
Ultrafast Local Outlier Detection from a Data Stream with
Stationary Region Skipping

Susik Yoon
KAIST

Daejeon, Korea
susikyoon@kaist.ac.kr

Jae-Gil Lee∗
KAIST

Daejeon, Korea
jaegil@kaist.ac.kr

Byung Suk Lee
University of Vermont
Burlington, Vermont
bslee@uvm.edu

ABSTRACT
Real-time outlier detection from a data stream is an increasingly
important problem, especially as sensor-generated data streams
abound in many applications owing to the prevalence of IoT and
emergence of digital twins. Several density-based approaches have
been proposed to address this problem, but arguably none of them
is fast enough to meet the performance demand of real applications.
This paper is founded upon a novel observation that, in many re-
gions of the data space, data distributions hardly change across
window slides. We propose a new algorithm, abbr. STARE, which
identifies local regions in which data distributions hardly change
and then skips updating the densities in those regions—a notion
called stationary region skipping. Two techniques, data distribution
approximation and cumulative net-change-based skip, are employed
to efficiently and effectively implement the notion. Extensive exper-
iments using synthetic and real data streams as well as a case study
show that STARE is several orders of magnitude faster than the
existing algorithms while achieving comparable or higher accuracy.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; • Infor-
mation systems→ Data stream mining.
KEYWORDS
Outlier detection; anomaly detection; data stream; local outlier;
kernel density estimation
ACM Reference Format:
Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2020. Ultrafast Local Outlier
Detection from a Data Stream with Stationary Region Skipping. In Proceed-
ings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’20), August 23–27, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403171

1 INTRODUCTION
1.1 Background and Motivation
Real-time detection of outliers from a data stream is an important
problem rapidly gaining increasing attention, especially with the
∗Jae-Gil Lee is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403171

Window 1 Window 2 Window 3 Window 4
Stationary region

Figure 1: Example data distributions of a two-dimensional
subspace of the HTTP data set [1], where a large proportion
of the data space (inside the dashed line) has nearly the same
data distribution each time a window slides.

Table 1: The ratio of the number of data points with (near-
)stationary densities to the number of all data points, aver-
aged across windows sliding over a data stream, for different
data sets. (The data sets are described in Section 5.1.)

Data stream A1 A2 HTTP DLR ECG FDC Average

100% stationary 0.58 0.65 0.88 0.72 0.62 0.61 0.68
≥ 99% stationary 0.65 0.76 0.99 0.91 0.97 0.96 0.87

recent prevalence of IoT and emergence of digital twins [21]. Its
solution is widely needed in many applications, such as intrusion
detection from a network traffic stream [1], fall detection from a
wearable sensor stream [12], and abnormal heartbeat detection from
an ECG stream [11].

Since a data stream is inherently unbounded, it is a common
practice in continuous outlier detection to use a sliding window to
consider only themost recent data points [8, 25]. As awindow slides,
new data points are added to the window, and old data points expire
from the window. Then, any data points significantly different from
others in that window are labeled as outliers.

This work takes advantage of an important characteristic in
real data streams that can potentially save much work for outlier
detection: data points are skewed into a number of local regions
in the data space and data distributions are nearly stationary (i.e.,
change insignificantly) in those regions for a certain duration of
time. This observation is more pronounced in a windowed stream
processing because a window typically slides at a fraction of the
window size and, therefore, expired or new data points from a
window slide have limited effect on the data distribution in the
entire window (see Figure 1).

With data points typically skewed to local regions in the data
space, outliers are likely to be identifiable only in the local region
that they belong to, called local outliers. A density-based approach
is able to find such local outliers effectively by labeling a data point
as an outlier if it has a relatively lower density than its neighbors,
where the density at a data point is determined by the data distri-
bution in its local region [2, 9, 17].

https://doi.org/10.1145/3394486.3403171
https://doi.org/10.1145/3394486.3403171

?
?

?

??
?

?

??

?

Update
?
?

Skip

??

?
? ?

?

?
?

?
?

?

?

?

??

??
?? ?

??

?

?
?

Update

?
x1

x3

x2

High

Low

D
en

si
ty

x2

New
Expired

x1

x3

Global
update
(existing)

Local
update

(proposed)

(a) Previous window. (b) Density update. (c) Current window.
Figure 2: Two density-update approaches.

Thus, the densities at many data points tend to be stationary in
a windowed stream processing, as confirmed in Table 1. In each
sliding window, the densities are completely stationary for 68% of
data points and nearly stationary (within 1% change across window
slides) for 87% of data points, when averaged over all data sets.
Despite this obvious opportunity to save work in density-based
outlier detection, none of the existing algorithms recognizes the
“stationarity” of the densities.

1.2 Main Ideas
Several density-based algorithms have been proposed to detect local
outliers from a data stream [13–16], and they need to estimate the
densities at data points. Oblivious to the density stationarity, the ex-
isting algorithms update the densities at all data points in a window
repeatedly every time the window slides; this density estimation in
the entire data space incurs quadratic time complexity [2, 6], which
impairs timely outlier detection because of excessive latency. The
key idea we employ to resolve this problem is to skip density up-
dates in local regions in which densities at data points have hardly
changed, namely stationary regions.

Example 1.1. (Local Update) In Figure 2, there are two outliers,
𝑥1 and 𝑥3, in the previous window (Figure 2a) and, after the window
slides, in the current window (Figure 2c) 𝑥2 becomes a new outlier,
as it now has a lower density than its nearest neighbors, and 𝑥3
becomes an inlier, as it now has a similar density to its nearest
neighbors’ densities. Between the previous and current windows,
the densities at data points change only in local regions on the
right. However, the existing algorithms globally update the densities
at all data points (Figure 2b upper). These excessive updates can
be avoided with local updates (Figure 2b lower), which allow for
skipping the stationary regions on the left and estimate the densities
only for the remaining local regions. □

Implementing the notion of stationary region skipping, however,
poses significant challenges. First, tracking where and how the
densities at data points change significantly should be done without
actually calculating their densities in the data space, as it is an
expensive operation. Second, skipping stationary regions should
not damage the outlier detection accuracy as a result.

In this paper, we propose a novel algorithm, abbreviated as
STARE (local outlier detection by STAtionary REgion skipping),
that addresses the challenges. To the best of our knowledge, STARE
is the first that fully exploits the density stationarity of a data stream
towards achieving fast and accurate density updates. Specifically,
STARE uses kernel density estimation (KDE) to compute densities
at data points while employing the following two techniques for
stationary region skipping.

Table 2: Notations used in this paper.

Notation Description

X𝑑 a set of 𝑑-dimensional data points
\𝑅 the size (diagonal length) of a grid cell
\𝐾 the threshold on the number of neighbors
Kℎ a kernel function with a bandwidth ℎ
𝑘𝑐 a kernel center

X𝑑 (𝑘𝑐) a set of data points represented by 𝑘𝑐
G a weight-distribution grid of kernel centers
D a local density function
S a local outlier score function

• Data distribution approximation: KDE requires a set of kernel
centers used to determine the local densities at their neighbor-
ing data points by a certain kernel function. By virtue of KDE,
STARE can track only the change of the distribution of kernel
centers, which is an indicator of the data density changes. No-
tably, kernel centers are derived from a set of fixed small regions
partitioning the data space. Their fixed possible positions make
it very efficient to maintain and update them.
• Cumulative net-change-based skip: STARE is built upon a sys-
tematic skipping framework based on a quantification of the
changes of kernel center distribution across sliding windows.
STARE updates the density only in the regions where the cumu-
lative net-change of kernel center distribution becomes signifi-
cant. The bounds on the density error resulting from skipping
density updates is theoretically analyzed to provide both exact
and approximate skipping strategies accordingly.

1.3 Summary
Main contributions in this paper are as follows.
• A new observation on the density stationarity in a data stream
and a novel concept of stationary region skipping to exploit it
for expediting local outlier detection.
• A novel algorithm STARE that fully implements the concept of
stationary region skipping by way of data distribution approxi-
mation and cumulative net-change-based skip techniques.
• Comprehensive experiments using one synthetic data set and
five real data sets; the results showed that STARE detects local
outliers 11 times faster than the state-of-the-art algorithm on
average while achieving comparable or higher accuracy and
robust performance for varying parameter values.

In the rest of the paper, Section 2 provides background knowledge,
Section 3 reviews related work, Section 4 proposes the STARE algo-
rithm, Section 5 presents the experiments, and Section 6 concludes
the paper. Table 2 summarizes the notations used in the paper.

2 REVIEW: KDE-BASED LOCAL OUTLIERS
Kernel density estimation (KDE) (see Definition 2.1) is non-
parametric estimation of the probability density function of a ran-
dom variable from a set of 𝑑-dimensional sample data points [20].

Definition 2.1. (Kernel Density Estimation) Given a set of ker-
nel centersKC = {𝑘𝑐1, . . . , 𝑘𝑐𝑚} and a kernel functionKℎ , the den-
sity at a data point 𝑥 ∈ X𝑑 is estimated as 1

𝑚

∑𝑚
𝑖=1Kℎ (𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐𝑖)),

where 𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐𝑖) is the Euclidean distance between 𝑥 and 𝑘𝑐𝑖 . □

Table 3: Existing algorithms for local outlier detection from
a data stream.

Name Base model Main technique employed Update scope

iLOF [14] LOF Incremental update All new points
MiLOF [16] LOF Clustering-based summary All new points
DILOF [13] LOF Sampling-based summary All new points
KELOS [15] KDE Clustering-based pruning All regions

The kernel centers are usually sampled from X𝑑 , and the den-
sity contribution of each kernel center 𝑘𝑐𝑖 to a target data point
𝑥 is estimated by a kernel function. A Gaussian function Kℎ (𝑢) =
(ℎ
√
2𝜋)−1𝑒−𝑢2/2ℎ2 is widely used as such a kernel function, where𝑢

is 𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐𝑖) and ℎ is the bandwidth which determines the smooth-
ness of the estimated density function.

To implement the concept of local outliers, we adopt the notion
of “local density” [10, 15, 17] (see Definition 2.2), whose estimation
is varied from the KDE as follows: (1) only the \𝐾 nearest kernel
centers are used (instead of all kernel centers) to estimate the lo-
cal density at each data point [22]; (2) density contributions from
kernel centers are adjusted by their weights [7]; (3) the density at a
multidimensional data point is calculated as the product of densities
estimated in individual dimensions [18].

Definition 2.2. (Local Density Estimation) Given a set of
weighted kernel centers KC = {⟨𝑘𝑐1,𝑤1⟩, . . . , ⟨𝑘𝑐𝑚,𝑤𝑚⟩}, the lo-
cal density D(𝑥) of a data point 𝑥 ∈ X𝑑 is estimated as

D(𝑥) =
\𝐾∑
𝑖=1

𝑤𝑖∑\𝐾
𝑗=1 𝑤𝑗

𝑑∏
𝑙=1
K
ℎ𝑙
(𝑑𝑖𝑠𝑡 (𝑥𝑙 , 𝑘𝑐𝑙𝑖)), (1)

where 𝑘𝑐1, 𝑘𝑐2, . . . , 𝑘𝑐\𝐾 are the \𝐾 nearest kernel centers of 𝑥 ; and
ℎ𝑙 , 𝑥𝑙 , and 𝑘𝑐𝑙 are the bandwidth, the value of 𝑥 , and the value of 𝑘𝑐 ,
respectively, in the 𝑙-th dimension (1 ≤ 𝑙 ≤ 𝑑); here, the bandwidth
ℎ𝑙 is set to the average of distances to the \𝐾 nearest kernel centers
in the 𝑙-th dimension [17, 19]. □

Then, the local outlier score of a data point is calculated based
on how much the local density at the data point is different from
the local densities at its \𝐾 nearest kernel centers [15, 17] (see
Definition 2.3).

Definition 2.3. (Local Outlier Score) The local outlier score of
a data point 𝑥 is calculated as S(𝑥) = (` − D(𝑥))/𝜎 , where ` and
𝜎 are the mean and standard deviation of the local densities at the
\𝐾 nearest kernel centers of 𝑥 . □

A local outlier score ranges from −∞ to +∞, where a higher
score means lower density relative to the \𝐾 nearest neighbors and
so more likely to be an outlier.

3 RELATEDWORK
The existing algorithms can be categorized into two kinds depend-
ing on themodel used to estimate the local density at a data point: lo-
cal outlier factor (LOF)-based and kernel density estimation (KDE)-
based (see Table 3).

3.1 LOF-based Algorithms
The local outlier factor (LOF) [2] is a well-known model for measur-
ing local density at a data point based on the average distance to
its neighbors. Specifically, it introduces the notion of reachability

distance from a data point 𝑥 to another data point 𝑦 as the larger
between the distance between 𝑥 and its 𝑘-th nearest neighbor and
the distance between 𝑥 and 𝑦, and then defines local reachability
density at 𝑥 as the inverse of the average reachability distance from
𝑥 to its 𝑘 nearest neighbors. Then, a data point with a lower local
reachability density than its neighbors has a higher LOF score, and
so more likely to be a local outlier. LOF’s running time complex-
ity is quadratic with the number of data points, which makes it
challenging to be applied in a streaming environment.

There have been efforts made to address the efficiency concern
of LOF [13, 14, 16], when using a landmark window where data
points never expire. Instead of updating LOF scores of all data
points as the landmark window expands, iLOF [14] incrementally
updates the LOF scores of only those data points that are direct or
indirect neighbors of new data points. While more efficient than
LOF, iLOF still suffers from memory shortage as well as excessively
long running time as the number of data points keeps increasing.
MiLOF [16] and DILOF [13] address these problems by compressing
old data points with clustering and sampling, respectively, to reduce
the overhead of local density updates while closely approximating
the data distribution. However, they only focus on efficiently com-
puting the LOF scores of new data points rather than all data points
in a window. Besides, they do not consider data expiration.

3.2 KDE-based Algorithms
The kernel density estimation (KDE) for local outlier detection was
first proposed by Latecki et al. [10], and was improved further in
the recent work [6, 15, 17]. KDEOS [17] was the first work detecting
local outliers using KDE considering only 𝑘 nearest neighbor kernel
centers. However, it is not meant for a data stream environment,
and, moreover, its quadratic running time complexity with the
number of kernel centers can be problematic, as every data point is
considered a kernel center.

Recently, KELOS [15] was proposed to detect local outliers from
a data stream. Similar to the clustering-based outlier pruning in
LOF-based approaches [9], KELOS clusters data points by micro-
clustering and uses cluster centroids as kernel centers for KDE. By
bounding the local densities and local outlier scores of data points in
each cluster, KELOS first prunes some data points that are unlikely
to be outliers at the cluster level and then inspects the remaining
data points to find top-𝑛 local outliers. This clustering-based outlier
pruning saves considerable computation cost. However, the update
of clusters still requires quadratic computation time; besides, their
bounds on local densities and local outlier scores always need to be
recomputed in every sliding window even if there has been little or
no change from the previous window.

4 THE ALGORITHM “STARE”
Problem setting: The generic problem underlying the work pre-
sented in this paper is density-based top-𝑛 local outlier detection
from a windowed data stream, whereby 𝑛 local outliers with the
highest local outlier scores are detected from a window each time
the window slides. In this paper, the size of a window and a slide is
measured as the number of data points in them, as done in other
related studies [15, 23]. An expired slide and a new slide refer to the
data points in them.

Previous
density

Net changes
∆wiKernel center

Small

Large

of

 d
at

a
po

in
ts

Skipped

Update local densitySmall region (grid cell)

Sc
or

e

Top-n outliers

…
Significant

cumulative changes?

Update
Local
update

Current
density

…

(a) Data distribution update. (b) Stationary region skip. (c) Top-𝑛 outlier detection.
Figure 3: Overall procedure of STARE.

4.1 Overview
To support fast detection of local outliers, STARE approximates the
data space into a set of fixed small regions. These regions are used
to derive kernel centers as well as to approximate data points, as
will be detailed in Section 4.2. STARE works in the following three
phases in every sliding window, as outlined in Algorithm 1 and
illustrated in Figure 3.

Phase 1. Data distribution update (Section 4.3): STARE
keeps track of the change by counting the number of data points in
each small region and using the count as the weight of the kernel
center derived from the region. A small region is implemented as a
grid cell partitioning the data space, and we call the resulting grid
a weight distribution grid. The weights are updated efficiently by
reflecting the net change of the count for each small region between
the expired slide and the new slide to the weight distribution grid
of the previous window (see Figure 3a).

Phase 2. Stationary region skip (Section 4.4): STARE exam-
ines the changes of weights in the weight distribution grid be-
tween consecutive sliding windows and identifies stationary re-
gions, where the cumulative changes of the nearby kernel centers
are not significant. Then, it skips updating the local densities at
data points in those stationary regions (see Figure 3b) and instead
reuses the local densities estimated in previous windows.

Phase 3. Top-𝑛 outlier detection (Section 4.5): STARE
chooses the top-𝑛 local outliers based on the local outlier scores of
data points (see Figure 3c), while efficiently pruning small regions
and data points that have low scores.

4.2 Density Approximation
The existing algorithms [10, 15, 17] use KDE mainly to estimate the
density at data points by using kernel centers, which are derived
from data points and, therefore, vary across windows. STARE also
uses KDE for the same purpose and, additionally, to detect changes
of local densities between consecutive windows; it is facilitated by
fixing kernel centers to the center of a small region (independently
of the data points) and associating the number of data points in a
small region as the data density at the kernel center of the region
(see Definition 4.1).

Definition 4.1. (Kernel Center) Consider the data space of X𝑑
partitioned into 𝑑-dimensional grid cells whose diagonal length
is \𝑅 .1 Then, a kernel center is defined as a pair ⟨𝑘𝑐,𝑤⟩ for each
1See Appendix C.1 for the guideline of determining \𝑅 .

Algorithm 1 Overall Procedure of STARE
Input: a data stream 𝐷𝑆 , the number 𝑛 of outliers to find
Output: a set𝑂 of top-𝑛 outliers for each window
1: for each windowW sliding on 𝐷𝑆 do
2: S𝑒𝑥𝑝 ← the expired slide; S𝑛𝑒𝑤 ← the new slide;
3: G𝑝𝑟𝑒𝑣 ← the previous weight distribution grid;
4: /* 1. Data Distribution Update */
5: (G𝑐𝑢𝑟𝑟 ,ΔG) ← UpdateDistribution(G𝑝𝑟𝑒𝑣 , 𝑆𝑒𝑥𝑝 , 𝑆𝑛𝑒𝑤);
6: /* 2. Stationary Region skip */
7: W ← UpdateChangedRegion(W, G𝑐𝑢𝑟𝑟 , ΔG);
8: /* 3. Top-𝑛 Outliers Detection */
9: 𝑂 ← DetectLocalOutliers(W, 𝑛);
10: return 𝑂 ;
11: end for

non-empty grid cell such that 𝑘𝑐 is the center coordinate of the grid
cell and𝑤 is the number of data points in the grid cell, used as the
weight of the kernel center. □

A kernel center 𝑘𝑐 acts as the representative of a grid cell. Let
X𝑑 (𝑘𝑐) denote the set of data points in a 𝑑-dimensional grid cell
represented by 𝑘𝑐 . Then, the set of kernel centers in the data space,
KC = {⟨𝑘𝑐𝑖 ,𝑤𝑖 ⟩ | 𝑖 = 1, . . . ,𝑚}, is managed in a grid-based struc-
ture G, called a weight distribution grid.

The local density at 𝑥 ∈ X𝑑 (𝑘𝑐) and the local outlier score of 𝑥
are estimated by substituting the \𝐾 nearest kernel centers of 𝑥 (in
Definition 2.2 and Definition 2.3) with those of 𝑘𝑐 that contains 𝑥 .
Then, the local densities at all data points within the grid cell are
bounded as stated in Theorem 4.2.

Theorem 4.2. (Bounds on Local Density) Given a grid cell 𝑐
and the kernel center 𝑘𝑐 representing 𝑐 , the local density D(𝑥) at
every 𝑥 ∈ X𝑑 (𝑘𝑐) is bounded asD𝑙𝑜𝑤 (𝑐) ≤ D(𝑥) ≤ D𝑢𝑝 (𝑐), where

D𝑙𝑜𝑤 (𝑐) =
\𝐾∑
𝑖=1

𝑤𝑖∑\𝐾
𝑗=1 𝑤𝑗

𝑑∏
𝑙=1
K
ℎ𝑙
(𝑑𝑖𝑠𝑡 (𝑘𝑐𝑙 , 𝑘𝑐𝑙𝑖) +

\𝑅

2
√
𝑑
) and

D𝑢𝑝 (𝑐) =
\𝐾∑
𝑖=1

𝑤𝑖∑\𝐾
𝑗=1 𝑤𝑗

𝑑∏
𝑙=1
K
ℎ𝑙
(𝑑𝑖𝑠𝑡 (𝑘𝑐𝑙 , 𝑘𝑐𝑙𝑖) −

\𝑅

2
√
𝑑
) ;

(2)

𝑘𝑐𝑖 is the 𝑖-th of the \𝐾 nearest kernel centers of 𝑘𝑐 .

Proof. The distance between 𝑘𝑐 and 𝑥 ∈ X𝑑 (𝑘𝑐) on the 𝑙-th
dimension is at most \𝑅/2

√
𝑑 . Consider another kernel center 𝑘𝑐𝑜 .

By the triangle inequality, 𝑑𝑖𝑠𝑡 (𝑘𝑐𝑙 , 𝑘𝑐𝑙𝑜) + \𝑅/2
√
𝑑 ≥ 𝑑𝑖𝑠𝑡 (𝑥𝑙 , 𝑘𝑐𝑙𝑜).

Since the estimated local density is smaller when the distance to

Algorithm 2 UpdateDistribution

Input: G𝑝𝑟𝑒𝑣 , S𝑒𝑥𝑝 , S𝑛𝑒𝑤
Output: G𝑐𝑢𝑟𝑟 , ΔG /* weight and net-weight distribution grids */
1: G𝑒𝑥𝑝 ← add 𝑥 ∈ S𝑒𝑥𝑝 to the cell containing the coordinate of 𝑥 ;
2: G𝑛𝑒𝑤 ← add 𝑥 ∈ S𝑛𝑒𝑤 to the cell containing the coordinate of 𝑥 ;
3: ΔG← G𝑛𝑒𝑤 − G𝑒𝑥𝑝 ; /* net changes of 𝑘𝑐 weights per cell */
4: G𝑐𝑢𝑟𝑟 ← G𝑝𝑟𝑒𝑣 + ΔG;
5: return G𝑐𝑢𝑟𝑟 and ΔG;

𝑘𝑐𝑜 is longer, the longest distance to 𝑘𝑐𝑜 gives the lowest local den-
sity. Likewise, the shortest distance to 𝑘𝑐𝑜 , 𝑑𝑖𝑠𝑡 (𝑘𝑐𝑙 , 𝑘𝑐𝑙𝑜) − \𝑅/2

√
𝑑 ,

gives the highest local density. □

Based on these bounds on the local density within a grid cell,
the bounds on the local outlier score is given by Corollary 4.3.

Corollary 4.3. (Bounds on Local Outlier Score) Given a
grid cell 𝑐 and the kernel center 𝑘𝑐 representing 𝑐 , the local outlier
scores S(𝑥) of every 𝑥 ∈ X𝑑 (𝑘𝑐) is bounded as

S𝑙𝑜𝑤 (𝑐) =
` − D𝑢𝑝 (𝑐)

𝜎
≤ S(𝑥) ≤ S𝑢𝑝 (𝑐) =

` − D𝑙𝑜𝑤 (𝑐)
𝜎

, (3)

where D𝑙𝑜𝑤 (𝑐) and D𝑢𝑝 (𝑐) are the local density bounds in Theorem
4.2, and ` and 𝜎 are the average and standard deviation, respectively,
of the local densities at the \𝐾 nearest kernel centers of 𝑘𝑐 .

Proof. Straightforward from Definition 2.3. □

4.3 Phase 1: Data Distribution Update
Every time a window slides, old data points expire and new

data points enter the window; thus, the data distribution of the
window, managed in the weight distribution grid, should be updated
accordingly. STARE efficiently performs this update by managing
a net-weight distribution grid, denoted as ΔG, and calculating the
net changes in each grid cell between the expired and new slides,
as shown in Algorithm 2. Each data point in a slide is indexed into
a grid cell in constant time, and the net changes of grid cells are
calculated in linear time with the number of non-empty grid cells,
as it is implemented by a simple matrix addition.

4.4 Phase 2: Stationary Region Skip
Algorithm 3 outlines the steps of this phase. The net-weight dis-
tribution grid ΔG from Phase 1 contains the essential information
regarding the data distribution changes. STARE can selectively up-
date the local densities at data points in a window by using ΔG
only, as justified by Theorem 4.4.

Theorem 4.4. (ΔG-based density update) Given non-zero
weight net-changes in ΔG, let Xaffected be a set of data points “close”
to kernel centers in ΔG, specifically, Xaffected = {𝑥 | ∃(⟨𝑘𝑐𝑖 ,Δ𝑤𝑖 ⟩ ∈
ΔG) ∧ (𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐𝑖) ≤ 𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐\𝐾))}, where 𝑘𝑐\𝐾 is the \𝑘 -th near-
est kernel center in the previous window. Then, all data points at
which local densities have changed must be in Xaffected.

Proof. By Definition 2.2, if the \𝐾 nearest kernel centers of a
data point 𝑥 and their weights remain the same, then the local
density at 𝑥 does not change. Therefore, since Xaffected contains all
data points close to the \𝐾 nearest kernel centers whose weights
have changed (i.e., non-zero net-changes), it contains all data points
at which the local densities have changed. □

Algorithm 3 UpdateChangedRegion
Input: W, G𝑐𝑢𝑟𝑟 , ΔG, 𝛾 /* error allowance threshold, 0 if not specified */
Output: W /* updated window */
1: /* Stationary region skip in Definition 4.6 */
2: for each 𝑘𝑐 in G𝑐𝑢𝑟𝑟 do
3: 𝐸 (𝑘𝑐) ← the cumulative error of 𝑘𝑐 in Definition 4.5;
4: if 𝐸 (𝑘𝑐) > 𝛾 then
5: (D𝑙𝑜𝑤 (𝑐),D𝑢𝑝 (𝑐)) ← update density bounds of a grid cell 𝑐

represented by 𝑘𝑐 ;
6: D(𝑥) ← update densities at all data points 𝑥 ∈ X𝑑 (𝑘𝑐) ;
7: end if
8: end for
9: return W;

Thus, based on Theorem 4.4, STARE updates local densities only
at data points in Xaffected to keep the densities up to date in the
current window. Further, STARE relaxes the density update to skip
it at data points until the resulting error accumulated over sliding
windows reaches a certain threshold. This strategy allows STARE
to exploit the near- as well as exact stationarity of densities.

Calculating the local density errors directly at data points is com-
putationally expensive, and therefore STARE instead uses errors on
the weights of kernel centers near the data points in the same grid
cell. In the current implementation, it quantifies the change in the
weight distribution of the kernel centers within the distance to the
\𝐾 -th nearest kernel centers of a data point from the last update
(see Definition 4.5).

Definition 4.5. (Cumulative Error) Let 𝑡 (= 1, . . . , 𝑡𝑐) be the
index of a sliding window and ΔG𝑡 be the ΔG between the windows
𝑡−1 and 𝑡 . Then, the cumulative error 𝐸 (𝑥 ; 𝑡𝑐 , 𝑡𝑙) on the local density
at a data point 𝑥 in the current window 𝑡𝑐 since the last density
update in the window 𝑡𝑙 is calculated as

𝐸 (𝑥 ; 𝑡𝑐 , 𝑡𝑙) =
∑

𝑡=𝑡𝑙 ,...,𝑡𝑐

∑
Δ𝑤𝑗 ∈ΔW𝑡 (𝑥 ;𝑡𝑙) |Δ𝑤𝑗 |∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖
, (4)

where KC(𝑥 ; 𝑡𝑙) is the set of \𝐾 nearest kernel centers of 𝑥 in
the window 𝑡𝑙 and ΔW𝑡 (𝑥 ; 𝑡𝑙) = {Δ𝑤𝑖 | (⟨𝑘𝑐𝑖 ,Δ𝑤𝑖 ⟩ ∈ ΔG𝑡) ∧
(𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐𝑖) ≤ 𝑑𝑖𝑠𝑡 (𝑥, 𝑘𝑐\𝐾;𝑡𝑙))}, where 𝑘𝑐\𝐾;𝑡𝑙 is the \𝑘 -th nearest
kernel center in the window 𝑡𝑙 . ΔW𝑡 (𝑥 ; 𝑡𝑙) contains weight net-
changes of the kernel centers affecting the local density at 𝑥 . □

Definition 4.6 gives a formal specification of stationary region
skipping. The upper bound on the consequential local density error
is given in Theorem 4.7.

Definition 4.6. (Stationary Region Skip) Given a setX𝑑 of data
points in the current window and an error allowance threshold 𝛾 ,
the update of local density at a data point 𝑥 ∈ X𝑑 (𝑘𝑐) is skipped if
𝐸 (𝑘𝑐) ≤ 𝛾 , where 𝑘𝑐 is a kernel center containing 𝑥 . □

Theorem 4.7. (Upper bound on density error) Applying sta-
tionary region skipping with an error allowance threshold 𝛾 to a data
point 𝑥 ∈ X𝑑 gives the upper bound on the density estimation error,

|ΔD(𝑥) | = |D𝑐𝑢𝑟𝑟 (𝑥) − D𝑙𝑎𝑠𝑡 (𝑥) | ≤ |
𝛾 (K

ℎ̃
(0)𝑑 − D𝑙𝑎𝑠𝑡 (𝑥))

1 + 𝛾 |, (5)

whereD𝑙𝑎𝑠𝑡 (𝑥) is the last updated local density,Kℎ is the correspond-
ing kernel function, and ℎ̃ =𝑚𝑖𝑛(ℎ1, . . . , ℎ𝑑).

Algorithm 4 DetectLocalOutliers
Input: W /* current window */, 𝑛 /* number of outliers to find */
Output: a set𝑂 of top-𝑛 outliers
1: S𝑙𝑜𝑤 (𝑐), S𝑢𝑝 (𝑐) ← update score bounds of all grid cells 𝑐 inW;
2: S(𝑥) ← update scores of all data points 𝑥 inW;
3: /* Cell-level Detection */
4: Let𝐶 be the set of grid cells inW;
5: 𝐶cand ← find candidate grid cells from𝐶 according to Definition 4.8;
6: /* Point-level Detection */
7: Let 𝑋cand be the set of data points in the grid cells in𝐶cand;
8: 𝑂 ← pick top-𝑛 local outliers from 𝑋cand;
9: return 𝑂 ;

Proof. ΔD(𝑥) is determined by the weight net-changes of near-
est kernel centers of 𝑥 and the density estimation by a kernel func-
tion. The former can be approximated by 𝐸 (𝑥) in Eq. (4), and the
latter can be bounded by using the monotonicity property of a
kernel function. See Appendix B.1 for the detailed proof. □

𝛾 is a significant parameter influencing the performance and
accuracy of STARE. 𝛾 = 0 leads to skipping density updates only
where there is absolutely no density change at all, thereby incurring
no density error, and increasing 𝛾 leads to skipping updates in more
regions at the expense of higher local density errors. The optimal 𝛾
value balancing the trade-off would be application-dependent. An
empirical study using real data streams (see Section 5.3) showed
that 𝛾 = 0.1 was optimal, minimizing the processing time while
guaranteeing near the baseline accuracy.

4.5 Phase 3: Outlier Detection
As outlined in Algorithm 4, STARE takes advantage of the bounds
on the local outlier scores of data points in a grid cell (see Corol-
lary 4.3) to perform outlier detection at two levels: cell-level and
point-level. That is, it first identifies at the candidate grid cells (see
Definition 4.8) that are guaranteed to contain the top-𝑛 outliers and
then retrieves the top-𝑛 outliers from these grid cells.

Definition 4.8. (Candidate Grid Cell) Given the number 𝑛 of
outliers and a set𝐶 of grid cells, a grid cell 𝑐 becomes a candidate if
it is a member of 𝐶cand (⊆ 𝐶) determined by

argmin
𝐶cand⊆𝐶

{ |𝐶cand | such that |𝐶cand | ≥ 𝑛 ∧

min({S𝑙𝑜𝑤 (𝑐) |𝑐 ∈ 𝐶cand }) > max({S𝑢𝑝 (𝑐) |𝑐 ∈ 𝐶−𝐶cand }) },
(6)

where S𝑙𝑜𝑤 (𝑐) and S𝑢𝑝 (𝑐) are defined in Corollary 4.3. □

Since, by definition, the minimum outlier score of data points in
𝐶cand is greater than the maximum outlier score of data points in
𝐶 −𝐶cand, all top-𝑛 outliers must be in 𝐶cand as long as there are at
least 𝑛 data points in 𝐶cand.

4.6 Time Complexity of STARE
Theorem 4.9 shows the worst-case time complexity of STARE.

Theorem 4.9. Given the number𝑊 of data points in a window,
the number 𝑁𝐺 of non-empty grid cells in a window, the ratio 𝑟 of
the number of changed grid cells over 𝑁𝐺 in Phase 2, and the ratio
𝑝 of the number of data points in candidate grid cells over𝑊 in the
point-level detection step of Phase 3, the time complexity of STARE is
𝑂 (𝑊 + 𝑟𝑁 2

𝐺
).

Table 4: Time complexity analysis of the four steps: Phase
(1) data distribution update, (2) stationary region skip, (3-1)
cell (cluster)-level detection, and (3-2) point-level detection.

Phase LOF KELOS STARE

1 - 𝑂 (𝑊𝑁𝑀) 𝑂 (𝑊)
2 - - 𝑂 (𝑊 + 𝑟𝑁 2

𝐺
)

3-1 - 𝑂 (𝑁 2
𝑀
) 𝑂 (𝑁𝐺)

3-2 𝑂 (𝑊 2) 𝑂 (𝑝𝑊𝑁𝑀) 𝑂 (𝑝𝑊)

Total 𝑂 (𝑊 2) 𝑂 (𝑊𝑁𝑀 + 𝑁 2
𝑀
) O(W + rN2

G)

NM

rNG

W

S
iz

e

Data set

0.01

10

10000

A1 A2 HTTP DLR ECG

Figure 4: Comparison of the window size𝑊 , the number 𝑁𝑀
of micro-clusters, and the number 𝑟𝑁𝐺 of changed grid cells
in five real data sets.

Proof. See Appendix B.2 for the proof. □

In Table 4, we compare the time complexity of STARE with
those of LOF [14] and KELOS [15], which are considered the rep-
resentatives of LOF-based algorithms and KDE-base algorithms,
respectively. 𝑁𝑀 is the number of micro-clusters in a window used
by KELOS. STARE has the lowest complexity since𝑊 > 𝑁𝑀 > 𝑟𝑁𝐺
typically holds, as empirically shown in Figure 4.

5 EXPERIMENTS
We conducted thorough experiments to evaluate the performance
of STARE. The results clearly demonstrate the superiority of STARE
as follows.
• Orders-of-magnitude faster than the existing algorithms (Section
5.2 and Section 5.3).
• Robust to the variation of parameter values (Section 5.4 and
Appendix C.2).
• Case-proved for a real industry application (Section 5.5).

5.1 Experiment Setup
Data sets: We used one synthetic data set (YahooA2 [24]) and four
real data sets (YahooA1 [24], HTTP [1], DLR [5], and ECG [11]), all
commonly cited in the literature. In addition, we used a real data set
FDC (proprietary to an industrial sponsor) for a case study. YahooA1
and YahooA2 are provided by Yahoo! for time-series anomaly de-
tection tasks; YahooA1 contains metrics for Yahoo! services with
human-labeled outliers, and YahooA2 contains a synthetic data
stream generated with varying trend, noise, and seasonality. HTTP
contains network traffic including various network attacks (e.g.,
denial-of-service) labeled as outliers. DLR has been collected for an
activity recognition system and contains measurements from the
sensors attached to human subjects; it has 12 different activities (e.g.,
running, walking, falling, etc.) as labels, and “falling” is labeled as
an outlier because fall detection is one of popular applications of
outlier detection [12]. ECG contains features extracted from elec-
trocardiogram signals, and the signals from abnormal heartbeats
are labeled as outliers. FDC contains sensor readings collected from
facilities in semiconductor factory facilities.

0.1

10

1000

A1 A2 HTTP DLR ECG

MiLOF DILOF sLOF KELOS STARE

Data set

0.1

10

1000

A1 A2 HTTP DLR ECG
0

5

10

A1 A2 HTTP DLR ECG

Pe
ak

m

em
or

y(
M

B
)

C
PU

 ti
m

e(
m

s)

Data set

Figure 5: CPU time (ms) and peak memory (MB) results

A1 A2 HTTP DLR ECG

MiLOF DILOF sLOF KELOS STARE

R
-p

re
ci

si
on

Data set

0
0.2
0.4
0.6
0.8

1

A1 A2 HTTP DLR ECG
0

0.2
0.4
0.6
0.8

1

A1 A2 HTTP DLR ECG

Av
er

ag
e

pr
ec

is
io

n

Data set

Figure 6: Accuracy results.

Table 5: Data sets and default parameter values.

Data set Dim. Size Window size Slide size Outlier ratio

YahooA1 [24] 1 95K 1,415 71 1.7%
YahooA2 [24] 1 142K 1,421 71 0.3%
HTTP [1] 3 567K 6,000 300 0.3%
DLR [5] 9 23K 1,000 50 2.2%
ECG [11] 32 112K 2,237 117 16.3%
FDC 32 1.6K 534 24 0.2%

Parameters: The window size and the slide size specify the
amount of data reflecting the most recent context of an application,
so usually application-dependent. We set the window size to the
default value suggested by the data providers for YahooA1/A2,
HTTP, and ECG; to 10 seconds for DLR so that a window contains
at least two activities. The slide size was set to 5% of the window
size by default, following a relevant survey by Tran et al. [23]. The
number of neighbors \𝐾 and the size of a grid cell \𝑅 (the size of a
micro-cluster for KELOS) are common hyper-parameters used by
existing local outlier detection algorithms, so they were tuned to
achieve the peak accuracy in each experiment. Unless otherwise
specified, the search space of \𝐾 was set to 10% of the number of
data points in a window in accordance with the context of local
outlier, and that of \𝑅 was set as suggested in Appendix C.1. The
error allowance threshold 𝛾 for stationary region skipping, which
is the only one additional parameter in STARE, was fixed to 0.1 as
explained in Section 4.4 and Section 5.3.

Algorithms: For comparison with STARE, we chose five ex-
isting algorithms, LOF [2], iLOF [14], MiLOF [16], DILOF [13], and
KELOS [15] (state-of-the-art). Because LOF was designed for static
data, we ran it for every window to adapt to data streams and
renamed it to sLOF. Since iLOF, MiLOF, and DILOF did not sup-
port data expiration, we also ran them for every window for fair
comparison, the same as done by Qin et al. [15]. Because the five
algorithms were originally implemented in different languages, we
re-implemented them in JAVA from the source codes provided by
the authors. STARE was also implemented in JAVA, and the source
code is available at https://github.com/kaist-dmlab/STARE.

Computing platform: We conducted experiments on an Ama-
zon AWS c5d.xlarge instance with four vCPUs (3GHz), 8GB of RAM,
and 100GB of SSD. Amazon Linux AMI 2018.03 and JDK 1.8.0 are
installed in the instance.

Performance metrics: The run time metrics are CPU time to
retrieve outliers, averaged per window, and maximummemory con-
sumed (or peak memory). The accuracy metrics are R-precision [4]
and average precision [26], which are widely used for evaluating
top-𝑛 outlier detection [3]. R-precision is the proportion of the re-
trieved true outliers out of all true outliers reported for all windows,

C
PU

 ti
m

e(
m

s)

Data set

0

7

14

A1
0

3

6

A2
0

0.2

0.4

HTTP
0

0.3

0.6

DLR
0

7

14

ECG
0

0.5

1

A1 A2 HTTP DLR ECG

R
-p

re
ci

si
on

Data set

STARE-γ0 STARE-γ0.1STARE-NoSkip

Figure 7: Performance comparison of STARE variants.

and thus indicates how many true outliers are found. Average pre-
cision is the precision of the ranks of the retrieved true outliers
averaged over all of them, and indicates how high the true outliers
are ranked in the result.

5.2 Overall Performance Comparison
We compared the performance of STARE with other algorithms
for all data sets with the default parameter value setting shown in
Table 5 and Appendix A.1. The CPU time and the peak memory of
the five algorithms are shown in Figure 5, and the accuracy of their
results is shown in Figure 6. The results of iLOF are not included
due to unacceptable execution time. Note the logarithmic scale of
the CPU time. It is evident that STARE was the fastest for all data
sets, outperforming sLOF by 3,107 times and KELOS by 11 times
when averaged over all data sets. Despite this notable speedup,
STARE consumed comparable memory space while achieving the
highest outlier detection accuracy. (YahooA2 may be a slight ex-
ception, but the accuracy of STARE was still comparable to the
highest accuracy, achieved by sLOF.) This remarkable performance
of STARE demonstrates the merit of stationary region skipping.

5.3 Analysis of STARE
Skipping strategy: Figure 7 shows the performance of STARE for
different degrees of region skipping: no skipping, 𝛾 = 0, and 𝛾 = 0.1.
To save space, we show only R-precision for the accuracy because
average prevision showed similar trends. As expected, STARE-𝛾0
achieved exactly the same accuracy as STARE-NoSkip while saving
25%–48% of the CPU time. Noticeably, STARE-𝛾0.1 sustained almost
no accuracy loss compared with STARE-NoSkip while saving 39%–
68% of the CPU time. This improvement is consistent with the
stationary density ratio shown in Table 1, which strongly indicates
that the stationary region skipping is the key factor.

Run time breakdown: To further analyze the improvement
of STARE over the state-of-the-art algorithm KELOS, in Figure
8, we compared the CPU time of Figure 5 for the three phases
common to both algorithms: data distribution update (Phase 1),
cell/cluster-level detection for STARE/KELOS (Phase 3-1), and point-
level detection (Phase 3-2). Note that region skipping is unique for
STARE; the CPU time for the region skipping itself was very small

https://github.com/kaist-dmlab/STARE

KELOS STARESTARE-NoSkip

0 4 8 12

1

2

3-1

3-2

CPU time (ms)

Ph
as

e

(a) YahooA1.

0 1.5 3 4.5 6

1

2

3-1

3-2

CPU time (ms)
Ph

as
e 10.4

(b) YahooA2.

0 0.1 0.2 0.3

1

2

3-1

3-2

CPU time (ms)

Ph
as

e

(c) HTTP.

0 0.25 0.5 0.75 1

1

2

3-1

3-2

CPU time (ms)

4.3

6.5

Ph
as

e

(d) DLR.

0 4 8 12

1

2

3-1

3-2 24

CPU time (ms)

Ph
as

e

(e) ECG.

Figure 8: Breakdown of CPU time into the four phases: (1) data distribution update, (2) stationary region skip, (3-1) cell-level
detection (cluster-level detection for KELOS), and (3-2) point-level detection. Phase 2 is only applicable to STARE.

Average precisionTime reduction ratioSkip ratio R-precision

0
0.2
0.4
0.6
0.8

1

R
at

io
/P

re
ci

si
on

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

Error allowance threshold

(a) YahooA1.

0
0.2
0.4
0.6
0.8

1

Error allowance threshold

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

(b) YahooA2.

0
0.2
0.4
0.6
0.8

1

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

Error allowance threshold

(c) HTTP.

0
0.2
0.4
0.6
0.8

1

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

Error allowance threshold

(d) DLR.

0
0.2
0.4
0.6
0.8

1

0.
0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

Error allowance threshold

(e) ECG.

Figure 9: Effects of varying the error allowance threshold 𝛾 .

iLOF MiLOF DILOF sLOF KELOS STARE

0

1

10

100

1,000

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

C
PU

 ti
m

e
(m

s)

Number of neighbors

(a) YahooA1.

0

1

10

100

1,000

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

Number of neighbors

(b) YahooA2.

0
1

10
100

1,000
10,000

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

Number of neighbors

(c) HTTP.

0

1

10

100

1,000

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

Number of neighbors

(d) DLR.

0
1

10
100

1,000
10,000

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

Number of neighbors

(e) ECG.

Figure 10: CPU time (ms) with varying number of neighbors \𝐾 .

and was shown for reference purposes. We also added STARE-
NoSkip, to highlight the impact of region skipping in each step. The
CPU time on the data distribution update was the smallest for all
algorithms except HTTP. In the case of YahooA2, because the cell-
level detection was the largest for all algorithms, most of data points
were pruned, and the workload for the point-level detection was
significantly reduced. On the contrary, the case of HTTP showed the
opposite trend for the two-level detection. It is notable that STARE
outperformed KELOS in most cases, showing that stationary region
skipping was effective in reducing the CPU time on both cell-level
detection and point-level detection. Interestingly, STARE-NoSkip
also spent less time than KELOS in some data sets (e.g., YahooA2
and DLR), which suggested that the kernel center idea itself was
beneficial for updating data distribution (Phase 1) and detecting
outliers (Phase 3).

Error allowance threshold: To analyze the impact of station-
ary region skipping on the performance and the trade-off between
efficiency and accuracy, we measured R-precision, average pre-
cision, skip ratio, and time reduction ratio while increasing the
threshold 𝛾 from 0 to 1. (Skip ratio is the ratio of the number of
skipped grid cells to that of unskipped grid cells; time reduction
ratio is the ratio of the saved CPU time to the entire CPU time.) The
other parameters were set to the default values. In Figure 9, both

skip ratio and time reduction ratio increased as the threshold in-
creased for all data sets. On the other hand, the accuracy decreased
as more grid cells were skipped. As discussed in Section 4.4, the
threshold 0.1 led to the accuracy close to the best (i.e., the baseline
accuracy with no skipping) and the speedup by 1.6–3.2 times for all
data sets. Interestingly, HTTP and ECG did not suffer from accuracy
loss even with a high skip ratio. It happened because the density
distributions of the two data sets barely changed over time, so the
local outliers could be detected effectively even with the outdated
data distribution of a window.

5.4 Effect of the Number of Neighbors
We analyzed the effect of the number of neighbors, a parameter
common to all algorithms, by varying it from 1 to 1,000. As shown
in Figure 10, the CPU time of all algorithms increased with \𝐾 , as
finding more neighbors required more processing time. While the
CPU time of the LOF-based algorithms (iLOF, MiLOF, DILOF, and
sLOF) kept increasing, that of the KDE-based algorithms (KELOS
and STARE) converged at some point since the neighbor search was
conducted over kernel centers which were much fewer than data
points. STARE outperformed all other algorithms in the entire range
of \𝐾 (with minute exception for DLR), thereby demonstrating the
robustness of STARE against \𝐾 .

Normal Defective Normal

Time

Each cycle of processing a wafer

d32 d32 d32

Feature extraction using DWT

Data points

. . .

Se
ns

or

A
B
C
D

. . .

. . .

. . .

. . .

Figure 11: Feature extraction from a sensor data stream.

Table 6: Performance results in FDC.

CPU time (ms) R-precision Average precision

sLOF 13.6 0.77 0.69
KELOS 1.21 0.81 0.81
STARE 0.81 1.00 1.00

5.5 Case Study
The case study is from the domain of smart factories, where mul-
tidimensional data streams are commonly generated by digital
twins [21] with sensors attached to the facilities. Detecting anom-
alies from the data streams with the minimum latency (e.g., less than
a millisecond) is crucial to guarantee the quality of products and to
minimize the downtime of a production line.

The specific case study chosen is on the fault detection and clas-
sification (FDC) data set provided by Samsung Electronics Co., Ltd.
to verify the effectiveness of STARE. The data set consists of four
sensor-generated data streams collected during the semiconductor
manufacturing process (see Figure 11). The manufacturing process
cycle is repeated for each wafer, and the cycle that produces a de-
fective wafer is annotated as an outlier. So, using discrete wavelet
transform (DWT), we transformed each cycle containing four data
stream segments to a 32-dimensional feature vector (consisting
of eight DWT coefficients for each segment). The window size is
534 (the number of wafers processed in a day), and the slide size is
24 (the number of wafers in a lot).

Then, we evaluated the performances of sLOF, KELOS, and
STARE for detecting outliers. Table 6 shows that STARE outper-
forms the other two algorithms in both speed and accuracy. Notably,
STAREwas able to detect all outliers only within a millisecond. This
case study thus demonstrates the outstanding usability of STARE
for a real manufacturing industry.

6 CONCLUSION
This paper proposed STARE, a very fast density-based algorithm
for local outlier detection from a windowed data stream. It achieved
several orders-of-magnitude speedup over the existing algorithms.
This remarkable improvement was enabled by the novel concept,
stationary region skipping, which exploits the near-stationarity of
data densities in the windowed stream processing. We realized this
concept using (i) data distribution approximation for reliably and ef-
ficiently estimating the change of data densities and (ii) cumulative
net-change-based skip for accurately determining the regions to
skip updating data densities. Through extensive experiments using
real data streams, STARE was shown to outperform the state-of-the-
art algorithm by 11 times on average while achieving comparable

or higher accuracy. Its practical merit was also demonstrated in a
case study with a semiconductor manufacturing industry.

ACKNOWLEDGMENTS
This work was partly supported by Samsung Electronics Co.,
Ltd. and Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2020-0-00862, DB4DL: High-Usability and Per-
formance In-Memory Distributed DBMS for Deep Learning). We
thank Samsung Electronics Co., Ltd. for the opportunity to verify
the proposed method with their real data sets provided through the
Strategic Collaboration Academic Program.

REFERENCES
[1] KDD Cup 99. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Ac-

cessed: 2020-06-01.
[2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-

based local outliers. ACM SIGMOD Record, 29(2):93–104, 2000.
[3] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert,

I. Assent, and M. E. Houle. On the evaluation of unsupervised outlier detection:
Measures, datasets, and an empirical study. Data Mining and Knowledge Discovery,
30(4):891–927, 2016.

[4] N. Craswell. R-Precision, Encyclopedia of Database Systems. Springer US, Boston,
MA, 2009.

[5] K. Frank, M. J. Vera Nadales, P. Robertson, and T. Pfeifer. Bayesian recognition of
motion related activities with inertial sensors. In Proc. UbiComp, pages 445–446,
2010.

[6] E. Gan and P. Bailis. Scalable kernel density classification via threshold-based
pruning. In Proc. SIGMOD, pages 945–959, 2017.

[7] F. J. G. Gisbert. Weighted samples, kernel density estimators and convergence.
Empirical Economics, 28(2):335–351, 2003.

[8] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for temporal data:
A survey. IEEE Trans. on Knowledge and Data Engineering, 26(9):2250–2267, 2013.

[9] W. Jin, A. K. Tung, and J. Han. Mining top-n local outliers in large databases. In
Proc. KDD, pages 293–298, 2001.

[10] L. J. Latecki, A. Lazarevic, and D. Pokrajac. Outlier detection with kernel density
functions. In Proc. MLDM, pages 61–75, 2007.

[11] Y. Lin, B. S. Lee, and D. Lustgarten. Continuous detection of abnormal heartbeats
from ECG using online outlier detection. In Proc. SIMBig, pages 349–366, 2018.

[12] M. Mubashir, L. Shao, and L. Seed. A survey on fall detection: Principles and
approaches. Neurocomputing, 100:144–152, 2013.

[13] G. S. Na, D. Kim, and H. Yu. DILOF: Effective and memory efficient local outlier
detection in data streams. In Proc. KDD, pages 1993–2002, 2018.

[14] D. Pokrajac, A. Lazarevic, and L. J. Latecki. Incremental local outlier detection
for data streams. In Proc. CIDM, pages 504–515, 2007.

[15] X. Qin, L. Cao, E. A. Rundensteiner, and S. Madden. Scalable kernel density
estimation-based local outlier detection over large data streams. In Proc. EDBT,
pages 421–432, 2019.

[16] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan, and X. Zhang. Fast memory
efficient local outlier detection in data streams. IEEE Trans. on Knowledge and
Data Engineering, 28(12):3246–3260, 2016.

[17] E. Schubert, A. Zimek, and H.-P. Kriegel. Generalized outlier detection with
flexible kernel density estimates. In Proc. SDM, pages 542–550, 2014.

[18] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons, 2015.

[19] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society: Series B
(Methodological), 53(3):683–690, 1991.

[20] B. W. Silverman. Density Estimation for Statistics and Data Analysis. 2018.
[21] F. Tao, H. Zhang, A. Liu, and A. Y. Nee. Digital twin in industry: State-of-the-art.

IEEE Trans. on Industrial Informatics, 15(4):2405–2415, 2018.
[22] G. R. Terrell, D. W. Scott, et al. Variable kernel density estimation. The Annals of

Statistics, 20(3):1236–1265, 1992.
[23] L. Tran, L. Fan, and C. Shahabi. Distance-based outlier detection in data streams.

Proceedings of the VLDB Endowment, 9(12):1089–1100, 2016.
[24] Yahoo! Webscope. ydata-labeled-time-series-anomalies-v1_0. https://webscope.

sandbox.yahoo.com. Accessed: 2020-06-01.
[25] S. Yoon, J. G. Lee, and B. S. Lee. NETS: Extremely fast outlier detection from

a data stream via set-based processing. Proceedings of the VLDB Endowment,
12(11):1303–1315, 2019.

[26] E. Zhang and Y. Zhang. Average Precision, Encyclopedia of Database Systems.
Springer US, Boston, MA, 2009.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://webscope.sandbox.yahoo.com
https://webscope.sandbox.yahoo.com

A DETAILED EXPERIMENT SETTING
A.1 Default Parameter Values
Table 7 summarizes the default values of the neighbor count thresh-
old, \𝐾 , and the size of a grid cell (or the size of a micro-cluster for
KELOS), \𝑅 , in the five algorithms used for the overall performance
comparison in Section 5.2. As stated in Section 5.1, their values
were tuned to achieve the peak accuracy while \𝐾 was varied up
to 10% of the number of data points in a window and \𝑅 was set
according to the guideline stated in Appendix C.1.

Table 7: Default parameter values of the five algorithms in
each data set.

MiLOF DILOF sLOF KELOS STARE
\𝐾 \𝐾 \𝐾 \𝑅 \𝐾 \𝑅 \𝐾

YahooA1 140 140 140 30 140 60 140
YahooA2 50 50 50 27.5 100 65 50
HTTP 600 600 600 5 2 24 5
DLR 100 100 100 2.5 100 18.8 2
ECG 200 200 200 4.3 6 13.5 2

A.2 Data Set Preprocessing
The original YahooA1 data set is composed of 67 CSV files named as
“real_1,” “real_2,” . . ., and “real_67,” respectively. We concatenated
them sequentially and used the concatenated file as a single data
set. Similarly, the original YahooA2 data set is composed of 100
CSV files, and we concatenated them into a single data set. For the
HTTP data set, we followed the same instruction given in Outlier
Detection Data Set (ODDS)2 to preprocess the original KDD Cup
99 data set. For the DLR data set, we specifically used the data set
named “ARS_Christine_Test_JmpFall_Sensor_Right” as it contains
the “falling” activity, which we labeled as an outlier. For the ECG
data set, we used the original data set given by the source paper [11].

B PROOF OF THEOREMS
B.1 Proof of Theorem 4.7 (Density Error Bound)
Let 𝑡𝑙 be the index of the window where the local density at a data
point 𝑥 was last updated and let 𝑡𝑐 be the index of the current
window. Additionally, let us denote the sets of \𝐾 nearest kernel
centers of 𝑥 in the window 𝑡𝑙 and the window 𝑡𝑐 as KC(𝑥 ; 𝑡𝑙)
and KC(𝑥 ; 𝑡𝑐), respectively, and the net change between them
as ΔKC(𝑥 ; 𝑡𝑙 , 𝑡𝑐). Because ΔKC(𝑥 ; 𝑡𝑙 , 𝑡𝑐) is decided by both the
expired kernel centers and the new kernel centers, it reflects the
exact net change of the weight distribution of the nearest kernel
centers. Then, by Definition 2.2, the local density at 𝑥 in the current
window can be expressed as

D𝑐𝑢𝑟𝑟 (𝑥) =
∑
𝑘𝑐𝑖 ,𝑤𝑖 ∈KC(𝑥 ;𝑡𝑐) 𝑤𝑖

∏𝑑
𝑙=1Kℎ𝑙 (𝑑𝑖𝑠𝑡 (𝑥

𝑙 , 𝑘𝑐𝑙
𝑖
))∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑐) 𝑤𝑖

=
D𝑙𝑎𝑠𝑡 (𝑥)

∑
𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖 +
∑

Δ𝑤𝑖 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) Δ𝑤𝑖
+ D𝑛𝑒𝑤 (𝑥),

(7)

2http://odds.cs.stonybrook.edu/http-kddcup99-dataset/

where D𝑙𝑎𝑠𝑡 (𝑥) and D𝑛𝑒𝑤 (𝑥) are the local densities contributed
by the original kernel centers in KC(𝑥 ; 𝑡𝑙) and the changed kernel
centers in ΔKC(𝑥 ; 𝑡𝑐 , 𝑡𝑙), respectively, such that

D𝑙𝑎𝑠𝑡 (𝑥) =
∑
𝑘𝑐𝑖 ,𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖

∏𝑑
𝑙=1Kℎ𝑙 (𝑑𝑖𝑠𝑡 (𝑥

𝑙 , 𝑘𝑐𝑙
𝑖
))∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖
and (8)

D𝑛𝑒𝑤 (𝑥) =
∑

Δ𝑤𝑖 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) Δ𝑤𝑖
∏𝑑
𝑙=1Kℎ𝑙 (𝑑𝑖𝑠𝑡 (𝑥

𝑙 , 𝑘𝑐𝑙
𝑗
))∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖 +
∑

Δ𝑤𝑖 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) Δ𝑤𝑖
. (9)

Since the value of a kernel function Kℎ monotonically decreases
from the center,

D𝑛𝑒𝑤 (𝑥) ≤
∑

Δ𝑤𝑗 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) |Δ𝑤 𝑗 |Kℎ̃ (0)
𝑑∑

𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖 +
∑

Δ𝑤𝑗 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) Δ𝑤 𝑗
. (10)

Because of the near-stationarity of data distribution, the distance to
the \𝐾 -th nearest kernel center of 𝑥 does not change significantly.
Thus, the ratio of the sum of weight net-changes is approximated by
the cumulative error, 𝐸 (𝑥 ; 𝑡𝑐 , 𝑡𝑙), in Definition 4.5. Furthermore, the
cumulative error must be less than or equal to 𝛾 by the definition
of stationary region skipping in Definition 4.6, i.e.,∑

Δ𝑤𝑗 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) Δ𝑤 𝑗∑
𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖

≤
∑

Δ𝑤𝑗 ∈ΔKC(𝑥 ;𝑡𝑐 ,𝑡𝑙) |Δ𝑤 𝑗 |∑
𝑤𝑖 ∈KC(𝑥 ;𝑡𝑙) 𝑤𝑖

≤ 𝐸 (𝑥 ; 𝑡𝑐 , 𝑡𝑙)
≤ 𝛾 .

(11)

By consolidating Eq. (7)–Eq. (11), we derive Eq. (5) with straight-
forward mathematics as follows:

|ΔD(𝑥) | = |D𝑐𝑢𝑟𝑟 (𝑥) − D𝑙𝑎𝑠𝑡 (𝑥) |

≤ | D𝑙𝑎𝑠𝑡 (𝑥)
1 + 𝛾 + D𝑛𝑒𝑤 (𝑥) − D𝑙𝑎𝑠𝑡 (𝑥) |

≤ | −𝛾D𝑙𝑎𝑠𝑡 (𝑥)
1 + 𝛾 +

𝛾K
ℎ̃
(0)𝑑

1 + 𝛾 |

= |
𝛾 (K

ℎ̃
(0)𝑑 − D𝑙𝑎𝑠𝑡 (𝑥))

1 + 𝛾 |.

(12)

□

B.2 Proof of Theorem 4.9 (Time Complexity)
The time complexity of the first phase, data distribution update, is
𝑂 (𝑊) because it takes constant time for a data point to find the grid
cell where the data point falls in given that the size of a grid cell
is fixed. Then, the time complexity of the second phase, stationary
region skipping, is 𝑂 (𝑁𝐺) +𝑂 (𝑟𝑁 2

𝐺
) +𝑂 (𝑊), where 𝑂 (𝑁𝐺) is for

cumulative error computation because the non-zero weight net-
changes in ΔG are negligible, 𝑂 (𝑟𝑁 2

𝐺
) is for local density updates

of grid cells, and 𝑂 (𝑊) is for local density updates for data points.
Finally, the time complexity of the third phase, outlier detection,
is 𝑂 (𝑁𝐺) +𝑂 (𝑝𝑊). Since the number 𝑛 of outliers to find is very
small, the time complexity of cell-level detection is 𝑂 (𝑁𝐺), and
that of point-level detection is 𝑂 (𝑝𝑊), as 𝑝𝑊 is the number of
data points in the candidate grid cells. Overall, the dominant time
complexity of STARE is 𝑂 (𝑊 + 𝑟𝑁 2

𝐺
). □

http://odds.cs.stonybrook.edu/http-kddcup99-dataset/

Grid cell-point ratio Peak R-precision Search space

0

0.2

0.4

0.6

0

0.2

0.4

0.6

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0G

rid
ce

ll-
po

in
t r

at
io

R
-precision

Peak

Elbow
Saturation

Size of a grid cell

(a) YahooA1.

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
1,

00
0

Peak

Size of a grid cell

(b) YahooA2.

0

0.2

0.4

0.6

0.8

1

0

0.002

0.004

0.006

0.008

0.01

1 10 20 30 40 50 60 70 80 90 10
0

Peak

Size of a grid cell

(c) HTTP.

0

0.3

0.6

0.9

0

0.2

0.4

0.6

1 10 20 30 40 50 60 70 80 90 10
0

Peak

Size of a grid cell

(d) DLR.

0

0.2

0.4

0.6

0.8

0

0.25

0.5

0.75

1

1 10 20 30 40 50 60 70 80 90 10
0

Peak

Size of a grid cell

(e) ECG.

Figure 12: Effects of varying the size \𝑅 of a grid cell.

iLOF MiLOF DILOF sLOF KELOS STARE

1

10

100

1,000

10,000

1 2 3 4 5

C
PU

 ti
m

e
(m

s)

Times of the default value

(a) YahooA1.

1

10

100

1,000

10,000

1 2 3 4 5
Times of the default value

(b) YahooA2.

0
1

10
100

1,000
10,000

100,000

1 2 3 4 5
Times of the default value

(c) HTTP.

0
1

10
100

1,000
10,000

1 2 3 4 5
Times of the default value

(d) DLR.

1
10

100
1,000

10,000
100,000

1 2 3 4 5
Times of the default value

(e) ECG.

Figure 13: CPU time (ms) with varying the window size (times of the default value).

1

10

100

1,000

5% 10% 20% 50%

C
P

U
 t

im
e

(m
s)

% of the default window size

(a) YahooA1.

1

10

100

1,000

5% 10% 20% 50%

% of the default window size

(b) YahooA2.

0

1

10

100

1,000

10,000

5% 10% 20% 50%

% of the default window size

(c) HTTP.

0

1

10

100

1,000

5% 10% 20% 50%

% of the default window size

(d) DLR.

1

10

100

1,000

10,000

5% 10% 20% 50%

% of the default window size

(e) ECG.

Figure 14: CPU time (ms) with varying the slide size (percentage of the default window size).

C ADDITIONAL EXPERIMENTS
C.1 Guideline on the Size of a Grid Cell
The size of a grid cell, \𝑅 , is relevant to the degree of approximating
data points. We set the ratio of the number of non-empty grid cells
to the number of data points in a window as an indicator of the
degree of approximation. The optimal \𝑅 should make the ratio
fairly small to reduce the computation overhead but not too small,
in order to preserve the outlier detection accuracy. To this end,
we find the first elbow of the ratio curve by increasing \𝑅 from a
sufficiently small value, as shown in Figure 12. The range between
the first elbow and the saturation point is likely to include the best
value of \𝑅 in terms of the peak R-precision, and thus the user can
easily determine \𝑅 by grid search within this range.

C.2 Effect of Window Size and Slide Size
While the window size and the slide size are commonly provided
and/or derived from the data set and application in hand, their
effects on the processing time is worth examining. We compared
the performance of STARE with other algorithms (except the iLOF
with unacceptable execution time). The window size and the slide

size were respectively set to the default value (see Table 5) while the
other size was varied in each experiment. The algorithm-dependent
parameters \𝐾 and \𝑅 were tuned from 1 to 1,000 and from 1 to
100, respectively, to achieve the peak R-precision.

Varying the window size (see Figure 13): The window size
is shown as the number of times of the default window size. All
algorithms spent more CPU time in detecting outliers with a larger
window size in most cases. STARE was still the fastest among all
algorithms in the entire rage of the window size, showing that
STARE was effective regardless of the window size.

Varying the slide size (see Figure 14): The slide size is shown
as the percentage of the default slide size. All algorithms except
STARE and KELOS were hardly affected by the slide size, because
they were not subject to the effects of the net changes in STARE
or microclustering in KELOS. The trend of KELOS appeared to be
inconsistent for different data sets, which we believe is attributed
to the different effects of microclustering under different data dis-
tributions. In contrast, STARE spent increasingly more time as the
slide size increased, because of the increase in net changes between
window slides and the consequential decrease in region skipping.
Yet, STARE showed the smallest CPU time in most of the range.

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Main Ideas
	1.3 Summary

	2 Review: KDE-based Local Outliers
	3 Related Work
	3.1 LOF-based Algorithms
	3.2 KDE-based Algorithms

	4 The Algorithm ``STARE''
	4.1 Overview
	4.2 Density Approximation
	4.3 Phase 1: Data Distribution Update
	4.4 Phase 2: Stationary Region Skip
	4.5 Phase 3: Outlier Detection
	4.6 Time Complexity of STARE

	5 Experiments
	5.1 Experiment Setup
	5.2 Overall Performance Comparison
	5.3 Analysis of STARE
	5.4 Effect of the Number of Neighbors
	5.5 Case Study

	6 Conclusion
	Acknowledgments
	References
	A Detailed Experiment Setting
	A.1 Default Parameter Values
	A.2 Data Set Preprocessing

	B Proof of Theorems
	B.1 Proof of Theorem 4.7 (Density Error Bound)
	B.2 Proof of Theorem 4.9 (Time Complexity)

	C Additional Experiments
	C.1 Guideline on the Size of a Grid Cell
	C.2 Effect of Window Size and Slide Size

