
Cost-Based Predictive Spatiotemporal Join
Wook-Shin Han, Member, IEEE Computer Society, Jaehwa Kim,

Byung Suk Lee, Member, IEEE Computer Society, Yufei Tao, Ralf Rantzau, and Volker Markl

Abstract—A predictive spatiotemporal join finds all pairs of moving objects satisfying a join condition on future time and space. In this

paper, we present CoPST, the first and foremost algorithm for such a join using two spatiotemporal indexes. In a predictive

spatiotemporal join, the bounding boxes of the outer index are used to perform window searches on the inner index, and these

bounding boxes enclose objects with increasing laxity over time. CoPST constructs globally tightened bounding boxes “on the fly” to

perform window searches during join processing, thus significantly minimizing overlap and improving the join performance. CoPST

adapts gracefully to large-scale databases, by dynamically switching between main-memory buffering and disk-based buffering,

through a novel probabilistic cost model. Our extensive experiments validate the cost model and show its accuracy for realistic data

sets. We also showcase the superiority of CoPST over algorithms adapted from state-of-the-art spatial join algorithms, by a speedup of

up to an order of magnitude.

Index Terms—Spatial databases, temporal databases.

Ç

1 INTRODUCTION

MOVING object database systems managing spatiotem-
poral objects have been an area of active research and

have applications in areas like telematics, location-based
services, air traffic control systems, etc. Particularly in a
wireless environment, techniques for managing a large
number of moving objects effectively and efficiently are
becoming increasingly important. Spatiotemporal queries
used in a moving object database system can be classified
into historical queries [1], [2], [3], which handle past
information, and predictive queries [4], [5], which extrapolate
the past information into the future. Each type of queries
has its own application areas and pertinent research issues.

In this paper, we consider predictive queries with a focus
on spatiotemporal join operations. A predictive spatiotem-
poral join is a key query operation in a moving object
database system. The formal definition of the predictive
spatiotemporal join is given as follows:

Definition 1 [6]. Given two sets R and S of spatiotemporal
objects, a future time stamp tq, and a distance threshold d,
a predictive spatiotemporal join finds all pairs of objects
<o1; o2> such that o1 2 R, o2 2 S, and the distance
between the objects o1 and o2 at tq is shorter than d.

Fig. 1 shows an example predictive spatiotemporal join.
Fig. 1a shows the positions of airplanes (moving objects) at
the current time now, and Fig. 1b shows the positions of
airplane moving objects 5 minutes from now. An example
join query is “find all pairs of airplanes that will come closer
than 10 miles from each other 5 minutes from now [6].”
Note that the time condition in Definition 1 is specified on a
time point. This type of the predictive spatiotemporal join is
called a predictive time-stamp spatiotemporal join. A
predictive spatiotemporal join is called a predictive time-
interval spatiotemporal join instead if the time condition is
specified on a future time interval ½t1; t2�. An example time-
interval join query is “find all pairs of airplanes that
will come closer than 10 miles from each other between
21:00 and 21:15.” We focus on the time-stamp join in
this paper.

The objective of this paper is to develop an efficient
predictive spatiotemporal join algorithm. To the best of our
knowledge, this is the first research done with this objective.
We assume that indexes are available on both input files. The
index on an input file can be any predictive spatiotemporal
tree of which the formats of node entries can be converted to
conservative bounding boxes (CBBs). Example trees are
STRIPES [7], the Bx-tree [8], the Bdual-tree [9], TPR-tree [10],
and TPR�-tree [5]. A CBB stores information about the
velocities and the bounding boxes of moving objects. This
way, a CBB encloses moving objects conservatively (i.e.,
predicting the largest possible expansion at a future point in
time) and hence encloses the objects with increasing laxity
over time. Fig. 2 illustrates a predictive spatiotemporal tree
R. Fig. 2a shows four CBBs, R1 � R4, which enclose seven
moving objects, o1 � o7, at time Tc. Arrows near the CBBs
and the objects represent their velocities. Fig. 2b shows the
same CBBs expanded by the time Tc þ 1. We can see that the
CBBs at the time Tc þ 1 do not enclose objects tightly.

An intuitive approach for achieving the objective is to
apply the existing index-based spatial join algorithms, such as
depth-first [11], breadth-first [12], and transformation-view-
based [13] algorithms, to predictive spatiotemporal indexes.

220 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

. W.-S. Han and J. Kim are with the Database Laboratory, Department of
Computer Engineering, Kyungpook National University, 1370 Sankyuk-
dong, Book-gu, Daegu 702-701, Korea.
E-mail: wshan@knu.ac.kr, jhkim@www-db.knu.ac.kr.

. B.S. Lee is with the Department of Computer Science, University of
Vermont, Burlington, VT 05405. E-mail: bslee@cems.uvm.edu.

. Y. Tao is with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong.
E-mail: taoyf@cse.cuhk.edu.hk.

. R. Rantzau is with the IBM Silicon Valley Laboratory, 555 Bailey
Ave., San Jose, CA 95141. E-mail: rrantzau@acm.org.

. V. Markl is with the Technische Universitat Berlin, Einsteinufer 17,
10587 Berlin, Germany. E-mail: volker.markl@tu-berlin.de.

Manuscript received 2 May 2007; revised 11 Apr. 2008; accepted 29 June
2008; published online 22 July 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-05-0194.
Digital Object Identifier no. 10.1109/TKDE.2008.159.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society



Here, we can speed up the adapted join algorithms using an
optimization, which we call local tightening. That is, when
traversing down a tree during a join operation, we can
tighten the CBB for the current node being accessed, as in
Fig. 2c. For example, when we access R2, we know the exact
positions of o1 � o3 at time Tc þ 1, and thus, we can tighten
the CBB for R2 on the fly. This way, we can reduce the dead
space caused by CBBs. However, it is clear that we still have
considerable dead space after applying local tightening.
Hence, using these adapted algorithms still causes the
performance to degrade as time passes.

Our join algorithm resolves this problem by construct-
ing globally tightened bounding boxes “on the fly” during
join processing, as illustrated in Fig. 2d. We call our
technique global tightening in contrast to local tightening.
The algorithm works in three steps: 1) sort the leaf entries
of the outer index based on a new space-filling curve called
the adaptive cell-based row-major (ACRM) order (index-
assisted sorting), 2) construct tightened bounding boxes of
the sorted entries at runtime based on the object density,
and 3) perform window searches on the inner file (through
the other index) by using the bounding boxes as windows.
These three steps can be pipelined unless the sorting is
disk based.

The index-assisted sorting utilizes a priority queue to sort
the outer index in one pass, unless the available memory is
insufficient. However, when we deal with a predictive
spatiotemporal join, the priority queue may become too
large to fit in the available buffer; this is due to an increasing
number of overlapping bounding boxes over time.

To tackle this problem, we need to automatically decide
how the algorithm chooses between a main-memory
resident queue and a disk-based queue. The decision is
made based on the cost estimate. For this, we have built
probabilistic cost models (hence the name cost-based predictive
spatiotemporal join (CoPST) for our join algorithm). This is a
challenging task, due to the effect of page buffering.

Extensive experiments show that in all experiment cases,
our join algorithm incurs lower I/O and CPU costs than
algorithms adapted from state-of-the-art spatial algorithms.
This performance advantage is particularly large when the
buffer size is small and/or the data distribution is nonuni-
form. This advantage is important since objects are typically
nonuniform in their distribution and because the buffer size
is usually small compared to the input size in a moving
object database, especially in a multiuser environment

where many joins are executed together. Even for medium
and large buffer sizes, CoPST performs at least two times
faster than existing algorithms. This is because by using
tightened bounding boxes, CoPST reduces CPU time, as well
as I/O time, in contrast to the adapted existing algorithms.
With those buffer sizes, CPU time plays a major role in
performance. In the extreme case where indexes are resident
in the main memory, CoPST still outperforms all the other
algorithms by at least a factor of two.

The contributions made throughout this paper are
summarized as follows:

1. We propose a novel algorithm, CoPST, which is the
first to perform a predictive spatiotemporal join.
CoPST resolves the loose-bounding-box problem
by globally tightening bounding boxes. To maximize
buffer utilization, CoPST leverages the ACRM order,
which adaptively controls the order of pages to be
joined depending on the available buffer size. Note
that the ACRM order is “conscious” of the buffer
size, unlike the well-known Z order [14] and Hilbert
order [15].

2. We develop a probabilistic cost model that our join
algorithm uses to decide whether to store its
intermediate data structure (i.e., a priority queue)
in the main memory or disk. By incorporating the
effect of page buffering into the cost, our model can
accurately estimate the cost for a varying buffer

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 221

Fig. 1. An example predictive spatiotemporal join. (a) Positions of

airplanes at the current time. (b) Positions of airplanes 5 minutes

from now.

Fig. 2. A motivating example. (a) Tree R at the current time Tc.
(b) Tree R at Tc þ 1. (c) Local tightening at Tc þ 1. (d) Global
tightening at Tc þ 1.



size. Furthermore, by exploiting histograms, our
model can support nonuniform data without losing
accuracy.

3. Through extensive experiments, we demonstrate the
performance advantage of our algorithm over the
algorithms adapted from current state-of-the-art
spatial join algorithms.

The remainder of this paper is organized as follows:
Section 2 describes the basic CoPST algorithm for a memory-
resident priority queue, and Section 3 presents a probabil-
istic cost model of the algorithm. Section 4 enhances the basic
algorithm to handle a disk-based priority queue. Section 5
presents the performance evaluations. Section 6 reviews
related work, and Section 7 concludes the paper.

2 BASIC COPST ALGORITHM

2.1 Basic Concepts

CoPST is a variation of the ordered index-based nested loop
join. Let us refer to the indexes accessed in the outer and
inner loops as R and S, respectively. CoPST first sorts the
leaf entries of R using a space filling curve (SFC), based on
their spatial locations at the join time. Then, it organizes the
sorted leaf entries into windows based on the object density
and performs a window search on S for each window.
Searching S for the window of entries instead of each entry
improves the join performance over conventional index-
based nested loop joins. Moreover, performing ordered
window searches improves the buffer utilization by
increasing the probability of accessing the same S node
that was accessed in the previous window search. Fig. 3
shows a high-level view of the basic CoPST.

CoPST keeps packing entries, say, o1; o2; . . . , into a
window as long as their density is higher than the threshold
density. Thus, CoPST guarantees that the density of each
sequential subset starting from o1 is higher than the
threshold density. This approach considers both the spatial
proximity of the entries and the buffer utilization. Addi-
tionally, the number of entries is limited to the blocking
factor in order to prevent a case in which a large number of
entries are included in a large window although the
resulting density is higher than the threshold.

The threshold density used in our work is the average

density of all the leaf nodes of R. The average density can be

approximately computed at a low cost by accessing only the

nonleaf nodes with the assumption that each leaf node has

the same number of entries ð¼ # of total objects
# of leaf nodes Þ. (This cost is

included in the join cost for our performance evaluations in

Section 5.) The maximum error of this approximate average

density is only 6 percent for the various data distributions

we tested.

2.2 Algorithm Description

Algorithm 1 shows the basic CoPST algorithm. The function
Next OrderedLeafEntry returns the leaf entries in the order
specified with SFC. CoPST thus sorts the leaf entries
according to the SFC. Then, the leaf entries are bound in
that sorted order into windows, and then, a window
search is performed on S. Specifically, each leaf entry
returned from Next OrderedLeafEntry is inserted into
windowSearchSet until the object density of the window
becomes lower than the threshold Dthr or the number of
entries exceeds the blocking factor bf (lines 3-6). Here,
windowSearchSet is a set of leaf entries used to perform
a window search. Then, CoPST performs a window
search on S by calling the function WindowSearch with
windowSearchSet as input (line 7) and repeats the loop with
windowSearchSet initialized to the current leaf entry. The
function WindowSearch traverses down the tree S using the
bounding box of windowSearchSet and finds the matching
pairs (i.e., pairs satisfying the join predicate) between the
entries in windowSearchSet and the entries in the leaf nodes
of the tree S. We use the plane sweep technique [11] to
reduce the computation time of finding the matching pairs.
In WindowSearch, the “distance” predicate is used as a join
predicate, but other join predicates such as “overlap,”
“contain,” and “disjoint” predicates can be used as well.
The iteration terminates when there is no more leaf entry
returned from Next OrderedLeafEntry. Finally, the last
window search is performed for the set of any entries
remaining in windowSearchSet (lines 10-11).

Algorithm 1. Basic CoPST ðrootR; rootS; t; SFC;Dthr; bfÞ
Require: rootR: root node of tree R, rootS: root node of

tree S, t: join time stamp, SFC: space filling curve,

Dthr: density threshold, bf : blocking factor

Ensure: The join result returned by the function

WindowSearch.

1: initialize windowSearchSet to an empty set ;.
2: for each leaf entry e returned from
Next OrderedLeafEntryðrootR; rootS; t; SFCÞ do

3: if ðDensityðwindowSearchSet [ fegÞ � DthrÞ and

ðCardinalityðwindowSearchSet [ fegÞ � bfÞ then

4: insert e into windowSearchSet

5: continue {skip the rest of this for loop.}

6: end if

7: WindowSearchðwindowSearchSet; rootS; tÞ
8: initialize windowSearchSet to the current leaf entry e

9: end for

10: if windowSearchSet is not empty then

11: WindowSearchðwindowSearchSet; rootS; tÞ
12: end if

Note that we add entries to the current windowSearchSet
(the current bounding box used to perform a window
search) “on the fly” by ordering them using the SFC (the
ACRM order in Section 2.3) and by using the density
threshold. Here, the ACRM order ensures that the generated
bounding boxes look like squares, and the density threshold
ensures that the entries in the current bounding box preserve
the spatial proximity. Both the ACRM order and the density
threshold enable us to construct tightened bounding boxes
“on the fly” during join processing.

222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

Fig. 3. High-level view of the basic CoPST.



Algorithm 2 shows the algorithm of the function
Next OrderedLeafEntry. This function returns the leaf
entries of the tree R, one for each call, in the spatial order
specified by SFC. It maintains a priority queue for this
purpose. The priority queue is initialized with the root node
of R (lines 1-5). If the current entry e, removed from the
priority queue, is a leaf entry, then the entry is returned
(lines 8-9). Otherwise, from all the entries in the node the
current entry is pointing to, those whose regions match
the region of the root of S are found and inserted into the
priority queue (lines 10-15). Here, the function CBBðnodeÞ
obtains a CBB of node; the function MBBðCBB; tÞ con-
structs a minimum bounding box (MBB) of CBB at time
stamp t. Note that the algorithm eliminates unnecessary
page accesses by not inserting entries that do not match the
region of the root of S (line 12).

Algorithm 2. Next OrderedLeafEntryðrootR; rootS; t; SFCÞ
Require: rootR: root node of tree R, rootS: root node of

tree S, t: a join time stamp, SFC: a space filling curve

Ensure: The next entry of R, matching the region of S,
ordered according to SFC.

Variable: priorityQueue: a global data structure whose

elements are maintained in an order sorted by SFC

1: if priorityQueue has not been initialized then

2: rootEntry:CBB ¼ CBBðrootRÞ
3: rootEntry:ref ¼ rootR
4: EnqueueðpriorityQueue; rootEntry; t; SFCÞ
5: end if

6: while priorityQueue is not empty do

7: e ¼ DequeueðpriorityQueue; t; SFCÞ
8: if e points to an object then {e is a leaf entry}

9: return e

10: else {e points to a node}

11: for each entry e0 in the node pointed to by e:ref do

12: if JoinPredicateðMBBðe0:CBB; tÞ;
MBBðCBBðrootSÞ; tÞÞ then

13: EnqueueðpriorityQueue; e0; t; SFCÞ
14: end if

15: end for

16: end if

17: end while

Fig. 4 illustrates the algorithm Next OrderedLeafEntry.
Consider the tree R at time stamp Tc þ 1, shown in Fig. 4a.

Here, we use the row-major (RM) order as SFC. We assume
that the root nodeR1 has already been pushed in the priority
queue (lines 1-5). When the root node is popped (i.e., e is not
a leaf entry), R2, R4, and R3 are placed in this order in the
priority queue in the RM order, as in Fig. 4b. When the leaf
node R2 is popped, we push o1, o2, and o3 into the priority
queue (lines 10-16), as in Fig. 4c. When the leaf entry o1 is
popped, we return o1 (lines 8-9), as in Fig. 4d.

2.3 Space Filling Curve

It is important to use a good space filling curve for SFC,
since the node access order is determined by the curve. In
this paper, we propose a new space filling curve, the ACRM
order. This curve has been modified from our earlier work
[13], the adaptive RM (ARM) order, which was shown to
perform better than Z order and Hilbert order for a spatial
join [13]. The ARM order divides the space into k ð� 1Þ one-
pass regions along the x-axis and follows the RM order
within each RM component, and the RM component with a
smaller x precedes the one with a larger x. Fig. 5a shows an
example of ARM when there are two RM components.

In CoPST, since we sort the leaf entries (not leaf nodes) of
R, the ARM order tends to generate long horizontal
striplike windows. This becomes problematic if there exist
a small number of components (in the extreme case, only
one component exists), as it can result in many matching
entries of S, thereby increasing the computation time. This
motivates us to propose a novel SFC, the ACRM order.

The ACRM order consists of k ð� 1Þ cell-based RM
(CRM) components of minimum size ð�Þ along the x-axis. It
divides the space into n2 ðn > 1Þ hypothetical grid cells and
follows the RM order within each cell and the ARM order
among the cells. The space is divided into cells in order to
bound leaf entries in the form of a cell. The value of n for
bounding all the leaf entries of R with the smallest number
of pages satisfies

ðn� 1Þ2 < jRleafentryj
bf

� n2

if we assume that the leaf entries are uniformly distributed,
where jRleafentryj denotes the number of leaf entries of R.
Fig. 5b shows an example of ACRM when there are two
CRM components.

Fig. 6 illustrates the advantage of ACRM over ARM. The
horizontal striplike bounding boxes B1 and B2 of the ARM
match six ðS7 � S12Þ and eight (S8 � S11 and S14 � S17) leaf
nodes of S, respectively. In contrast, the squarelike

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 223

Fig. 4. Example of Next OrderedLeafEntry. (a) Tree R at Tc þ 1.
(b) When the root node R1 is popped. (c) When the leaf node R2 is
popped. (d) When the leaf entry o1 is popped.

Fig. 5. Example of (a) ARM order and (b) ACRM order.



bounding boxes B1
0 and B2

0 of the ACRM match four (S7,
S8, S13, and S14) and two (S11 and S12) nodes of S,
respectively.

We have compared the difference in the CoPST
performance using the ACRM order and using others such
as the Z order and the Hilbert order, as well as the ARM
order. The results, obtained using the same data sets used in
Section 5, show that with ACRM, the I/O cost has been
reduced by up to 1.27, 6.36, and 1.27 times compared with
the Z order, the Hilbert order, and the ARM order,
respectively. The improvement over the ARM order is
larger for the CPU cost. Thus, for instance, the elapsed time
ð¼ CPU costþ IO costÞ has been reduced up to 3.02 times
compared with the ARM order when it has only one
component. This is due to the long horizontal striplike
window that causes excessive CPU computation time.

3 COST MODEL OF THE BASIC COPST ALGORITHM

In this section, we present the cost model of the CoPST
algorithm and validate the precision of the model through
experiments. The cost model is based on the following
assumptions. First, objects are distributed in a two-
dimensional space [0, 1] � [0, 1]. Second, the priority
queue is stored in a separate main memory space. (We
will discuss handling a large priority queue in Section 4.)
Third, the LRU buffer page replacement algorithm is used.

In the cost model, we use CostWQðS; qÞ to denote the cost
of a window search query q on a predictive spatiotemporal
tree S. The specific expression of CostWQðS; qÞ depends
on the predictive spatiotemporal tree (e.g., TPR�-tree [5],
Bdual-tree [9]).

In order to model the random effect of page buffering on
the cost, we introduce a random variable X, which denotes
the number of node accesses between two repeated
accesses of the same node. The probability distribution of
X will be discussed below. It is straightforward to see that
given the buffer size of b pages, P ½X � b� is the probability
that the node does not exist in the buffer when accessed
again (i.e., has been replaced by a different page). Here, we
assume one disk page per node, without loss of generality.
The cost model of CoPST is presented in the following
theorem:

Theorem 1. In CoPST, the total cost of performing the join
algorithm Basic CoPST using two index trees R and S

given the buffer of size b, CostBasicðR;S; bÞ, is expressed as
follows:

CostBasicðR;S; bÞ ¼ jRnodej þ jSnodej

þ
XjWQj

i¼1

CostWQðS;wqiÞ � jSnodej
 !

� P ½X � b�;

ð1Þ

where jRnodej and jSnodej are the number of nodes in R and S,
respectively, jWQj is the total number of window searches
performed during the join, and wqi is the ith window search
query. This wqi is expressed as hMwqi ; ti, where Mwqi denotes
the MBB at the join time stamp t.

Proof. Since the window search cost varies, depending on
which nodes of the tree S accessed in a previous query
are still in the buffer, CostWQðS; qÞ should be derived
with the buffer taken into consideration. Let us separate
the cost CostWQ into the cost of accessing the nodes of the
tree S accessed previously (and may or may not be in the
buffer), CostWQp

, and the cost of accessing the nodes of
the tree S the first time, CostWQf

. That is,

CostWQðS; qÞ ¼ CostWQp
ðS; qÞ þ CostWQf

ðS; qÞ: ð2Þ

CoPST accesses each node of R once and only once to
sort the leaf entries (using the priority queue). Then, it
accesses each node of S at least once to perform window
searches on S using the windows’ bounding sorted leaf
entries. There is an additional cost for evaluating a
window query, depending on the available buffer size.
Thus, the total join cost is expressed as

jRnodej þ jSnodej þ
XjWQj

i¼1

CostWQp
ðS;wqiÞ

 !
� P ½X � b�: ð3Þ

This can be rewritten as follows using (2):

¼ jRnodej þ jSnodej

þ
XjWQj

i¼1

CostWQðS;wqiÞ �
XjWQj

i¼1

CostWQf
ðS;wqiÞ

 !

� P ½X � b�:

ð4Þ

Here,
PjWQj

i¼1 CostWQf
ðS;wqiÞ, the summation of the costs

of accessing the nodes of S for the first time, is the same
as the number of nodes in S, jSnodej. Hence, (4) can be
rewritten as (1). tu
Now, let us discuss the probability distribution of the

random variable X. We can regard X values as interarrival
times. Here, following common practice [16], [17], we
measure time intervals in terms of the number of page
accesses between two repeated accesses of the same page in
the page reference string. Consider a stochastic process
fSt ¼

Pt
i¼1 Xijt ¼ 1; 2; . . .g, where Xi is i.i.d. drawn from

F ðXÞ, and St is the time to the tth event. Additionally,
consider NðtÞ defined as the number of events occurring in
ð0; t�. Due to the ordered window searches, CoPST shows
high locality of page accesses so that the probability of Xt

being greater than a certain time period l decreases
dramatically with increasing l. This, along with the i.i.d.
property of Xt, indicates that NðtÞ is a Poisson process, and
thus, X follows the exponential distribution. The prob-
ability density function fðXÞ is thus expressed as

224 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

Fig. 6. Horizontal striplike windows in the ARM order. (a) Bounding

boxes by ARM order. (b) Bounding boxes by ACRM order. (c) Leaf

nodes of Tree S.



fðx;�Þ ¼ �e��x; if x � 0;

0; if x < 0;

�
ð5Þ

where � > 0 and the parameter � is equal to the inverse of
the mean � of X. P ½X � b� is expressed as follows:

P ½X � b� ¼ 1�
Zb
0

fðXÞ ¼ 1� ð1� e��bÞ ¼ e��b:

Similar approaches are used to estimate the probability
distribution for the depth-first spatial join [18], [19].

To model X as an exponential random variable indicates
that most of the X values are less than �� c ðc � 1Þ, where c
is a constant. When c ¼ 2, P ½X � �� c� ¼ e�2 ’ 0:14; when
c ¼ 3, P ½X � �� c� ¼ e�3 ’ 0:05. In CoPST, 1) a page fault
rate decreases significantly in case the buffer size is larger
than the number of pages accessed during a window search,
and 2) between any two consecutive window searches WQ1

and WQ2, a set of pages accessed by WQ1 significantly
overlap with a set of pages accessed by WQ2. Thus, we
estimate � as the average number of nodes accessed during
each window search on the tree S. That is,

� ¼
PjWQj

i¼1 CostWQðS;wqiÞ
� �

jWQj : ð6Þ

Then, P ½X � b� is expressed as follows:

P ½X � b� ¼ e
� jWQjPjWQj

i¼1
CostWQðS;wqiÞ

�b
: ð7Þ

Now, we estimate jWQj and
PjWQj

i¼1 CostWQðS;wqiÞ. To
do so, we construct a two-dimensional histogram, where
each bucket corresponds to a cell in the ACRM order. To
calculate the number of objects in the buckets, we first
obtain a set of CBBs, leafCBBs, of leaf nodes of R by
only accessing the parent nonleaf nodes of the leaf nodes.
Second, for each CBB in leafCBBs, we find buckets that
overlap the CBB and evenly distribute the number of
objects in the CBB to the overlapping buckets. Here, we
assume that each leaf node has the same number of
entries, as in Section 2.1. After these two steps, if there is

a histogram bucket whose size is larger than the blocking
factor, we partition the histogram bucket along the y-axis
to simulate the ACRM order so that the size of each
partitioned bucket is less than the blocking factor. After
constructing the histogram, we can estimate jWQj as
the number of buckets in the histogram. To estimatePjWQj

i¼1 CostWQðS;wqiÞ, we perform window searches using
the buckets on the tree S. In these window searches, we
only need to access nonleaf nodes of S. Note that all these
estimation costs, which are included in the join cost
throughout all experiments, constitute less than 1 percent
of the total performance cost.

3.1 Validation of the Cost Model

We have conducted various experiments to verify the
precision of this cost model using various distributions. We
used the TPR�-tree as a predictive spatiotemporal tree for
all experiments. In the experiment, the data sets used are
Groups 3 � 6 (see Section 5), and the current update time
for the TPR�-tree is set to 20.

Figs. 7 and 8 show the results obtained for a varying
buffer size when the join time stamps are 30 and 50,
respectively. The figures show that the cost model is very
precise for the entire range of buffer size. For the join time
stamp 30, the average errors for the uniform, Gaussian,
skewed, and road network distributions are 4.24 percent,
10.79 percent, 13.38 percent, and 5.80 percent, respectively.
For the join time stamp 50, the average errors for the
uniform, Gaussian, skewed, and road network distributions
are 6.86 percent, 10.80 percent, 11.64 percent, and 8.33 per-
cent, respectively. This shows that the cost model is precise
regardless of the join time stamp value and the data
distribution. Experiment results in Section 5 confirm that
CoPST works very well for all these distributions.

4 GENERAL COPST ALGORITHM

4.1 Basic Concepts

Up to this point, it has been assumed that the priority
queue used in the join algorithm is resident in a main
memory space separate from the buffer space used for the

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 225

Fig. 7. Precision of the cost model at join time stamp 30. (a) Uniform

distribution. (b) Gaussian distribution. (c) Skewed distribution. (d) Road

network distribution.

Fig. 8. Precision of the cost model at join time stamp 50. (a) Uniform

distribution. (b) Gaussian distribution. (c) Skewed distribution. (d) Road

network distribution.



join. In fact, however, the storage space needed for a

priority queue should share the same buffer space needed

for the nodes of the trees (i.e., R and S). The size of a

priority queue can become very large in an environment

where overlaps occur frequently, like moving object

databases. Thus, in this section, we discuss enhancing the

Basic CoPST algorithm to handle a large priority queue

efficiently.
The size of the priority queue has a significant influence

on the buffer utilization efficiency during join processing.

Especially, in case the priority queue size is larger than the

buffer size, most of the tree nodes accessed in the previous

window search are replaced before the next window search

due to buffering of the priority queue. This decreases the

buffer utilization efficiency drastically.
In order to resolve this problem, we consider an alter-

native algorithm that separates the algorithm Basic CoPST

into two phases. The first phase of the algorithm orders the

leaf entries of the tree R using a disk-based priority queue

and saves the ordered entries in a file (called the leaf entry file).

The second phase reads the ordered entries from the file and

performs window searches. We call this algorithm the two-

phase algorithm ð2PHASEÞ and the originalBasic CoPST the

one-phase algorithm ð1PHASEÞ.
With both 1PHASE and 2PHASE available, the

criterion to choosing between them becomes an issue.

For this purpose, we use cost models of each algorithm

and choose one based on the cost estimates at join time.

Fig. 9 shows how the algorithm makes a cost-based

decision to pick either 1PHASE or 2PHASE algorithms.

In this figure, we also add equation numbers, which

reference the different parts of the cost model in the next

section.

4.2 Cost Models of 2PHASE and 1PHASE and the
Selection Rule

The cost of 2PHASE is expressed as a sum of the cost of

ordering the leaf entries of R using a priority queue PQ

and storing the sorted entries in a leaf entry file

F ðCostPQsortÞ, the cost of scanning the leaf entry file

ðCostscanÞ, and the cost of executing the Basic CoPST

algorithm ðCostBasicÞ:

Cost2PHASEðR;S; b; PQ; F Þ ¼CostPQsortðR; b; PQ; F Þ
þ CostscanðF Þ
þ CostBasicðR;S; bÞ � jRnodejð Þ;

ð8Þ

where jRnodej is the number of nodes in the trees R, and b is

the buffer size. Note that jRnodej should be subtracted from

CostBasic because CostBasic includes the cost of scanning the

tree R while it is already included in CostPQsort. See (1) for

CostBasic. CostPQsort and Costscan will be shown in (10) and

(11), respectively, below.
The cost of 1PHASE is the cost of executing

Basic CoPST with the buffer of size b� jPQj, where jPQj
denotes the size of the priority queue (a conservative

estimation of jPQj will be shown in (14)):

Cost1PHASEðR;S; b; PQÞ ¼ CostBasic R; S; b� jPQjð Þ: ð9Þ

4.2.1 PQ-Based Sorting Cost and Leaf Entry File

Scan Cost

In our work, we have implemented the priority queue using

a Bþ-tree (due to its simplicity and good performance). If

b � jPQj, then all the Bþ-tree nodes reside in the buffer, and

thus, the only disk I/O costs are for scanning the nodes of R

and writing the output leaf entry file:

CostPQsortðR; b; PQ; F Þ ¼ jRnodej þ jF j; ð10Þ

where f is the average fill factor of a node, and jF j is the

size of the leaf entry file.
Here, jF j equals the number of pages required to store

all the leaf entries, that is, equals jRleafentryj=bf , where

jRleafentryj is the number of leaf entries in R, and bf is the

blocking factor of a page. Thus, (10) is rewritten as

CostPQsortðR; b; PQ; F Þ ¼ jRnodej þ jRleafentryj=bf
¼ jRnodej þ jRleafnodej � f:

The leaf entry file scanning cost is expressed as

CostscanðF Þ ¼ jRleafnodej � f: ð11Þ

4.2.2 Predicting the Priority Queue Size

Now, we explain the method for predicting the priority

queue size jPQj. We use a maximum size to consider the

worst case. The leaf entries in the priority queue are the

entries in the leaf nodes that overlap the leaf entries ordered

so far. In case the data are distributed uniformly and the

sorting is done in the ACRM order, the number of entries in

the priority queue is the maximum if the ACRM order

consists of two CRM components. Fig. 10 illustrates such a

case, where the dots depict the leaf entries in the priority

queue.
Thus, we can predict the number of leaf entries stored in

a priority queue, jPQleafentryj, by computing the ratio of the

area occupied by those leaf entries to the total area:

jPQleafentryj ¼ jRleafentryj � ð1� s� cþ 0:5� s� cÞ; ð12Þ

226 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

Fig. 9. Illustration of how the General CoPST algorithm works.



where s denotes the average side (i.e., dimension axis)

length of the leaf nodes, and c denotes the fraction of the
leaf entries that are in the priority queue. In the worst case,

the priority queue has all the entries of the leaf nodes
overlapping the leaf entries sorted so far. The value of c is

1.0 in this case. In this paper, we use a value in the middle

between the average case ð¼ 0:5Þ and the worst case ð¼ 1:0Þ,
that is, c ¼ 0:75. Our experiments with various data sets

have shown that the cost estimation with c equal to 0.75 is
slightly more robust with respect to the data distribution

than with 0.5 or 1.0.
By extending (12) to take all entries into account, the

maximum number of entries in the priority queue, jPQentryj,
is expressed as follows:

jPQentryj ¼
Xh
i¼1

jRi;entryj � 1:5� si � c
� �

; ð13Þ

where h denotes the tree height, jRi;entryj denotes the

number of entries in all the nodes at level i (leaf nodes

are at level 1), and si denotes the average side length of the
nodes at level i. (The value of si can be obtained through a

nonleaf node search; this cost will be included in all the
experiments in Section 5.) Let cp denote the average number

of nodes that can be stored in the Bþ-tree representing the

priority queue. Then, the maximum size of the priority
queue, jPQj, is the number of the Bþ-tree nodes storing the

jPQentryj entries, computed as follows:

jPQj ¼
Xh0
i¼1

jPQentryj
cpi

; ð14Þ

where h0 ¼ 1þ dlogcp
jPQentry j

cp
e.

4.3 Putting Them All Together

Algorithm 3 shows the algorithm General CoPST , which

automatically chooses either 1PHASE or 2PHASE,
depending on the estimated cost. It first estimates the size

of the priority queue (using (14)), estimates the costs of

2PHASE and 1PHASE (using (8) and (9)), and then
chooses between 2PHASE and 1PHASE (line 1). Then, it

configures the ACRM order according to the chosen
algorithm and performs the join using the resulting ACRM

(either lines 2-3 or lines 5-6).

Algorithm 3. General CoPST ðrootR; rootS; t;Dthr; bf; bÞ
Require: rootR: root node of tree R, rootS: root node of

Tree S, t: join time stamp, Dthr: density threshold

bf : blocking factor, b: buffer size

1: if b < jPQj or Cost2PHASE < Cost1PHASE then

2: obtain the ACRM order acrm for buffer size b

3: 2PHASEðrootR; rootS; t; acrm;Dthr; bfÞ
4: else

5: obtain the ACRM order acrm for the buffer size
b� jPQj

6: 1PHASEðrootR; rootS; t; acrm;Dthr; bfÞ
7: end if

5 PERFORMANCE EVALUATION

We evaluate the performance of our General CoPST
algorithm by comparing the join processing cost between
this algorithm and the three algorithms based on the depth-
first, the breadth-first, and the transformation-view-based
spatial join algorithms (see Section 6 for an outline of these
algorithms). We refer to these four algorithms as CoPST,
DFSJ, BFSJ, and TVSJ from here on. BFSJ uses as an ordering
key the lower x-coordinate of the node of the tree R (called
OrdOne), which is reported to be the best ordering choice in
BFSJ [12]. The main objective of the experiments is to
compare the join processing cost of CoPST against DFSJ,
BFSJ, and TVSJ and evaluate the effect of the cost-based
switch-over between 1PHASE and 2PHASE in CoPST for a
varying buffer size. In Section 5.1, we describe the setup for
the experiments, and in Section 5.2, we present the
experiments conducted and their results.

5.1 Experiment Setup

We generate experimental data sets using the Generate
Spatiotemporal Data (GSTD) tool [20]. The GSTD tool is a
data generator used broadly in the performance evaluations
on moving objects and is able to generate moving objects
with various distributions [21]. In our experiments, we use
GSTD to generate data sets with the uniform, Gaussian, and
skewed distributions. The maximum speed of an object is
set to 2 km/minute.

We also use the same data set as the one generated by
Saltenis et al. [10]. This data set simulates a road network; it
contains imaginary objects moving on a road. Each object
randomly chooses its source and destination points from
200 fixed points randomly distributed in a 1,000 km �
1,000 km space. Once the objective arrives at the destina-
tion, then it randomly chooses the next destination and
moves to there again. The maximum speed of each object is
one among 0.75 km/minute, 1.5 km/minute, and 3 km/
minute. While moving from a source to a destination, an
object accelerates in the first 1/6 of the distance, moves at
the maximum speed in the next 2/3, and decelerates in the
last 1/6. During this move, each object reports its speed and
location every 20 minutes on the average.

The data sets indexed by R and S are point objects, and a
join using R and S produces all pairs of point objects that
are within less than a certain distance (Dt in Table 2) from
each other. For simplicity, both data sets have the same
number of objects (i.e., jRobjectj ¼ jSobjectj); this makes the

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 227

Fig. 10. An illustration of a priority queue with the maximum number of

leaf entries.



analysis of experimental results easy. Fig. 11 depicts the
distributions of the point objects used in the experiments.
For the road network data set, we use the same data set for
building both R and S; this simulates a self-join.

We use TPR*-trees for the tree R and tree S. Table 1
shows the statistics of the two TPR*-trees and the moving
object data set for each join group. Four different values
of the TPR*-tree horizon ðHÞ are used, and two different
page sizes (4 Kbytes and 8 Kbytes) are used for road
network data sets, as shown in the table. The last column
shows the number of pairs of objects in the join result.
“Distance” is used as the spatial join predicate in all
experiments.

All experiments are done on Window Server 2003 PC
with 512 Kbytes unified (data and instruction) L2 cache,
512 Mbytes RAM, and Pentium IV 2.8-GHz CPU. We use
LRU as the buffer page replacement algorithm.

5.2 Experiments and Results

As already mentioned, our objective is to compare the
join processing costs of different algorithms for different
parameter values. We have conducted the experiments for
different values of the parameters listed in Table 2. (The
parameter values in boldface are the default values used
for fixed parameters in each experiment.)

The experiment results show that CoPST is more
efficient than the other three algorithms in all the cases
tested. Moreover, the results show that CoPST is particu-
larly more efficient than the others when the buffer size is
small or the data distribution is nonuniform. Both of these
are typical for a moving object database. That is, a
spatiotemporal database is typically very large compared
with the available buffer size (this is more so in a multiuser
environment), and many real data distributions are skewed
or clustered.

For applications that require quick responses, it may be
desirable to have both indexes resident in the main
memory. In this case, the CPU cache, with its limited size,
amounts to the buffer of a disk-based environment. The
Pentium IV CPU uses a “pseudo LRU” (a variant of LRU) as
the cache entry replacement policy [22]. Our experiment
shows that CoPST consistently outperforms the other
methods even in a main-memory environment.

Now, we show the results for each case of the experi-
ments. In some experimental results, the buffer size is varied
in two separate ranges: small (152 Kbytes � 1,052 Kbytes)
and large (1,100 Kbytes� 2,052 Kbytes), each corresponding
to 1.5 percent � 10.4 percent and 10.8 percent � 20.2 percent
of the total size of the two join index trees of the default data
set (Group 6). In other experimental results (in which
another parameter is varied), the buffer size is set to two
values selected from each range, that is, 300 Kbytes and
600 Kbytes from the smaller range and 1,300 Kbytes and
1,600 Kbytes from the larger range.

Due to the page limitation, we explain only the
graphs with the smaller buffer size, except for the case
of different data distributions; the graphs of the large
buffer size show the same trends (see Figs. 21, 22, 23, 24,
25, and 26). For the same reason, we show only the
graphs of disk I/O costs; the graphs of elapsed time
show the similar trends (see Fig. 12). We also show the
results obtained in a main-memory resident environment.

5.2.1 For Different Values of the Parameters

Figs. 13 and 14 show the results for the four distributions
ðDsÞ in Group 3 through Group 6, with the buffer size
varying in the small range and the large range, respectively.
We see that CoPST outperforms DFSJ, BFSJ, and TVSJ in the
entire range of the buffer size regardless of the data
distribution. In our experiments, CoPST switches over
between 1PHASE and 2PHASE when the buffer size is

228 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

TABLE 1
Statistics of the Index Trees R and S and

the Moving Object Data Set

TABLE 2
Parameters Used in the Experiments

The values in bold face are the default used when the values are fixed in
the experiments.

Fig. 12. Elapsed time and disk I/O cost for the road network distribution.

(a) Elapsed time. (b) Number of disk pages accessed.

Fig. 11. Distributions of the objects indexed by the tree R at the current

time ð¼ 20Þ. (a) Uniform. (b) Gaussian. (c) Skewed. (d) Road network.



around 800, 852, 800, and 1,000 Kbytes for the uniform,
Gaussian, skewed, and road network distributions, respec-
tively. Due to the high accuracy of our cost model, the CoPST
curve in the figure shows a smooth transition between the
two phases. Fig. 15 shows the results for the two different
numbers of objects ðNÞ, using the data sets of Group 2
(50,000 objects) and Group 6 (100,000 objects). Naturally,
when the number of objects is larger, the join cost is higher
for all the algorithms.

Fig. 16 shows the results for different join time stamps
ðJTSÞ varying from 30 to 70 at the increment of 10. When
the join time stamp is larger, the join cost is higher for all the

algorithms because the CBBs expand more as the time goes
farther from the current time. Fig. 17 shows the results for
different horizons ðHÞ varying from 40 to 130 at the
increment of 30. When the horizon is larger, the join cost
is higher for all the join algorithms because the CBBs
expand more as the horizon is farther away. Fig. 18 shows
the results for different distances ðDtÞ varying from 0.2 Km
to 25 Km at the factor of five. When the distance is longer,
the join cost is higher for all the join algorithms because
there are more objects satisfying the join predicate.

Fig. 19 shows the results for the two page sizes: 4 Kbytes
and 8 Kbytes. When the page size is larger, the I/O cost is
lower for all the join algorithms, because fewer pages need
to be fetched for the same amount of data. However, we
cannot continue to increase the page size indefinitely,
because poor performance will result; the extreme case is
when we have one only page containing all moving objects.
When we performed experiments using the page size of
16 Kbytes, the peak performances of all four algorithms
became worse, due to larger CPU cost (i.e., the larger the
bounding boxes are, the more comparisons are made).

In all these experiments, we see that CoPST gains more
advantage over the other algorithms as the parameter value
increases, with its ability to construct tightened bounding
boxes dynamically while the join is performed at a future
time stamp. Besides, while the join cost increases in the
same way for all the join algorithms, the increase is the
smallest for CoPST.

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 229

Fig. 14. Disk I/O costs for different data distributions (large buffer).

(a) Uniform distribution. (b) Gaussian distribution. (c) Skewed distribu-

tion. (d) Road network distribution.

Fig. 15. Disk I/O costs for different numbers of objects. (a) 50,000 objects.

(b) 100,000 objects.

Fig. 13. Disk I/O costs for different data distributions (small buffer).

(a) Uniform distribution. (b) Gaussian distribution. (c) Skewed distribu-

tion. (d) Road network distribution.

Fig. 16. Disk I/O costs for different join time stamps. (a) Buffer size ¼
300 Kbytes. (b) Buffer size ¼ 600 Kbytes.

Fig. 17. Disk I/O costs for different horizons. (a) Buffer size ¼
300 Kbytes. (b) Buffer size ¼ 600 Kbytes.

Fig. 18. Disk I/O costs for different distances. (a) Buffer size ¼
300 Kbytes. (b) Buffer size ¼ 600 Kbytes.



As the buffer size becomes larger, the I/O cost gap
between CoPST and the other algorithms (DFSJ, BFSJ, and
TVSJ) decreases (see 22, 23, 24, 25, and 26). However,
CoPST is still at least two times faster than the other
algorithms consistently over all buffer sizes (see Fig. 21).
This comes from the fact that when the buffer size is large
the CPU cost is a major cost determining the elapsed time
while using the tightened bounding boxes in CoPST
reduces the CPU time (as well as the I/O time) in
contrast to the other three algorithms.

5.2.2 For Main-Memory-Based Joins

Fig. 20 shows the elapsed times of the algorithms in a main-

memory database environment. It is not possible to show

the results for a varying cache size (in the same manner as

in Figs. 13, 14, 15, 16, 17, 18, and 19) because the cache size is

fixed for a given PC hardware. We see that the performance

advantage of CoPST over the other algorithms is larger than

in the disk-based environment. CoPST reduces the number

of comparisons, as well as the number of CPU cache misses,

and the number of comparisons plays a major role in the

main-memory environment.

6 RELATED WORK

To our knowledge, there has been no predictive spatiotem-
poral join algorithm in the literature. Sun et al. [6] and
Tao et al. [4] researched on selectivity estimation of
predictive spatiotemporal joins but did not address the cost
formula of predictive spatiotemporal joins. Tao et al. [5]
dealt with predictive window queries, but these are not join
queries. Iwerks et al. [23] proposed a “spatial semijoin”

230 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009

Fig. 20. Elapsed time for main-memory-based joins.

Fig. 21. Elapsed time and disk IO cost. (a) Elapsed time. (b) Number of

disk pages accessed.

Fig. 22. Disk I/O costs for different numbers of objects. (a) 50,000 objects.

(b) 100,000 objects.

Fig. 23. Disk I/O costs for different join time stamps. (a) Buffer size ¼
1;300 Kbytes. (b) Buffer size ¼ 1;600 Kbytes.

Fig. 24. Disk I/O costs for different horizons. (a) Buffer size ¼
1;300 Kbytes. (b) Buffer size ¼ 1;600 Kbytes.

Fig. 25. Disk I/O costs for different distances.(a) Buffer size ¼
1;300 Kbytes. (b) Buffer size ¼ 1;600 Kbytes.

Fig. 26. Disk I/O costs for different page sizes.(a) Page size ¼ 4 Kbytes.

(b) Page size ¼ 8 Kbytes.

Fig. 19. Disk I/O costs for different page sizes. (a) Page size ¼ 4 Kbytes.

(b) Page size ¼ 8 Kbytes.



algorithm, but the join time was the present, and the
focus was on how to maintain join results as time passes.
Jeong et al. [3] studied the performance of spatiotemporal
join strategies, but they considered only historical spatio-
temporal joins. Similarly, Arumugam and Jermaine [1] dealt
with historical closest pair joins, and Bakalov et al. [2] dealt
with a variant of historical spatiotemporal join.

As for the spatial join algorithms using indexes on both
input files,1 there are three representative spatial join
algorithms, using R*-trees [27]. They are the DFSJ algorithm
[11], the BFSJ algorithm [12], and the TVSJ algorithm [13].
The third one has been proposed recently and shown to
perform better than the first two.

The depth-first algorithm finds the pairs of overlapping
leaf entries through a depth-first traversal of each index. In
this case, if there is no overlap between two nonleaf nodes
(one node from each file), then there cannot be any overlap
between all children nodes traversed recursively from them.
By taking advantage of this property, the join algorithm
reduces the number of nodes to be compared in the two
input files. One problem is that the same page (with one
page per node) may be read repeatedly from disk. In order
to alleviate this problem, heuristic approaches such as local
plane sweeping and pinning have been used in [11]. These
heuristic approaches, however, do not guarantee a globally
optimal node access order because they optimize the access
order only for the children nodes of one pair of overlapping
nonleaf nodes at a time and thus does not consider the
access order for all the nodes that may overlap [13].

The breadth-first algorithm guarantees to find a globally

optimal node access order. It first saves in an “intermediate

join index” the information about all pairs of overlapping

nodes found through a breadth-first traversal of the indexes.

Then, it considers the access order of all the join candidate

nodes in the intermediate join index. This generates a

globally optimal node access order. However, we observe

that as the number of the pairs of overlapping nodes becomes

large, which is common in a moving object database, the

size of the intermediate join index increases quadratically.

In this case, it entails expensive I/O cost to materialize the

join index and to generate the optimal access order.
The transformation-view-based algorithm first sorts the

leaf nodes of one R*-tree by their spatial adjacency in a
“transformed space.” Then, it finds overlapping nodes by
performing a window search of the other R*-tree using each
node in the first R*-tree as the window. It improves the
buffer utilization by allowing the nodes accessed in the
previous window search to remain in the buffer as long as
possible. We observe, however, that in a moving object
database the buffer utilization is poor with small buffer if
there is much overlap among the sorted leaf nodes. In [28], a
variant of spatial join with a similar spirit is presented; it
first sorts the leaf nodes of one R�-tree in the Hilbert
order and executes the nearest neighbor search for the other
R�-tree. This algorithm has the same problem.

These spatial join algorithms can be applied to predictive

spatiotemporal trees [8], [7], [9], [10], [5]. However, the

predictive spatiotemporal trees are designed to optimize the

overall query performance for a duration H (horizon) from

the index creation time. As a result, the bounding boxes do

not bound objects optimally during an interval shorter than

H, and hence, there are unnecessarily many pairs of

overlapping nodes found. This causes a performance

degradation. Specifically, in the depth-first case, the perfor-

mance degrades due to the large number of overlapping

node pairs, as well as the ineffectiveness of local optimiza-

tion. In the breadth-first case, the performance degrades due

to the high cost of using an intermediate join index, as the

size of the intermediate index increases quadratically with

the number of overlapping node pairs. In the transforma-

tion-view-based case, the performance degrades due to a

low buffer utilization, which reduces the likelihood of a node

accessed in the previous window query to remain in the

buffer.
The fundamental reason for all these problems is that the

predictive spatiotemporal indexes use bounding boxes that

are not optimal at a future query time. The solution,

therefore, is to tighten the bounding boxes at runtime.

7 CONCLUSION

In this paper, we proposed an efficient predictive spatio-

temporal join algorithm called CoPST, which performs a join

on future time and space. CoPST involves index-assisted

sorting, density-based moving-object bounding, and a

window search with a bounding box. These features are

important for constructing the bounding boxes globally tight

during join processing to minimize the overlap and the join

processing cost. Next, we proposed ACRM, a new space

filling curve used to determined the join order. The ACRM

order adaptively controls the order of pages to be joined

depending on the available buffer size. Next, we developed

a novel probabilistic cost model by incorporating the effect

of page buffering into the cost. Our model can accurately

estimate the join cost regardless of the data distribution.

Moreover, CoPST switches dynamically between the main

memory and the disk for temporary buffering of the priority

queue used in the index-assisted sorting phase, based on the

probabilistic cost model. The resulting algorithm is a hybrid

of one- and two-phase algorithms.
We conducted extensive experiments using various data

distributions to evaluate our join algorithm for a wide range

of buffer size. In all the experiments, our algorithm

outperformed the algorithms adapted from state-of-the-art

spatial join algorithms.
To our knowledge, CoPST is the first predictive spatio-

temporal join algorithm. We believe more research will

follow in this direction. The future work includes develop-

ing predictive spatiotemporal join algorithms that are usable

when only one or neither input file is indexed, when the join

condition is on the time interval (i.e., time-interval joins), and

when parallelizing the algorithm.

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 231

1. There exists another class of spatial join algorithms that do not use
indexes on both files. Examples are the Partition-Based Spatial Merge Join
[24], Spatial Hash Join [25], Iterative Spatial Join [26], and Slot Index Join
[19]. Each class has its own advantages and applications.



ACKNOWLEDGMENTS

This work was supported by the Korea Research Founda-

tion Grant funded by the Korean Government (MOEHRD)

(KRF-2007-521-D00399). Yufei Tao was supported by grants

CUHK 1202/06, 4161/07, 4173/08 from HKRGC.

REFERENCES

[1] S. Arumugam and C. Jermaine, “Closest-Point-of-Approach Join
for Moving Object Histories,” Proc. 22nd Int’l Conf. Data Eng.
(ICDE), 2006.

[2] P. Bakalov, M. Hadjieleftheriou, and V. Tsotras, “Time Relaxed
Spatiotemporal Trajectory Joins,” Proc. 13th ACM Int’l Workshop
Geographic Information Systems (GIS), 2005.

[3] S.-H. Jeong et al., “An Experimental Performance Evaluation
of Spatio-Temporal Join Strategies,” Trans. GIS, vol. 9, no. 2,
2005.

[4] Y. Tao, J. Sun, and D. Papadias, “Analysis of Predictive Spatio-
Temporal Queries,” ACM Trans. Database Systems, vol. 28, no. 4,
2003.

[5] Y. Tao et al., “The TPR*-Tree: An Optimized Spatio-Temporal
Access Method for Predictive Queries,” Proc. 29th Int’l Conf.
Very Large Data Bases (VLDB), 2003.

[6] J. Sun, Y. Tao, D. Papadias, and G. Kollios, “Spatio-Temporal
Join Selectivity,” Information Systems, vol. 31, no. 8, 2006.

[7] J. Patel, Y. Chen, and V. Chakka, “Stripes: An Efficient Index
for Predicted Trajectories,” Proc. ACM SIGMOD, 2004.

[8] C.S. Jensen et al., “Query and Update Efficient Bþ-Tree Based
Indexing of Moving Objects,” Proc. 30th Int’l Conf. Very Large
Data Bases (VLDB), 2004.

[9] M. Yiu et al., “The Bdual-Tree: Indexing Moving Objects by
Space-Filling Curves in the Dual Space,” VLDB J., vol. 17, no. 3,
2008.

[10] S. Saltenis et al., “Indexing the Positions of Continuously Moving
Objects,” Proc. ACM SIGMOD, 2000.

[11] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient Proces-
sing of Spatial Joins Using R-Trees,” Proc. ACM SIGMOD,
1993.

[12] Y.-W. Huang et al., “Spatial Joins Using R-Trees: Breadth-First
Traversal with Global Optimizations,” Proc. 23rd Int’l Conf. Very
Large Data Bases (VLDB), 1997.

[13] M. Lee et al., “Transform-Space View: Performing Spatial Join
in the Transform Space Using Original-Space Indexes,” IEEE
Trans. Knowledge and Data Eng., vol. 18, no. 2, Feb. 2006.

[14] J. Orensten, “Spatial Query Processing in an Object-Oriented
Database System,” Proc. ACM SIGMOD, 1986.

[15] D. Hilbert, “Über Die Stetige Abbildung Einer Linie Auf
Flächenstück,” Mathematische Annalen, 1891.

[16] E.G. Coffman and P.J. Denning, Operating Systems Theory.
Prentice-Hall, 1973.

[17] E.J. O’Neil et al., “The LRU-K Page Replacement Algo-
rithm for Database Disk Buffering,” Proc. ACM SIGMOD,
1993.

[18] Y. Huang, N. Jing, and E. Rundensteiner, “A Cost Model for
Estimating the Performance of Spatial Joins Using R-Trees,”
Proc. Ninth Int’l Conf. Scientific and Statistical Database Manage-
ment (SSDBM), 1997.

[19] N. Mamoulis and D. Papadias, “Slot Index Spatial Join,” IEEE
Trans. Knowledge and Data Eng., vol. 15, no. 1, Jan./Feb. 2003.

[20] Y. Theodoridis, J. Silva, and M. Nascimento, “On the Generation
of Spatiotemporal Datasets,” LNCS, vol. 1651, 1999.

[21] D. Pfoser et al., “Novel Approaches to the Indexing of Moving
Object Trajectories,” Proc. 26th Int’l Conf. Very Large Data Bases
(VLDB), 2000.

[22] A-32 Intel Architecture Optimization Reference Manual. Intel Cor-
poration, 2005.

[23] G. Iwerks, H. Samet, and K. Smith, “Maintenance of Spatial
Semijoin Queries on Moving Points,” Proc. 30th Int’l Conf. Very
Large Data Bases (VLDB), 2004.

[24] J. Patel and D. DeWitt, “Partition Based Spatial-Merge Join,” Proc.
ACM SIGMOD, 1996.

[25] M. Lo and C. Ravishankar, “Spatial Hash-Joins,” Proc. ACM
SIGMOD, 1996.

[26] E. Jacox and H. Samet, “Iterative Spatial Join,” ACM Trans.
Database Systems, vol. 28, no. 3, 2003.

[27] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles,” Proc. ACM SIGMOD, 1990.

[28] J. Zhang et al., “All-Nearest-Neighbors Queries in Spatial
Databases,” Proc. 16th Int’l Conf. Scientific and Statistical Database
Management (SSDBM), 2004.

Wook-Shin Han received the BS degree in
computer engineering from Kyungpook Na-
tional University, Daegu, Korea, in 1994 and
the MS and PhD degrees in computer science
from the Korea Advanced Institute of Science
and Technology (KAIST) in 1996 and 2001,
respectively. He is currently a assistant pro-
fessor in the Database Laboratory, Depart-
ment of Computer Engineering, Kyungpook
National University. In the past, he has worked

as a postdoctoral researcher at IBM Almaden Research Center,
working on parallel progressive optimization. His research interests
include query processing and optimization, similarity search, XML
databases, object-oriented/object-relational databases, and informa-
tion retrieval. He is the workshop chair of CIKM 2009. He is an
editorial board member of several international journals. He is a
member of the IEEE Computer Society.

Jaehwa Kim is a member of the Database
Laboratory led by Professor Wook-Shin Han
in the Department of Computer Engineering,
Kyungpook National University, Daegu, Korea.
He is interested in join processing and similar-
ity search.

Byung Suk Lee received the BS degree from
Seoul National University, the MS degree from
the Korea Advanced Institute of Science and
Technology (KAIST), and the PhD degree from
Stanford University. He held several positions in
the industry and academia: previously at Gold
Star Electric, Bell Communications Research,
Datacom Global Communications, and the Uni-
versity of St. Thomas. He was also a visiting
professor at Dartmouth College and a participat-

ing guest at Lawrence Livermore National Laboratory. He is currently an
associate professor of computer science in the Department of Computer
Science, University of Vermont, Burlington. His main research interests
are database systems, data management, and query processing. He
served on international conferences as a program committee member, a
publicity chair, a special session organizer, and a workshop organizer,
and also on the review panels of US federal funding agencies. He is a
member of the IEEE Computer Society.

Yufei Tao joined the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, New Territories, Hong Kong, in
September 2006. Before that, he held positions
at the Carnegie Mellon University and the City
University of Hong Kong. He is engaged in
research of database systems. He is particularly
interested in index structures and query algo-
rithms on multidimensional data and has pub-
lished primarily on temporal databases, spatial

databases, and privacy preservation. He received the Hong Kong Young
Scientist Award in 2002. He has served the program committees of most
prestigious database conferences such as ACM Sigmod, VLDB, and
ICDE and is currently an associate editor of ACM Transactions on
Database Systems. He is a member of the ACM.

232 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 2, FEBRUARY 2009



Ralf Rantzau received the PhD degree from
Universität Stuttgart. He is a researcher and a
senior software engineer at IBM. He currently
works on business intelligence, data integration,
and RFID data management at the IBM Silicon
Valley Laboratory, San Jose, California. Prior to
this, he worked in the Intelligent Information
Systems Research Group at the IBM Almaden
Research Center on privacy technology for
information systems, as well as context-based

search problems. He has published more than 20 scientific papers,
submitted several invention disclosures, and won the Best Paper Award
at ICDE in 2006.

Volker Markl received the PhD degree from
Technische Universität München. He is a full
professor at Technische Universität Berlin,
leading the Database Systems and Information
Management Group. Prior to this, he led a
research group at FORWISS, the Bavarian
Research Center for Knowledge-Based Sys-
tems, and worked as a research staff member
and project leader at the IBM Almaden Research
Center. His research areas include indexing,

query processing and optimization, information extraction, information
integration, and cloud computing. He has given more than 100 invited
talks at industry, conferences, and universities, has published more than
50 papers at world-class scientific venues, and has submitted more than
20 invention disclosures. He earned numerous prestigious awards,
including the Information Society and Technology Price 2001 awarded
by the European Union, an IBM Outstanding Technological Achieve-
ment Award, and the Pat Goldberg Best Paper Award.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HAN ET AL.: COST-BASED PREDICTIVE SPATIOTEMPORAL JOIN 233


