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Abstract This paper addresses the distributed stream processing of window-based
multi-way join queries considering the semijoin as a key join operator. In distrib-
uted stream processing, data streams arriving at remote sites need to be shipped to
the processing site for query execution. This typically introduces high communica-
tion overhead. Our observation is that semijoin, effective in reducing communication
overhead in distributed database query processing, can be also effective in distrib-
uted stream query processing. The challenge, however, lies in the streaming nature
of the tuples, as it requires continuous and incremental processing of an unbounded
sequence of tuples instead of one-time processing of a set of stored tuples. This pa-
per describes our comprehensive work done to address the challenge. Specifically,
we first propose a distributed stream join processing model that handles the issue of
network delays introduced from the shipment of data streams, and allows for effi-
cient batch processing. Then, based on the model, we propose join algorithms in a
multi-way join case: first, one-way join algorithms for different combinations of join
placement and join method and, then, multi-way join algorithms assuming linear join
ordering. Regarding the join method, two distributed join methods are introduced:
(1) simple join, in which full tuples are forwarded to the query processing site and
(2) semijoin-based join, in which partial tuples are forwarded. A semijoin-based join
can be executed with different possible semijoin strategies which incur different com-
munication overheads. We present a complete set of join algorithms considering all
possible semijoin strategies, and propose an optimization algorithm. The join algo-
rithms are executed continuously in an incremental manner as tuples arrive, and never
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ship tuples redundantly. The optimization algorithm constructs an efficient multi-way
join plan by using a greedy heuristic which adds to the plan one stream with the min-
imum join execution cost in each step. Through extensive experiments, we conduct
comparative studies of the performance among the proposed one-way join algorithms
and the efficiency of the generated plan between the optimization algorithm based on
the greedy heuristic and the exhaustive search, respectively.

Keywords Distributed data streams · Join queries · Semijoins

1 Introduction

The emergence of many applications on the data available as unbounded, continuous
streams has drawn significant attention on data stream processing. Example applica-
tions include network packet traffic management [8, 18, 56], financial stock ticker
analysis [4], sensor network data acquisition or processing [35], and telephone call
monitoring in telecommunications [7]. In these applications, the data stream sources
are typically distributed to different sites (or nodes) over the network (e.g., routers
in the communication network, cluster heads in the sensor networks). Besides, the
queries issued are typically continuous queries [9] against the data streams from the
sources.

In this paper we focus on the problem of processing a join query over dis-
tributed data stream sources. We assume the join processing is window-based
because processing a join over unbounded streams requires unbounded mem-
ory, which is impractical. Windows are commonly used in stream join process-
ing [19, 21, 22, 24, 26, 28, 51]. The following examples are distributed stream join
queries probable in real applications.

Example 1 (Network packet monitoring) Suppose we want to monitor the traffic
of data packets passing through three routers in the last hour with the objective of
finding the packets with the same destination address. The three routers are three
stream sources, and the data packets going through the three routers make three data
streams (S1, S2, and S3). Each data packet contains a destination IP address dest. This
monitoring task then can be specified as a distributed stream join query S1[1 hour]
��S1.dest=S2.dest S2[1 hour] ��S2.dest=S3.dest S3[1 hour].

Example 2 (News article filtering) Suppose we want to find recent articles on the
same topic published by two news network services, say, Associated Press and
Reuters, in a day. The two news network services are two stream sources, and the
articles generated from the news network services are the news streams (SA for Asso-
ciated Press, and SR for Reuters). Suppose each news article in a stream is tagged with
a set of weighted keywords K . The monitoring task then can be specified as a distrib-
uted stream join query SA[1 DAY] ��SA.K=SR.K SR[1 DAY] where SA.K = SR.K is
a set equality comparison. (This comparison may be generalized to an approximate
matching.)
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Example 3 (Building monitoring using sensor networks) Suppose we want to keep
track of the temperature, humidity, and light intensity measured by sensors in the
same room in the past 15 minutes. Assume that there are separate temperature sen-
sors, humidity sensors, and light intensity sensors and that they periodically send
readings to their respective sinks. That is, there are three sinks receiving a stream
of temperature readings (ST ), a stream of humidity readings (SH ), and a stream of
light intensity readings (SL), respectively. Suppose a reading includes such fields
as timestamp, sensor id (sid), room id (rid) in addition to the sensed value (i.e.,
temperature, humidity, or light intensity). This monitoring task then can be speci-
fied as a distributed stream join query ST [15 minutes] ��ST .rid=SH .rid SH [15 minutes]
��SH .rid=SL.rid SL[15 minutes].

In the distributed stream environment, a data stream arriving at a remote site needs
to be shipped to the processing site in order to generate an up-to-date result for the
continuous query. The communication overhead of this shipment can be very high,
and this brings a need for a technique to reduce the communication overhead while
providing an up-to-date result. In this paper we present the semijoin as a viable tech-
nique to meet such a need.

The semijoin is well known in distributed databases as an effective operator for
decreasing the communication overhead of a join query [12, 13, 16, 33, 50]. A semi-
join from a relation R1 to a relation R2, denoted as R2 � R1, is equivalent to
�Attr(R2)(R2 �� R1), where Attr(R2) denotes all attributes of R2. With a semijoin,
the join between R1 at site 1 and R2 at site 2 can be computed using one of the fol-
lowing three equivalent semijoin programs [39]: R1 �� (R2 � R1), (R1 � R2) �� R2,
and (R1 � R2) �� (R2 � R1).

Computing a join using a semijoin program like these may incur lower communi-
cation overhead due to a relation size reduction resulting from the semijoin operation.
Let us consider the semijoin program R1 �� (R2 � R1) as an example. The semijoin
(R2 � R1) is processed by projecting R1 on the join attributes, shipping the projec-
tion result to R2’s site and joining with R2. The result of the semijoin is a reduced R2
which contains only those tuples contributing to the final join with R1. If the differ-
ence between the size of R2 and the size of the reduced R2 is larger than the size of
the projection result of R1, then using the semijoin incurs lower communication cost.

In our earlier work [47], we have proposed the simple join and the semijoin-based
join as two distributed window-based join methods over data streams. The simple
join is based on the idea of forwarding all tuples in a window from a remote site to
the processing site for finding matching tuples. In contrast, the semijoin-based join is
based on the idea of first shipping only the partial tuples (tuples consisting of only
the join attributes) to the processing site and then shipping the full tuples only if
matching tuples are found for the partial tuples at the processing site. In addition, the
join methods support incremental processing of the streaming tuples, since tuples are
processed continuously over data streams.

This earlier work has established the foundation for processing a distributed
stream join utilizing the semijoin, but the work is very preliminary in its scope and
the practical applicability. More specifically, it considers only two-way joins and only
one of different possible semijoin programs, and is not concerned with the query op-
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timization issue. Moreover, the proposed algorithms and their implementations leave
much room for further improvement for correctness and efficiency, and the experi-
ments are conducted using a simple linear model (i.e., transmission cost = transmis-
sion latency + transmission rate × transmitted data volume) to compute the network
transmission cost.

The work presented in this paper is far more comprehensive and complete. Specif-
ically, it considers multi-way joins and considers all possible semijoin programs for
any given multi-way join query. This extended scope adds significant complexities to
the query processing model and algorithms. The proposed algorithms work correctly
despite network delays in shipping tuples and work more efficiently by processing
tuples in a batch. Besides, the join algorithms incrementally ship only the tuples that
have not been shipped to the processing site yet, while synchronously updating all
windows stemming from the same window. Furthermore, it addresses the query op-
timization issue. Last but not least, the experiments are far more extensive and are
conducted with both synthetic and real data sets, using virtual machines and a virtual
network to measure the network transmission cost.

In this paper we first propose the processing model of a distributed stream join
query. The proposed model is designed to reduce the adverse effects of network la-
tencies on the correctness and efficiency of the join algorithm execution. That is, the
join algorithms are resilient to the delays due to network latency (as long as the de-
lays remain within a measurable bound) and also reduce the overheads due to network
latency. We then propose distributed stream join algorithms under the query process-
ing model. For this we first propose one-way join algorithms and, using them as the
building blocks, propose a multi-way join algorithm.

A one-way join algorithm is characterized by the join method and the join place-
ment. Given a one-way join “from a stream S1 at N1 to a stream S2 at N2”, the join
method1 may be either the simple join or the semijoin-based join. Additionally, in the
case of the semijoin-based join, the semijoin program may have either one semijoin
operation or two semijoin operations (respectively called a one-step semijoin pro-
gram and a two-step semijoin program). Thus, there are three possible one-way join
methods in total. Regarding the join placement (i.e., determining where the output
is produced), it may be at either the source node (N1) or the destination node (N2).
Thus, combining the three join methods and the two join placements, six possible
one-way join algorithms make a complete set.

A multi-way join algorithm is characterized by the join order as well as the join
placement and the placed join method [14]. The join order specifies the order of the
streams participating in the multi-way join. For stream joins, two commonly used
ordering approaches are linear ordering [49] and tree ordering [24]. In this paper
we propose an optimization algorithm to work with linear ordering, and then discuss
using tree ordering instead in the multi-way join algorithm.

The query optimization is based on the cost formulas we have developed for the
individual one-way join algorithms. The complexity of an exact optimization algo-
rithm is exponential and, thus, we use a greedy approach to reduce the complexity to

1In our work, each join method is implemented as a nested loop join.
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polynomial time. Specifically, the optimization algorithm constructs a join execution
plan by adding one stream that has the minimum execution cost in each step. With the
linear ordering employed, the optimization algorithm generates a join execution plan
that includes a set of join sequences, with one sequence for each stream. In this pa-
per, we also prove the equivalence of alternative plans executed in different semijoin
programs, as this will show the correctness of the alternative plans.

The experiments are comprised of comparing the performances of the six one-way
join algorithms and comparing the efficiencies of the join execution plans produced
by the proposed greedy algorithm and an exhaustive search algorithm. Through ex-
tensive comparisons of the alternative one-way join algorithms, we make interesting
observations and analyze the reasons for them given the parameter settings of the
experiments. The experiments for comparing the two optimization algorithms show
that the greedy algorithm is almost as effective as the exhaustive search algorithm in
generating an efficient plan.

Main contributions made through this paper include proposing the model of
processing a distributed window-based stream (multi-way) join query, introducing
the notion of the semijoin as a key operator for the efficient execution of such a join
query, developing join algorithms which may utilize the semijoin operator in query
processing, presenting an optimization algorithm to find an efficient multi-way join
execution plan and evaluating the proposed join algorithms and optimization algo-
rithm through extensive experiments.

In the rest of the paper, we describe the query model of a distributed multi-way
stream join in Sect. 2, the join algorithms in Sect. 3, the query optimization algorithm
in Sect. 4, and the performance evaluation in Sect. 5. Then, we discuss the related
work in Sect. 6 and conclude the paper in Sect. 7.

2 Query processing model

In this section we present the distributed window-based stream join processing model
assumed in our work. In Sect. 2.1 we present some preliminary models in an evolving
order from the stream model, the window model, and the window-based stream join
model combining these two models. Then, in Sect. 2.2 we present the basic distrib-
uted window-based stream join model and enhance it to deal with the delays due to
network latencies and to reduce the overheads of network latencies.

2.1 Preliminary models

Stream model

We define a stream Si as a sequence of tuples, si1 , si2, . . . , arriving in order. We do
not consider out-of-order arrival tuples—dealing with them is outside the scope of
our work. Each tuple in the stream has a timestamp ts and a join attribute j as part
of the schema. The stream rate of each stream is defined as the average number of
tuples arriving in the stream per unit time (second).
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Window model

As mentioned in Sect. 1, a window is used to restrict the number of tuples processed.
A window may be either tuple-based or time-based as specified in the query. If tuple-
based, the window size is the number of the most recent tuples in the window. If time-
based, the window size is the time interval from the current time point to the past,
and the number of tuples in the window depends on the stream rate. In our model
we consider the time-based window only, as it is common in many applications of
window stream join queries. (The discussion on how to adapt the proposed algorithms
to tuple-based windows is presented in Sect. 3.3.) We denote a window Wi with size
Ti as Wi[Ti]. At time t , a tuple is in the window Wi[Ti] if and only if its timestamp
is in the range [t − Ti, t). We assume that all windows fit in main memory.

Window-based stream join model

A two-way window-based stream join [28] between a stream S1 with a window W1
and a stream S2 with a window W2 is computed in two symmetric one-way joins as
follows. For the one-way join from S1 to S2, each time a new tuple arrives on S1, we
probe the window W2 to find matching tuples and generate the corresponding join
output tuples, and then update the window W1 by inserting the new tuple and remov-
ing any expired tuples. For the one-way join from S2 to S1, the join computation is
symmetric to the one-way join from S1 to S2. That is, each time a new tuple arrives
on S2, we probe W1 to generate the join output tuples and then update W2. In this
paper, we denote a one-way join from Si to Sj (i �= j ) as Si ���Sj . Thus, the two-
way window-based stream join between S1 and S2 with the windows W1 and W2,
respectively, is computed as two one-way joins S1 ���S2 and S2 ���S1.

Generalized from the two-way join, a multi-way join [24] among m (m > 2)
streams is computed as a sequence of m − 1 one-way joins from each stream Sk

(k = 1,2, . . . ,m) to the other m − 1 streams. Without loss of generality, we consider
only equijoins over a single join attribute. An extension to the case of a non-equijoin
over multiple join attributes requires little modification of the proposed algorithms.

2.2 Distributed window-based stream join model

Consider a set of nodes (or sites) N1,N2, . . . ,Nn connected through a communi-
cation network. We assume that there is only one stream at each node2 and all lo-
cal processing (e.g., selection, projection) has already been done at each node. We
also assume that the time is synchronized among the nodes and, thus, assume the
timestamps of tuples from different nodes are on the same clock. We denote a stream
Si at a node Ni as Si@Ni and, thus, denote a one-way join from Si at Ni to Sj at Nj

as Si@Ni ���Sj @Nj . Here we call Ni the source node and Nj the destination node.
Additionally, we refer to the node where the one-way join output is generated as the
processing node.

2For the case that there are n (≥2) streams at a node Ni,Ni can be separated into k nodes Ni1 ,Ni2 ,

. . . ,Nik
where the transmission cost among k nodes is zero and the transmission cost from other nodes to

those k nodes are the same as that to Ni .
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Resiliency to network latency

The key difference in processing a distributed stream join from processing a cen-
tralized stream join is that tuples needs to be shipped between the nodes before the
processing can be done. The shipping introduces a delay due to network latency, and
the delay may cause the join output to be incorrect. Let us clarify this point using two
scenarios of processing a one-way stream join between two node, S1@N1 ���S2@N2.
These two scenarios respectively correspond to the two simple join algorithms that
will be described in Sect. 3.1.

In the first scenario, the join is processed at N1 (see Fig. 1(a)). A tuple s2 arrives
at N2 and is shipped to N1 at time 105. Then, for the new tuple s1 arriving at N1 at
time 110, we are supposed to probe the tuples in W2@N1 (a copy of W2 maintained
at N1) in the time range [10,110). However, due to the latency of the shipment, s2
will arrive at N2 and be inserted into W2@N1 at time 115, delayed by 10. Thus, s1
cannot be matched against s2, although it should (since s2 arrived at time 105 at N2).
As a result, the join output may be incorrect. To avoid this problem, the following
constraint should be enforced on the probing of the window W2@N1.

Constraint 1 [Delayed probe]: If s1 arrives at N1 at time t and the delay of
tuples s2 from N2 is δ, then W2@N1 should not be probed until the time t + δ.

In the second scenario, the join is processed at N2 (see Fig. 1(b)). For the tuple
s1 arriving at N1 and shipped to N2 at time 105, we are supposed to probe W2 for
matching tuples in the time range [5,105). However, due to the latency of the ship-
ment, s1 arrives at N2 at time 115, delayed by 10. By this time, a new tuple s2 with
the timestamp 110 has been inserted into W2 and an expired tuple with the timestamp
8 has been removed from W2. Thus, s1 is matched against the new tuple s2 with the
timestamp 110, although it should not, and is not matched against the tuple with the
timestamp 8, although it should. As a result, the join output may be incorrect. To
avoid this problem, the expired tuple with the timestamp 8 should not be removed
from W2 when the new tuple with the timestamp 110 is inserted into W2 and the tu-
ple s1 should be matched against those tuples s2 in W2 if and only if 5 ≤ s2.ts < 105.
As can be seen from this example, to ensure that a tuple s1 is matched against tuples
in W2 correctly, the following two constraints should be enforced.

Fig. 1 Examples of a distributed one-way stream join S1@N1 ���S2@N2
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Constraint 2 [Delayed removal]: If a new tuple is inserted into W2 at time t and
the delay is δ, then the expired tuples in W2 at time t should not be removed
until the time t + δ.

Constraint 3 [Limited-interval match]: The tuple s1 should be matched against
only those tuples s2 in W2 whose timestamp ts is in the range [s1.ts − T2, s1.ts)
(i.e., within the past T2 from the timestamp of ts).

The three constraints introduced here will be implemented in all join algorithms
(both simple joins and semijoin-based joins) presented in Sect. 3.1.

One remaining question is how the value of δ is determined in the general case of
a multi-way join. When extended to a multi-way join, given a join sequence a new ar-
rival tuple at the node of the first stream in the join sequence may be shipped through
all nodes of the streams in the sequence to probe for matching tuples and generate
output tuples. In this case, the delay of shipping the new arrival tuple to the node of
the last stream in the sequence will be the accumulated latency of shipping the tuple
through all nodes in the sequence. Thus, δ needs to be the maximum accumulated
delay among all possible join sequences. In our model, with this δ mechanism, a tu-
ple s1 can never be delayed more than δ throughout the sequence of joins to the last
stream. So, by the time s1 arrives at any node, all tuples in the window at the node
are valid (because their invalidations are delayed by δ) and, therefore, s1 is correctly
matched with the tuples in the window.

One concern regarding the delta mechanism is that network delay can vary over
time. However, it typically varies within a certain bound and, thus, the maximum
value can be determined through measurements. Moreover, the value of δ can be
updated to be current through either periodic or scheduled measurements. Sudden
significant changes may still challenge the correctness of the model. This is a well-
known hard problem for which there is no complete solution yet as far as we know,
and is beyond the scope of this paper.3

Reduction of network latency overhead

The distributed stream join described so far is executed each time a new tuple arrives.
Since each shipment incurs a delay due to network latency, the per-tuple processing
may be infeasible in situations where the stream rate is high and/or the network la-
tency is high. A practical solution is to execute the join for each set of tuples at a
regular interval instead of each single tuple as they arrive. (This idea is similar to
the lazy-evaluation multi-way join proposed in [24].) Let τ be the time interval of
such join execution; that is, the join is executed every τ time units. During the time
interval τ , each new arrival tuple si at the node Ni is kept in the input buffer until
processed in a batch.

If there is no tuple arriving during the interval τ , then the buffer is empty and
therefore no action is taken. This may happen if τ is smaller than the arrival interval

3Recently a new solution has been proposed in [34], which is geared to avoid such a risk. It is based on
the notion of periodically sending a “heartbeat” or a punctuation. It, however, requires a different join
processing model and needs an extension to handle semijoin-based and multi-way distributed joins. We
leave this to the future work.
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of two consecutive tuples. In general, when the value of τ is larger, the transmission
overhead is smaller due to fewer shipments, but larger memory space is needed to
buffer the new arrival tuples and a longer delay is incurred until all tuples in the
larger buffer are shipped and the corresponding join result is generated. Thus, the
value of τ should be specified by the system appropriately in consideration for the
arrival interval of tuples, the limit on the buffer space, and the tolerable delay in
generating a join output.

3 Distributed stream join algorithms

In this section, we present the one-way join algorithms over distributed data streams
for all possible combinations of the join methods and the join placements. As men-
tioned in Sect. 1, one-way join algorithms are the basic building blocks of multi-
way join processing. We describe the one-way join algorithms at a high level in
Sect. 3.1 and efficient implementation details for the semijoin-based join algorithms
in Sect. 3.2. Table 1 summarizes the notations used in this paper.

3.1 Distributed one-way stream join algorithms

Let us consider a one-way join S1@N1 ���S2@N2 executed every τ time units. (As
mentioned in Sect. 2.2, we call N1 the source node and N2 the destination node.)
The one-way join finds matching tuples from the window W2 at N2 for each batch
of tuples (B1) in the input buffer at N1. It can be processed using either the simple
join method or the semijoin-based join method. Moreover, for a given one-way join,
there are two possible join placements depending on which node the one-way join
output is generated, that is, either the source node N1 or the destination node N2.

Table 1 Notations used in this paper

Notation Meaning

(i = 1,2)

τ The execution interval of a join algorithm.

δ The maximum accumulated delay among all possible join sequences.

Si The ith stream.

Ni The node at which the stream Si arrives.

Ti The size of the window on the stream Si .

Bi The set of arrival tuples stored in the buffer at node Ni during the execution interval τ .

Wi The set of tuples in the window on the stream Si . (Wi also denotes the window itself.)

Vi The set of partial tuples resulting from the projection of tuples in Wi on the join attribute.

Ki The set of partial tuples resulting from the projection of tuples in Bi on the join attribute.

B ′
i

The set of tuples reduced from Bi using semijoin.

W ′
i

The set of tuples reduced from Wi using semijoin.

V ′
i

The set of tuples reduced from Vi using semijoin.

K ′
i

The set of tuples reduced from Ki using semijoin.
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The combination of the join placements and the join methods makes different one-
way join algorithms. We describe the simple join algorithms in Sect. 3.1.1 and the
semijoin-based join algorithms in Sect. 3.1.2.

3.1.1 Simple join

The simple join is based on the idea of shipping all full tuples from a remote node to
the processing node. There are two cases depending on whether the processing node
is the source node or the destination node. Figure 2 illustrates the two cases: SP-S
(simple join at the source node) and SP-D (simple join at the destination node). Note
first that the set of tuples in the window that is “probed” during one-way join (W2 in
this case) must be at the processing node. For this purpose, in SP-S, the tuples that are
supposed to be in the window W2 at N2 are shipped to the processing (source) node
N1 and maintained there (denoted as W2@N1) to be probed with the tuples in B1. W2
is not maintained at N2, so in effect W2 is “exported” to N1. In contrast, in SP-D, only
the tuples in the buffer B1 (at N1) need to be shipped to the processing (destination)
node N2 for join with the window W2 there.

Algorithms 1 and 2 show the specific processing steps of the two cases. Each
algorithm has two independent parts, and each part is triggered at a regular interval τ .
Let us refer to these two parts as the N1 (source) part and the N2 (destination) part of
the algorithm, respectively. The statements in each part are the actions (triggered at
the regular interval of τ ).

In these algorithms, the window update operation and the join operation need to
be slightly modified as follows to satisfy the constraints mentioned in Sect. 2.2:

Fig. 2 Simple join processing of a one-way join S1@N1 ���S2@N2

Algorithm 1 One-way simple join processing at the source node N1 (SP-S)

At each time point t at the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 performs a T2-limit join between B1 and W2@N1 delayed by δ;3

end4

At each time point t at the interval of τ at N2 begin5

N2 ships B2 to N1;6

N1 receives B2, and then updates W2@N1 with B2 semi-delayed by δ;7

end8
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Algorithm 2 One-way simple join processing at the destination node N2 (SP-D)

At each time point t at the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 ships B1 to N2;3

N2 receives B1, and then performs a T2-limit join between B1 and W2;4

end5

At each time point t at the interval of τ at N2 begin6

N2 updates W2 with B2 semi-delayed by δ;7

end8

• To satisfy Constraint 1, the join between B1 and W2@N1 (in Line 3 of Algo-
rithms 1) is performed delayed by δ (i.e., at time t + δ), as N1 needs to wait until
the tuples in B2, shipped from N2, arrive at N1 and are available to update W2@N1.

• To satisfy Constraint 2, updating a window Wi with the tuples in Bi is done by
delaying the removal of any expired tuples in Wi by δ while inserting the tuples in
Bi into Wi without delay. We say in this case the window update is semi-delayed
by δ.

• To satisfy Constraint 3, joining Bi and Wj should check, for each tuple si
in Bi , whether the timestamp of a matching tuple in Wj is in the range of
[si .ts − Tj , si .ts). In other words, the join considers only those tuples within the
limit of Tj from the timestamp of si . We refer to this join as the Tj -limit join.

These modified window update and join operations are generic to all join algorithms
and, thus, used in the semijoin-based join algorithms as well.

3.1.2 Semijoin-based join

The semijoin-based join is based on the idea of forwarding partial tuples from a
remote node to the processing node. A partial tuple contains only the join attribute
extracted from a full tuple. It is shipped to a remote node for probing the window to
find matching tuples, and the full tuple is shipped only if matching tuples are found.
We describe the semijoin-based join steps at a high level here, while deferring some
implementation details to Sect. 3.2.

Given a one-way join S1@N1 ���S2@N2, there are four different semijoin programs
possible. Specifically, for each possible join placement (i.e., at N1 or N2), the join can
be done using either a one-step reduction semijoin program or a two-step reduction
semijoin program. These two programs differ in the number of semijoin operations
performed in the semijoin-based join.

Figure 3 illustrates the four alternative semijoin programs. In Figs. 3(a) and (b),
the source node (N1) is the processing node and, thus, to generate the join output at
N1, we ship W ′

2 (the reduced W2, i.e., W2 tuples matching the tuples in B1) to N1.
The reduction of W2 is done using either a one-step semijoin program (Fig. 3(a)) or
two-step semijoin program (Fig. 3(b)). In Figs. 3(c) and (d), the destination node (N2)
is the processing node and, thus, we ship B ′

1 (the reduced B1, i.e., B1 tuples matching
the tuples in W2) to N2. The reduction of B1 is done using either a one-step semijoin
program (Fig. 3(c)) or a two-step semijoin program (Fig. 3(d)). Note that there is no
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Fig. 3 The four alternative semijoin programs for one-way join S1@N1 ���S2@N2

need for more than two steps of semijoin because an additional semijoin step does
not reduce the operands any further.

Based on the four semijoin programs, we develop algorithms that execute the
semijoin programs continuously as tuples arrive. Two key ideas are employed in the
design of the algorithms, both for reducing the communication overhead. One idea,
mentioned above, is to ship partial tuples instead of full tuples, that is, ship only the
join attributes to the processing node and ship the corresponding full tuples only if the
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Fig. 4 Continuous processing of the semijoin-based one-way join S1@N1 ���S2@N2

partial tuples have matching tuples in the window at the processing node. The other
idea is to ship tuples only once, that is, only if they have not been shipped already.
Figure 4 illustrates how the four semijoin programs are executed continuously over
the input streams S1 and S2.

Algorithms 3 through 6 respectively outline the steps of executing the four semi-
join programs shown in Fig. 3 continuously as shown in Fig. 4. We now describe each
of the four algorithms.

Algorithm 3: one-step semijoin at the source node (SM-S1)

In the N1 (source) part of the algorithm, Line 4 corresponds to the semijoin W2 � K1
in Fig. 3(a). The semijoin generates W ′

2, which is then shipped to N1 for the join
with B1. As mentioned earlier, we reduce the communication cost by avoiding ship-
ping the same tuple more than once. (We call this semijoin the non-redundant semi-
join (details in Sect. 3.2.1).) Thus, the non-redundant semijoin (Line 4) returns only
the W2 tuples that have not been shipped to N1, which we denote as �W ′

2. (The same
technique is used in the SM-S2 algorithm, to be described below, as well.) Then,
once �W ′

2 is shipped to N1 (Line 5), we augment W ′
2 with �W ′

2 and perform the join
between B1 and W ′

2 (Line 6).
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Algorithm 3 One-way join processing at the source node N1 using a one-step semijoin program (SM-S1)

At each time point t at the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 projects B1 on the join attribute and ships the resulting set of partial tuples (K1)3

to N2;
N2 receives K1 and then performs a non-redundant semijoin (see Algorithm 7 in4

Sect. 3.2.1) from K1 to W2 (i.e., W2 � K1) to obtain the result �W ′
2;

N2 ships �W ′
2 to N1;5

N1 receives �W ′
2, inserts tuples in �W ′

2 into W ′
2, and then performs a T2-limit join6

between B1 and W ′
2 and outputs the result;

end7

At each time point t at the interval of τ at N2 begin8

N2 updates W2 with B2 semi-delayed by δ;9

N2 sends an update message to N1 for those tuples removed from W2 in Line 9;10

N1 receives the update message and removes corresponding tuples from W ′
2@N111

(see Algorithm 8 in Sect. 3.2.2 for details);
end12

In the N2 (destination) part of the algorithm, since W ′
2@N1 is a subset of W2, when

any expired tuples are removed as a result of updating W2 (Line 9), they should be
removed from W ′

2@N1 as well if they are in it (Line 11). An efficient implementation
of this synchronous update is discussed in Sect. 3.2.2.

Algorithm 4: two-step semijoin at the source node (SM-S2)

In this algorithm, we maintain a window of “mixed” tuples, denoted as M2, at N1.
This window contains a mixture of partial tuples from V2 (= �J2W2 in Fig. 3(b)) and
full tuples from W ′

2 (= W2 � V ′
2 in Fig. 3(b)).

In the N1 part, for each set of tuples in B1, the first semijoin from B1 to M2 (i.e.,
M2 � B1, corresponding to V2 � B1 in Fig. 3(b)) and the final join between B1 and
M2 (i.e., B1 �� M2, corresponding to B1 �� W ′

2 in Fig. 3(b)) are performed (together
for efficiency’s sake) (Line 3). Note that these two operations are executed delayed
by δ in order to satisfy the Constraint 1 (see Sect. 2.2).

Tuples in M2 initially are partial tuples coming from the initial V2, but after the
first semijoin from the first batch of B1 (i.e., M2 � B1, producing the initial V ′

2),
some of the partial tuples in M2 are replaced by their corresponding full tuples. Thus,
from the second batch of B1 onward, the first semijoin produces fewer partial tuples
than those in the initial V ′

2, as they do not include those tuples that have already been
replaced by full tuples. We thus denote the resulting set of partial tuples produced
by M2 � B1 as �V ′

2 (Line 3). In addition, in Line 3, we keep in a temporary buffer
(Temp) the tuples of B1 for which the matching partial tuples in �V ′

2 have been found.
This is to avoid a redundant scanning of the tuples in B1 for the join execution later in
Line 8. Line 5 corresponds to the second semijoin (i.e., W2 �V ′

2) shown in Fig. 3(b)),
but we use �V ′

2 instead of V ′
2 to reduce the communication overhead. Besides, this

semijoin is a non-redundant semijoin which finds those matching tuples in W2 that
have not been shipped to N1 yet, that is, �W ′

2.



Distrib Parallel Databases (2010) 27: 211–254 225

Algorithm 4 One-way join processing at the source node N1 using a two-step semijoin program (SM-S2)

At each time point t at the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 performs a semijoin from B1 to partial tuples in M2 (i.e., M2 � B1) delayed by δ3

to obtain the result �V ′
2 and saves the matching B1-tuples in a temporary buffer

Temp , and at the same time performs a T2-limit join between B1 and full tuples in
M2 and outputs the result;
N1 ships �V ′

2 to N2;4

N2 receives �V ′
2 and performs a non-redundant semijoin from �V ′

2 to W2 (i.e.,5

W2 � �V ′
2) to obtain the result �W ′

2;
N2 ships �W ′

2 to N1;6

N1 receives �W ′
2 and updates M2 by replacing the matching partial tuples by the7

full tuples in �W ′
2;

N1 performs a T2-limit join between Temp and �W ′
2 and outputs the result;8

end9

At each time point t at the interval of τ at N2 begin10

N2 updates W2 with B2 and then updates V2 with the partial tuples of B2, both11

semi-delayed by δ;
N2 sends an update message to N1;12

N1 receives the update message and updates M2 according to the updates made to13

W2 and V2 (see Algorithm 9 in Sect. 3.2.2 for details);
end14

In the N2 part, when W2 is updated by inserting tuples from B2 and removing
expired tuples, V2 is updated accordingly as it is a projection of W2 (Line 11). Fur-
thermore, M2 (at N1) should be updated as well since it is a mixture of full tuples
from W2 and partial tuples from V2 (Lines 13). An efficient implementation of these
synchronous updates is presented in Sect. 3.2.2.

Algorithm 5: one-step semijoin at the destination node (SM-D1)

In the N1 part, Line 3 corresponds to the semijoin B1 � V2 in Fig. 3(c). For this
semijoin, N1 keeps a local copy of V2 resulting from the projection of W2. This
semijoin generates B ′

1, the reduced B1, which is then shipped to N2 for the join
with W2. As in SM-S2, the semijoin is executed delayed by δ in order to satisfy the
Constraint 1 (see Sect. 2.2).

In the N2 part, once W2 is updated with the new arrival tuples and the expired
tuples, then V2 and V2@N1 need to be updated accordingly (Lines 8 and 10). An
efficient implementation of these synchronous updates is presented in Sect. 3.2.2.

Algorithm 6: two-step semijoin at the destination node (SM-D2)

In the N1 part, K1 is the set of partial tuples of B1 (i.e., corresponding to �J1B1 in
Fig. 3(d)). Line 4 performs the first semijoin (i.e., K1 � W2) for reducing K1. K ′

1,
the reduced K1, consists of the partial tuples that have matching tuples in W2. Line 6
performs the second semijoin (i.e., B1 � K ′

1) for reducing B1. Then, Line 8 performs
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Algorithm 5 One-way join processing at the destination node N2 using a one-step semijoin program
(SM-D1)

At each time point t in the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 performs a semijoin from V2@N1 to B1 (i.e., B1 � V2) delayed by δ to obtain3

the result B ′
1;

N1 ships B ′
1 to N2;4

N2 receives B ′
1, and performs a T2-limit join between B ′

1 and W2 and outputs the5

result;
end6

At each time point t in the interval of τ at N2 begin7

N2 updates W2 with B2 and then updates V2 with partial tuples of B2, both8

semi-delayed by δ;
N2 sends an update message to N1;9

N1 receives the update message and updates V2@N1 (see Sect. 3.2.2 for details);10

end11

Algorithm 6 One-way join processing at the destination node N2 using a two-step semijoin program
(SM-D2)

At each time point t at the interval of τ at N1 begin1

N1 updates W1 with B1 semi-delayed by δ;2

N1 projects B1 on the join attribute and ships the resulting set of partial tuples (K1)3

to N2;
N2 receives K1 and performs a semijoin from W2 to K1 (i.e., K1 � W2) to obtain4

the result K ′
1 and saves the matching full tuples in W2 in a temporary buffer Temp;

N2 ships K ′
1 to N1;5

N1 receives K ′
1 and performs a semijoin from K ′

1 to B1 (i.e., B1 � K ′
1) to obtain the6

result B ′
1;

N1 ships B ′
1 to N2;7

N2 receives B ′
1 and performs a T2-limit join between B ′

1 and Temp and outputs the8

result;
end9

At each time point t at the interval of τ at N2 begin10

N2 updates W2 with B2 semi-delayed by δ;11

end12

the final join (i.e., B ′
1 �� W2) to generate the output. As in SM-S2, we store the full

matching tuples of W2 in a temporary buffer (Temp) and use it in place of W2 to avoid
scanning the W2 tuples more than once.

3.2 Implementation details of the semijoin-based one-way stream join algorithms

In this subsection we present the implementation details of the non-redundant semi-
join (used in Algorithms 3 and 4) and the synchronous window updates (used in
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Algorithms 3, 4, and 5). All implementation ideas employed are to reduce the com-
munication overhead incurred to perform the operations continuously.

3.2.1 Non-redundant semijoin

The non-redundant semijoin (in Line 4 of Algorithm 3 and Line 5 of Algorithm 4)
ships only the tuples that have not been shipped yet. This is done by marking a bit
associated with each tuple to record the shipment status of the tuple. Algorithm 7
outlines the steps.

3.2.2 Synchronous window updates

There are three cases of updating windows between the source node and the desti-
nation node to synchronize the window contents. In this subsection, we explain the
details of each synchronization.

Updating W ′
2@N1 in SM-S1

In Line 11 of Algorithm 3, whenever expired tuples are removed from W2, the same
tuples must be removed from W ′

2@N1 as well if they exist in W ′
2@N1. Algorithm 8

shows the steps of this update. In order to avoid shipping all expired tuples to N1,
we organize W ′

2@N1 as a FIFO queue of tuples (ordered in an increasing order of
timestamp) and have N2 ship only the number (k) of expired tuples instead of the
tuples themselves; then, N1 only needs to remove the first k tuples from the queue.
The expired tuples need to be counted only if they have been shipped to N1. For
this, we use a bit map, where each bit b denotes whether the associated tuple has

Algorithm 7 Semijoin operation modified to reduce the network overhead

Operator: Non-redundant semijoin (A1,A2);1

Input: A1: a set of partial tuples; A2: a set of tuples;
Output: Aout: a set of tuples reduced from A2 through a semijoin A2 � A1;
begin2

for each tuple a1 in A1 do3

for each tuple a2 in A2 do4

// If a2 matches a1 but has never been sent, then put in

Aout and mark it as “sent” (i.e., set the bit b to 1).

if (a1.J = a2.J and a2.b == 0) then5

Insert a2 into Aout;6

a2.b = 1;7

end8

end9

end10

end11
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Algorithm 8 Updating W ′
2@N1 in SM-S1

begin1

k = 0;2

for each expired tuple s2 do3

if the bit b associated with s2 equals 1 then4

k = k + 1;5

end6

end7

N2 ships the value k to N1;8

N1 receives the value k and removes the first k tuples from the FIFO queue9

representing W ′
2@N1;

end10

been shipped (b = 1) to N1 or not (b = 0), and count the expired tuples whose bits
are 1.

Updating V2 and M2 in SM-S2

As mentioned in Algorithm 4, M2 is a mixture of full tuples from W ′
2 (the reduced

W2) and partial tuples from V2 (the result of projecting W2 on the join attribute). Thus,
once W2 is updated with the full tuples in B2, V2 needs to be updated accordingly with
the partial tuples of B2 (Line 11) and M2 needs to be updated as well according to
the updates of W2 and V2 (Line 13).

Since V2 is a set of partial tuples resulting from the projection of W2 on the join
attribute, the join attribute values of the partial tuples are all distinct. Moreover, any
partial tuple in M2 that has the same join attribute value as any full tuples in W1 is
replaced by the corresponding full tuples from W2. Based on these observations, we
organize V2 as an array where the join attribute is the unique key, and organize M2 as
a hash table where the hashing key is the join attribute and the hashed value is the set
of full tuples with the join attribute value.

Figure 5 shows the array structure of V2 and the hash table structure of M2 using
an example. Each entry in the array representing V2 has three fields: a distinct join
attribute value (j ), the number (c) of full tuples in W2 with the same join attribute
value j , and a bit (b) indicating whether the full tuples from W2 with the same join
attribute value j have been shipped (b = 1) to N1 or not (b = 0). Each entry in the
hash table representing M2 has three fields as well: a distinct join attribute value (j ),
the number (c) of full tuples with the same join attribute value j , and a pointer to the
linked list (ll) representing the set of those full tuples. Note that the extra fields c, b,
and ll are specific to the implementation and are not part of the tuple schema. In the
remainder of this section, we use the notations V2 and M2 respectively to refer to the
array and the hash table representing them.

The update algorithm needs to synchronize the distinct join attribute values of
M2 with those of V2 and W2. Specifically, it is done as follows. First, for any tuple
expiring from W2, we reduce the c value of the matching (i.e., with the same j value)
entry in V2 by 1 and, if the resulting c equals zero, then remove the entry from V2 and
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Fig. 5 Illustration of updating V2 and M2 synchronously with updating W2

remove the same entry from M2 as well. Second, for any tuple inserted into W2, we
need to check if the b field of the matching entry in V2 is equal to 1 and, if so, insert
the same tuple in M2. We handle this synchronization by maintaining the order of
the join attribute values the same between M2 and V2 and shipping two vectors and
one set to N1. The two vectors are the distinct join attribute (DJA) value vector vJ

and the distinct join attribute (DJA) count vector vC . The former (vJ ) is the vector of
the distinct join attribute values in the new entries added to V2. The latter (vC ) is the
vector of the number (or count) of tuples in W2 for each distinct join attribute value
in V2, including both the old entries removed and the new entries added. The set is
denoted as sF . It contains the set of full tuples to be inserted into M2 as well among
those inserted into W2.

Example 4 Figure 5 illustrates synchronous updates on W2, V2, and M2. Suppose
three new tuples 〈d, x〉, 〈a, z〉, and 〈f,w〉 are inserted into W2 and two expired tuples
〈c, y〉 and 〈a, x〉 are removed from W2. Then, the synchronous updates on V2 and M2
are done as follows.

• N2 updates V2 by inserting the new entries 〈d,1,0〉 and 〈f,1,0〉 and removing
the old entry 〈c,1,1〉 (because 〈c, y〉 has been removed from W2). Note that the
existing entry 〈a,2,1〉 is modified twice, first to 〈a,3,1〉 (i.e., increasing c by 1
to reflect the new tuple 〈a, z〉 inserted into W2) and back to 〈a,2,1〉 to reflect the
removal of the old tuple 〈a, x〉 from W2.

• Next, N2 ships the two vectors vJ = 〈d,f 〉 and vJ = 〈0,2,1,1,1〉 to N1 and the
set sF = {〈a, z〉}. The first element of vC is 0 for the old entry 〈c,1,1〉 removed
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from V2 and the remaining three elements reflect the entries in V2 after the update.
Regarding sF , the other two tuples inserted into W2 (i.e., 〈d, x〉, 〈f,w〉) are not
included because the values of b in the corresponding entries in V2 are both zeros
(that is, the full tuples have not been shipped to M2 yet).

• Upon receiving vJ , vC , and sF , N1 updates M2 by (1) (based on vJ ) inserting the
new entries 〈d,0,null〉 and 〈f,0,null〉 (where c = 0 for both entries because no
full tuple has been fetched from W2 to M2 yet), (2) (based on sF ) inserting the
new full tuple 〈a, z〉 to the entry with j = a (because there are already existing full
tuples with the same j ) and increasing the c field value of the entry by 1 (i.e., to
〈a,3,&{〈a, x〉, 〈a, y〉, 〈a, z〉}) to reflect the new tuple inserted, (3) (based on vC )
removing the old entry 〈c,1,&{〈c, y〉}〉 because the element in vC corresponding
to the entry with j = c is zero, and (4) (based on vC ) removing the first full tu-
ple 〈a, x〉 from ll of the entry with j = a (i.e., the entry 〈a,3, ll〉) because the
corresponding element in vC is 2 (not 3) and changing the c value of the same
entry to 2 to reflect the number of full tuples in ll (thus resulting in the entry
〈a,2,&{〈a, y〉, 〈a, z〉}).

Algorithm 9 outlines the steps of updating V2 and M2. Lines 2–13 show the steps
of updating V2 with the new tuples from B2 and constructing vJ and sF . Lines 14–
20 show the steps of updating V2 with the tuples expired in W2 and constructing vC

(Line 20). Lines 24–40 show the steps of updating M2 at N1. The for loop in Line 24
adds new entries of distinct join attribute values from vJ to M2. This step guarantees
that the updated M2 and V2 have the same number of distinct join attribute values in
the same order. The for loop in Line 27 updates the set of full tuples (in the linked list)
and the count field of each entry in M2 based on vC and the number of tuples in sF .
Each element (p) in vC is the number of full tuples in W2 with the join attribute value
j and, thus, M2 must have the same number of full tuples. Given this, the number (k)
of expired tuples removed from each entry of M2 is computed by adding the current
count c and the number (q) of new tuples inserted into the linked list and subtracting
the count p.

Updating V2 and V2@N1 in SM-D1

In Algorithm 5, V2 (at N2) and V2@N1 need to be updated to synchronize with W2
whenever it is updated with B2. This update is done by using vJ and vC in a manner
similar to Algorithm 9. Specifically, each entry of V2 has two fields (j, c) where j is
the distinct join attribute value and c is the number of tuples in W2 with the same join
attribute value. When W2 is updated, we update V2 by inserting a new entry if there
is no entry in V2 with the same join attribute value (j ) and removing any entry with
the value of c equal to 0. The DJA value vector vJ and the DJA count vector vC are
constructed in the same manner as in Algorithm 9, and are shipped to N1 to update
V2@N1.

It is important to ensure that, for any given multi-way join query, all alternative
join execution plans with different combinations of the join order, join placement,
and join method are equivalent, as this is essential to the correctness of distributed
join algorithms. We give a proof of the equivalence in Appendix A.
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Algorithm 9 Updating V2 and M2 in SM-S2

begin1

// Update V2 (at N2).

for each tuple s in B2 do2

N2 probes V2 for matching entries;3

if a matching entry 〈j, c, b〉 is found then4

c++; // Update the count field of the entry5

if b == 1 then6

N2 inserts s into sF ;7

end8

else9

N2 inserts a new entry 〈s.J,1,0〉 into V2;10

N2 inserts an element s.J into the DJA value vector vJ ;11

end12

end13

for each expired tuple s do14

N2 probes V2 for matching entries;15

if a matching entry 〈j, c, b〉 is found then16

c– –; // Update the count field of the entry17

end18

end19

N2 scans V2 and generates a DJA count vector vC ;20

N2 removes from V2 any entries with c = 0;21

N2 ships vC , vJ and sF to N1;22

N1 receives vC , vJ and sF ;23

// Update M2 (at N1).

for each element j in vJ do24

N1 inserts a new entry 〈j,0,null〉 into M2;25

end26

for each entry 〈j, c, ll〉 of M2 do27

N1 finds the corresponding count p in vC ;28

if p = 0 then // All tuples with join attribute value j have been29

removed from W2

N1 removes the entry 〈j, c, ll〉 from M230

else31

N1 finds full tuples in sF that has the join value j ;32

if there are q full tuples found then33

N1 appends these q full tuples at the end of the linked list ll;34

end35

k = c + q − p; // Calculate the number of the expired tuples with36

the join attribute value j

N1 removes the first k tuples from the linked list ll;37

N1 updates the current count c to p;38

end39

end40

end41
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3.3 Handling a tuple-based window

In this section, we discuss how to adapt the proposed algorithms into the case of tuple-
based windows. The difference between tuple-based and time-based window is that
the window size is determined by the number of tuples instead of the time interval.
Therefore, window probing and window update mechanism needs to be modified.

First, for window probing, a tuple s1 needs to probe tuples s2 in window W2
for matching tuples. With tuple-based window, instead of probing tuples s2 whose
timestamp ts is in the range [s1.ts − T2, s1.ts), we want to probe the last w2 tuples s2
in W2 whose timestamp ts is less than or equal s1.ts, where w2 is the window size
of W2. For this, we need to modify the constraint 3 in our distributed window-based
stream join model as follows:

Constraint 3 [Limited-count match]: The tuple s1 should be matched against
only the last w2 tuples s2 in W2 whose timestamp ts is less than or equal to
s1.ts

Second, for window update, the number of new tuples k added to the window is
equal to the number of expired tuples removed from the window. Thus, as a result
we need to change the implementation details for the synchronous window updates.
Specifically, for updating W ′

2@N1, the algorithm is simpler, since we know the num-
ber of expired tuples is the same the number of new tuples k, we only need to ship
this number to N1 and remove the first k tuples from the FIFO queue of W ′

2@N1. For
updating V2 and M2, the algorithms need no modification.

As we can see from the discussion, with tuple-based windows, the high-level al-
gorithms proposed in Sect. 3.1 can be easily adapted with little modifications in the
distributed stream join model and in the implementation details of the synchronous
window updates.

4 Distributed stream join query optimization algorithm

In a query processing system, the query optimizer generates an efficient query exe-
cution plan and the query processor executes the plan. The plan of a multi-way join
is characterized by the join order as well as the join placement and the placed join
method [14]. The join order specifies the order of the streams participating in the
multi-way join. For stream joins, two commonly used ordering approaches are linear
ordering [49] and tree ordering [24]. In this section, we first define a join execution
plan for the linear ordering and propose a greedy algorithm which finds an efficient
join execution plan in Sect. 4.1. Then, in Sect. 4.2 we discuss the execution of a join
plan for the tree ordering given the one-way join algorithms.

4.1 Greedy algorithm

For the join execution plan, we assume linear ordering [49] which has proven to
be effective in streaming scenarios [10, 11, 21, 44, 56]. For a given m-way join
query, linear ordering determines separate join sequences for each stream, thus
m join sequences altogether. The join sequence associated with a head stream Si
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(i = 1,2, . . . ,m) is defined as an ordered set of the other m − 1 streams that are
joined in sequence for each new tuple si arriving in Si . Thus, there can be a max-
imum of (m − 1)! possible join orders for each stream, while the actually possible
number depends on the structure of the join graph.

With the linear ordering approach, the execution plan of a multi-way stream join
S1 �� · · · �� Sm is defined as a set of join sequences respectively associated with the
streams S1, S2, . . . , Sm. The following definition summarizes how a multi-way stream
join execution plan is configured and how the plan is executed.

Definition 1 (Multi-way stream join execution) A multi-way join execution plan is
defined as a set of join sequences {P1,P2, . . . ,Pm}, where each Pi (i = 1,2, . . . ,m)
is associated with the stream Si . A join sequence Pi (i = 1,2, . . . ,m) is in turn de-
fined as {〈Si1,Ai1〉, . . . , 〈Sim−1 ,Aim−1〉} where Aij (j = 1,2, . . . ,m − 1) is the al-
gorithm of one-way join from the output stream of executing the plan up to the
stream Sij−1 , i.e., one-way joins in the subsequence {〈Si1,Ai1〉, . . . , 〈Sij−1,Aij−1〉},
to the next stream Sij . Given such a join execution plan, the sequence of one-way
joins in each Pi (i = 1,2, . . . ,m) is evaluated for each tuple of the head stream Si ,
which terminates when either there is no matching tuple in any intermediate join
output or the join reaches the last stream (Sim−1 ) in the sequence.

Given the join execution plan and its associated cost formulas (presented in Ap-
pendix B), an exhaustive search algorithm may be used to find an optimal plan among
all possible alternative plans. However, the computation complexity is exponential.
Obviously, this exponential running time becomes prohibitive as the number of joins
increases. We thus propose a greedy algorithm which generates an efficient plan in
polynomial time.

The greedy algorithm produces a join execution plan that includes a join sequence
separately for each input stream. The join sequence is formed by adding one stream
at a time at the end of the sequence. The stream chosen to be added each time is the
one to which the one-way join is estimated to take the minimum execution time. The
estimation is done using the cost formulas of the six one-way join algorithms.

Algorithm 10 shows the steps of the greedy algorithm. The algorithm takes a
set of input streams S1, S2, . . . , Sm and a join graph G as the input. Although not
shown explicitly, cost parameters like the number of tuples wi in a window Wi

(i = 1,2, . . . ,m) on each stream, the stream statistics parameters (e.g., the stream
rate ri , the full tuple size FSi

, the partial tuple size PSi
and the selectivity factor fi of

each stream Si (i = 1,2, . . . ,m)), etc. (see Table 4 in Appendix B) are input as well,
as they are needed to compute the estimate of execution time in Line 9. In the input
join graph G ≡ (V ,E), a vertex v ∈ V represents an input stream and an edge e ∈ E

represents a join predicate between two streams. The output of the algorithm is a join
execution plan as defined in Definition 1 above, that is, one join sequence Pi for each
input stream Si (i = 1,2, . . . ,m), with each join sequence specifying the join order
and the execution algorithm of each join in the sequence.

In the algorithm, each iteration of the outer for loop (Lines 2–20) constructs Pi

for the input stream Si . Inside the f or loop, the while loop (Lines 6–19) finds the
next stream Snext and the next join algorithm Anext to be added to Pi . For this, the
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Algorithm 10 Greedy distributed stream join query optimization

Input: A set of streams {S1, S2, . . . , Sm}; a join graph G;
Output: A set of sequences {P1,P2, . . . ,Pm} for the input set of streams

begin1

for each stream Si (i = 1,2, . . . ,m) do2

// Find the join sequence Pi for this stream Si

Scurrent = Si ; Pi = ∅;3

Candidates = {S1, S2, . . . , Sm} − {Si};4

Done = {Si};5

while Candidates �= ∅ do6

Snext = null; Cmin = ∞;7

for each stream Sk directly connected to any Sj ∈ Done in the join graph8

G do
Estimate the execution time of the six possible join algorithms ({SP-S,9

SP-D, SM-S1, SM-S2, SM-D1, SM-D2}) between Scurrent and Sk , and
find the algorithm Anext with the smallest estimated execution time
(denoted here as CAnext );
if (Snext == null) OR (CAnext < Cmin) then10

Snext = Sk ;11

Cmin = CAnext ;12

end13

end14

Scurrent = Scurrent ���Snext;15

Pi = Pi ∪ {〈Snext,Anext〉}; // Append 〈Snext,Anext〉 to the join16

sequence Pi

Candidates = Candidates − {Snext};17

Done = Done ∪ {Snext};18

end19

end20

end21

inner for loop (Lines 8–14) estimates the minimum of the costs of executing the six
possible one-way join algorithms from Scurrent to each of the streams that can be
directly joined with Scurrent in the join graph but has not been included in Pi yet.
The estimation of the execution time is computed using the formulas presented in
Appendix B. Once Snext and Anext are determined, Scurrent is updated to be the output
stream of the one-way join between Scurrent and Snext (Line 15). (The output stream
rate of the new Scurrent, rcurrent_new, can be estimated as rcurrent_new = rcurrent_old ×
wnext × ρold,next where wnext is the number of tuples in the window on Snext and
ρold,next is the join selectivity factor of the join between Scurrent_old and Snext.) As we
can see, this algorithm takes O(m2) time.

4.2 Discussion on using the tree ordering

In the tree ordering, there is one join order fixed by the tree structure and applied to
all streams. That is, a stream at a higher level in the join tree always joins with an
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output stream generated from the join represented by the subtree at the immediately
lower level. Each join in the join tree is a two-way join between an input stream and
an output stream from the subtree, and the two-way join can be computed in two
one-way joins using the distributed join algorithms described in Sect. 3.1.

With the tree ordering approach, the execution plan of a multi-way stream join
S1 �� · · · �� Sm is defined as a sequence of (m − 1) two-way joins; each two-way
join between Si and the output stream S1,...,i−1 of the subtree is computed in two
one-way joins Ai1 and Ai2 where Ai1 is the algorithm of one-way join from Si to
S1,...,i−1 and Ai2 is the algorithm of one-way join from S1,...,i−1 to Si . For example,
for a join execution plan (S1 �� S2) �� S3, the two-way join between S3 and S1,2 can
be computed as a one-step semijoin-based join from S3 to S1,2 and a simple join from
S1,2 to S3.

In order to find an efficient join execution plan with the tree ordering approach,
we only need a different cost model pertinent to the ordering. The plan optimization
algorithm is not affected by the join ordering scheme; only the alternative plans ex-
plored are specific to tree ordering. Since the focus of this paper is on developing
semijoin-based join algorithms working in distributed stream environments and not
on studying the particulars of join ordering, we save the comparison between the two
join ordering approaches as the future work.

5 Performance evaluation

We have conducted a comprehensive evaluation of the proposed join algorithms. In
this section we describe the design, setup, and results of the experiments.

5.1 Experiment design

Two sets of experiments have been conducted. The first set of experiments is to com-
pare the efficiencies of the six different one-way join algorithms presented in Sect. 3
and analyze the observed performance trends. The objective is to see how the join
performance is affected by such key factors as the join placement (i.e., source node
vs. destination node) and the join method (i.e., simple join vs. semijoin, one-step
semijoin vs. two-step semijoin). The second set of experiments is to compare the ex-
ecution time of a suboptimal plan generated by the proposed greedy algorithm (see
Algorithm 10) with the execution time of the optimal plan generated by an exhaustive
algorithm. The exhaustive algorithm enumerates on all possible join sequences and
join algorithms. Thus, for an m-way join query, the running time complexity of the
exhaustive algorithm is O(m!6m), as there are (m − 1)! possible join sequences and
there are six alternative join algorithms for each join in the sequence. The objective
of this set of experiments is to see how much longer it takes to execute the suboptimal
plan generated by the proposed greedy algorithm. We conduct this set of experiments
on both synthetic and real data streams.

Depending on the objective of the experiments, we vary different parameters to
examine their effects on the performance. The performance metric used is the total
query execution time per unit-time (1 second) of tuple arrival. The total query exe-
cution time is the sum of the total transmission time (on transmitting data between
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Fig. 6 The topology of a join
graph

the nodes participating in the query processing) and the total processing time (on
processing data at the individual nodes).

There are three types of parameters used in the experiments: stream parameters,
query parameters, and system parameters. The stream parameters are the tuple size,
the join attribute selectivity factor (or selectivity factor in short), and the stream rate
for each stream. The join attribute selectivity factor is the average ratio of tuples
selected from a stream for any given join attribute value. We assume the uniform dis-
tribution of join attribute values. The stream rate is the number of tuples arriving per
second. The query parameters are window size of each window and the join graph
topology of a multi-way join as specified in the query. The three stream parameters
and the window size are commonly used in the performance study of data stream
processing. The join graph topology will be discussed below. The system parameters
are the network latency, the transmission rate (i.e., network bandwidth), and the ex-
ecution interval. The execution interval is the time interval between processing two
consecutive batches of tuples (see Sect. 2.2). These system parameters are unique to
the distributed stream processing of this paper.

For a multi-way join, the join graph topology is another query parameter. We con-
sider the four types of topology shown in Fig. 6. The chain, star and cycle topologies
are borrowed from other literature [10, 36, 45], and the fully connected topology is
a new one we add. Given a fixed number of nodes participating in a join, the fully
connected topology is the worst case to our query optimization algorithm. That is,
with the fully connected topology, the produced join sequence is the most likely to
be different from the optimal one produced by the exhaustive algorithm. The reason
for this is that, at each step of appending another stream to the intermediate join se-
quence produced by the greedy algorithm thus far, the fully connected topology offers
the largest number of possible streams to choose from.

5.2 Experiment setup

We have built a distributed data stream processing system prototype. The prototype
runs on each node and has three main modules: the optimizer, the executor, and the
communicator. In the optimizer we have implemented two optimization algorithms:
the greedy algorithm presented in Sect. 4 and the exhaustive algorithm mentioned
above. In the exhaustive algorithm, we use the breadth-first search with simple prun-
ing to reduce the search space. The inputs to the optimizer are the multi-way join
query specification (i.e., stream names, window sizes and the join attribute for each
pair of streams joined), the stream statistics parameters (i.e, stream rate, tuple size,
and selectivity factor), and the optimization algorithm used (i.e., either greedy or ex-
haustive). The output is a query execution plan, which is then passed to the executor.
The executor takes the plan and the data streams as inputs and generates a query
output stream. We have implemented the six one-way join algorithms (see Sect. 3.1)
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in the executor module. The communicator transfers data between nodes using the
TCP/IP protocol. The prototype software is written in Java 2 SDK 1.6.2.

We have conducted the experiments in a simulated wide area network (WAN) en-
vironment. In order to simulate a WAN, we use VMWare [1] to create multiple virtual
machines connected through a virtual network in which the network bandwidth can
be adjusted as needed. The network latency is not supported by VMWare, so we sim-
ulate it by injecting a delay in every packet sent out to the virtual network. Each vir-
tual machine is configured with Pentium Core 2 Duo 2.0 GHz processor and 256 MB
RAM and runs Linux OS. We run multiple instances of the prototype on separate vir-
tual machines which are the nodes participating in a multi-way join execution. Input
streams are read from input files and output streams are written to output files.

We have written a data generator to generate a stream data set as a sequence of
tuples. Inputs to the data generator are the number of tuples to be in the data set, the
stream rate, the number of attributes in the stream schema, and the name, size, and
selectivity factor of each attribute in the schema. The values of the join attributes are
assigned randomly with the uniform distribution. We use the string data type for all
attributes. Each tuple has a timestamp, the value of which is determined based on the
stream rate. We also use the daily access logs of requests made to the 1998 World
Cup web site [2] as real data streams.

The performance metric is the total elapsed time for executing a join execution
plan across all nodes, and is measured as follows. For a given query issued at a cer-
tain node (called the query node), the optimizer of the node generates a plan and
disseminates it to all the nodes. Then, the executor of each node extracts its own por-
tion of the plan and executes it. The execution time, which includes the processing
time and the transmission time, is recorded at each node and sent to the query node,
which then adds up all from the individual nodes to obtain the total execution time.

For the virtual network environment, we set the default values to 1 Mbps for net-
work bandwidth and 25 ms for network latency. In the experiments that vary the
values of these parameters, the bandwidth is varied in the range from 256 Kbps to
4 Mbps and the latency is varied from 5 ms to 45 ms. These ranges have been chosen
based on the statistics in the Year 2008 Federal Communications Commission re-
port [3]. The report shows that 40.2% of high-speed lines is in the range of 200 Kpbs
to 2.5 Mbps and, among the high-speed lines ranging from 200 Kbps to 2.5 Mbps,
61.9% are DSL and cable modem which have low latency from 5 to 10 ms and from
2.5 ms to 40 ms, respectively.

5.3 Experiment results

5.3.1 Comparison of the one-way join algorithms

In this set of experiments, we measure the execution times of the six one-way join
algorithms (for S1@N1 ���S2@N2) while varying the values of the parameters men-
tioned in Sect. 5.1 except for the join graph topology. Note that the join graph topol-
ogy is not applicable to one-way joins. For the three stream parameters and the win-
dow size, we fix the values of stream S1 and vary the values of stream S2. This is to
study how the relative performance between two algorithms changes with the relative
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Fig. 7 Comparison of the execution times of the six one-way join algorithms

parameter values between the two streams S1 and S2. In order to suppress the noise in
the measurements, we run each experiment ten times for the duration of one time-unit
at each run, and compute the average execution time.

Figure 7 shows the graphs of the experimental results. As we see in the figure,
the execution time varies significantly depending on the join algorithm. In order
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Fig. 7 (Continued)

to see an overall comparison among the join algorithms, for each of the three fac-
tors that characterize the join algorithms (i.e., destination vs. source, simple join vs.
semijoin-based join, one-step semijoin reduction vs. two-step semijoin reduction),
we divide the join algorithms into two groups and distinguish any observable perfor-
mance trends between them.

Destination vs. source There are several interesting phenomena observed between
the group of algorithms that process join at the source node (SP-S, SM-S1 and SM-
S2, called the “source group”) and the group of algorithms that process join at the
destination node (SP-D, SM-D1 and SM-D2, called the “destination group”).

In Figs. 7(a) and (b) (for varying tuple size and stream rate), two performance
trends are apparent. First, the performance trend is the same among the source group
algorithms, and the same among the destination group algorithms. Second, the execu-
tion times of the source group algorithms increase with the parameter values, whereas
those of the destination group stay more or less constant. This second trend can be
explained based on the following two points: (1) the source group algorithms ship the
full tuples of S2 (from N2 to N1) whereas the destination group algorithms do not,4

and (2) the total volume of full tuples (of S2) shipped increases with the increase of
the stream parameter values (of S2) and, accordingly, the total data transmission time
increases. These two points together explain the crossover of the two performance
curves.

In Figs. 7(d), (e), (f) and (g) (for varying window size and system parameters,
respectively), there is no particular distinction that can be made between the source
group algorithms and the destination group algorithms. This is because varying these
parameters affect both groups to the same degree, that is, without regard to where the
join processing is done.

In all figures except for Fig. 7(c), the execution times of SP-S and SM-S2 in the
source group are very close to each other, and so are the execution times of SP-D and
SM-D1 in the destination group. Our analysis of this phenomenon is follows. The
default values of the selectivity factors of S1 and S2 are set to the same values (i.e,

4The destination group algorithms ship the full tuples of S1 from N1 to N2 instead, but the stream para-
meters of S1 are fixed in this set of experiments.
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f1 = f2 = 0.1, where f1 and f2 are the selectivity factors of S1 and S2, respectively)
and, thus, in SM-S2 there are always matching tuples in M2 for every arrival tuple of
S1 (as a result of B1 �� M2 in Line 3 in Algorithm 4; the result of the first semijoin
M2 � B1 is empty in this case). Consequently, full tuples of S2 are always shipped
to N1, and this makes SM-S2 have the same communication overhead as SP-S. Like-
wise, in SM-D1 every arrival tuple of S1 has matching tuples in V2@N1 (as a result
of B1 � V2@N1 in Line 3 of Algorithm 5) and, consequently, full tuples of S1 are al-
ways shipped to N2, and this makes SM-D1 have the same communication overhead
as SP-D. Note that Fig. 7(c) is an exception because f1 = f2 does not hold, since f2
is varied in this experiment.

Simple join vs. semijoin-based join There is no clear distinction between the group
of simple join algorithms (SP-S, SP-D) and the group of semijoin-based join algo-
rithms (SM-S1, SM-S2, SM-D1, SM-D2) for any of the varying parameters, with the
exception of the selectivity factor (Fig. 7(c)). In Fig. 7(c), as the selectivity factor
(on S2) increases, the execution times of the simple join algorithms stay unchanged
whereas the execution times of the semijoin-based join algorithms do change because
the execution times of the simple join algorithms do not depend on the selectivity fac-
tors while they do for the semijoin-based join algorithms.

In the group of semijoin-based join algorithms, we have two observations. First,
the execution times of the semijoin-based join algorithms in the source group (i.e.,
SM-S1 and SM-S2) increase and then become nearly constant when f2 is greater than
0.1 (which is the value of f1). The reason is as follows. When f2 < f1, the number of
full matching tuples of S2 increases as f2 increases and, as a result, the communica-
tion overhead increases. In contrast, when f2 ≥ f1, all tuples in W2 match the arrival
tuples of S1, therefore all shipped to N2 and, as a result, the communication overhead
stops increasing. Second, the execution times of the semijoin-based join algorithms
in the destination group (i.e., SM-D1 and SM-D2) decrease when f2 increases. This
is because there are fewer distinct join attribute values of S2, and thus, fewer tuples
of S1 match the tuples of S2. This causes fewer tuples of S1 to be shipped to N2 and,
as a result, the communication overhead decreases.

One-step semijoin vs. two-step semijoin In all figures, we see a trend that the one-
step algorithm SM-S1 is more efficient than the two-step algorithm SM-S2 in the
source group while, conversely, the two-step algorithm SM-D2 is more efficient than
the one-step algorithm SM-D1 in the destination group. Our analysis of the reason
is as follows. SM-S1 always makes two shipments for the set of arrival tuples of S1
in each execution interval (see Lines 3 and 5 in Algorithm 3), while SM-S2 may not
(that is, if the result of the first semijoin in Line 3 in Algorithm 4 is empty). In the
case of SM-D1 and SM-D2, SM-D2 makes three shipments (see Lines 3, 5 and 7 of
Algorithm 6) during each execution interval while SM-D1 makes only one shipment
(see Line 4 of Algorithm 5). Thus, SM-S1 and SM-D2 incur higher communication
overheads than SM-S2 and SM-D1, respectively.

Other observations In Figs. 7(d) and (e), when the parameter values increase, the
execution times increase for all algorithms. The reason is that in Figs. 7(d), when



Distrib Parallel Databases (2010) 27: 211–254 241

there are more tuples in the window, it takes longer to probe the window and ship
matching tuples, and in Figs. 7(c), when the latency increases, obviously it takes
longer to ship data packets.

Figure 7(f) shows the result of the experiment for varying network bandwidth.
First, as the network bandwidth increases, the execution time decreases for the obvi-
ous reason that the data transmission time decreases. Second, the semijoin-based join
algorithms gradually lose their performance advantages when the network bandwidth
increases. (Note that the horizontal axis is in the (base 2) exponential scale.) The rea-
son for this is that, as the network bandwidth increases, the communication overhead
of shipping full tuples compared with that of shipping partial tuples becomes rela-
tively small.

In Fig. 7(g), when the execution interval increases, the execution time decreases
in all join algorithms. The reason is that, as mentioned in Sect. 2.2, as the execution
interval increases, there are fewer number of shipments made per unit time and, thus,
the total network latency is reduced.

5.3.2 Plan execution time

In this set of experiments, we compare the execution times of the query execution
plans produced using the greedy algorithm and the exhaustive algorithm, respectively.
We use a four-way join query and vary the values of the stream parameters and the
query parameters introduced in Sect. 5.1. The results are compared aggregated for
different parameter values. Specifically, for each join graph topology, we generate
100 different queries and, for each query, measure the execution times of the plans
produced by the greedy algorithm and the exhaustive algorithm. The parameter values
are set randomly, following the approach proposed in [45]. That is, each parameter
value is picked randomly from a set of values specified in Table 2. In this way, the
algorithms are tested with different input streams and different queries covering a
broad range of possible parameter values. Then, for each query, we compute the ratio
between the execution times of the plans produced by the two algorithms.

Table 3 shows the statistical summary of the ratio. We see from the table that
the ratio increases as the join graph topology changes from the star topology to the
fully-connected topology. The reason for this is that, in the greedy algorithm, at each
step the next stream in the join sequence is picked from all streams to which there
are join edges in the join graph. The fully-connected topology has more possible
number of streams that can be joined than the other three topologies and, therefore,
the greedy algorithm is less likely to produce an optimal plan. Note that the mean of

Table 2 Parameter values used
in the aggregate comparison Parameter Set of values

Tuple size (the number of attributes) 10, 50, 100, 150, 200

Selectivity factor 0.02, 0.04, 0.06, 0.08, 0.1

Stream rate (tuples/s) 10, 50, 100, 150, 200

Window size (ms) 400, 800, 1200, 1600, 2000
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Table 3 Statistical summary of the ratio TG/TE

Topology Mean { TG
TE

} Median { TG
TE

} Standard deviation { TG
TE

} Max { TG
TE

}

Star 1.02 1.00 0.11 1.39

Chain 1.06 1.01 0.23 2.43

Cycle 1.08 1.01 0.21 2.19

Fully-connected 1.14 1.04 0.29 2.33

TG and TE denote the execution times of the plans generated by the greedy algorithm and the exhaustive
algorithm, respectively. The measured time is an average obtained from ten repeated runs. We do not report
the Min ratio as it is theoretically 1.0 (i.e., TG ≥ TE ), although some measured ratios are smaller than 1.0
due to the measurement noise

Fig. 8 Frequency distribution
of TG/TE

the ratio is only 1.14 even for the fully-connected topology, which means less than
15% overhead in the execution time on average for the greedy algorithm.

Figure 8 shows the frequency distribution of the ratio (rounded to the first frac-
tional digit). We see that the ratio has an exponential distribution skewed to the value
of 1.0. Note that, although theoretically TG/TE cannot be smaller than 1.0, some
values empirically measured are. This is due to the fluctuation of the elapsed time
measured in the computing platform.

It is noteworthy that the greedy algorithm is optimal if the values of each parameter
shown in Table 2 are the same across all nodes. This is because then all edge weights
of the join graph (G) in Algorithm 10 are the same and, consequently, the algorithm
finds a minimum spanning tree of the join graph. Figure 9 demonstrates this point
for an arbitrary set of parameter values. The measured execution times are the same
except for some small differences due to fluctuations in the measurements. (Given
the parameter setting, the difference is less than 2%, 6%, and 10% in 12, 17, and 20,
respectively, out of the 20 cases.)

Real dataset

We also conduct the experiments using real data streams. The real data streams used
are the daily access logs of requests made to the 1998 World Cup web site [2]. The
access log from each day is considered a stream. Each entry in an access log rep-
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Fig. 9 Comparison of the execution time between the greedy algorithm and the exhaustive algorithm with
identical parameter values across all nodes

resents a request made to the site and makes a tuple in the corresponding stream.
The attributes of each tuple are timestamp, clientID, objectID, size, method, status,
type, and server. The number of requests per second is very large, so we have scaled
down the timeline by a factor of ten to reduce the stream rate of each stream. In the
experiments, we have randomly picked four access logs collected on day 30 through
day 33, respectively, and performed a four-way join among them on the clientID at-
tribute.

Figure 10 shows the results for the comparison between the two algorithms. Note
that, unlike the synthetic data set case (see Fig. 9), we can vary only the window
size, as the stream rate, tuple size and selectivity factor are fixed as constant or av-
erage values in the real data set. As shown in the graphs, the execution time of the
plan produced by the greedy algorithm is not much longer than that produced by the
exhaustive algorithm. The largest difference between the two execution times is at
the window size 800, and it is less than 25%. This shows that the greedy algorithm
generates efficient plans which are not much worse than the optimal plan.
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Fig. 10 Comparison of the execution time between the greedy algorithm and the exhaustive algorithm
using real data streams

6 Related work

We discuss related work in two areas: distributed data stream query processing and
semijoin-based join algorithm in distributed (relational) databases.

6.1 Distributed data stream query processing

Recently there have been many studies on distributed data stream query processing
[5, 17, 20, 23, 25, 31, 32, 38, 42, 43, 52, 53]. In these studies, either of the following
two types of distributed data stream models is considered: single (central) processing
site model and multiple (distributed) processing site model.

In the single processing site model, all data streams are shipped to the same site for
processing. Naturally, all data streams are assumed to have the same schema, and they
can be merged into a single stream by the set union operator. With this model, Das
et al. [20] address the problem of processing queries including set cardinality expres-
sions. Their work focuses on the accuracy of the set expression cardinality estimate
while keeping the data transmission costs at a minimum. Their solutions exploit the
global knowledge of the distribution of frequent items as well as the semantics of
set expressions to reduce the transmission costs while preserving user-specified error
guarantees. With the same model, Olston et al. [38], Gibbons et al. [23], and Ker-
alapura et al. [29] all address the problem of estimating aggregate values with error
bounds in distributed data streams. Olston et al.’s work [38] uses “filters” to adapt
to changing conditions in order to minimize the transmission overhead from remote
nodes to the processing nodes while guaranteeing to provide answers with adequate
precision. Gibbons et al. [23] introduce a synopsis data structure for approximating a
data stream and present a randomized approximation scheme to estimate the number
of distinct values in a sliding window over the union of distributed streams. Kerala-
pura et al. [29] address the problem of counting data elements from different streams
at remote nodes and present a method for setting local thresholds at remote nodes
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and initiating communication when the number of locally observed data elements
exceeds those thresholds.

In the multiple processing site model, data streams are shipped to different sites
for processing. In some studies [31, 32, 42, 46] the destination sites are assumed to
form a hierarchy. Seshadri et al. [42] address the problem of query optimization in
the case different continuous queries are issued at multiple source nodes, and propose
a deployment algorithms for placing operators in the queries on different processing
nodes to minimize the communication cost. Also using the multiple processing site
model, Kumar et al. focus on such issues as resource usage [31] and adaptivity [32]
to support scalable distributed stream management. Tang et al. [46] address the CPU
resource allocation problem with the objective of maximizing the total of multiple
output stream rates and propose solutions for different network topologies. We use
multiple processing site model in our work, as it is more general than the single
processing model.

Specifically about the join processing over distributed data streams, we have found
three studies addressing it [30, 54, 56]. Zhang et al. [54] propose DMJoin assuming
a hierarchy of destination sites. In DMJoin, data streams are forwarded through mul-
tiple processing nodes and tuples not satisfying the join condition are filtered out on
the way to the final join processing node (i.e., query node at the root of the hierar-
chy). Zhou et al. [55] present PMJoin which partitions a stream into substreams and
then forwards those substreams with fewer tuples to the processing site. Their work
focuses on developing and studying different stream partitioning schemes. Kriakov
et al. [30] use a different join processing model in which each node generates a parti-
tion of the stream participating in the join. Their approach is based on incrementally
updating the result of Discrete Fourier Transform to reduce data transmission. None
of these works on join processing considers the use of distributed semijoin as we do
in our work.

6.2 Semijoin-based join algorithm in distributed databases

The semijoin in distributed databases has been introduced by Bernstein and Chiu [12]
and Bernstein and Goodman[13] as a technique to reduce communication overhead.
As mentioned in Sect. 1, a join can be computed using different semijoin programs
which incur different communication overheads. In [12], Bernstein and Chiu examine
the questions of which semijoin program is most effective and which type of join
queries can be evaluated fully using semijoins. They show that, for tree queries, a
full reduction semijoin program can be achieved and a linear searching algorithm can
be used to find this semijoin program and that, for cyclic queries, the problem of
finding a good semijoin program is intractable and a heuristic approach needs to be
used to find it. In [13] Bernstein and Goodman extend their study to include natural
join queries and propose an efficient algorithm for finding a full reduction semijoin
program for this type of queries.

There are other variants of semijoin proposed since then [15, 27, 33, 37, 40,
41, 48]. Tseng and Chen [48] present a new relational operator called a hash-semijoin.
The hash-semijoin uses a search filter which presents the projection of a relation in
a bit array by hashing the join values. They also propose a method which replaces
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some of the semijoins by hash-semijoins in a join sequence. Morrissey and Ogun-
badejo [37] investigate the proposed hash-semijoin algorithms and validate them
through experiments. Roussopoulos and Kang [27, 41] propose a two-way semijoin
which includes a backward phase to the semijoin. The backward phase is to reduce the
size of the relation that ships its projection. Using the two-way semijoin, they intro-
duce a pipelined N-way join algorithm for joining the reduced relations. Based on the
idea of two-way semijoin, Li and Ross [33] present a new two-way semijoin-based
join method in which a bit vector (instead of a reduced relation) is sent in the back-
ward phase. Chen and Li [15] introduce a domain-specific semijoin for fragmented
databases. The operator exploits the semantic information associated with the joining
fragmented relations to reduce the size of fragments by unmatching tuples. Perrizo
and Chen [40] propose a composite semijoin in which multiple join attributes are con-
sidered altogether in the projection step of the semijoin, and thus one semijoin opera-
tion is done instead of doing several joins between a source site and a destination site.

There also have been techniques developed for utilizing semijoin in distributed
query optimization [6, 16, 50]. Wang et al. [50] address the issue of the storage and
processing overheads of semijoin and propose a parallel execution method for semi-
join to minimize the query response time. Chen and Yu [16] explore an approach to
applying a combination of join and semijoin operations to minimize the communi-
cation overhead in distributed query processing. Apers et al. [6] address the problem
of finding efficient query execution plans with semijoin programs. Their approach
considers both processing cost and communication cost and is based on the idea of
decomposing a query into simpler queries that can be solved easily and optimally.

All these semijoin techniques and their utilization techniques differ from our work
in that they are not for data streams which require the query processing to be incre-
mental and continuous over the network. Specifically, first data stream join is exe-
cuted by two one-way joins in which new arrival tuples from one stream are matched
with the tuples in the window of the other stream, thus instead of projecting a re-
lation, we use partial tuples to reduce the window size of the other stream. Second,
windows containing full tuples are updated incrementally as new tuple arrives, and
thus windows of partial tuples need to be updated as well, we use bit vector tech-
nique to update them efficiently. In addition, linear ordering of multi-way stream join
is specific to the data stream, and thus for this, we propose a greedy approach to find
an efficient join execution plan based on this ordering.

7 Conclusion

In this paper, we addressed the problem of processing multi-way stream joins over
distributed data streams with semijoins. In a distributed environment, including semi-
join in the consideration for query execution plans allows for more efficient query
processing over the network. Using the notion of a semijoin as a basis, in this paper
we first proposed a model for processing distributed stream joins and, then, based on
the model, developed one-way join algorithms and, using them as the building blocks,
developed a multi-way join algorithm. The one-way join algorithms are based on two
alternative join methods (simple join vs. semijoin-based join), two alternative join
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placements for each join (source node vs. destination node), and, for the semijoin-
based join, two alternative semijoin programs (one step vs. two steps). The multi-way
join algorithm assumes the linear ordering of joins.

The streaming nature of the data make the join algorithms significantly more com-
plicated. Thus, in this paper particular attention was given to the correctness of join
processing in the face of transmission delay due to network latency and the efficiency
of join processing in the face of incremental and continuous arrival of tuples at dis-
tributed nodes. We also proposed an optimization algorithm using a greedy heuristic
for finding an efficient join execution plan. Finally, we conducted thorough experi-
ments to study the performance of different join algorithms and show the efficiency
of our proposed greedy algorithm.

Semijoin is well known as an effective operator for reducing the communication
cost for join processing in distributed databases, but it has never been considered for
distributed data streams. To our knowledge, this is the first work done to comprehen-
sively address semijoin-based join processing in a distributed data stream environ-
ment.

There are several directions for future work. First, in our work we focused on
efficiently processing distributed stream joins in which the exact join output is gen-
erated. An interesting problem for future work is to give a good approximation for
the join output in the case of insufficient system resources. The challenge in this
case lies in that the processing is distributed. Finding an adequate quality metric of
the approximate result in a distributed environment and computing it efficiently will
bring interesting challenges. Second, in data stream processing systems, queries are
continuous and long-running and the stream characteristics may vary significantly
over time. Thus, query processing needs to adapt to the changes of the stream char-
acteristics. We are currently working on the problem of adaptively processing stream
joins in a distributed environment. Third, Bloomjoin is another interesting approach
that has been used in distributed databases for reducing the transmission cost. The
Bloomjoin approach uses a Bloom filter which is an m-bit vector that is constructed
by mapping each join attribute value to an integer from 1 to m using a hash function.
As stated by Li and Ross in [33], “due to the nature of hash collisions present in a
Bloom filter, Bloomjoin can be viewed as a lossy implementation of semijoin.” Devel-
oping a stream join method using a Bloom filter and integrating it into the distributed
stream framework for an efficient (but not lossless) stream join plan will be an inter-
esting exercise. Fourth, as mentioned in Sect. 2.2, the periodic heartbeat/punctuation
solution can be incorporated into our work to avoid the risk of incorrect result even
in the case of the network latency exceeding δ abruptly. To achieve this, a new join
processing model must be used. In the conventional join processing model used in
this paper, each stream invalidates its own window tuples independently of the other
streams. In the new model, the invalidation of tuples should be driven by the arrival
of tuples from another stream. Developing multi-way join and semijoin-based join
algorithms to work under the new model with the distributed shipping of heartbeats
or punctuations will be an interesting study.
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Appendix A: Equivalence of the join algorithms

In this section, we show the equivalence of different join execution plans of a join
query.

Claim 1 Given the definition of a multi-way stream join execution plan as stated in
Definition 1, all alternative join execution plans of a multi-way stream join query over
distributed data streams are equivalent.

Proof As stated in Definition 1, a multi-way join is computed as a sequence of one-
way joins (Sect. 2). Therefore, it suffices to show the equivalence of the six one-way
join algorithms presented in Sect. 3. Besides, since the join algorithms are executed
in an incremental manner, we only need to show that the output results of the join
algorithms are the same at any point in time or, more specifically, after every τ time
units.

It is straightforward that SP-S and SP-D are equivalent because they perform the
same join execution B1 �� W2 at any point in time t + δ for every τ time units (where
t is the time that the join re-execution begins) and are different only in the processing
node.

Next, we show that the four semijoin-based join algorithms (i.e., SM-S1, SM-S2,
SM-D1, SM-D2) are equivalent to SP-S. Let us use induction for this proof. That is,
for each semijoin-based join algorithm, we prove that if it generates the same output
as SP-S at time t + δ then it generates the same output as SP-S at time t + δ + τ as
well.

• SM-S1 ≡ SP-S: In SM-S1 (see Fig. 4(a) and Algorithm 3), up to the point of time
t + δ, W ′

2@N1 contains all tuples in W2 that match the tuples in S1. At the time
t + τ , K1 is computed and shipped to N2. N2 receives K1 at time t + τ + δ. �W ′

2,
containing all tuples that match the tuples in B1 and have not been shipped to N1,
is computed and shipped to N1 to be inserted into W ′

2. Then, after this insertion,
W ′

2 contains all tuples of W2 that match the tuples in B1. Note that expired tuples
are removed from W2 at time t + τ + δ (see Constraint 2 in Sect. 2.2) and, thus,
expired tuples are removed from W ′

2 at a time later than the time �W ′
2 arrives

at N1. Hence, the join B1 �� W ′
2 returns the same result as B1 �� W2 after the time

t + δ + τ .
• SM-S2 ≡ SP-S: In SM-D2 (see Fig. 4(b) and Algorithm 4), up to the point of

time t + δ, V2 contains all distinct partial tuples resulting from the projection of
W2, and M2 contains the same partial tuples as V2 and, additionally, the full tuples
that match the tuples in W1. After the time t + τ , �V ′

2, containing the matching
partial tuples of which the full tuples are not available in M2, is computed and
shipped to N2 to obtain full tuples. �V ′

2 arrives at N2 no later than t + τ + δ. Then,
�W ′

2, the set of full tuples thus obtained, is computed and returned to N1. Note that
expired tuples are removed from W2 at time t +τ +δ (see Constraint 2 in Sect. 2.2)
and, thus, �W ′

2 still contains all the matching W2-tuples. After M2 is updated with
�W ′

2, M2 contains all tuples of W2 that match the tuples in B1. Hence, the join
B1 �� M2 returns the same result as B1 �� W2 after the time t + δ + τ .
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• SM-D1 ≡ SP-S: In SM-D1 (see Fig. 4(c) and Algorithm 5), up to the point of
time t + δ, V2 contains all distinct partial tuples resulting from the projection of
W2 and V2@N1 contains the same partial tuples as V2. After the time t + δ + τ ,
B ′

1, the result of the semijoin B1 � V2, contains all full tuples that match the tuples
in W2. This is because V2@N1 contains the same partial tuples as V2 and, thus,
contains all possible matching partial tuples of W2. B ′

1 arrives at N2 no later than
t + τ + δ. Hence, the join B ′

1 �� W2 returns the same output as B1 �� W2 after the
time t + δ + τ .

• SM-D2 ≡ SP-S: In SM-D2 (see Fig. 4(d) and Algorithm 6), at time t + δ + τ ,
K1, which contains all partial tuples of B1, is computed and shipped to N2. K1
arrives at N2 no later than t + δ + τ . Then, K ′

1, which contains only the partial
tuples that have matching tuples in W2, is computed and shipped to N1 to obtain
their full tuples. Matching tuples in W2 are saved into Temp. Then, B ′

1, containing
all the full matching tuples in B1, is shipped to N2. Hence, the join B ′

1 �� Temp
returns the same result as B1 �� W2 after the time t + δ + τ .

Appendix B: Cost formulas

In this section we present the set of cost formulas used to estimate the cost of a dis-
tributed stream join execution plan. Since queries are continuous, we use the unit time
cost [28], defined as the execution time per time unit, as the cost metric. For a given
JEP, its cost is the total execution time which is the sum of the total query processing
time at all nodes and the total transmission time between nodes. The transmission
time in turn is the summation of the network latency and the data transfer time.

As mentioned in Sect. 4, a join execution plan (JEP) is the set of per-stream join
sequences where each sequence specifies one-way joins executed in a linear order.
The total execution time of a JEP, CJEP, is computed as the summation of the total
execution times of individual join sequences, CPi

(i = 1, . . . ,m). The total execution
time of a join sequence is in turn computed as the summation of the total execution
time of individual one-way joins in the sequence, CAij

(j = 1, . . . ,m − 1). Thus, for
an m-way join, the total execution time of its JEP is computed as:

CJEP =
m∑

i=1

CPi
=

m∑

i=1

m−1∑

j=1

CAij
(1)

where Aij is one of the six one-way join algorithms (i.e., SP-S, SP-D, SM-S1, SM-S2,
SM-D1, SM-D2) described in Sect. 3.1. The cost formulas for computing CAij

(j =
1, . . . ,m − 1) for these alternative methods are as shown below. Table 4 summarizes
the notations used in these formulas. We believe the terms in the formulas are evident
from the algorithms.

Simple join at the source node:
CSP-S = Cupdate[W1] + Cprobe[W2] + Cship[W2] + Cupdate[W2@N1]

= r1 × cu + r1 × cp × w2 + r2

wp2
× S(wp2 × FS2) + r2 × cu
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Simple join at the destination node:
CSP-D = Cupdate[W1] + Cship[B1] + Cprobe[W2] + Cupdate[W2]

= r1 × ci + r1

wp1
× S(wp1 × FS1) + r1 × cp × w2 + r2 × cu

One-step semijoin-based join at the source node:
CSM-S1 = Cupdate[W1] + Cship[K1] + Cprobe[W2] + Cship[�W ′

2] + Cprobe[B1]
+ Cupdate[W2] + Cupdate[W ′

2]
= r1 × ci + r1

wp1
× S(m1 × PS1) + r1

wp1
× m1 × cp × w2 + r1

wp1

× S(wp2 × f21 × FS2)

+ r1

wp1
× wp2 × f21 × ci + r2 × ci + r1 × cp × w2 × f21 + r2

wp2
× S(c)

Two-step semijoin-based join at the source node:
CSM-S2 = Cupdate[W1] + Cprobe[M2] + Cship[�V ′

2] + Cprobe[W2] + Cship[�W ′
2]

+ Cupdate[M2] + Cprobe[M2] + Cupdate[W2] + Cupdate[V2]
+ Cship[{vC,vJ } ∪ sF ] + Cupdate[M2]

= r1 × ci + r1 × ch + r1

wp1
× S(k2 × (1 − f12)PS2) + r1

wp1
× k2 × (1 − f12)

× cp × w2

+ r1

wp1
× S(k2 × (1 − f12) × FS2) + r2 × cp × k2 + r1 × ch + r2 × ci

+ r2

wp2
× m2 × (1 − f21) × ci + r2

wp2
× S(m2 × (1 − f21) × PS2

+ wp2 × f21 × FS2) + r2

wp2
× m2 × (1 − f21) × cu

One-step semijoin-based join at the destination node:
CSM-D1 = Cupdate[W1] + Cprobe[V2@N1] + Cship[B ′

1] + Cprobe[W2] + Cupdate[W2]
+ Cupdate[V2] + Cupdate[V2@N1]

= r1 × ci + r1 × cp × k2 + r1

wp1
× S(wp1 × f12 × FS1)

+ r1 × f12 × cp × w2 + r2 × cp × k2 + r2 × ci

+ 2
r2

wp2
× m2 × (1 − f21) × ci + r2

wp2
× S(m2 × (1 − f21) × PS2)
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Two-step semijoin-based join at the destination node:

CSM-D2 = Cupdate[W1] + Cship[K1] + Cprobe[W2] + Cship[K ′
1] + Cprobe[B1]

+ Cship[B1] + Cprobe[W2] + Cupdate[W2]
= r1 × ci + r1

wp1
× S(m1 × PS1) + r1

wp1
× m1 × cp × w2

+ r1

wp1
× S(m1 × f12 × PS1)

+ r1

wp1
× m1 × f12 × cp × wp1 + r1

wp1
× S(wp1 × f12 × FS1)

+ r1

wp1
× wp1 × f12 × cp × w2 + r2 × cu

Table 4 Notations used in the cost formulas in Appendix B

Notation Meaning

cp Per-tuple probing cost.

cu Per-tuple update cost.

ch Per-tuple hashing cost.

Cprobe[X] The cost of probing a set of tuples X.

Cupdate[X] The cost of updating a set of tuples X.

Cship[X] The cost of shipping a set of tuples X.

ri The stream rate of Si , i.e., the average number of tuples arriving at stream Si in unit
time.

rij The transmission rate between two nodes Ni and Nj , i.e., total amount (bytes) of data
transmitted per unit time.

wi The number of tuples in the window Wi . (Note wi = ri × Ti .)

wpi The number of tuples in the buffer Bi . (Note wpi = ri × τ .)

fi The selectivity factor of Si . (Note fi = 1
di

where di is the average number of the distinct
values of the join attribute in Si .)

fij The join selectivity factor of the semijoin from Si to Sj .

(Note fij = min (1,
fi
fj

), assuming that the set of distinct join attribute values in Si is a

subset of the set of distinct join values in Sj .

FSi
The size (bytes) of a full tuple in the stream Si .

PSi
The size (bytes) of a partial tuple in the stream Si .

ki The number of distinct join attribute values in Wi . (Note ki = min( 1
fi

,
wi
fi

∗ 100).)

mi The number of distinct join attribute values in Bi . (Note mi = min( 1
fi

,
wpi
fi

∗ 100).)

S(x) A function that returns the time it takes to transfer x bytes of data over the network.
(Note S(x) = latency + x

bandwidth .)

vJ Distinct join attribute value vector (from V2) (see Sect. 3.2.2).

vC Distinct join attribute count vector (from W2) (see Sect. 3.2.2).

sF The set of full tuples (to be inserted into M2) (see Sect. 3.2.2).
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