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Abstract This paper reports the performance study of classifying 12-lead
ECG beat segments in the face of severe imbalance in the class sizes, which
is typical of ECG data. The efficacy of data augmentation for class size bal-
ancing to improve the classification accuracy is well known. In the ECG do-
main, however, it has been overlooked or handled inadequately. We propose
an amplitude-alteration approach to augment randomly selected ECG heart-
beats separately as needed in individual ECG classes while not disrupting the
timeline of the ECG signals. In addition, augmentations of training dataset
and test dataset receive separate attentions, and four cases of data augmenta-
tion are considered depending on whether each dataset is augmented or not.
The effects of the augmentation scheme was evaluated using ResNet, the deep
learning technique reputed for its remarkable accuracy through unique skip-
ping connections between layers; specifically, a time series version of ResNet
was used. The results confirmed the key benefit of class-balancing the training
dataset through the proposed data augmentation scheme and, additionally,
showed some extra benefit of augmenting the test dataset through “test-time
augmentation.” Further, we adopted the class activation map (CAM) to iden-
tify heat map signatures that would explain ECG beat classes. The results
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demonstrated that the CAM could be an effective visual aid to classifying
ECG beats, especially with the proposed data augmentation scheme in place.
In this paper the augmentation scheme, the associated experiments, and their
results are discussed concretely.

Keywords 12-lead ECG · classification · class balancing · data augmentation ·
time series ResNet · class activation map · performance study

1 Introduction

Computer-aided electrocardiogram (ECG) classification is a diagnostic tool
for identifying the abnormality types (or normality) of individual heartbeats
or a set of heartbeats (da S. Luz et al., 2016) using machine learning algo-
rithms. The inherent problem with ECG datasets is the imbalance in class
sizes, wherein some classes have plenty of beats while others have few. This is
problematic for machine learning algorithms since trained classifiers typically
have high error rates for sparse classes (Chawla et al., 2004). One natural res-
olution is data augmentation for sparse classes where ECG beats are altered
without affecting the beat type to balance class sizes. Models trained with aug-
mented data typically result in improved accuracy and reduced generalization
error.

It is increasingly important that we train classifiers properly since ECGs
can be used for various tasks in areas such as health monitoring (Hwang et al.,
2018; Manogaran et al., 2019; Trenta et al., 2019), medical diagnoses (Kwon
et al., 2020; Han and Shi, 2020), ECG classification and annotation (He et al.,
2019; Tung et al., 2020), and biometric authentication (Labati et al., 2019).
Recently, deep learning has emerged as an effective technique to ECG classifi-
cation (Aurore et al., 2018). One of the best-performing deep learning architec-
tures for time series is ResNet (He et al., 2016). While ResNet was originally
introduced for image classification, Wang et al. (2017) explored using it for
time series classification, and outstanding performance has been demonstrated
by Ismail Fawaz et al. (2019).

The primary objective of our work is to handle the problem of class imbal-
ance in an ECG dataset through our novel ECG data augmentation scheme.
We evaluate the effect of data augmentation on the classification accuracy of
the time series ResNet for a “general” purpose; that is, to classify full 12-lead
ECG beats into all individual symptom classes – not “superclasses” – avail-
able from the PhysioBank ECG datasets annotated (PhysioNet, 2016). (This
12-lead ECG classification is the topic of a recently announced PhysioNet
Computing Challenge (Alday et al., 2020).) To this end, the key ideas of our
ECG data augmentation method are (1) altering only the amplitudes (and
keeping the timeline intact), (2) altering individual ECG beats separately and
independently, and (3) altering each beat across the 12 leads in the same way.
Currently existing ECG data augmentation methods (Pan et al., 2020; Cui
et al., 2016; Um et al., 2017; Cao et al., 2020; Le Guennec et al., 2016; Jun
et al., 2018; He et al., 2019; Yao et al., 2020; Acharya et al., 2017) are inad-
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equate or limited for use for our purpose (i.e., classifying 12-lead ECG beats
into 9 classes shown in Table 3), as discussed in Section 2.1.

A thorough performance study was conducted comparing four cases of ECG
data augmentation depending on whether each of the training dataset and
the test dataset is augmented or not. The results confirmed that augmenting
the training dataset toward balanced classes using the proposed augmenta-
tion scheme is the key to achieving high classification accuracy; in addition,
augmenting the test dataset (called “test-time augmentation”—more in Sec-
tion 4.3) using the proposed augmentation scheme was helpful when the accu-
racy metrics are sensitive to the class balancing (e.g., macro F1), especially
when accompanying the augmentation of the training dataset.

Further, the class activation map (CAM) was applied to the ECG time
series data. CAM was originally introduced for images by Zhou et al. (2016)
and applied to time series by Wang et al. (2017), and then was used for ECGs
in a few related works by Goodfellow et al. (2018), Oh et al. (2019), and Wang
et al. (2021). CAM successfully visualized an ECG heartbeat using a heatmap
pattern, to enable identifying the heatmap signatures associated with individ-
ual diagnostic classes of beats. We examined the CAMs of classified heartbeats
to visually identify the features of ECG beat signals that explain the output
classes, both with and without the data augmentation. The results demon-
strated the efficacy of CAM in verifying the classification accuracy visually,
especially when the data augmentation is present.

To the best of our knowledge, this paper is the first that provides an ef-
fective ECG data augmentation scheme with a thorough study focused on the
effects of data augmentation on the ECG heartbeat classification accuracy.
The performance study results demonstrate the efficacy of the proposed ECG
data augmentation scheme.

Table 1 lists the acronyms and abbreviations of key terms used in this
paper. The Python source codes of ECG signal filtering and segmentation, data
augmentation, ResNet modeling, and class activation mapping are available
at the GitHub supplement (Boynton, 2020).

The remainder of the paper is organized as follows. Section 2 discusses
relate work. Section 3 describes the ECG data used in this work. Section 4
discusses the methods used in the performance study. Section 5 presents the
experiments and the results. Section 6 summarizes the paper and suggests
further work.

2 Related Work

Let us discuss related work in two directions: ECG data augmentation and
ECG data classification using machine learning.

2.1 ECG data augmentation

Despite the importance of class balancing through data augmentation to the
quality of classification output, data augmentation in ECG has been quite
limited, as was also pointed out by Pan et al. (2020). Pan et al. (2020) ap-
plied time series alteration methods to augment ECG data and compared the
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Category Acronym/Abbreviation Description

Deep learning

CAM Class activation map
CNN Convolutional neural network

LSTM Long short-term memory
ReLU Rectified linear unit

ResNet Residual network
RNN Recurrent neural network
TTA Test-time augmentation

ECG beat classes

APC Atrial premature complex
MI Myocardinal infarction

NESC Nodal escape beat
PVC Premature ventricular complex

RBBB Right bundle branch block
SVESC Supraventricular escape beat
SVPB Supraventricular premature beat

Table 1: Acronyms and abbreviations.

efficacy of four such methods — window slicing (Cui et al., 2016), permuta-
tion (Um et al., 2017), concatenation & resampling (Cao et al., 2020), and
window warping (Le Guennec et al., 2016). Pan et al. (2020) evaluated these
methods using LSTM RNN and observed good results, but the data augmen-
tation and classification was done on the entire ECG time series, and thus
their methods are not applicable to our work which needs to augment data at
the level of individual ECG beats.

There are a few known works on ECG data augmentation and classification
at the beat level. Jun et al. (2018) rendered 1D ECG signals to 2D images
and used image cropping and masking for use with CNN. This method is
not applicable in our work which alters ECG as a 1D signal. He et al. (2019)
divided each class into five subsets and duplicated classes to match the number
of samples in the most dominant class. The classification accuracy measured
on nine classes in the 12-lead China Physiological Signal Challenge (CPSC)
dataset was 80.6%. While this method may be able to balance the dataset sizes
across classes, the trained classifier may not be robust to classes containing
data duplicated from the ECG of a small number of patients. Yao et al. (2020)
compressed or stretched the ECG signal along the timeline and removed parts
of the segments (or beats). The classification accuracy measured on nine classes
in the 12-lead CPSC dataset was 81.2%. This method is problematic because
the ECG signal is a time series, and, therefore, its diagnostic classification is
sensitive to alteration along the timeline. Note that our work uses an amplitude
scaling method, which limits the signal alterations only to the amplitude,
not the timeline. Acharya et al. (2017) altered samples by amplitude scaling,
too. They varied the standard deviation and the mean of Z-scores from the
original normalized ECG segments (of length 260 samples). The specifics of the
implementing the scaling, however, is not stated, while it appears randomly
selected scale factor was applied to each segment. The classification accuracy
measured on five classes in one lead ECG was 94.03% with noise removal.
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Study Database # Samples # Classes Accuracy

Han and Shi (2020) PTB 24157 5
Inter-patient: 95.49%
Intra-patient: 99.92%

Tung et al. (2020) MIT-BIH 90007 5 97.15%
He et al. (2019) CPSC 9831 10 80.6%

Table 2: ECG classification accuracy of related works using ResNet.

While these results are quite good, the setup is limited compared with our
work where nine classes in 12 lead ECG are evaluated.

2.2 ECG classification using machine learning

Machine learning algorithms that can be trained to classify ECG heartbeat
data include support vector machines (Rajesh and Dhuli, 2017), random forests (Rahman
et al., 2015), and hidden Markov models (Liang et al., 2014). When applied
to 12-lead ECG data, most of them achieve classification accuracy above
90% (Lyon et al., 2018). Since then, deep learning emerged with performance
on par or better than the traditional machine learning algorithms. There have
been several deep learning architectures used to classify ECG beat types, such
as CNNs (Li et al., 2018; Yao et al., 2020), RNNs (Özal Yildirim, 2018; Saadat-
nejad et al., 2020; Hong et al., 2020), and autoencoders (Hong et al., 2020). In
addition, hybrid architectures combining CNN and RNN are used to combine
CNN’s ability to recognize features over space and RNN’s ability to recognize
patterns over time (Liu et al., 2019; Lynn et al., 2019).

Only a few ECG classification studies (Han and Shi, 2020; Zhou et al.,
2020; Tung et al., 2020) used ResNet; and they restricted the study in ei-
ther the number of ECG leads or the number of classes or both. Han and Shi
(2020) used ResNet to classify 12-lead ECG, but limited the classes to those
of myocardial infarction (MI) based on the five types of MI location; their
main interest was to compare the classification accuracy between intra- and
inter-patient cases. He et al. (2019) used ResNet with a bidirectional LSTM
to classify 12-lead ECG beats in the CPSC dataset. Tung et al. (2020) used
ResNet embedded with attention blocks to classify two-lead ECG beats from
the MIT-BIH (Moody and Mark, 1992) arrhythmia database of two-lead (i.e.,
V1 and MLII) ECGs and utilized five beat types according to the AAMI stan-
dard (American National Standard, 2012) (i.e., five superclasses mapped from
17 arrhythmia classes); their main interest was to combine ResNet with an-
other architecture (i.e. attention blocks) for accuracy improvement. While all
these work achieved outstanding classification accuracy (see Table 2), the ex-
tent of their studies was limited, tailored to their specific purposes. Compared
with these studies, our work is more comprehensive and classifies nine classes
(including Unknown beats) on 12-lead ECG.

3 ECG Data

An ECG is an electrical signal manifesting the heartbeat over time. Fig. 1
illustrates the composition of a single channel ECG segment. A normal ECG
beat consists of a P wave, a QRS complex, an S wave, and a T wave in
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sequence. The P wave represents depolarization of the atria (i.e., top chambers
of a heart); the QRS complex represents depolarization of the ventricles (i.e.,
bottom chambers of a heart); and the T wave represents repolarization of the
ventricles. So, anomalous shapes of the components indicate certain clinical
heart problems.

Fig. 1: ECG beat
segment.

Fig. 2 shows standard ECG signals (PhysioNet,
2008) measured from 12 leads placed as illustrated in
Fig. 3 (Randazzo, 2016). There are six chest leads (V1
through V6) and six limb leads (I, II, III, aVR, aVL,
and aVF). The limb leads provide a view of the heart
from the front; among them, I, II, and III are bipo-
lar and measure the electrical differences between the
combination of three limbs, namely, the right arm, left
arm, and left foot (here, bipolar means having a pos-
itive and negative pole in the electrical current mea-
surement); and aVR, aVL, and aVF are unipolar and measure the electrical
difference between the right and left arms and the left foot utilizing a central
negative lead (Lieberman, 2008).

Fig. 2: 12 lead ECG records (source: (PhysioNet, 2008)).

The St. Petersburg INCART 12-lead ECG datasets (PhysioNet, 2008) from
PhysioNet (Goldberger et al., 2003) is used in this study. (There are five 12-lead
ECG classification datasets published in PhysioNet Challenge 2020, but among
them St. Petersburg INCART data set is the only one that has been annotated
with class labels for each ECG segment.) The 75 Holter records in this database
come from 32 patients with various diagnosed heart complications including
ischemia, coronary artery disease, conduction abnormalities, and arrhythmia.
Each record is a time series sampled at 257 Hz and is approximately 30 minutes
long. The heartbeats in each record are annotated with diagnostic classes in
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Fig. 3: 12 lead ECG placement (source: (Randazzo, 2016)).

the PhysioNet annotations (PhysioNet, 2016). There are nine diagnostic classes
appearing in the ECG dataset, and their representations are summarized in
Table 3. Notably, the class sizes are severely imbalanced, with Normal class
beats predominant and some classes (e.g., Unknown, SVPB, SVESC, NESC)
constituting less than 0.1% of the entire population of heartbeats.

Normal PVC RBBB APC Fusion NESC SVESC SVPB Unknown

85.51% 11.38% 1.80% 1.11% 0.125% 0.052% 0.018% 0.009% 0.003%

Table 3: INCART beat class distribution.

In our work, 12-lead ECG records are represented as a sequence of seg-
ments, one segment per heartbeat. A segment can be represented as a matrix
S ∈ Rc×t where c (= 12) is the number of channels and t is the length of the
segment. The individual leads’ ECG records were normalized to have mean
0.0 and standard deviation 1.0. This normalization is commonly done in deep
learning to, for instance, achive faster model convergence (Shimodaira, 2000).

4 Methods

4.1 Time series Residual Network

Convolutional layers are known to detect location-invariant features. In time
series with similar features across samples, such as ECG, these location-invariant
features become important to distinguish between diagnoses (i.e., classes). In
conjunction with residual connections, the neurons in deeper layers can learn
more abstract features to help distinguish samples that appear similar.

Network depth is crucial to learning higher-level representations of the
data; however, deep neural networks often have difficulty to train due to the
vanishing gradient and the resulting degradation of classification accuracy (He
et al., 2016). ResNet overcomes this problem without increasing the number
of parameters and computational complexity by adding residual connections
for skipping layers. It has been shown that consequently residual networks can
reach significantly greater depths and achieve excellent classification accuracy.
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We used a time series ResNet implementation obtained from Fawaz et al.’s
repository (Ismail Fawaz, 2020). The architecture has a t × 12 input matrix
representing the 12-leads with a length t = 339 and consists of three residual
blocks of convolutional layers with filter sizes 64, 128, and 128, respectively.
Each residual block contains three 1D convolutions with kernel sizes 8, 5,
and 3, respectively. A global average pooling (GAP) and softmax output layer
follow the residual blocks. In total, the neural network consists of 3 blocks and
a depth of 11 layers (see Fig. 4).

12

t

64 64

Block1

64

Σ

128 128

Block2

128

Σ

128 128

Block3

128

Σ

Input Softmax

Conv BatchNorm
ReLU GAP

Fig. 4: Time series ResNet with a 12-channel, variable length input. The resid-
ual connections (blue arrows) allow the input to skip over the layers within a
block.

The residual block architecture has been used in a variety of problem do-
mains relating to time series classification, as studied by Ismail Fawaz et al.
(2019). In both univariate and multivariate time series, ResNet outperformed
other architectures across a majority of datasets. The only area where it did
not — and rather underperformed significantly — was in ECG classification;
the poor performance was attributed to the insufficient size of the dataset
available for training the network. This brings about the need for data aug-
mentation to increase the training dataset size (as well as balance the class
sizes).

4.2 Signal filtering and beat segmentation

In our work, the digitized ECG signal has been first filtered by a finite impulse
response bandpass filter (0.05 – 35 Hz) to remove noise and baseline drift
and, then, divided into a sequence of heartbeat segments. The resultant beat
segments are used as the units of ECG data alteration and classification. Beat
annotations in the ECG dataset are marked at the R peaks. By exploiting this
R-peak marking, a dynamic segmentation process used by Veeravalli et al.
(2017) and Lin et al. (2019) is used to extract ECG beat segments from the
ECG time series; that is, a segment boundary is determined based on the
previous RR interval, using the following formula.

Pwindow = QRmax + 0.2× RRmax + 0.1 (1)

Twindow = 1.5×QTcmax
×
√

RRprev −QRmax (2)

where QRmax is set to 0.08, equivalent to half the maximum QRS duration,
and the corrected QT interval, QTcmax

, is set to 0.42. Conjoined Pwindow and
Twindow forms an ECG beat segment. Additionally, zero padding is done as
needed to ensure that all segments have the same length.
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(a) One-lead ECG (lead V1). (b) A complex-lead ECG.

Fig. 5: An example of an extracted ECG beat segment. (See the supple-
ment (Boynton, 2020) for the full 12-lead beat segments.)

Fig. 5 shows an example ECG beat segment extracted using the formula,
for one RBBB heartbeat. In the interest of space, only one lead (V1) is shown
in Fig. 5a and a “complex-lead” combining the 12 leads is shown in Fig. 5b, de-
ferring the plots of all individual 12 leads to the supplement (Boynton, 2020).
The lead V1 is clinically known to demonstrate an RBBB pattern well. The
amplitude of a complex-lead ECG sample, yi, is calculated as the arithmetic
average of the differentials (i.e., approximate slopes) of the 12 lead ECG sam-

ples, that is, yi = 1
12

∑12
j=1 |xj,i+1 − xj,i−1| (Christov, 2004). The yellow dot

marks the R peak; on its left is the P window, and on its right is the T window.

4.3 Data augmentation

The augmentation procedure can be outlined in two steps — peak detection
(Algorithm 1) and peak alteration (Algorithm 2), applied to the 12 channels of
an ECG segment. (Each ECG lead gives a channel.)

In the peak detection step, given the maximum number N of peaks, N
most prominent peaks are found and returned from each channel’s ECG seg-
ment. Specifically, the algorithm works as follows (see Algorithm 1). For each
channel in the 12 lead ECG segment, first, characteristic peaks are found using
the SciPy find peaks function (Virtanen et al., 2020) (Line 5); a characteristic
peak is defined as a local maximum point of at least the mean height of the
samples in the input ECG. Then, the peaks found are ranked by their height by
the SciPy peak prominences function and are stored in the array peaksFound
sorted by its prominence (Lines 6 and 7). Then, if the number of found peaks
is equal to N , they are all added to the channel’s peaks (Line 9), and if more
than N , only the N most prominent peaks are selected and added (Line 12);
otherwise (i.e., less than N), the peak finding step is repeated while reducing
height threshold incrementally (i.e., by 0.01) until N peaks are found, which
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are then added (Lines 15 to 19). Finally, all peaks added for all 12 channels
are returned (Line 21).

Algorithm 1 Amplitude-based ECG peak detection.

1: procedure FindPeaks(12leadECGsegment, N)
2: // Locate N peaks in the 12-lead ECG segment.
3: for each channel ∈ 12leadECGsegment do
4: height ← mean(channel) + 0.001 . Height threshold for the peak-finding
5: peaksFound ← find peaks(channel, height)
6: peaksProms ← peak prominences(peaksFound)
7: sort peaksFound by peaksProms
8: if len(peaksFound) = N then
9: peaks[channel] ← peaksFound

10: end if
11: if len(peaksFound) > N then
12: peaks[channel] ← last N peaks in peaksFound . N most prominent peaks
13: end if
14: // Reduce the height threshold incrementally until N peaks are found.
15: repeat
16: height ← height − 0.01 . Reduce the height threshold.
17: peaksFound ← find peaks(channel,height)
18: until len(peaksFound) = N
19: peaks[channel] ← peaksFound
20: end for
21: return peaks
22: end procedure

In the peak alteration step, each peak found from the 12-lead ECG segment
is selected for alteration with the probability ρ, and, if selected, its amplitude
is scaled by a factor f randomly selected between fmin and fmax and then
smoothed using a smoothing function FS (see Algorithm 2). Note that the
peak times are not changed in our augmentation method in order to maintain
the original rhythm of beats and that for each peak the same amplitude scaling
is applied equally across all 12 channels to maintain their relative relationships
in the original 12-lead ECG signal. To this end, the only peaks in a channel
that are aligned with the corresponding peaks in the first channel (of the lead
I) within sample distance δ are considered for amplitude scaling. Note as well
that different ECG segments are scaled by different factors, as a new value
of f is randomly selected every time Algorithm 2 is executed; this adds more
diversity in the altered peaks across the segments, which we believe results
in a more generalizable model than using one fixed factor for all peaks in the
entire ECG record timeline.

The scaling and smoothing in the peak alteration work as follows. For each
peak selected (Lines 3 and 4), first the scaling factor f for the peak is deter-
mined randomly in the given range. Then, for each channel, the baseline is
determined by averaging the sample amplitudes within the channel (Line 8),
and, if the peak is close enough (within δ sample distance) to the correspond-
ing peak in the lead I’s channel, the start point and the end point of the peak
are identified as the points crossing the baseline upward and downward, re-
spectively (Lines 12 and 13). Individual samples in the peak are then scaled by
the factor f (Line 15). Next, the polarity of the peak is set to either positive,
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1, or negative, -1, depending on whether the peak is located above or below
the baseline (Lines 16 to 20), and the sign is given to the smoothing function
(Line 23) to maintain the polarity. The scaled samples in the peak are then
smoothed by the smoothing factors calculated by the smoothing function Fs
(Lines 21 to 25).

Algorithm 2 Amplitude-based ECG peak alteration.

1: procedure AlterPeaks(12leadECGsegment, peaks, ρ, fmin, fmax, δ, FS)
2: // With probability ρ, alter each peak’s amplitude in the 12-lead ECG segment by a

random scaling factor f ∈ [fmin, fmax] and the smoothing function FS .
3: for n = 1 to N do . for each peak, where N = |peaks|
4: With probability ρ do
5: begin
6: Pick a random value of f in the range of [fmin, fmax].
7: for each channel ∈ 12leadECGsegment do
8: baseline ← mean(channel)
9: // Determine whether the peak is similar to the peak in the first channel.

10: if the nth peak is within distance δ from the nth peak in lead I then
11: // Delineate the peak in the channel.
12: peakStart ← index of the first sample crossing the baseline from

the peak to the left.
13: peakEnd ← index of the first sample crossing the baseline from

the peak to the right.
14: // Apply scaling followed by smoothing to the peak.
15: scaledChannelPeak = f ∗ channel[peakStart : peakEnd]
16: if peak amplitude > baseline then
17: sign ← 1
18: else
19: sign ← −1
20: end if
21: smoothingFactor ← [ ]
22: for each sample ∈ channel[peakStart : peakEnd] do
23: append FS(sample, variance(channel), sign) to smoothingFactor
24: end for
25: channel[peakStart:peakEnd]← scaledChannelPeak�smoothingFactor

. Pairwise multiplication of array elements.
26: end if
27: end for
28: end
29: end for
30: return 12leadECG . with altered peaks
31: end procedure

In our work, we set the number of peaks, N , to 5 to reflect the five peaks
(i.e., P, Q, R, S, T) in a typical ECG segment; the probability of peak al-
teration, ρ, to 0.6 which is neutral with slight inclination for alteration; the
range of scaling factor, (fmin, fmax), to (0.5, 1.5) determined through visual
examination of altered ECG signals with Dr. Lustgarten, an electrophysiol-
ogist); and the sample distance δ between peaks of a channel and the lead
I channel to 20 samples based on visual observations. Additionally, we used

the Gaussian smoothing function FS(x, y, z) = z
y
√
2π
∗ e−

x2

2y2 . The output of

FS(x, y, z) ∈ [0, 1] is a smoothing factor, and the smoothed sample x is calcu-
lated as x ∗ FS(x, y, z) (see Line 25 of Algorithm 2).
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(a) One-lead ECG (lead V1). (b) A complex-lead ECG.

Fig. 6: A sample augmented ECG segment. (See the supplement (Boynton,
2020) for the full 12-lead altered segments.)

Fig. 6 shows an example of an ECG segment altered by applying Algo-
rithm 1 and Algorithm 2 on the segment in Fig. 5—the lead V1 in Fig. 6a and
the complex lead combining the 12 leads in Fig. 6b. The full 12-lead altered
ECG segments can be seen in the supplement (Boynton, 2020). Note the am-
plitudes of Q, R, and S peaks have been decreased as a random choice in this
segment.

Given this data augmentation scheme, class size balancing is achieved by
augmenting classes with lower representation (i.e., smaller number of beats)
more and classes with greater representation less. So, the population size of
the Normal class, the largest among all classes, is used as the baseline to
determine the number of heartbeats to be augmented for each of the other
classes to balance the size across all classes. ECG records of different patients
are not distinguished and handled altogether.

Test-time augmentation

Conventionally, data augmentation is done on the training dataset, and test-
ing is done using the original (non-augmented) dataset; in this case, however,
excessively small classes in the imbalanced class distribution degrade the re-
sulting test accuracy when averaged over all classes. To address this prob-
lem, test-time augmentation (TTA), used in image classification with good re-
sults (Moshkov et al., 2020; Simonyan and Zisserman, 2015), has been adopted
for ECG time series segment classification in this work. TTA generates multiple
augmented copies of each data item (i.e., ECG beats) in the test dataset, using
the same data augmentation scheme used for the training dataset. Then, for
each original beat, the classification accuracy is averaged over all augmented
beats of the original one. Thus, TTA-based testing also evaluates the robust-
ness and generalizability of the model.
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4.4 Class activation map

The class activation map (CAM) was first introduced by Zhou et al. (2016)
to enable visual interpretation of convolutional models between input data
and output classes (without additional parameters or modifications to the
network architecture) by highlighting regions of the input data according to
the level of contribution to the classification (Selvaraju et al., 2019). Wang
et al. (2017) soon applied CAM to time series data in their work on time
series classification using ResNet. When applied to ECG, CAM would highlight
important “regions” (i.e., subsequences) and patterns in the time series that
contributed to the classification of a heartbeat.

In this work, we adapted the method used by Selvaraju et al. (2019) for
the one-dimensional convolutions in the time series ResNet. Specifically, the
activation map for a time series is obtained by computing the gradient of the
output yc (before softmax) with respect to the activation of the last convolu-
tional layer Ak, that is, ∂yc

∂Ak . The importance of a filter to the classification,
wck, is then given by averaging the gradients as

wck =
1

Z

∑
i

∂yc
∂Aki

. (3)

and the activation map M indicating the importance of a subsequence is built
using the activation function ReLU as

M = ReLU(
∑
k

wckA
k(t)) (4)

5 Evaluations

5.1 Experiment setup

5.1.1 Data augmentation cases

In view of handling class imbalances through data augmentation, the evalua-
tion considers four scenarios depending on whether each of the training dataset
and test dataset is augmented or not (i.e., original).

EXP1 Augmented training and augmented testing.
EXP2 Augmented training and original testing.
EXP3 Original training and augmented testing.
EXP4 Original training and original testing.

5.1.2 Performance metrics

Classification accuracy metrics commonly used in health informatics and in-
formation retrieval are used comprehensively, that is, the three basic metrics—
sensitivity (= recall), specificity, and precision— and the two composite metrics—
balanced accuracy (= (sensitivity + specificity)/2) and F1 score (= 2 · preci-
sion · recall / (precision + recall)). Further, to account for the effect of class
imbalances in the original (i.e., not augmented) training/test datasets, an ad-
justed class-balanced accuracy (Pedregosa et al., 2011) is used. Class-balanced
accuracy is the macro-average of sensitivity (= recall) scores per class. This
accuracy is then adjusted for randomness by subtracting the accuracy achieved
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if the class predictions were completely random, which would be 1/n where n
is the number of classes. This adjusted class-balanced accuracy would be 0 for
completely random class predictions and 1 for completely correct class pre-
dictions. In addition, a macro-average F1 score, computed as the arithmetic
average of the F1 scores per class, is used as well.

5.1.3 Training scheme

The entire ECG record dataset has been split into a training dataset and a
test dataset by a 80%-20% split. Training was done using stochastic gradient
descent and stratified k-fold cross validation. The stratification was to cope
with class imbalances of the original (i.e., not augmented) datasets in the
EXP2, EXP3, and EXP4 scenarios. The termination condition was the vali-
dation loss change being no more than 10−4 for 10 consecutive epochs. The
learning rate was initially set to 0.01 and reduced to half each time following
four epochs where there was no improvement in the validation loss with a
minimum learning rate of 10−6.

Fig. 7 shows the training and validation losses during 10-fold cross valida-
tion training. With the augmented (hence larger) training dataset (Fig. 7a),
the average number of epochs until convergence was 14 and the ratio of valida-
tion to training losses was 1.12. On the other hand, with the non-augmented
(hence much smaller) training dataset (Fig. 7b), the convergence epoch was 23
and the loss ratio was 1.17 but the loss ratio increased throughout training un-
til epoch 74. Evidently, the smaller size of dataset resulted in more overfitting.

(a) EXP 1 and EXP 2. (b) EXP 3 and EXP 4.

Fig. 7: Loss curves (average training loss and validation loss in 10-fold cross
validation) during model training. (The plot is truncated to 50 epochs.)

5.2 Results and discussions

5.2.1 Classification accuracy

Table 4 summarizes the classification accuracy in each of the four augmentation
scenarios, and Fig. 8 shows the confusion matrix in each scenario. The following
observations are made from these results.
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Data augmentation scenario
EXP1 EXP2

Diagnostic class Se / Sp / Pr / BA / F1 Se / Sp / Pr / BA / F1

NORMAL 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 / 1.00 / 1.00

PVC 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 / 1.00 / 1.00

RBBB 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 / 1.00 / 1.00

APC 1.00 / 1.00 / 1.00 / 1.00 / 1.00 0.98 / 1.00 / 0.97 / 0.98 / 0.98

FUSION 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.93 / 0.96 / 0.96

NESC 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 / 1.00 / 1.00

SVESC 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.59 / 0.80 / 0.74

SVPB 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.50 / 0.75 / 0.67

UNKNOWN 1.00 / 1.00 / 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 / 1.00 / 1.00

Class-balanced accuracy 1.00 1.00
Macro-average F1 1.00 0.93

EXP3 EXP4

Diagnostic class Se / Sp / Pr / BA / F1 Se / Sp / Pr / BA / F1

NORMAL 1.00 / 0.59 / 0.23 / 0.62 / 0.38 1.00 / 0.98 / 1.00 / 1.00 / 1.00

PVC 0.76 / 0.89 / 0.55 / 0.66 / 0.64 1.00 / 1.00 / 1.00 / 1.00 / 1.00

RBBB 1.00 / 1.00 / 0.99 / 1.00 / 0.99 0.99 / 1.00 / 1.00 / 1.00 / 1.00

APC 0.99 / 1.00 / 0.96 / 0.98 / 0.98 0.81 / 1.00 / 0.96 / 0.94 / 0.88

FUSION 0.47 / 1.00 / 0.99 / 0.73 / 0.64 0.43 / 1.00 / 0.95 / 0.93 / 0.59

NESC 0.66 / 1.00 / 1.00 / 0.83 / 0.80 0.92 / 1.00 / 1.00 / 0.92 / 0.96

SVESC 0.00 / 1.00 / 1.00 / 0.50 / 0.30 0.00 / 1.00 / N/A / 0.00 / 0.00

SVPB 0.00 / 1.00 / N/A / 0.00 / 0.00 0.00 / 1.00 / N/A / 0.00 / 0.00

UNKNOWN 0.00 / 1.00 / N/A / 0.00 / 0.00 0.00 / 1.00 / N/A / 0.00 / 0.00

Class-balanced accuracy 0.54 0.57
Macro-average F1 0.48 0.60

EXP1: training and testing; EXP2: training only; EXP3: testing only; EXP4: neither.
Se: Sensitivity (Recall); Sp: Specificity; Pr : Precision; BA: Balanced Accuracy; F1 : F1
score.
N/A means there is no true positive for the class and, therefore, the Precision is undefined.

Table 4: Classification accuracy by the diagnostic class in each of the four data
augmentation scenarios.

First, augmentation of the dataset does help achieve higher accuracy. Con-
sidering both the class balanced accuracy (CBA) and the macro-average F1
(MAF) score, the order of overall classification accuracy from the highest first
is EXP1, EXP2, EXP4, and EXP3, which is in the order of both training and
testing augmented (EXP1), only training augmented (EXP2), neither train-
ing nor testing augmented (EXP4), and only testing augmented (EXP3). So,
the best is to augment both training and testing datasets and the worst is to
augment the testing dataset without augmenting the training dataset.

Second, augmentation of the training dataset plays a major role in achiev-
ing the accuracy. Note EXP1 and EXP2 use an augmented training dataset
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(a) EXP1 (b) EXP2

(c) EXP3 (d) EXP4

(EXP1: both training and testing; EXP2: training only; EXP3: testing only; EXP4: neither)

Fig. 8: Confusion matrices in the four data-augmentation scenarios. Each entry
shows the ratio of the true class beats over the predicted class beats (top) and
the predicted class size (bottom). The shade indicates the accuracy — darker
for higher accuracy.

while EXP3 and EXP4 do not, and the accuracy drop from EXP1 to EXP3
is 46% for CBA and 52% for MAF and from EXP2 to EXP4 is 43% for CBA
and 33% for MAF. In comparison, augmentation of the test dataset plays a
relatively minor role. For instance, the accuracy drop from EXP1 to EXP2
(where EXP1 uses an augmented test dataset and EXP2 does not) is 0% for
CBA and 7% for MAF, while the accuracy rise from EXP3 to EXP4 (where
EXP3 uses an augmented test dataset and EXP4 does not) is 3% for CBA
and 12% for MAF. This difference between training dataset and test dataset
makes sense — the training dataset is larger than the test dataset (by the
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ratio of 80% to 20% in this work) and more diverse in samples than the test
dataset and, therefore, has a larger effect on the learning performance.

Third, while augmentation of the test dataset helps improve the accuracy
overall, it is not the case for every class unless the training dataset is augmented
as well. Between EXP1 and EXP2, the F1 (and the associated precision) score
is higher for EXP1 than for EXP2 in four smaller classes (i.e. APC, FUSION,
SVESC, SVPB) while the same for three larger classes (i.e., Normal, PVC,
RBBB). This indicates that once the training dataset is augmented, augment-
ing the test dataset further improves the accuracy, especially for small classes.
Between EXP3 and EXP4, however, the relative classification accuracy differs
depending on the class size. That is, EXP3 tends to show lower accuracy than
EXP4 for larger classes (i.e., Normal, PVC, RBBB) and higher accuracy than
EXP4 for smaller classes (i.e., APC, FUSION, SVESC). This result indicates
that when the training dataset is not augmented, augmenting the test dataset
may compromise the robustness of the model because it exposes the model to
features that it has not learned during training, thereby leading to a biased
distribution of false positives and false negatives for different classes (see “re-
sult details” in the supplement (Boynton, 2020)). Thus, overall it is important
to augment both training and test datasets.

These observations affirm that the near 100% classification accuracy achieved
is attributed more to the data augmentation with class balancing than the
ResNet deep learning alone. As shown by Ismail Fawaz et al. (2019), ResNet
is one of the best performers for time series data and ResNet has demonstrated
outstanding classification performance for a variety of tasks (He et al., 2016;
Labati et al., 2019; Ardakani et al., 2020). It, however, performed relatively
poor (by almost 52%) for the task of classifying 12-lead ECGs into 9 classes
when trained without any training data augmentation (i.e., as in EXP3 and
EXP4) as opposed to with (as in EXP1 and EXP2).

5.2.2 Classification signatures

Heatmap patterns (obtained through the class activation map (Section 4.4))
can provide a good visual clue associating a region of heartbeat and the diag-
nostic class of the beat. A complex signal (e.g., vector of 12 lead channels) was
adequate for use to identify the pattern, as all 12 channels showed consistent
heatmap patterns across beats.

Fig. 9 shows such heatmap patterns in each diagnostic class (except Un-
known) from the model trained with augmented dataset in EXP1 and EXP2,
and Fig. 10 shows those from the model trained with non-augmented datasets
in EXP3 and EXP4. Each heatmap plot is a superimposition of ten randomly
selected beats. The same beats have been used between the two cases (Fig. 9
and Fig. 10). The resulting heatmap patterns were consistent across the se-
lected beats. Each plot clearly shows the “hot” region that is important to
recognizing the class; let us call such a pattern the “classification signature”.
For example, the hot segment rising from the end of the Q wave to the R
peak in Fig. 9a is a signature of the Normal class, and the hot segment rising
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from one-third to two-third of the rising R wave in Fig. 9b is a signature of
the RBBB class.

(a) Normal. (b) RBBB. (c) PVC.

(d) FUSION. (e) APC. (f) SVPB.

(g) NESC. (h) SVESC.

Fig. 9: Heatmap patterns of beats correctly classified by the model trained
with augmented dataset (in EXP1 and EXP2). Test beats are from the original
dataset.

Comparing the heatmaps between the cases of augmented training dataset
(see Fig. 9) and non-augmented training dataset (see Fig. 10) shows that the
heatmaps are less clear in the latter case. Evidently, this is attributed to the
poorer model accuracy resulting from non-augmented training dataset (see
Table 4). For example, NESC in Fig. 10g shows red in a much larger region
than in Fig. 9g; Normal in Fig. 10a shows lighter red rising edge of the R wave
than in Fig. 9a; FUSION in Fig. 10d shows more red in the rising and falling
edges of the R wave than in Fig. 9d.
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(a) Normal. (b) RBBB. (c) PVC.

(d) FUSION. (e) APC.

N/A

(f) SVPB.

(g) NESC. (h) SVESC.

Fig. 10: Heatmap patterns of beats correctly classified by the model trained
with non-augmented dataset (in EXP3 and EXP4). Test beats are from the
original dataset. There is no SVBP beat correctly classified. There are only
five correctly classified SVESC beats.

As an anecdotal example, let us examine the five most common cases of
misclassification observed in the confusion matrix of EXP2 (see Fig. 8b) — (1)
APC falsely classified as Normal; (2) PVC falsely classified as Normal; (3) Nor-
mal as SVESC; (4) Normal as APC; (5) Normal as SVPB. (The first two, false
normal, cases would be of particular importance in cardiac care.) Fig. 11 shows
the heatmaps of these five cases. Comparison with the heatmaps of correctly
classified beats (see Fig. 9) demonstrates the effectiveness of the heatmaps as
an indicator of the class, as discussed in the following observations.

First, APC beats misclassified as Normal beats (Fig. 11a) are much noisier
in the entire beat comprising P wave, QRS complex, and T wave than correctly
classified APC beats. Note that both Normal beats and APC beats have the
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(a) APC misclassified as
Normal.

(b) PVC misclassified as
Normal.

(c) Normal misclassified as
APC.

(d) Normal misclassified as
SVPB.

(e) Normal misclassified as
SVESC.

Fig. 11: Heatmaps of five cases of misclassification (in EXP2).

hot segment on the rising edge of the R wave. So, it appears the noise has
misled the model to mistake it for a Normal beat.

Second, PVC beats misclassified as Normal (Fig. 11b) have a rising edge
at the end of the segment, apparently included in the segment due to shorter
T windows of the PVC beats showing an early (i.e., premature) QRS com-
plex, consequently causing an anomaly in the data segmentation (discussed
in Section 4.2). The rising edge looks like the one in the Normal beats and is
suspected to cause the misclassification. (In order to verify this, we manually
trimmed out the false rising edge and reclassified it, and confirmed correct
classification to PVC.)

Third, as for the Normal beats misclassified as APC, SVPB, and SVESC
beats (Figs. 11c, 11d, and 11e), their heatmaps indeed show rising edges of
the R wave that look more similar to those in the misclassified class than the
Normal class.

6 Conclusion

This paper presented the classification performance of deep learning (ResNet
time series version) with a focus on resolving the class imbalance problem
through an amplitude-alteration scheme for data augmentation. The results
showed that augmenting the (larger) training dataset has a major benefit and
augmenting the (smaller) test dataset has a relatively minor benefit and that
the best is to augment both datasets. This paper also presented using the class
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activation map to identify heatmap signatures signaling different diagnostic
classes. The consistency of heatmap patterns across the selected beats and the
higher clarity of patterns from a model generated with an augmented dataset
also ascertains the benefit of the proposed data augmentation in the time
series ECG data. Overall, the results strongly suggest the effectiveness of the
amplitude-altered ECG beat augmentation scheme.

There are a number of suggested further work. First, in this paper all 12
leads were always considered together, but it may reveal interesting results
to consider only selected part of the 12 leads; this would lead to a computa-
tional feature selection problem for identifying dominant leads. Second, the
classification model in this paper was not personalized, that is, no distinc-
tion was made between different patients when ECG data were augmented. It
is, however, commonly understood that personalized ECG analysis produces
more accurate results (Lin et al., 2019), and in this regard, personalized data
augmentation can be studied. Third, this paper only introduced the idea of us-
ingthe CAM as a potentially effective tool to facilitate the beat classification;
this idea deserves more in-depth study toward eventually building a heatmap
signature profile of diagnostic classes.
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Labati RD, Muñoz E, Piuri V, Sassi R, Scotti F (2019) Deep-ECG: Convolu-
tional neural networks for ECG biometric recognition. Pattern Recognition
Letters 126:78–85

Le Guennec A, Malinowski S, Tavenard R (2016) Data augmentation for time
series classification using convolutional neural networks. In: Proceedings of
the ECML/PKDD Workshop on Advanced Analytics and Learning on Tem-
poral Data

Li Y, Pang Y, Wang J, Li X (2018) Patient-specific ECG classification by
deeper cnn from generic to dedicated. Neurocomputing 314:336–346

Liang W, Zhang Y, Tan J, Li Y (2014) A novel approach to ECG classification
based upon two-layered hmms in body sensor networks. Sensors 14(4):5994–
6011

Lieberman K (2008) Interpreting 12-lead ECGs: a piece by piece analysis.
Nurse Practioner 33(10):28–35

Lin Y, Lee BS, Lustgarten D (2019) Continuous detection of abnormal heart-
beats from ECG using online outlier detection. In: Information Management
and Big Data, Springer, pp 349–366

Liu F, Zhou X, Cao J, Wang Z, Wang H, Zhang Y (2019) A LSTM and CNN
based assemble neural network framework for arrhythmias classification. In:
Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, pp 1303–1307

Lynn HM, Pan SB, Kim P (2019) A deep bidirectional GRU network model
for biometric electrocardiogram classification based on recurrent neural net-
works. IEEE Access 7:145395–145405
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