (T21, T22, ..., T2n).

d(T1, T2) =

√√√√ n∑
i

(T1i − T2i)2 (1)

Dynamic time warping

Figure 3: Alignment between two times series for calculating distance.

Dynamic time warping (DTW) is a mapping of points between a pair of time series, T1
and T2 (see Figure 3) designed to minimize the pairwise Euclidean distance. It is becoming
recognized as one of the most accurate similarity measures for time series data (Paparrizos
and Gravano, 2017; Rakthanmanon et al., 2012; Johnpaul et al., 2020). The optimal mapping
should adhere to three rules.

• Every point from T1 must be aligned with one or more points from T2, and vice versa.

• The first and last points of T1 and T2 must align.

• No cross-alignment is allowed, that is, the warping path must increase monotonically.

DTW is often restricted to mapping points within a moving window. In general, the
window size could be optimized using supervised learning with training data; this, however,
is not possible with clustering as it is an unsupervised learning task. Paparrizos and Gravano
(2016) found 4.5% of the time series length to be the optimal window size when clustering
48 of the time series datasets in the UCR archive; as a result, we use a fixed window size of
5% in this benchmark study.
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Density Peaks with DTW as the distance measure can be computationally infeasible for
larger datasets because the Density Peaks algorithm is non-scalable of O(n2) complexity (Pa-
parrizos and Gravano, 2017). We employ a novel pruning strategy (see TADPole (Begum
et al., 2015)) to speed up the algorithm by pruning unnecessary DTW distance calculations.

Shape-based distance

Shape-based distance is both shift-invariant and scale-invariant (Paparrizos and Gravano,
2016), that is, not affected by the shifting or scaling of the time series data. It calculates the
cross-correlation between two time series and produces a distance value between 0.0 to 2.0,
with 0.0 indicating that the time series are identical and 2.0 indicating maximally different
shapes. To ensure the distance measure is scale-invariant, each original time series, T , is
z-normalized to T ′ as follows (Paparrizos and Gravano, 2016):

T ′ =
T − µ

σ
(2)

so T ′ has mean µ′ = 0 and standard deviation σ′ = 1.

3.2. Evaluation methods

The purpose of this benchmark study is to assess the performance of the eight clustering
algorithms on the 112 datasets, as well as the impact of changing design choices in either
clustering algorithms or distance measures. To this end, the evaluation framework and select
assessment metrics are discussed in this section.

3.2.1. Assessment metrics

Metrics for assessing clustering output may be external or internal. External measures
are used when the class labels are available for individual data points. Examples include
the Rand Index (RI) (Hubert and Arabie, 1985), Adjusted Rand Index (ARI) (Santos and
Embrechts, 2009), Adjusted Mutual Information (AMI) (Romano et al., 2016), Fowlkes Mal-
lows index (FMS) (Fowlkes and Mallows, 1983), Homogeneity (Rosenberg and Hirschberg,
2007), and Completeness (Rosenberg and Hirschberg, 2007). Internal measures quantify the
goodness of clusters based on a optimization objective for the clustering output, without the
need for class labels; examples include Silhouette score (Rousseeuw, 1987), Davies-Bouldin
index (Davies and Bouldin, 1979), Calinski- Harabasz index (Caliński and JA, 1974), the
I-index (Maulik and Bandyopadhyay, 2002) and sum of square errors (SSE).

We used all the external measures listed above in this benchmark because having the
class labels provided in the UCR archive makes the evaluation independent of the algorithm’s
optimization function. Despite the popularity of the Rand Index (Figure 4f) for prior UCR
archive studies (e.g., Paparrizos and Gravano, 2016, 2017; Begum et al., 2015), we find
the adjusted measures more suitable for clustering because they are independent of the
number of clusters. As demonstrated in Figure 4, the accuracy scores resulting from random
cluster assignment are consistently low as the number of clusters varies for the two adjusted
measures (Figures 4a and 4b), while this is not the case for the other measures. In this work,
the Adjusted Rand Index was selected as the default measure unless stated otherwise.

For the partitional algorithms in this benchmark, all of which are non-deterministic, the
scores reported for each external measure are the average over ten runs using randomly
selected initial centroids.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Accuracy scores resulting from randomly assigning 1000 data points to a varying number of clusters.

Adjusted Rand Index

The Adjusted Rand Index is the adjusted-for-chance version of the more commonly used
Rand Index. Given two sets of clusters, X and Y , and a contingency table where each cell nij

is the number of elements in both the ith cluster of X and the jth cluster of Y, the Adjusted
Rand Index is calculated as shown in Equation 3.

Adjusted Rand Index =

∑j
i
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nij
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where ai is the sum of the ith row and bj is the sum of the jth column in the contingency
table.

Spread between clustering outputs

The measure of spread is used to quantify how much the accuracy of the two clustering
methods differ from each other over multiple datasets (see Equation 4).

Spread =

∑n
i=1 (A1i − A2i)

2

n
(4)

where A1i and A2i are the accuracy scores of the two methods for dataset i; and n is the
total number of datasets.

3.2.2. Evaluation framework

Researchers will often design an evaluation framework for assessing accuracy because
what constitutes “good” with respect to the assessment metrics may vary depending on
the research question. One of the simplest approaches is to rank the performance of each
clustering method and tally the number of winning performances across all available (in
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this work 112) datasets. This approach, however, is not without bias, as it depends on the
distribution of both the datasets and clustering methods. For instance, in this work there
are five partitional methods and one density-based method. If one half the datasets are
amenable to partitional and the other half to density-based, this evaluation metric will bias
the density-based method because the tally for the partitional methods would be partitioned
across the five datasets. On the other extreme, if pairwise comparison were performed on all
clustering methods, it would result in 28 (=

(
8
2

)
) pairwise comparisons for each of the 112

datasets (i.e., 3,136 comparisons). More importantly, a pairwise comparison assumes that
every algorithm is designed to achieve the same result.

Based on the above challenges, we designed a phased evaluation approach in this bench-
mark study. This approach first compares the eight clustering methods, and then controls for
either the distance measure or clustering algorithm while evaluating the impact of changing
the other.

Phase 1. All eight methods are compared using all datasets, and the resulting accuracy is
averaged over all datasets for each method.

Phase 2. Partitional algorithms with Euclidean distance are compared to select the one that
achieves the highest accuracy on the largest number of datasets.

Phase 3. Different distance measures are compared using the partitional algorithm selected
in Phase 2.

Phase 4. Clustering algorithms belonging to different categories are compared using Eu-
clidean distance. Among them, the partitional algorithm is the one selected in Phase 2 (i.e.,
K-means with Euclidean distance).

Phase 5. Density Peaks algorithm using Euclidean distance is compared with Density Peaks
algorithm using DTW.

Phase 6. Density Peaks algorithm using DTW is compared with the partitional algorithm
selected in Phase 2 but using DTW.

In Phase 1, we report the average scores and standard deviations across all datasets
for all six external assessment metrics used in this work. In each subsequent phase, we
report the number of datasets (called “winning count”) for which an algorithm or a distance
measure achieved the highest ARI, and refine the comparison with the measure of spread (see
Section 3.2.1) and the associated scatter plots. Here, datasets that result in an ARI score
lower than 0.05 are excluded from winning counts since scores that approach 0.00 represent
random assignment.

4. Benchmark Test Results

This section provides the results of dataset-level assessment (Section 4.1) and the phased
evaluation (Section 4.2), and discusses the results (Section 4.3).
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4.1. Dataset-level assessment

Appendix A shows the Adjusted Rand Index (ARI) scores for all eight clustering methods
on the 112 short-listed datasets (see Section 1) in the UCR archive (Table A.9), and the
spread of ARI scores (Table A.10) between each pair of clustering methods. Additionally,
in line with the restriction 6 (dataset-level assessment; see Section 1), the scores of each
clustering method on each dataset tested for all the six external measures (see Section 3.2.1)
are available at GitHub (Javed, 2019) along with the source codes.

4.2. Phased evaluation

Phase 1 - Ranked comparison of all methods. Figure 5 shows the average ARI’s for each
of the eight clustering methods in decreasing order. In addition, Table 2 and Table 3
provide details, including the average and standard deviation of the clustering scores re-
sulting from the six external assessment metrics (see Section 3.2.1). Table 2 shows the
results for the two adjusted metrics ARI and AMI; they are in agreement about the high-
est and lowest scorers in terms of the average score across all datasets. The highest av-
erage was for the Agglomerative clustering using Ward linkage and Euclidean as distance
measure; and the lowest average was for Density Peaks using DTW as distance measure.

Figure 5: Average ARI for each clustering method in Phase 1.

Table 2: Average and standard deviation of adjusted measures for each clustering method in Phase 1.

Clustering Method
Category

ARI AMI
Algorithm Distance measure Avg Std Avg Std

Agglomerative Euclidean Hierarchical 0.26 0.26 0.31 0.27
K-means DTW

Partitional

0.24 0.24 0.29 0.25
K-means Euclidean 0.24 0.24 0.29 0.24

Fuzzy C-means Euclidean 0.22 0.25 0.24 0.25
K-medoids Euclidean 0.22 0.23 0.26 0.25
K-means Shape-based 0.21 0.22 0.25 0.23

Density Peaks Euclidean
Density-based

0.19 0.24 0.25 0.26
Density Peaks DTW 0.16 0.25 0.24 0.27

Table 3 shows the results for the other (non-adjusted) metrics, RI, Homogeneity, Com-
pleteness, and FMS. They result in ordering of scores different from the ordering from the
(adjusted) ARI and AMI. Since those measures are not independent of the value of k, averag-
ing their scores across datasets with different k values is not so meaningful in this benchmark.
For instance, for certain datasets such as GunPointAgeSpan, GunPoindMaleVersusFemale

11



Table 3: Average and standard deviation of non-adjusted measures for each clustering method in Phase 1.

Clustering Method RI Homogeneity Completeness FMS

Algorithm Distance measure Avg Std Avg Std Avg Std Avg Std

Agglomerative Euclidean 0.72 0.17 0.34 0.28 0.36 0.29 0.51 0.20

K-means DTW 0.71 0.16 0.31 0.27 0.34 0.28 0.51 0.19
K-means Euclidean 0.72 0.16 0.32 0.25 0.33 0.27 0.49 0.19

Fuzzy C-means Euclidean 0.69 0.15 0.27 0.26 0.31 0.27 0.48 0.21
K-medoids Euclidean 0.71 0.15 0.30 0.25 0.31 0.25 0.47 0.19
K-means Shape-based 0.66 0.17 0.27 0.23 0.38 0.29 0.50 0.18

Density Peaks Euclidean 0.65 0.18 0.27 0.26 0.34 0.29 0.50 0.20
Density Peaks DTW 0.62 0.18 0.25 0.26 0.36 0.31 0.51 0.20

and GunPointOldVersusYoung (see Appendix A), K-means with shape-based distance con-
verged to a single cluster during the iterative process, thus maximizing the Completeness
score to 1.0 (for k=1), and keeping the FMS score higher than it would be for k > 1; in
contrast, this convergence to k = 1 penalizes K-means with shape-based distance when Ho-
mogeneity is used for scoring the result. Like this, these non-adjusted measures are driven to
be biased toward extreme values of k (i.e., 1 or the number of data points) and consequently
should not be used for averaging the scores from datasets with different k values.

The standard deviations shown in Table 2 and Table 3 are rather significant relative to
the average values for all assessment metrics used. This indicates the wide variation of the
scores across different datasets.

Phase 2 - Comparison of partitional algorithms using Euclidean distance. Of the partitional
clustering methods that use a Euclidean distance measure, K-means had a winning count
of 54 datasets, while Fuzzy C-means and K-medoids performed best on 31 and 18 datasets,
respectively, (see Table 4). While K-means had a higher ARI score in almost twice as
many datasets, differences in score values were minor, with a spread of only 0.005 against
K-medoids (see Figure 6a) and only slightly larger (0.010) against Fuzzy C-means (see Fig-
ure 6b). This result is not surprising, given the similarity of methodology (all partitional
using Euclidean distance) across the three algorithms.

Phase 3 - Comparison of distance measures using selected partitional algorithm. When we
examine the winning counts for K-means (i.e., method that performed best in Phase 2)
using the three distance measures, the tallies are 32, 31 and 28 for DTW, shape-based, and
Euclidean, respectively (see Table 5). A pairwise comparison between the distance measures
also shows the wining counts to be 45 vs. 38 between DTW and Euclidean, 52 vs. 38 between
DTW and shape-based, and 45 vs. 44 between shape-based and Euclidean. The scatter plots
in Figure 7 show the spreads between each of the paired distance measures. The shape-based
distance has a relatively larger spread with each of the other two measures. As a side note,
when the optimal DTW window size is assumed to be known, then it is trivial to understand
that DTW will always achieve a score that is higher or equal to that of Euclidean distance,
since the two measures are equivalent when the window size is 0.

Phase 4 - Comparison of clustering algorithms using Euclidean distance. When we hold the
distance measure (in this case, Euclidean distance) constant and examine the winning counts
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(a) K-medoids vs. K-means. (b) Fuzzy C-means vs. K-means (c) K-medoids vs. Fuzzy C-means.

Figure 6: Spread of ARI scores between each pair of the three clustering algorithms with Euclidean distance
in Phase 2.

Table 4: Clustering algorithms with Euclidean distance in Phase 2.

Algorithm Winning count
Triple-wise

K-means 54
Fuzzy C-means 31

K-medoids 18
Pairwise

K-means 64
K-medoids 17
K-means 54

Fuzzy C-means 27
Fuzzy C-means 41

K-medoids 39

across the clustering algorithms that use this distance measure, the tallies are 45, 21, and
19 in the order of Agglomerative, K-means, and Density Peaks. A pairwise comparison
is also shown in Table 6, where the winning counts are 57 vs. 26 between Agglomerative
and Density Peaks, 52 vs. 30 between Agglomerative and K-means, and 60 vs. 23 between
K-means and Density Peaks. Despite the difference in winning counts, the spreads of ARI
values between Agglomerative and K-means (see Figure 8a) is fairly small compared with
the spread of either method with Density Peaks (see Figure 8b and Figure 8c).

Phase 5 - Comparison of Euclidean distance and DTW in Density Peaks algorithm. The
Density Peaks algorithm achieved a higher winning count (i.e., across 45 datasets; see Ta-
ble 7) when Euclidean distance was used as the distance measure compared to a count of 31
with DTW. Figure 9 shows the spread of ARI scores between Euclidean distance and DTW
to be 0.021.

Phase 6 - Comparison of Density Peaks and selected partitional algorithm using DTW

Lastly, when the DTW distance measure is held constant, we may compare across the
clustering algorithms that use this distance measure - Density Peaks and K-means. K-means
achieved a higher winning count (i.e., winner across 60 datasets; see Table 8) compared to
a winning count of 24 for Density Peaks. But while the winning count appears positively
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(a) (b) (c)

Figure 7: Spread of ARI scores between each pair of distance measures in Phase 3

Table 5: Different distance measures for K-means (from Phase 2) in Phase 3.

Distance measure Winning count
Triple-wise

DTW 32
Shape-based 31

Euclidean 28
Pairwise

DTW 45
Euclidean 38

DTW 52
Shape-based 38
Shape-based 45

Euclidean 44

skewed in favor of K-means, there are still a considerable number of datasets for which
Density Peaks achieved higher ARI, and the spread of ARI scores (see Figure 10) was the
largest (0.052) observed in the six phases.

4.3. Discussion

This section analyzes the results of each evaluation phase and provides concluding re-
marks summarizing the analysis.

Phase 1 - Ranked comparison of all methods. The high standard deviations associated with
the average scores of Table 2 and Table 3 suggest that accuracy is dependent on which
clustering method is used on which dataset; and that it may be fair to conclude that we
have no clear winner in this benchmark. The high variability in scores also suggests that using
a simple winning count of dataset-level assessment as the only means of evaluation, may be
very misleading. While reporting counts of win-lose-tie for clustering method accuracy has
become common practice in the literature, the UCR archive authors describe it as not that
useful (Dau et al., 2018b). In light of these issues as well as noting that adjusted measures
are more suitable in this benchmark, we used both winning counts and the ARI scores in
this benchmark and reinforced the measures with ARI score scatter plots and the associated
spreads.
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(a) K-means vs. Agglomerative. (b) Density Peaks vs. Agglomerative. (c) Density Peaks vs. K-means.

Figure 8: Different algorithms with Euclidean distance measure in Phase 4.

Table 6: Different algorithms with Euclidean distance measure in Phase 4.

Algorithm Winning count
Triple-wise

Agglomerative 45
K-means 21

Density Peaks 19
Pairwise

Agglomerative 57
Density Peaks 26
Agglomerative 52

K-means 30
K-means 60

Density Peaks 23

Figure 9: Euclidean vs. DTW for Density Peaks algorithm in Phase 5.

Table 7: Euclidean vs. DTW for Density Peaks algorithm in Phase 5.

Distance measure Winning count
Euclidean 45

DTW 31

Phase 2 - Comparison of partitional algorithms using Euclidean distance. When comparing
the three partitional algorithms that use the Euclidean distance measure, a researcher may
well select K-means based on the winning count (see Table 4), especially without adequate
prior knowledge of how the algorithm performs on the individual datasets. However, the
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Figure 10: DTW in Density Peaks and K-means (selected in Phase 2) in Phase 6.

Table 8: DTW in Density Peaks and K-means (selected in Phase 2) in Phase 6.

Algorithm Winning count
K-means 60

Density Peaks 24

selection may likely change when the user has knowledge of the dataset and/or application
at hand. For instance, K-medoids is more resilient to outliers, because the medoids are not
as sensitive to the presence of outliers as say, the centroids in K-means. In another example,
Fuzzy C-means may be preferred over K-means given a dataset where the membership of
data points are “soft”, as in the case when categorical classes have numerical attribute values
that overlap. As an aside, Fuzzy C-means shows a larger spread of ARI scores against K-
means (Figure 6b) and K-medoids (Figure 6c), indicating that changing from K-means to
the fuzzy mechanism of C-means has more impact on the final clustering than changing from
means to medoids.

Phase 3 - Comparison of distance measures using selected partitional algorithm. The results
in Table 5 appear to suggest that the winning count does not favor the shape-based distance
measure in the same manner that it did in a prior study (Paparrizos and Gravano, 2017)
that used 85 datasets in the UCR archive compared to the 112 datasets (and different
evaluation criteria) used in this benchmark study. The larger spreads observed when one
distance measure is shape-based (Figures 7b and 7c) suggest the method is useful as the best
distance measure for a nontrivial number of datasets, and therefore, should be considered
in a pool of potential clustering methods. We believe the larger spread may be a result
of the shape-based distance measure’s lack of sensitivity to the magnitudes and shifts in
time series data compared with the Euclidean measure, or for that matter, DTW (for which
the underlying distance measure is also Euclidean), which therefore results in a different
partitioning.

Phase 4 - Comparison of clustering algorithms using Euclidean distance. The very small
spread in Figure 8a shows similar performance for the K-means and Agglomerative algo-
rithms on most datasets in the archive. With Agglomerative clustering, this can be at-
tributed to the use of Ward’s linkage, which merges the two clusters that when combined
provide the minimum increase in variance. This optimization using Ward’s linkage has some
similarity to optimizing the centroids in K-means (i.e., minimizing the total variance within
cluster). Using a different linkage criteria such as “complete” linkage does not bias clusters
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to be as spherical as Ward linkage (and for that matter K-means). Such a change will re-
sult in different clusters when compared to K-means. Specifically, with complete linkage,
Agglomerative clustering has a measure of spread of 0.026 when compared to K-means, and
an average ARI of 0.17 ± 0.24.

Phase 5 - Comparison of Euclidean distance and DTW in Density Peaks algorithm. The
spread (0.021) between DTW and Euclidean (see Figure 9) in Density Peaks algorithm is
relatively consistent with spread (0.016) between DTW and Euclidean in K-means algorithm
(see Figure 7a). These medium to high level of spread values indicate the difference of clusters
formed when using DTW as opposed to Euclidean distance. Density Peaks is an O(n2)
complexity algorithm (where n is the number of data points) that when used with DTW
may become computationally infeasible for large datasets. The TADPole method (Begum
et al., 2015), with its novel pruning strategy, makes Density Peaks with DTW feasible enough
for use on large datasets in the archive. However, even with this accelerated TADPole, the
largest 20 datasets of the archive took 32 days to cluster on a dual 20-Core Intel Xeon
E5-2698 v4 2.2 GHz machine with 512 GB 2,133 MHz DDR4 RDIMM.

Phase 6 - Comparison of Density Peaks and selected partitional algorithm using DTW. When
using DTW as a distance metric, K-means and Density Peaks produce different clusters as
indicated by the relatively higher spreads of ARI 0.052 (see Figure 10), which is consistent
with the somewhat high spread 0.036 observed between the two methods (see Phase 4 with
Euclidean distance, Figure 8c). This result is counter-intuitive given that both K-means and
Density Peaks form spherical clusters by assigning data points to the closest centroid, and
leads one to speculate that the cause may be the fundamentally different locations of the
centroids in the K-means and Density Peaks algorithms (see Figure 1).

Concluding remarks. Overall, this benchmark study shows that among all methods tested,
the variation in performance, as measured by the average and standard deviation of ARI
(see Table 2 and Figure 5), is higher than the variation observed across winning counts
(Table 4 to Table 8). Notably, there is no one method that performs better than the others
for all datasets in this benchmark, and that method performance is much more sensitive with
respect to the datasets, for a given evaluation objective (i.e., assessment metric). Similar
findings for time series representation methods and distance measures were made in an earlier
benchmark study using UCR archive (Ding et al., 2010). This is not to say that the recently
invented algorithms or methods are of no use. K-means is the first and one of the most
popular clustering methods invented in the 1950s (Kaufman and Rousseeuw, 2008), while
Density Peaks algorithm and shape-based distance were invented more recently. While the
later methods may not necessarily be superior to the earlier methods, the advances in time
series clustering are noted in the collective improvements in their ability to correctly identify
clusters. As new clustering methods are invented over the years, the clustering result, as
assessed by the average of the maximum ARI scores achieved by different methods for each
dataset in the benchmark, has been steadily increasing (see Figure 11). In light of these
two findings, and noting that exploratory cluster analysis typically involves trying multiple
clustering methods rather than a single method to identify correct clusters, cluster analysis
should be conducted by selecting a pool of methods that produce different clusters, rather
than those that produce similar clusters. In other words, select methods that show greater
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Figure 11: Maximum achievable average ARI score for progressively increasing number of methods (over
time).

spread (i.e., combination of average accuracy scores and their spread) rather than those with
higher winning counts. Methods with higher spreads of ARI are likely to produce different
clusters for the same dataset—all of which may be valid depending on the target research
goal. For instance, using three algorithms with higher spread values (e.g., K-means (shape-
based), Agglomerative (Euclidean) and Density Peaks (DTW) of Figure 7c, Figure 8a and
Figure 9) on the same dataset are more likely to provide three dissimilar clustering outputs,
compared to those generated using K-means (Euclidean), K-medoids (Euclidean), and Fuzzy
C-means (Euclidean) (lower spread values in Figure 6).

5. Limitations and Opportunities

There are a few managerial limitations in our benchmark that offer opportunities. First,
the UCR archive is currently the best available to build a benchmark for designing and
evaluating clustering algorithms. As acknowledged by the curators (Dau et al., 2018a),
however, the datasets in the archive represent the interests and hobbies of the curators, and
as a result may invite a question on any benchmark built on top of the datasets. While
we believe that our benchmark, built on a comprehensive set of datasets from the UCR
archive, is viable for general purpose clustering methods, for specific applications it may
be prudent to use in the benchmark those select datasets that are closely related to the
individual applications, thus opening an opportunity for domain-specific benchmarks.

Secondly, while our benchmark helps reduce the number of clustering methods to be
considered for a given dataset, deeper insights into the “mapping” between methods and
datasets can help match a method to a dataset; this will be highly desirable from an appli-
cation perspective. Such insights have not been adequately published, consequently leaving
the application community to consider the latest method as the “state of the art.” Unfor-
tunately, the latest is not always the best choice, as this benchmark study suggests. This
opens an opportunity to conduct a more in-depth study and publish the gained insights,
namely dataset–method mapping for time series clustering, to meet the need.

Finally, we used only external measures to evaluate clusters in this benchmark study and
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it served our purpose because of the availability of class labels in the datasets. In general,
however, evaluation using internal measures as an addition or alternative would open an
opportunity to make the benchmark more comprehensive, especially when no class labels
are available as the ground truth.

6. Conclusion

This paper reports benchmark test from applying eight popular time series clustering
methods on 112 datasets in the UCR archive. One essential goal of the benchmark is to
make the results available and reusable to other researchers. In this work, we laid out six
restrictions to help reduce bias. Eight popular clustering methods were selected to cover
three categories of clustering algorithms (i.e., partitional, density-based, and hierarchical)
and three distance measures (i.e., Euclidean, Dynamic time warping, and shape-based).
The dataset-level assessment metrics are reported using six external evaluation measures.
Adjusted Rand Index was selected as the default measure for discussion in this paper. A
phased evaluation framework was designed such that in each phase only one of the two
building blocks of a clustering method—algorithm and distance measure—is varied at a
time. Benchmark results show the overall performance of the eight algorithms to be similar
with high sensitivity to the datasets, indicating that no method is superior to the others for
all datasets. Discussion of the results helps highlight the importance of creating a pool of
clustering methods with high spread in accuracy scores for effective exploratory analysis.

For practical implications of our benchmark, researchers can adopt the recommendations
we made in concluding remarks (Section 4.3) as is, if they are using the same clustering
methods and datasets. Otherwise (i.e., with their own methods and/or datasets), they
can leverage the phased evaluation framework presented in Section 3.2.2 to conduct their
own benchmark study. Either way, this benchmark can be a useful resource for exploratory
clustering analysis by an application community. For the future work, we plan to expand the
benchmark by adding evaluations using internal measures (one of the opportunities discussed
in Section 5).
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Table A.9: ARI scores of the eight clustering methods on the 112 datasets in the UCR archive.

Dataset name K-
mean-
Euc

K-
med-
Euc

K-
mean-
shape

K-
mean-
DTW

C-
mean-
Euc

D-
Peaks-
Euc

D-
Peaks-
DTW

Agglo-
Euc

ACSF1 0.16 0.17 0.14 0.10 0.20 0.13 0.06 0.15
Adiac 0.25 0.25 0.24 0.23 0.18 0.23 0.11 0.18
ArrowHead 0.20 0.26 0.18 0.23 0.18 0.27 0.25 0.07
Beef 0.15 0.14 0.11 0.12 0.17 0.05 0.09 0.07
BeetleFly 0.05 0.04 0.04 0.01 0.00 0.04 0.11 -0.02
BirdChicken 0.04 0.03 0.07 0.00 0.04 0.00 0.05 0.04
BME 0.14 0.16 0.23 0.36 0.12 0.23 0.22 0.18
Car 0.14 0.14 0.13 0.20 0.16 0.05 0.03 0.11
CBF 0.33 0.22 0.73 0.33 0.34 0.14 0.10 0.44
Chinatown 0.16 0.19 -0.05 0.24 0.18 -0.07 -0.08 0.16
ChlorineConcentration 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CinCECGTorso 0.15 0.14 0.06 0.21 0.04 0.45 0.34 0.13
Coffee 0.34 0.54 0.16 -0.01 0.81 1.00 1.00 0.67
Computers 0.00 0.00 0.07 0.00 0.00 0.00 0.01 0.00
CricketX 0.10 0.07 0.16 0.13 0.03 0.04 0.14 0.11
CricketY 0.13 0.11 0.18 0.14 0.07 0.08 0.11 0.14
CricketZ 0.10 0.07 0.16 0.13 0.03 0.05 0.14 0.12
Crop 0.31 0.28 0.08 0.31 0.28 0.18 0.18 0.33
DiatomSizeReduction 0.83 0.82 0.82 0.60 0.74 0.75 0.96 0.86
DistalPhalanxOutlineAgeGroup 0.39 0.39 0.42 0.51 0.42 -0.04 -0.02 0.42
DistalPhalanxOutlineCorrect 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00
DistalPhalanxTW 0.43 0.38 0.50 0.76 0.43 0.13 -0.05 0.74
DodgerLoopDay 0.23 0.23 0.08 0.17 0.20 0.22 0.18 0.20
DodgerLoopGame 0.01 0.00 0.20 0.00 0.00 0.00 0.01 0.01
DodgerLoopWeekend 0.92 0.53 0.07 -0.04 0.83 -0.01 0.09 0.92
Earthquakes 0.00 0.00 0.03 0.00 0.00 0.00 -0.09 -0.01
ECG5000 0.51 0.43 0.49 0.71 0.35 0.52 0.62 0.59
ECGFiveDays 0.00 0.00 0.40 0.03 0.00 0.22 0.03 0.02
ElectricDevices 0.16 0.05 0.09 0.19 0.08 0.00 0.14 0.20
EOGHorizontalSignal 0.21 0.20 0.14 0.18 0.18 0.10 0.00 0.22
EOGVerticalSignal 0.10 0.11 0.11 0.10 0.09 0.09 0.13 0.08
EthanolLevel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FaceAll 0.22 0.21 0.45 0.26 0.04 0.30 0.14 0.28
FaceFour 0.32 0.29 0.42 0.14 0.29 0.48 0.14 0.32
FacesUCR 0.21 0.20 0.41 0.24 0.04 0.30 0.14 0.28
FiftyWords 0.26 0.24 0.20 0.40 0.09 0.24 0.28 0.31
Fish 0.21 0.18 0.27 0.28 0.07 0.28 0.00 0.24
FreezerRegularTrain 0.29 0.25 0.28 0.28 0.29 0.27 0.05 0.24
FreezerSmallTrain 0.29 0.24 0.28 0.28 0.29 0.27 0.05 0.27
Fungi 0.64 0.63 0.15 0.55 0.61 0.85 0.52 0.72
GunPoint -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
GunPointAgeSpan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Dataset name K-
mean-
Euc

K-
med-
Euc

K-
mean-
shape

K-
mean-
DTW

C-
mean-
Euc

D-
Peaks-
Euc

D-
Peaks-
DTW

Agglo-
Euc

GunPointMaleVersusFemale 0.23 0.23 0.00 0.23 0.23 0.23 0.23 0.23
GunPointOldVersusYoung 0.24 0.24 0.00 0.24 0.24 0.24 0.24 0.24
Ham 0.05 0.03 0.05 0.03 0.04 0.00 0.00 0.06
HandOutlines 0.29 0.28 0.32 0.04 0.29 0.01 0.00 0.39
Haptics 0.06 0.06 0.06 0.06 0.06 0.08 0.04 0.06
Herring 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 0.02
HouseTwenty 0.11 0.11 0.11 0.18 0.12 0.16 -0.01 0.07
InlineSkate 0.01 0.01 0.04 0.04 0.01 0.01 0.02 0.01
InsectEPGRegularTrain 1.00 1.00 0.00 1.00 0.96 1.00 1.00 1.00
InsectEPGSmallTrain 0.91 0.91 0.00 1.00 1.00 1.00 1.00 1.00
InsectWingbeatSound 0.34 0.33 0.17 0.25 0.14 0.33 0.18 0.33
ItalyPowerDemand 0.00 0.35 0.01 0.00 0.00 0.54 0.17 0.00
LargeKitchenAppliances 0.02 0.02 0.01 0.03 0.02 0.01 0.06 0.02
Lightning7 0.26 0.22 0.35 0.20 0.15 0.23 0.18 0.30
Mallat 0.77 0.72 0.70 0.80 0.95 0.58 0.43 0.84
Meat 0.62 0.62 0.46 0.55 0.49 0.82 0.45 0.44
MedicalImages 0.05 0.04 0.08 0.05 0.05 0.04 -0.04 0.04
MelbournePedestrian 0.44 0.45 0.10 0.41 0.43 0.41 0.24 0.47
MiddlePhalanxOutlineAgeGroup 0.35 0.34 0.39 0.42 0.42 0.01 -0.03 0.43
MiddlePhalanxOutlineCorrect 0.00 0.00 0.00 -0.01 0.00 -0.02 -0.02 -0.01
MiddlePhalanxTW 0.37 0.37 0.46 0.58 0.44 -0.01 0.11 0.37
MixedShapesRegularTrain 0.44 0.30 0.44 0.47 0.38 0.38 0.13 0.55
MixedShapesSmallTrain 0.46 0.40 0.48 0.53 0.41 0.40 0.52 0.55
MoteStrain 0.39 0.36 0.61 0.42 0.45 0.55 0.00 0.38
NonInvasiveFetalECGThorax1 0.43 0.38 0.33 0.35 0.15 0.12 0.08 0.47
NonInvasiveFetalECGThorax2 0.50 0.45 0.46 0.49 0.19 0.22 0.17 0.54
OliveOil 0.51 0.40 0.49 0.36 0.70 0.23 0.15 0.63
OSULeaf 0.14 0.12 0.24 0.13 0.05 0.07 0.01 0.18
PhalangesOutlinesCorrect 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00
Phoneme 0.02 0.01 0.04 0.01 0.00 0.00 0.01 0.00
PigAirwayPressure 0.05 0.04 0.01 0.06 0.06 0.04 0.05 0.05
PigArtPressure 0.16 0.14 0.00 0.14 0.09 0.15 0.11 0.19
PigCVP 0.07 0.07 0.00 0.09 0.08 0.05 0.04 0.08
Plane 0.70 0.63 0.74 0.80 0.86 0.83 1.00 0.80
PowerCons 0.73 0.61 0.05 0.66 0.75 0.15 0.00 0.86
ProximalPhalanxOutlineAgeGroup 0.42 0.43 0.50 0.57 0.51 0.35 0.02 0.52
ProximalPhalanxOutlineCorrect 0.07 0.06 0.07 0.05 0.07 0.06 0.11 0.05
ProximalPhalanxTW 0.40 0.40 0.44 0.32 0.38 0.25 0.33 0.42
RefrigerationDevices 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00
Rock 0.22 0.19 0.06 0.23 0.23 -0.01 0.23 0.30
ScreenType 0.02 0.01 0.01 0.01 0.03 0.00 0.00 0.02
SemgHandGenderCh2 0.00 0.00 0.13 0.00 -0.01 0.01 -0.01 0.00
SemgHandMovementCh2 0.14 0.14 0.05 0.16 0.14 0.01 0.00 0.13
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Dataset name K-
mean-
Euc

K-
med-
Euc

K-
mean-
shape

K-
mean-
DTW

C-
mean-
Euc

D-
Peaks-
Euc

D-
Peaks-
DTW

Agglo-
Euc

SemgHandSubjectCh2 0.08 0.08 0.12 0.10 0.07 0.03 0.00 0.10
ShapeletSim 0.00 0.01 0.46 0.00 0.00 0.00 0.00 0.00
ShapesAll 0.36 0.31 0.36 0.35 0.06 0.12 0.12 0.37
SmallKitchenAppliances 0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.00
SmoothSubspace 0.44 0.29 0.18 0.43 0.43 0.35 0.03 0.50
SonyAIBORobotSurface1 0.34 0.23 0.46 0.71 0.53 0.03 0.00 0.41
SonyAIBORobotSurface2 0.32 0.21 0.18 0.30 0.32 -0.03 -0.02 0.26
StarLightCurves 0.52 0.35 0.53 0.53 0.52 0.54 0.68 0.51
Strawberry -0.02 0.01 -0.02 -0.01 0.00 -0.04 0.08 -0.05
SwedishLeaf 0.30 0.28 0.32 0.15 0.27 0.09 0.04 0.30
Symbols 0.64 0.58 0.71 0.65 0.67 0.38 0.82 0.68
SyntheticControl 0.59 0.34 0.60 0.64 0.52 0.26 0.31 0.61
ToeSegmentation1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
ToeSegmentation2 0.00 0.00 0.27 0.00 0.00 0.02 -0.01 0.05
Trace 0.34 0.35 0.32 0.41 0.34 0.34 0.66 0.33
TwoLeadECG 0.00 0.00 0.08 0.02 0.00 0.00 0.03 0.00
TwoPatterns 0.02 0.02 0.21 0.07 0.02 0.08 0.29 0.02
UMD 0.15 0.13 0.14 0.15 0.15 0.12 0.21 0.14
UWaveGestureLibraryAll 0.55 0.50 0.62 0.52 0.17 0.54 0.25 0.59
UWaveGestureLibraryX 0.34 0.32 0.30 0.39 0.32 0.40 0.49 0.41
UWaveGestureLibraryY 0.33 0.30 0.24 0.35 0.30 0.23 0.26 0.34
UWaveGestureLibraryZ 0.31 0.29 0.34 0.34 0.31 0.31 0.28 0.29
Wine 0.00 0.00 -0.01 -0.01 -0.01 0.00 -0.01 -0.01
WordSynonyms 0.16 0.14 0.19 0.23 0.10 0.14 0.18 0.17
Worms 0.02 0.00 0.05 0.02 0.01 0.00 0.00 0.07
WormsTwoClass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01
Yoga 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.10: Pairwise spread of ARI scores between clustering methods.

Clustering method Agglo-
merative
(Euc)

K-
means
(DTW)

K-
means
(Euc)

C-
means
(Euc)

K-
med
(Euc)

K-
means
(shape)

Density
peaks
(Euc)

Density
Peaks
(DTW)

Agglomerative (Euclidean) - 0.020 0.004 0.011 0.011 0.050 0.043 0.054
K-means (DTW) - - 0.016 0.025 0.017 0.041 0.043 0.052
K-means (Euclidean) - - - 0.010 0.005 0.043 0.036 0.045
C-means (Euclidean) - - - - 0.011 0.053 0.038 0.043
K-medoids (Euclidean) - - - - - 0.042 0.021 0.032
K-means (shape-based) - - - - - - 0.060 0.067
Density Peaks (Euclidean) - - - - - - - 0.021
Density Peaks (DTW) - - - - - - - -
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