
STATISTICAL COST-MODELING OF FINANCIAL TIME
SERIES FUNCTIONS

Vinod Kannoth∗, Byung Suk Lee∗∗, Jeff Buzas∗∗∗
∗Federal Reserve Information Technology, 701 East Byrd Street, Richmond, VA 23219, USA

∗∗Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
∗∗∗Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA

E-mails: vinod.kannoth@frit.frb.org, byung.lee@uvm.edu, jeff.buzas@uvm.edu

Abstract
We present a statistical regression approach to
building a cost model of an aggregate financial
time series function. The cost model is needed
by an object-relational DBMS query optimizer.
This approach is much easier than the traditional
analytical approach and yet achieves a highly pre-
cise model. Users only need to provide a set
of variables influencing the costs. This requires
only high-level understanding of how the func-
tion works. Experiments show that the cost mod-
els thus built are highly precise and that quadratic
models are adequate.

Key Words
Regression, financial time series, query optimiza-
tion

1 Introduction

Financial time series (FTS) functions, used ex-
tensively in stock market analyses, are supported
by all major object-relational database manage-
ment systems (ORDBMSs). There are differ-
ent types of FTS functions, such as extraction,
shift, aggregate, arithmetic, cumulative sequence,
moving sequence, and conversion.

Among these, only aggregate FTSs, which
return single values, are usable in the ‘where’
clause of an SQL query statement. (See an ex-
ample in Fig. 1.) We thus focus on aggregate
FTSs in this paper. An aggregate FTS function
is used to perform an aggregation over a time se-
ries and return the aggregate value. Those typi-
cally supported by an ORDBMS are Avg, Count,

select c.name, c.stock ticker
from Company c, Time Series ts
where c.country = “USA”
and c.stock ticker = ts.ticker
and MIN(ts.ticker, 01/01/2003, 12/31/2003) > 50
and MAX(ts.ticker, 01/01/2003, 12/31/2003) < 100
and MED(ts.ticker, 01/01/2003, 12/31/2003) > 75
and MED(ts.ticker, 01/01/2003, 12/31/2003) < 85

Figure 1. a query with aggregate FTS functions.

Sum, Product, Variance, Min, MinN (mininum N
elements), Max, MaxN (maximum N elements),
and Median. If a date range (i.e., start date and
end date) is given, then the aggregation is done
only on the elements in the date range.

Extensible query optimizer of an ORDBMS
needs the execution cost function of a user-
defined function (UDF) specified in the ‘where’
clause of an SQL statement [1, 2]. (The exten-
sible query optimizer will be described in Sec-
tion 2.3.) A UDF is a database function that
is not built in an ORDBMS. Thus, there is no
cost function provided by the ORDBMS man-
ufacturers. FTS functions, including aggregate
FTS functions, are in this category.

Without a built-in cost function, it is left up
to the application developers (who are users of
the ORDBMS) to provide the cost functions of
aggregate FTS functions used in their query state-
ments. Traditionally, a database cost function is
built as an analytical function of “data variables.”
These variables are derived from a data profile
describing data configurations (e.g., cardinality,
selectivity, blocking factor) and system configu-

rations (e.g., buffer size, disk page size). Typ-
ically, identifying and deriving these data vari-
ables require advanced knowledge of DBMS in-
ternal implementations [3, 4]. This is an over-
whelming task for most users, and the resulting
cost model suffers from inaccuracy. This point
will be revisited in Section 2.2. In this paper,
we propose an easier way – a statistical regres-
sion modelling approach. In this approach, users
only need to provide the variables influencing the
cost (termed cost variables) and a specification
for generating a training data set from the ob-
served execution costs. Cost variables can be de-
termined in a straightforward manner based on
users’ understanding of the algorithm at a high
level. The specification can be in the form of a
grid plan based on the sampling range and sam-
pling interval of each cost variable. Then, the
system generates a training data set according to
the user-provided specification and builds a cost
function expressed as a regression model fitting
the training data set.

We have observed that, for all the existing
aggregate FTS functions, their execution costs
are characterized by smooth, continuous, and
monotonous variations. This makes sense be-
cause these functions perform computations on
the ticker price while scanning time series el-
ements in the data. Although the computation
result may fluctuate as much as the ticker price
does, the computation time (i.e., execution cost)
is determined solely by the number of elements
processed. Therefore, the cost is determined by
the time interval over which the computation is
performed.

Given cost variations with these character-
istics, we show that a quadratic function can
model cost precisely. The rationale behind this
quadratic model is given further in Section 3
where details of the cost model building proce-
dure are discussed. Experimental results show
that our approach achieves quite accurate cost es-
timations.

Two main contributions are made through
this paper. First, we propose an approach which
enables users to build the cost functions of ag-
gregate FTS functions without knowing the in-

CREATE TYPE ORDSYS.ORDTCalendar AS OBJECT
(

caltype INTEGER,
name VARCHAR2(256),
frequency INTEGER,
pattern ORDSYS.ORDTPattern,
minDate DATE,
maxDate DATE,
offExceptions ORDSYS.ORDTExceptions,
onExceptions ORDSYS.ORDTExceptions

);

This calendar is defined by the frequency (e.g., day),
pattern (e.g., ‘011110’ for data during five weekdays
and not during weekends), minimum and maximum
timestamp dates, and exception dates (e.g., weekdays
with no data or weekends with data).

Figure 2. calendar of financial time series data.

ternals of an ORDBMS. Second, we demonstrate
the merit of our approach through experiments,
specifically, the accuracy of generated cost func-
tions.

The rest of this paper is organized as fol-
lows. Section 2 provides some background in-
formation. Section 3 describes our approach to
building cost models. Section 4 evaluates our ap-
proach. Section 5 discusses related work. Sec-
tion 6 concludes.

2 Background

This section contains a brief overview of financial
time series, cost estimate-based query optimiza-
tion (with a focus on the analytical approach) and
extensible query optimizer of an ORDBMS.

2.1 Financial time series

A financial time series (FTS) refers to a sequence
of financial summary data – typically daily sum-
mary. A time series in general may be regular or
irregular depending on whether it has an associ-
ated calendar. A regular time series data arrive
predictably at intervals defined by a calendar. An
example is a series of daily stock market sum-
maries, such as trade volumes and the opening,
high, low, and closing prices. Fig. 2 shows a cal-
endar used in OracleTMORDBMS.

An irregular time series has no associated

calendar, and data arrive unpredictably at unspec-
ified time points. An example is a series of ac-
count transactions (e.g., deposits, withdrawals) at
a bank teller machine. An irregular time series
may have long periods with no data or short peri-
ods with bursts of data.

2.2 Query optimization using analyt-
ical cost modelling

A cost estimate-based query optimizer gener-
ates an optimal query execution plan (QEP) for
a given query, based on the cost estimates of al-
ternative QEPs [5, 6]. In the analytical approach,
the cost estimate of a QEP is the sum of the costs
of executing all the operators in the QEP. For this
estimation purpose, each operator has an associ-
ated cost function.

The cost function is expressed as a formula
of variables (or parameters) that must be instan-
tiated to calculate the cost. There are typically
three kinds of variables: hardware variables, data
profile variables, and derived variables. Hard-
ware variables are constant per database instance.
Examples are the disk block size and the main
memory buffer size. Data profile variables de-
scribe the statistics of the data stored. Examples
are the number of rows in a table, the size of a
row in a table, the number of distinct values of
a column (or columns) of a table, and the height
of an index on a table. Derived variables are cal-
culated from hardware variables and data profile
variables. Examples are the number of blocks in a
disk-resident file, the number of records per disk
block, the selectivity of a predicate on a column,
and the selectivity of a join predicate.

As mentioned in Introduction, we collec-
tively call these kinds of variables data variables.
Typically, ORDBMS developers, who develop
the routines executing individual operations, are
responsible to determine the data variables and
build the cost functions of these variables.

Evidently, this analytical process of gener-
ating a cost function is very complicated. More-
over, the cost functions thus generated are not al-
ways effective, and it becomes worse as the query
complexity increases. Due to the insurmount-

able complexity involved in the task of develop-
ing cost functions analytically, developers often
simplify the cost functions drastically. As a re-
sult, the generated cost functions suffer from in-
accuracy.

The QEP selected by such a query optimizer
is never optimal. It is even said by Krishnamurthy
et al. [7] that for a traditional query optimizer “It
is more important to avoid the worst execution
than to obtain the best execution.” The problem
becomes worse when it comes to UDFs, which
may include multiple queries to be optimized as
an ordered set. Furthermore, even if the analyt-
ical approach were effective, deferring the over-
whelming task to users is the last thing a market-
savvy DBMS manufacturers should do. This is
the problem our proposed approach is aiming to
resolve.

2.3 Extensible query optimizer

An ORDBMS’s extensible framework provides
an interface for incorporating UDF cost func-
tions into its cost estimate-based query optimizer.
Three cost functions are needed for each UDF:
one for each of the CPU cost, disk I/O cost, and
network I/O cost. The metrics of these cost com-
ponents should be immune to changes of the sys-
tem environment. Therefore, for instance, Ora-
cle’s extensible query optimizer uses the follow-
ing metrics: for CPU cost, the number of ma-
chine instructions executed by the CPU, for disk
I/O cost, the number of data pages transferred
from disk to main memory buffer, and for net-
work I/O cost, the number of data blocks trans-
mitted via the network. Our approach uses the
first two cost metrics. The third metric is not con-
sidered here because it is not actually used by any
ORDBMS yet.

An extensible query optimizer can handle
UDF predicates (e.g., udf(‘01/01/1985’, 50000,
‘Sales’) > 60) in the same manner as it handles
plain relational predicates (e.g., Employee.salary
> 50000). This extensible query optimizer needs
users to provide the cost functions associated
with each UDF predicate.1 Then, provided with

1It also needs a selectivity function of a UDF predicate,

Aggregate FTS function

Determine cost variables

Cost variables

Determine training input values

Training input data set

Translate into input arguments

Execute aggregate FTS function

Training data set

Train statistical model

Cost model

User

Determine grid plan

Grid plan

Time series
data set

Aggregate FTS function

Determine cost variables

Cost variables

Determine training input values

Training input data set

Translate into input arguments

Execute aggregate FTS function

Training data set

Train statistical model

Cost model

Aggregate FTS function

Determine cost variables

Cost variables

Determine training input values

Training input data set

Translate into input arguments

Execute aggregate FTS function

Training data set

Train statistical model

Cost model

User

Determine grid plan

Grid plan

Time series
data set

Figure 3. cost model building procedure.

cost functions, it orders the UDF predicates based
on their estimated execution costs.

3 Model Building Steps

Fig. 3 shows the cost model building steps. In
the first step, users determine cost variables and
a grid plan. As will be demonstrated in Sec-
tion 4.2, determining cost variables is a straight-
forward task in the case of aggregate FTS func-
tions. A grid plan is defined as the sampling
range and sampling interval for each cost vari-
able. This grid sampling covers the model space
(i.e., the Cartesian space defined by cost vari-
ables) evenly.

In the second step, a training input data
set is generated by taking samples in the model
space according to a grid plan. In the third step,
a training data set is generated by executing the
aggregate FTS function at each grid point. For
this, first the aggregate FTS function’s input ar-
gument values are generated from the training
input data set. Each input argument is either a
cost variable itself or transformed from one or
more cost variables. For example, two cost vari-

but this is out of the scope of this paper.

ables startdate and enddate may be transformed
into an input argument daterange as daterange =
enddate - startdate + 1. The generated training
data set is formed by combining the cost variables
and the measured CPU and disk IO costs, that
is, {〈v1, v2, · · · , vd, CPU cost, disk IO cost〉}
where v1, v2, · · · , vd are cost variables.

In the fourth step, the training data set is
used to build a cost model through statistical
training. Specifically, the system builds a full
quadratic regression model by using the cost vari-
ables as the regression variables and fitting the
model to the training data set. Quadratic regres-
sion models have shown to be precise enough
for aggregate FTS functions in our evaluations
(Section 4). The quadratic models we employ
are equivalent to the second order Taylor approx-
imation [8] to the true but unknown cost func-
tions2. Second order approximations are used
extensively in a wide variety of applications [9]
because the approximation is quite good pro-
vided that the true unknown function is reason-
ably smooth.

A cost variable is either ordinal or nominal.
A nominal one cannot be used in a cost func-
tion because of its random effect on the execu-
tion cost, although it is possible to build separate
models for individual values of a nominal vari-
able if the cardinality is manageable. In our eval-
uations below, we consider only the ordinal case,
by using regular time series data.

4 Evaluations

Evaluations are done for the cost estimation accu-
racies achieved using statistical cost models. In
this section we present the experiment setup, re-
gression model building, training and test data set
generation, and then regression analyses.

4.1 Setup

4.1.1 Aggregate FTS functions

Two groups of aggregate FTS functions are used.
The first group (Group 1) consists of Count,

2Considering a single cost variable x, the second order
Taylor approximation of f(x) is f(0)+f ′(0)x+f ′′(0) x

2

2
.

CREATE OR REPLACE FUNCTION FTSCount(
tickersymbol: VARCHAR(10),
startdate: DATE, enddate: DATE)
numcnt NUMBER;

BEGIN
SELECT COUNT(tstamp) into numcnt
FROM tsdev.tsquick_tab
WHERE ticker = tickersymbol

AND tstamp >= startdate
AND tstamp <= enddate;

RETURN numcnt;
END FTSCount;

Figure 4. source code of FTSCount.

Avg, and Min. These are basic ones commonly
used in financial time series analysis. It is suf-
ficient to study the three functions for Group 1,
as cost curves for the other functions, such as
sum, variance, product, and max are extremely
similar. The second group (Group 2) consists
of MinMavg, NthMavg, MinGrpMavg, and Nth-
GrpMavg. These functions are our own exten-
sions, and are studied here because they have
more complex cost functions. All these FTS
functions are implemented in Oracle PL/SQL.

Every aggregate FTSf in the group 1 has the
following signature:

FTSf(tickersymbol, startdate, enddate)
where f is “Count”, “Avg”, or “Min”. Fig. 4
shows the code of FTSCount. The codes of FT-
SAvg and FTSMin are the same except for the
aggregate function in the SELECT clause. The
codes are very simple, and so is the variation of
the execution costs.

Group 2 functions are based on the mov-
ing average (Mavg) function described in Fig. 5.
Their signatures are as follows.

• MinMavg(tickersymbol, startdate, enddate,
windowsize)

• NthMavg(tickersymbol, startdate, enddate,
windowsize, n)

• MinGrpMavg(groupsymbol, startdate, end-
date, windowsize)

• NthGrpMavg(groupsymbol, startdate, end-
date, windowsize, n)

Given a ticker symbol, NthMavg returns the n-th
minimum of moving averages calculated within
a specified date range, and MinMavg returns the

start date end date

window

Input
time series

Output
time series

start date end date

window

Input
time series

Output
time series

For a given stock ticker symbol, this function com-
putes the average daily stock closing price within a
sliding window between start date and end date (inclu-
sive), and generates a time series of window average
as a result.

Figure 5. moving average function.

first minimum. NthGrpMavg extends NthMavg
by considering a group of ticker symbols instead
of a single one. That is, given a group sym-
bol (e.g., NASDAQ), it returns the n-th minimum
moving average of the time series of group av-
erage. MinGrpMavg returns the first minimum
instead of the n-th minimum. Selecting the n-
th minimum involves sorting, for which we use
mergesort, whereas selecting the first minimum
involves only linear scan and no sorting. Figure 7
in Section 4.2 shows the source code of NthGrp-
Mavg.

We believe that Group 2 functions, which
are based on the moving average function, are
adequate enough to represent “complex” FTS ag-
gregate functions. There may be other functions
we may use, such as moving sum and cumulative
average/sum/min/max. Moving sum is not dif-
ferent from moving average in terms of cost vari-
ables and the cost varations. Cumulative average,
sum, min, and max are even simpler than mov-
ing average. They give only one the cost varible
(i.e., date range) and their execution costs vary
only linearly with the cost variable. In contrast,
as will be seen in Section 4.2, Group 2 functions
give two or three cost variables and their execu-
tion costs vary linearly or linear-logarithmically
(i.e., n log n).

4.1.2 Financial time series data

Fig. 6 shows the schema of financial ticker
time series data used in the experiment. The
schema tsdev contains two tables. The ta-

tsquick_tab // time series of one ticker

ticker : varchar(10) // ticker symbol
tstamp : date
open : decimal(7, 3) // opening price
high : decimal(7, 3) // highest price
low : decimal(7, 3) // lowest price
close : decimal(7, 3) // closing price
volume : decimal // traded volume

ticker_index // a group of tickers

ticker_index_id : varchar(10) // group symbol
ticker_index : varchar(30) // group description
ticker : varchar(30) // ticker symbol

foreign key

Schema tsdev

tsquick_tab // time series of one ticker

ticker : varchar(10) // ticker symbol
tstamp : date
open : decimal(7, 3) // opening price
high : decimal(7, 3) // highest price
low : decimal(7, 3) // lowest price
close : decimal(7, 3) // closing price
volume : decimal // traded volume

ticker_index // a group of tickers

ticker_index_id : varchar(10) // group symbol
ticker_index : varchar(30) // group description
ticker : varchar(30) // ticker symbol

foreign key

Schema tsdev

Figure 6. financial time series data schema.

ble ticker index is an index to ticker sym-
bols that are members of a group, and the table
tsquick tab is a table that contains the time
series data of a particular ticker symbol. Data
records of tsquick tab are sorted by the pri-
mary key fields.

The date range of time series is 29220 days
(or 80 years) for each ticker. There are four
groups in the data, with the group size of 5, 10,
15, and 20.

4.2 Regression model building

In order to demonstrate the adequacy of quadratic
models, we compare the precision of quadratic
models (Quad) with the precision of models ob-
tained through run-time analysis (RTA) of aggre-
gate FTS functions. Table 1 summarizes the cost
variables and the regression models of the ag-
gregate FTS functions used in the experiments.
Since we consider regular time series data, ticker
symbol and start date have no effect on the costs
and, therefore, are not cost variables.

From the semantics of the group 1 functions
(see Fig. 4), it is obvious that their cost variations
are linear with the date range as the only cost
variable. Hence, the RTA model is a linear re-
gression as shown in Table 1(a). In contrast, we
need two to three cost variables for the group 2
functions, as shown in Tables 1(b) and (c). The
cost variables and the RTA models can be deter-

Table 1. Regression Models.

Cost variables: daterange (D), windowsize (W), groupsize (G)

Quad c0 + c1D + c2D
2

RTA: Count, Avg, Min c0 + c1D

(a) Group 1: Count, Avg, Min.

Quad c0 + c1D + c2W + c3D
2 + c4W

2 + c5DW

RTA: Min c0 + c1D + c2DW

RTA: Nth c0 + c1D + c2(D − W + 1)+
c3(D − W + 1) log

2
(D − W + 1)

(b) Group 2: MinMavg, NthMavg.

Quad c0 + c1D + c2W + c3G + c4D
2 + c5W

2+
c6G

2 + c7DW + c8WG + c9GD

RTA: Min c0 + c1D + c2DW + c3WG + c4GD

RTA: Nth c0 + c1G(D + W + 1)D + c2(D + W + 1)+
c3(D + 2)W + c4(D + 2) log

2
(D + 2)

(c) Group 2: MinGrpMavg, NthGrpMavg.

mined straightforwardly through simple analysis
of the codes. Fig. 7 shows the source code of Nth-
GrpMavg. We omit the other source codes due to
space limit.

Let us discuss the regression model for Nth-
GrpMavg as an example. Fig. 7 shows the frag-
ments of the code and the cost formula for each
fragment. In the first fragment (Lines 10∼17), it
looks for data records of all ticker symbols be-
longing to a group named groupsymbol. Then,
while scanning the records from startdate -
windowsize to enddate, it groups the scanned
records by their date (i.e., tstamp) and calcu-
lates the average of all ticker closing prices (i.e.,
close) in each group. In the second fragment
(Lines 18∼22), it fetches the daily group aver-
ages one by one and saves them into a temporary
array temp. In the third fragment (Lines 23∼29),
it calculates the moving average of the data in
the array temp and saves the resulting mov-
ing average time series data into another tem-
porary array tempavg. In the fourth fragment
(Lines 30∼31), it sorts tempavg using merge-
sort and returns the n-th element. Since merge-
sort takes O(N log

2
N) for a file of N elements,

we assume the last step takes time proportional
to (daterange+2)log

2
(daterange+2) where

daterange+2 is the size of tempavg. Thus, the
RTA model of NthGrpAvg is expressed a summa-

1 CREATE OR REPLACE FUNCTION NthGrpMavg
2 (groupsymbol: VARCHAR(10), startdate: DATE,
3 enddate: DATE, windowsize: NUMBER, n: NUMBER)
4 RETURN NUMBER
5 IS
6 temp: TABLE OF tsdev.tsquick_tab.close%type;
7 tempavg: TABLE OF tsdev.tsquick_tab.close%type;
8 j, k, tot: NUMBER;
9 BEGIN

-- Read the data of all ticker symbols within the
-- group and build a group average time series.
-- Store the result in temp. This involves opening
-- a cursor and fetching records in a loop.
-- Cost ˜ groupsize * (daterange + windowsize +1)

10 OPEN CURSOR c1 FOR
11 (SELECT b.tstamp, SUM(b.close)/COUNT(b.close)

AS group_close
12 FROM tsdev.ticker_index a,tsdev.tsquick_tab b
13 WHERE a.ticker_index_id = groupsymbol
14 AND a.ticker = b.ticker
15 AND b.tstamp >= startdate - windowsize
16 AND b.tstamp <= enddate
17 GROUP BY b.tstamp);

-- Store the tuples fetched using cursor c1 into
-- temp.
-- Cost ˜ daterange + windowsize + 1

18 LOOP UNTIL c1%NOTFOUND
19 fetch c1 into c1_rec;
20 temp(i) := c1_rec.group_close;
21 i := i + 1;
22 END LOOP;

-- Calculate the moving average of group average
-- time series and store the result in tempavg.
-- Cost ˜ (daterange + 2) * windowsize
-- Note: temp.count = daterange + windowsize + 1

23 FOR j = 1 TO (temp.count - windowsize + 1)
24 BEGIN
25 tot := 0 ;
26 FOR k = j TO (j + windowsize - 1)
27 tot := tot + temp(k);
28 tempavg(j) := tot/windowsize;
29 END;

-- Mergesort tempavg.
-- Cost ˜ (daterange + 2) * log(daterange + 2)
-- Note: tempavg.count = daterange + 2

30 MergeSort(tempavg, 1, tempavg.count);

-- Return the n-th element of the sorted tempavg.
31 RETURN(tempavg(n));
32 END NthGrpMvgAvg;

Figure 7. source code of NthGrpMavg.

tion of the four cost formulas, one for each code
fragment.

4.3 Training and test data sets

Table 2 shows the grid plans used in the exper-
iments. A training data set is generated by exe-
cuting an aggregate FTS function at grid sample
points. Each execution is repeated four times and
averaged to suppress noise.

A test data set is generated by taking ran-
dom sample points. (Thus, the sampling intervals
are irrelevant for a test data set.) This mimics the
cost variable values as they appear in actual UDF
execution patterns.

During the data set generations, we clear the
database buffer between each consecutive runs to
eliminate the unpredictable caching effect. (Most
DBMS query optimizers disregard the caching
effect or use an overly simple model [10].) This is
done by executing an I/O-intensive dummy rou-
tine.

We use CPU time as a generic CPU cost
metric instead of the number of machine instruc-
tions (see Section 2.3). CPU time can be con-
verted to the number of machine instructions as
CPU time × CPU speed / the average cycles per
instruction (CPI). We use an arbitrary number 1.5
as the average CPI; the actual number is immate-
rial in our experiments.

All the data sets are generated on Sun Ul-
tra Enterprise 450 with four 276 MHz CPUs,
1024 Mbyte RAM, and 55 Gbyte hard disk.

4.4 Regression analyses

Table 3 summarizes the cost estimation errors
resulting from the regression analyses done for
each aggregate FTS function. In a majority of
cases, the median relative errors (DRE) are lower
than 5% and the mean relative errors (MRE) are
lower than 10%. DREs are more credible than
MREs in the table. For instance, the MRE 73.3%
of the NthMavg CPU cost for RTA is misleading
because the high error is attributed to two data
points with very small CPU costs – estimated
costs 26.5 and 31.1 seconds for observed costs
2.12 and 1.76 seconds, respectively.

Table 2. Grid Plans.

D Aggregate FTS functions Cost Sampling Sampling Data set
variables range interval† size‡

1 Group 1: Count, Avg, Min daterange 0 ∼ 80 years 10 years 36 points
2 Group 2: MinMavg, NthMavg daterange 1 ∼ 80 years 10 years

windowsize 1 ∼ 60 days 15 days 180 points
3 Group 2: MinGrpMavg, NthGrpMavg daterange 1 ∼ 80 years 10 years

windowsize 1 ∼ 60 days 15 days
groupsize 5 ∼ 20 tickers 5 tickers 720 points

(D: dimensionality. †: not applicable to test data set generation. ‡: = 4 × the number of sample points.)

Table 3. Cost Estimation Error Statistics of Experimental Aggregate FTS Functions.

CPU cost (seconds) Disk I/O cost (pages)
Aggregate Quad model RTA model Quad model RTA model
FTS function MAE MRE DRE MAE MRE DRE MAE MRE DRE MAE MRE DRE

Count 0.02 13.85 11.37 0.02 14.14 12.23 0.52 0.62 0.35 0.52 0.62 0.35
Avg 0.01 6.28 5.63 0.01 6.17 5.36 0.52 0.62 0.35 0.52 0.62 0.35
Min 0.02 8.44 7.18 0.02 8.85 7.56 0.52 0.62 0.35 0.52 0.62 0.35
MinMavg 0.47 4.95 1.69 0.45 3.59 1.85 30.38 67.2 21.9 27.4 53.3 22.8
MinGrpMavg 4.18 2.64 1.56 4.19 3.28 1.66 192.98 1.90 1.51 194.88 2.16 1.49
NthMavg 1.14 1.47 0.55 7.98 73.3 3.83 16.09 13.6 4.18 12.88 17.5 2.49
NthGrpMavg 2.71 1.41 0.76 11.23 10.0 2.41 226.72 0.98 0.71 323.68 1.44 1.29

MAE = mean absolute error, MRE = mean relative error (%), DRE = median relative error (%)

As we can see in Table 3, the cost estima-
tion errors of Quad models are very close to those
of RTA models, and even lower in many cases.
The reason is that both the RTA and Quad models
approximate the true cost function, but the Quad
model is more flexible. Indeed we see that Quad
models are precise enough to substitute all the
RTA models shown in Table 1.

Note that the disk I/O costs of Count, Avg,
and Min are exactly the same. The reason is that
the three FTS functions access exactly the same
set of disk pages through an index scan on the
column tstamp of the table tsquic tab. The
CPU costs are slightly different because different
aggregationt functions involve different compu-
tations.

Fig. 8 shows plots of the CPU and disk
I/O costs of Avg, specifically the observed costs
(shown as dots) and the fitted lines of estimated
costs. Fig. 9 shows plots of the CPU and disk
I/O costs of NthGrpMavg, specifically the ob-
served costs (shown in vertical bars) and the fit-
ted surfaces of estimated costs (shown in dotted
membranes). The fittings have been done using

CPU time (sec)

Date range (days)

(a) CPU cost.

Disk IO (pages)

Date range (days)

(b) Disk I/O cost.

Figure 8. observed costs and fitted lines of Avg.

the quadratic models. We can visually confirm
that the estimated costs match the observed costs
quite accurately.

5 Related Work

We find related work in terms of using regression
for generating a cost function. Andres et al. [11]
model DBMS performance as a regression equa-
tion and tune its coefficients by running a set of
representative workload, and Ebrahimi [12] uses
a similar approach to tune the coefficients of soft-
ware (not database) cost model.

In addition, there are two kinds of efforts
made to derive local cost functions of query

(a) CPU cost. (b) Disk I/O cost.

Figure 9. observed costs and fitted surfaces of
NthGrpMavg (group size = 20).

operations for use by a global query optimizer
in a multidatabase environment: model calibra-
tion [13, 14] and query sampling [15, 16]. In
the model calibration method, Du et al. in [13]
develop a cost function by combining the cost
models of individual query operations (e.g., se-
lect, join) into a regression equation and calibrat-
ing the coefficients at each local DBMS by run-
ning synthetic operations on a synthetic database.
Gardarin et al. in [14] extend Du et al.’s work to
an object-oriented query optimization.

In the query sampling method [15, 16], Zhu
et al. categorize “all possible” query operations
into classes by the data access method used, and
develop regression cost models associated with
each class. Each class contains either unary (se-
lect) or binary (join) operations. Then, at each
local DBMS, they generate a cost function for
each class of query operations by fitting the cost
model to a cost data set generated by executing
query operations that are randomly selected from
the class. Unlike model calibration [13, 14], this
method uses the entire real data actually used in
a local DBMS.

Both model calibration and query sampling
methods aim at facilitating cost function genera-
tion in the data profile approach. However, they
still require users to understand the concepts like
index-based table scanning, and be capable of
building cost models from the DBMS implemen-
tations of query operations like select and join.
Furthermore, these methods assume users know
the database objects (e.g., tables, indexes) ac-
cessed by a query, but this assumption is not nec-
essarily true when dealing with a UDF.

6 Conclusion

In this paper, we have presented a novel approach
to generating the cost functions of aggregate fi-
nancial time series (FTS) functions. Unlike the
traditional analytical approach, the proposed ap-
proach uses statistical regression. Users only
need to provide cost variables and a grid plan
for sampling the cost variables. Then, the sys-
tem generates a training data set through execut-
ing the aggregate FTS function according to the
grid plan and builds a cost function by fitting a
quadratic regression model (of the cost variables)
to the training data set.

We have demonstrated the accuracy of cost
estimations through experiments. The results ob-
tained from using two groups of aggregate FTS
functions show that our approach accomplishes
accurate cost estimations – lower than 5% me-
dian relative errors and 10% mean relative errors
in a majority of cases – when measured against
regular time series data. This accuracy is superior
to what is achievable from using the traditional
analytical approach.

Acknowledgments

We thank the anonymous referees for their com-
ments on the original manuscript. This research
has been supported through US DOE Grant DE-
FG02-ER45962 and NSF Grant IIS-0415023.

References

[1] S. Chaudhuri & K. Shim, Optimization of
queries with user-defined predicates, ACM
Trans. on Database Systems, 24(2), 1999,
177-228.

[2] J. Hellerstein, Optimization techniques for
queries with expensive methods, ACM
Trans. on Database Systems, 23(2), 1998,
113-157.

[3] S. Chaudhuri, An overview of query op-
timization in relational systems, Proc. the
ACM Conf. on Principles of Database Sys-
tems, Seattle, WA. 1998, 34-43.

[4] Y.E. Ioannidis, Query optimization, in A.
Tucker (Ed.), The Computer Science and

Engineering Handbook, (CRC Press, 1997)
1038-1057.

[5] P. Selinger, M. Astrahan, D. Chamberlin, R.
Lorie, & T. Price, Access path selection in
a relational database management system,
Proc. ACM SIGMOD Conf. on Manage-
ment of Data, Boston, MA, 1979, 23-34.

[6] M. Roth, F. Ozcan, & L. Haas, Cost mod-
els do matter: providing cost information
for diverse data sources in a federated sys-
tem, Proc. Conf. on Very Large Data Bases,
Edinburgh, Scotland, 1999, 599-610.

[7] R. Krushnamurthy, H. Boral, & C. Zan-
iolo, Optimization of non-recursive queries,
Proc. Conf. on Very Larege Data Bases,
Bombay, India, 1986, 128-137.

[8] S. Lang, Calculus of several variables
(Addison-Wesley Publications, 1979).

[9] A.I. Khuri & J.A. Cornell, Response
surfaces: designs and analyses (Marcel
Dekker, NY, 1996).

[10] P. Gassner, G. Lohman, K. Schiefer, & Y.
Wang, Query optimization in the IBM DB2
family, Data Engineering Bulletin, 16(4),
1993, 4-18.

[11] F. Andres, F. Kwakkel, & M. Kersten, Cal-
ibration of a DBMS Cost Model with the
Software Testpilot, Proc. Conf. on Infor-
mation Systems and Management of Data,
Bombay, India, 1995, 58-74.

[12] N. Ebrahimi, How to Improve the Calibra-
tion of Cost Models, IEEE Trans. on Soft-
ware Engineering, 25(1), 1999, 136-140.

[13] W. Du, R. Krishnamurthy, & M.-C.
Shan, Query Optimization in Heteroge-
neous DBMS, Proc. Conf. on Very Large
Data Bases, Vancouver, Canada, 1992, 277-
291.

[14] G. Gardarin, F. Sha, & Z.-H. Tang, Cal-
ibrating the Query Optimizer Cost Model
of IRO-DB, an Object-Oriented Federated
Database System, Proc. Conf. on Very
Large Data Bases, Bombay, India, 1996,
378-389.

[15] Q. Zhu & P.-A. Larson, Building Regres-
sion Cost Models for Multidatabase Sys-
tems, Proc. IEEE Conf. on Parallel and

Distributed Information Systems, Miami
Beach, FL, 1996, 220-231.

[16] Q. Zhu, Y. Sun, & S. Motheramgari, Devel-
oping Cost Models with Qualitative Vari-
ables for Dynamic Multidatabase Environ-
ments, Proc. IEEE Conf. on Data Engineer-
ing, San Diego, CA, 2000, 413-424.

Vinod Kannoth is
Database Analyst at
Federal Reserve In-
formation Technology.
His areas of interest in-
clude database systems,
data warehousing, and
content management.
He holds an MS degree

in Computer Science from the University of
Vermont.

Byung Suk Lee is Asso-
ciate Professor of Com-
puter Science at the
University of Vermont.
His areas of interest in-
clude databases, data
streams, and sensor net-
works. He holds a
Ph.D. degree in Electri-

cal Engineering (Database Systems) from Stan-
ford University.

Jeff Buzas is Associate
Professor of Statistics
at the University of Ver-
mont. His areas of
interest include mea-
surement error models,
bioassay, and instru-
mental variables. He
holds a Ph.D. degree
in Statistics from North
Carolina State Univer-

sity.

