
Why Not Semijoins for Streams, When Distributed?

Tri Tran Byung Suk Lee
Department of Computer Science

University of Vermont
Burlington, VT 05405

{ttran, bslee}@cems.uvm.edu

Matthew W. Bovee
School of Business Administration

University of Vermont
Burlington, VT 05405
bovee@bsad.uvm.edu

Abstract
This paper addresses the semijoin-based window join

algorithm over distributed data streams. In distributed
stream query processing, data streams arriving at remote
sites need to be shipped to the processing site for query
execution. This typically introduces high communication
overhead over the network. Our observation is that semi-
join, effective to reduce communication overhead in dis-
tributed database query processing, can be also effective
in distributed stream query processing. The challenge, of
course, lies in the streaming nature of tuples, the process-
ing of which is fundamentally different from processing a
set of tuples. We address this challenge by first adapting
the window-based stream join to a distributed environment.
The resulting join algorithm (called simple join) uses the
idea of exporting a window to the query processing site.
We then adopt the semijoin to reduce the communication
overhead (in return for a marginal increase of the process-
ing overhead). The resulting semijoin-based join algorithm
uses the ideas of a mirror window and a partial tuple. That
is, it creates a copy of a remote window at the processing
site and sends a partial tuple to probe for matching tuples
before sending a full tuple. Finally, we analyze the two join
algorithms using our proposed cost models and verify the
analysis results through a set of experiments.

1 Introduction
Recently, distributed stream joins have been gaining at-

tention in the research community [24, 26]. A distributed
stream join is different from a local stream join in that data
streams arriving at remote sites need to be shipped over a
communication network to the processing site for join exe-
cution. Communication overheads of this shipment can be
very high in many applications, and this brings a need for
a technique to reduce the communication overheads. A few
examples of distributed stream joins are given here.
Example 1. In network traffic monitoring [26], suppose we
want to monitor the traffic of data packets passing through
two particular routers in order to find packets with the same
destination address. The two routers can be considered two
sites, and data packets going through the routers can be con-

sidered data streams (S1 and S2). Each data packet con-
tains a destination IP address dest. This monitoring task
then can be specified as a distributed stream join query
S1 ��S1.dest=S2.dest S2.
Example 2. In news stream filtering [15], suppose we want
to find recent articles on the same topic published by two
news network services, say, Associated Press and Reuters.
The two news network services can be considered two sites,
and articles generated from the news network services can
be considered news streams (SA for Associated Press, and
SR for Reuters). Each news article in a stream is tagged
with a set of weighted keywords SK. The monitoring task
then can be specified as a distributed stream join query
SA ��SA.SK=SR.SK SR where SA.SK = SR.SK is a set
equality comparison.

In a data stream system, data arrive as a continuous se-
quence of tuples, and windows are needed to limit the num-
ber of tuples processed. We thus assume a window-based
join in this paper. (The window-based join algorithm over
local data streams has been proposed by Kang et al.[10].) A
simple way of applying a window-based join to distributed
data streams is to ship all tuples of remote data streams to
the processing site and execute the join on that site. This
method, however, incurs high communication overheads if
the volume of shipped data is large. We call this method the
window-based distributed stream simple join (SPJ).

In distributed databases, semijoin is well known as an
effective operator to decrease the communication overheads
of join queries [2, 3, 4, 14, 21]. A semijoin from relation
R1 to relation R2, denoted as R2 � R1, is equivalent to
ΠAttr(R2)(R1 �� R2) where Attr(R2) denotes all attributes
of R2. With semijoin, the join between R1 at site 1 and R2

at site 2 can be computed using one of the following three
equivalent “semijoin programs” (or strategies) [17]: R1 ��

(R2 �R1), (R1 �R2) �� R2, and (R1 �R2) �� (R2 �R1).
Computing join using a semijoin program may incur

lower communication overhead due to relation size reduc-
tions caused by semijoin. Let us consider the semijoin
program R1 �� (R2 � R1) as an example. The semijoin
(R2 � R1) is processed by projecting R1 on the join at-
tributes, shipping this projection to R2’s site and joining
with R2. The result of the semijoin is a reduced R2 with

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

only the tuples that contribute to the final join with R1. If
this reduction of R2 is larger than the projection of R1, then
using the semijoin incurs lower communication overhead.

Intuitively, the semijoin technique should be effective in
distributed data stream joins as well, but to our knowledge,
there has been no concrete research done on that. By apply-
ing the ideas of the semijoin and the window-based stream
join in a distributed data stream environment, we introduce
the distributed stream semijoin-based join (SMJ) algorithm
in this paper. Applying the ideas poses two main technical
challenges: adapting local windows to distributed streams
and adapting the semijoin technique to data streams.

Adapting windows to distributed streams: In a central-
ized stream system all windows on streams are at the same
site, but in a distributed stream system they are at different
sites. Thus, in order to perform a window-based stream join
on distributed streams, we need to maintain a copy of each
window at the processing site. In the SPJ algorithm, we
export the window and maintain only its copy at the pro-
cessing site. In the SMJ algorithm, we maintain both the
original window at the stream site and its copy at the pro-
cessing site. We call this copy a mirror window.

Adapting semijoin to data streams: A straightforward
way to apply the semijoin in a distributed data stream en-
vironment would be to treat the window on each stream as a
relation and ship a projection of a window at one site Ni to
another site Nj . However, since queries are continuous and
long-running and windows are updated continuously, ship-
ping the projection of a window from Ni to Nj and ship-
ping the semijoin result for the final join should be done
for every new arriving tuple. This would be very expensive.
To handle this problem, we ship only a partial tuple (tuple
consisting of timestamp and join attribute only) of each new
arriving tuple from Ni to Nj and save the tuple in a mirror
window. If Nj is the query site, then the full tuple is shipped
(to produce the join output) only if there is a matching tu-
ple for the partial tuple. The communication overhead is
decreased if the decrease of overhead for not sending non-
matching full tuples is larger than the increase of overhead
for sending partial tuples for every new tuple.

Similarly to the distributed database case, SMJ can be
executed using different semijoin programs. In this paper,
we present the algorithm using one of them (corresponding
to the strategy R1 �� (R2 � R1) in distributed database).
Our objective is to present the idea of using semijoin tech-
nique in distributed stream join and to show that SMJ can
be more efficient than SPJ. The problem of finding the best
semijoin program is out of the scope of this paper.

We develop cost models of the two join algorithms. The
cost metric is the total execution time, which includes the
processing time at all sites and the transmission time. We
then use the cost models to evaluate the join performances.
We analyze the cost models to show qualitatively that SMJ
costs less than SPJ when the join selectivity is low and when
partial tuples are small compared with full tuples. We also
implement the two join algorithms and conduct a set of ex-

periments to show the join performances quantitatively and
verify our analysis.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the distributed
data stream model and the window stream join model. Sec-
tion 4 proposes the two join algorithms SPJ and SMJ. Sec-
tion 5 evaluates the performances of the join algorithms.
Section 6 concludes the paper and discusses future work.

2 Related Work
We discuss related work in two areas: distributed data

stream processing and semijoin-based join algorithm in dis-
tributed (relational) databases.

Recently there have been many studies on distributed
data stream query processing [16, 7, 8, 19, 9, 25, 22, 6,
18, 13, 12]. In these, two types of distributed data stream
models are considered based on the number of processing
sites: single (central) processing site model and multiple
(distributed) processing site model. In the single process-
ing site model, all data streams are shipped to the same site
for processing. Naturally, all data streams are assumed to
have the same schema, and they can be merged into a sin-
gle stream by a set union operator. With this model, Das et
al. [7] address the problem of processing queries including
set cardinality expressions, and Olston et al. [16], Gibbons
et al. [8], and Keralapura et al. [11] all address the problem
of finding frequent items in distributed data streams.

In the multiple processing site model, data streams are
shipped to different sites for processing. In some stud-
ies [18, 13, 12] the destination sites are assumed to form
a hierarchy and methods have been proposed for placing
operators to minimize the communication cost. Other stud-
ies examine such issues as load balancing [23], fault toler-
ance [9], and distributed architecture [5]. In this paper we
consider the more general multiple processing site model.

Specifically about join processing in distributed data
streams, to our knowledge only two studies have addressed
it [24, 26]. Neither involved the use of distributed semijoin.
Zhang et al. [24] propose DMJoin assuming a hierarchy of
destination sites. In DMJoin, data streams are forwarded
through multiple processing nodes and tuples not satisfying
the join condition are filtered out on the way to the join final
processing node (i.e., query node at the root of the hierar-
chy). Zhou et al. [26] present PMJoin using the heuristic of
partitioning a stream into substreams and then forwarding
those substreams with fewer tuples to the processing site.

The semijoin in distributed databases has been in-
troduced by Bernstein and Chiu[2] and Bernstein and
Goodman[3] as a technique to reduce communication over-
head. Other papers address different issues of semijoin,
such as the improvement of semijoin [14] and the utiliza-
tion of semijoin in query optimization [4, 21]. Li and Ross
[14] present a new two-way semijoin-based join method in
which a bit vector (instead of a reduced relation) is sent in
the backward phase. These semijoin techniques differ from
our work presented here in that they do not consider dis-
tributed data streams.

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

3 Distributed Stream Join Model
In this section, we describe a distributed stream join

model assumed in our work. It comprises the distributed
data stream model and the window stream join model.

Distributed data stream model: Consider a set of n
nodes (or sites) N1, N2, . . . , Nn connected through a com-
munication network. In each node Ni, ni data streams
Si

1, S
i
2, . . . , S

i
ni

are arriving in the form of an ordered se-
quence of tuples. Each tuple in the stream has a timestamp,
TS, and a join attribute, J , as part of its schema. Each data
stream Si

j (i = 1 . . . n, j = 1 . . . ni) has a stream rate λi
j

which is defined as the number of tuples generated (or ar-
riving) in the stream per time unit (second). Two nodes Nk

and Nl are connected via a link with a transmission rate λk,l

which is defined as the amount of data transmitted per time
unit (bytes/second).

Window stream join model: We assume the window-
based join proposed in [10]. A window can be either tuple-
or time-based. If tuple-based, a window size is the number
of tuples in the window; if time-based, a window size is the
time interval from the current time point to the past. We de-
note a window of stream Sj by Wj (the site id is irrelevant
here). A two-way window join between two streams S1 and
S2 with windows W1 and W2, respectively, is computed as
follows. For each new tuple s1 arriving in S1, matching tu-
ples are found from the window W2 and then output. Then,
the new tuple s1 is inserted into W1 and any expired tuples
are removed from W1. The computation is symmetric for a
new arriving tuple in S2.

In this paper, we consider the problem of window-based
join between two nodes N1 and N2. The query result is
produced at node N2. For the simplicity of presentation, we
assume only one stream S1 with window W1 at node N1

joining with another stream S2 with window W2 at node
N2. As mentioned in Section 1, we assume that a semijoin
is performed by shipping S1 at N1 to N2 and joining with
S2 at N2. That is, the SMJ algorithm considers the strategy
of shipping partial tuples of S1 at N1 to N2.

4 Distributed Stream Join Algorithms
In this section we present the distributed stream join al-

gorithms: simple join (SPJ) and semijoin-based join (SMJ).

4.1 Simple Join
The idea of the SPJ algorithm is to export the window

W1 and maintain it (denoted as W ′
1) at node N2 by shipping

every new tuple of stream S1 to N2. The join is done at N2

as a local window join with windows W ′
1 and W2. For each

new tuple arriving, the join proceeds in the following steps.

For each new tuple s1 at node N1:
1. N1 ships s1 to N2.
2. N2 receives s1, probes W2 for matching tuples and

outputs the result.
3. N2 updates W ′

1 by inserting s1 and removing any ex-
pired tuples.

For each new tuple s2 at node N2:

W2

W1

S2

S1

Sout

N1

N2
Partial tuple

Mirror window V’1

W2

W1

S2

S1

Sout

N1

N2
Partial tuple

Mirror window V’1

Figure 1. Semijoin-based join processing.

1. N2 probes W ′
1 for matching tuples and output the re-

sult.
2. N2 updates W2 by inserting s2 and removing any ex-

pired tuples.

A major disadvantage of the SPJ algorithm is that it may
have high communication overheads. That is, if the stream
rate λ1 of S1 is high and tuple size of S1 is large. In the
next subsection, we introduce the SMJ algorithm that, de-
pending on the statistics of the joined streams, can reduce
the communication cost significantly.

4.2 Semijoin-based join
The SMJ algorithm aims at reducing the communication

overhead of transmitting tuples between node N1 and N2.
The idea is that for each new tuple s1, a partial tuple ps1

which includes only the timestamp and the join attribute is
shipped to N2 and used to probe W2 for a matching tuple
and, if a matching tuples is found, then the full tuple s1 is
shipped to N2 and matched with tuples in W2 to produce
output tuples. Fig. 1 illustrates the processing of the SMJ
algorithm. In node N2, we maintain a mirror of window
W1, denoted as V ′

1 . V ′
1 is different from W ′

1 used in the
SPJ algorithm in that it contains two types of tuples: par-
tial tuples and full tuples. A partial tuple ps1 is stored if
there is no matching tuple found in W2 for ps1; otherwise,
a full tuple s1 is stored. For each new tuple arriving, the
join proceeds in the following steps.

For each new tuple s1 at node N1:
1. N1 ships a partial tuple ps1 to N2.
2. N1 updates W1 by inserting s1 and removing any ex-

pired tuples.
3. N2 receives ps1 and probes W2 for the first matching

tuple. (ps1 is not inserted into V ′
1 yet.)

4. If a matching tuple is found then
(a) N2 sends a request for the full tuple s1 back to

N1.
(b) N1 receives a request for s1, probes W1 for the

full tuple s1, and then sends the found s1 to N2.
(c) N2 receives s1, probes W2 for all matching tu-

ples and outputs the joined matching tuples, and
then updates V ′

1 by inserting s1 and removing any
expired tuples.

else (i.e., a matching tuple is not found)
(a) N2 updates V ′

1 by inserting ps1 and removing
any expired tuples.

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

For each new tuple s2 at node N2:
1. N2 probes V ′

1 for the first matching tuple.
2. If a matching tuple is found and it is a partial tuple ps1

then
(a) N2 sends a request for all full tuples that have the

same join attribute value as ps1 to N1.
(b) N1 receives a request for full tuples, probes W1

for the full tuples ({s11 , s12 , · · · , s1k
}) , and then

ships them to N2.
(c) N2 receives the full tuples {s11 , s12 , · · · , s1k

},
outputs the joined matching tuples
{s11 ||s2, s12 ||s2, · · · , s1k

||s2}, and then up-
dates V ′

1 by replacing all of their partial tuples
ps1 by {s11 , s12 , · · · , s1k

}.

else (i.e., if the matching tuple is a full tuple s1, so
there may be more matching full tuples in V ′

1)
(a) N2 probes V ′

1 for all matching full tuples and out-
puts the joined matching tuple s1||s2.

The communication between the two nodes is essentially
asynchronous and, therefore, the actual implementation of
these algorithms may well be event-driven.

5 Performance Study
In this section we first build the cost models of the two

join algorithms and analyze their performances based on the
cost models. Then, we compare the performances of the
two join algorithms through experiments conducted using a
program implementing the algorithms.

5.1 Analysis
The cost models we develop estimate the total execution

times of join algorithms. Since queries are continuous in
our work, we use the unit time cost [10], defined as the total
execution time per time unit, as a cost metric. The execu-
tion time is the total of processing time at each node (N1,
N2) and transmission time between the two nodes. That is,
Cjoin = Cproc at N1 + Cproc at N2 + Ctrans. We assume
that the transmission cost is composed of transmission time
and latency where the latency is a constant. We also assume
that the stream rates are temporal averages and that the rates
do not change much over time.

Generic unit-time cost models for SPJ and SMJ are for-
mulated as shown below. We believe the terms in the for-
mulas are evident from the join processing steps outlined in
Section 4.1 and Section 4.2.

CSPJ = λ1[C∗
ship s1

+ Cprobe W2

+Cupdate W ′
1
] + λ2[Cprobe W ′

1
+ Cupdate W2]

CSMJ = λ1[Cship ps1 + Cupdate W1 + C∗
probe W2

+Csend request + C∗
probe W1

+ C∗
ship s1

+ Cprobe W2

+Cupdate V ′
1
] + λ2[C∗

probe V ′
1

+ Csend request

+Cprobe W1 + Cship s1 + C∗
update V ′

1
+ Cupdate W2]

In the above formulas, the cost terms marked with ‘*’ are
different from those without ‘*’. Specifically, C∗

probe W1
,

C∗
probe W2

and C∗
probe V ′

1
are the costs of finding only the

first matching tuple in W1, W2, and V ′
1 , respectively,

whereas Cprobe W1 and Cprobe W2 are the costs of finding
all matching tuples in W1 and W2, respectively. C∗

ship s1
is the cost of shipping a single full tuple with the same join
attribute value whereas Cship s1 is the cost of shipping all
full tuples. C∗

update V ′
1

is the cost of updating V ′
1 by replac-

ing all partial tuple in V ′
1 by the corresponding full tuples

received from N1.
Now, we compare analytically the performances of the

two join algorithms using the cost models. For this, we
compare the transmission costs and the processing costs
separately and, then, combine the two to make a conclusion.

First, for the transmission costs, let l be the latency of
a transmission cost, dF be the size of a full tuple and dP

be the size of a partial tuple (both in bytes). Let dV be the
number of distinct values of the join attribute, and let |W1|
and |W2| be the number of tuples in the window W1 and
W2, respectively. Then, the transmission costs of the two
join methods are formulated as follows.

CSPJ trans = λ1 ∗ Cship s1 = λ1(l +
dF

λ1,2
) (1)

CSMJ trans = λ1(Cship ps1 + Csend request + C∗
ship s1

)

+λ2(Csend request + Cship s1)

= λ1[(l +
dP

λ1,2
) + p2(l +

dP

λ1,2
+ l +

dF

λ1,2
)]

+λ2[(1 − p2) ∗ p1 ∗ (l +
dP

λ1,2
+ l +

|W1|
dV

∗ dF

λ1,2
)] (2)

In these formulas, p1 and p2 are the probabilities of find-
ing a matching tuple in W1 and W2, respectively. The
probabilities p1 and p2 can be estimated using the number
of distinct values dV and window sizes |W1| and |W2| as
pi = 1 − (dV −1

dV
)|Wi| for i = 1, 2. This is because the

probability of its complement (1 − pi) (i.e., the probability
of no matching tuple found given a specific value v) can be
estimated by the fraction of number of possibilities placing
dV − 1 distinct values (without v) and the number of possi-
bilities placing dV distinct values in |Wi| positions.

As we can see from the above formulas, the transmission
cost of SMJ depends on pi (i = 1, 2). Moreover, pi is a
function of dV and Wi. If dV is sufficiently large relative to
Wi so that pi ≈ 0 holds, then CSMJ trans −CSPJ trans ≈
λ1

λ1,2
(dP − dF). The value of this difference is less than

(or equal to) 0 because dP ≤ dF . The absolute value of
this difference increases linearly with |dP −dF |, that is, the
higher the |dP − dF | is, the more benefit SMJ brings.

In contrast, if Wi is sufficiently large relative to dV

so that pi ≈ 1 holds, then CSMJ trans − CSPJ trans ≈
2λ1(l + dP

λ1,2
). The value of this difference is greater than 0

because all terms are positive. The difference, however, is
typically small compared with CSMJ trans and CSPJ trans

because both the latency and the partial tuple size are typi-

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

cally small.

Next, for the processing costs, let us subtract the process-
ing cost of SPJ from the processing cost of SMJ.

CSMJ proc − CSPJ proc = λ1(Cupdate W1 + C∗
probe W2

+C∗
probe W1

) + λ2(C∗
probe V ′

1
+ C∗

update V ′
1
)

Note that during this subtraction Cupdate W ′
1

and
Cupdate V ′

1
cancel out because W ′

1 and V ′
1 have the same

number of tuples.

From the result of this subtraction, we see that
CSMJ proc > CSPJ proc because all the cost terms are
positive numbers. In the formula above, the values of
C∗

probe W1
, C∗

probe W2
and C∗

probe V ′
1

are very small (e.g.,
C∗

probe W1
≈ 0.2msec in the case of our experiments in

Section 5.2) since they are the costs of finding the first or
the only matching tuple in W1, W2, and V ′

1 , respectively.
Besides, the values are constants with respect to the win-
dow sizes. That is, if a hashing technique is used for the
probing, the costs are independent of the window sizes and,
even if a linear scanning is used, the costs are still near
constants because, the way the two join algorithms work,
the matching tuple is at or near the beginning of the win-
dows at the time of the probing. The value of Cupdate W1

is small as well because it is the cost of inserting a tu-
ple into the window buffer and removing any expired tu-
ples. The value is also a constant with respect to the win-
dow size. From this analysis of the cost terms, we have
CSMJ proc − CSPJ proc ≈ λ2 ∗ C∗

update V ′
1

The value of C∗
update V ′

1
depends on the probability of

finding partial tuples in V ′
1 (i.e., (1 − p2) ∗ p1). Similarly

to the analysis of transmission costs, we have two cases. If
dV is sufficiently large relative to Wi (i.e., pi ≈ 0), then
C∗

update V ′
1
≈ 0. If Wi is sufficiently large relative to dV

(i.e., pi ≈ 1), then C∗
update V ′

1
≈ 0 as well. In both cases,

C∗
update V ′

1
≈ 0, thus the difference between the processing

costs of SMJ and SPJ is very small.

In summary, taking both transmission time and process-
ing time into consideration, SMJ is preferred when the num-
ber of distinct values of join attribute is sufficiently large
(hence, the join selectivity is low) and/or the partial tuple
size is much smaller than the full tuple size.

We believe these two conditions are common in many
applications. For example, in the network traffic monitor-
ing application (Example 1), common packet sizes are 44,
552, 576 and 1500 bytes[20], while a partial tuple including
the timestamp and the join attribute (i.e., destination IP ad-
dress) is only about 12 bytes (source: TCP extension spec-
ifications [1]). In the news article monitoring application
(Example 2), the size of each news article tagged with a
set of weighted keywords may range from 1000 bytes to 10
megabytes while a partial tuple may have few hundred bytes
(including timestamp and the set of weighted keywords).

5.2 Experiments
We have built a program that implements the SPJ and

SMJ algorithms. In the program, transmission cost is sim-
ulated by calling a sleep function with the delay computed
using the formulas (1) and (2). Only binary join is sup-
ported currently, and windows are tuple-based. The pro-
gram takes as inputs the data streams generated using our
data generator, the join window sizes (i.e., number of tu-
ples), and the join algorithm type (SPJ or SMJ). It then re-
turns the total time (in milliseconds) of executing the join
algorithm on the input data streams. The program is written
in Java 2 SDK 1.4.2, and runs on a Linux PC with Pen-
tium IV 1.6GHz processor and 512MB RAM.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

101 102 103 104 105

E
xe

cu
tio

n
tim

e
(lo

g
ba

se
 1

0
in

 m
se

c)

Distinct Values of join attribute (log base 10)

simple join
semi-join

(a) Varying number of distinct join attribute values (dV).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

3 32 33 34 35

E
xe

cu
tio

n
tim

e
(m

se
c)

Ratio of tuple size

simple join
semi-join

 0

 50000

 100000

 150000

 200000

 250000

 300000

 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
tim

e
(m

se
c)

Transmission rate (bytes/sec)

simple join
semi-join

(b) Varying tuple size ratio (
dF
dP

). (c) Varying transmission rate (λ1,2).

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600 700 800 900

E
xe

cu
tio

n
tim

e
(m

se
c)

Window sizes

simple join
semi-join

 0

 20000

 40000

 60000

 80000

 100000

 120000

50 100 200 500 1000

E
xe

cu
tio

n
tim

e
(m

se
c)

Stream rate

simple join
semi-join

(d) Varying window sizes (|W1|, |W2|). (e) Varying stream rate (λ1).

Figure 2. Execution times of SPJ and SMJ.
The objective of our experiments is to compare the two

join algorithms in light of the analysis presented in Sec-
tion 5.1. For this, we perform five sets of experiments by
varying each of the following five parameters: number of
distinct join attribute values, ratio of full tuple size and par-
tial tuple size, transmission rate, window size, and stream
rate. While one parameter is varied, the others are fixed to
the following default values: window sizes (|W1| = 500,
|W2| = 500 tuples), stream rates (λ1 = 500, λ2 = 500 tu-
ples/second), transmission rate (λ1,2 = 1000 bytes/second),
latency (l = 5 msec), number of distinct join values (dV =
10000), and tuple sizes (dF = 20, dP = 2 attributes, where
each attribute size equals 5 bytes).

Fig. 2 shows results of the five experiments. We have
implemented the window-based join with both nested loop

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

join and hash join. Due to space limit, however, we show
only the results of hash joins. The results of nested loop
joins show the same trends except that the costs are higher.
The figure shows that the performance advantage of SMJ
increases with the increase of the number of distinct val-
ues and the ratio of tuple sizes. These confirm the analysis
results from the cost models (in Section 5.1).

6 Conclusion and Future Work
In this paper, we addressed the problem of window-

based join processing on distributed data streams. Specifi-
cally, we proposed two distributed join algorithms: simple
join and semijoin-based join. These join algorithms need
all join windows to be either exported to or mirrored at a
remote query processing site. Additionally, the semijoin-
based algorithm employs the idea of sending a partial tuple
to the query processing site. We developed cost models of
the two join algorithms using total execution time as the cost
metric, and through analysis using the cost models and a set
of experiments, concluded that semijoin-based join is typ-
ically less costly than the simple join. To our knowledge,
this is the first work done to use semijoins in distributed
window stream join processing. We believe this work sets
a foundation for further research in distributed stream join
query optimization.

There are a number of future works in progress or in
plan. First, we are currently working to improve the effi-
ciency of join algorithms, using such ideas as shipping a
block of tuples instead of individual tuples and reducing the
size of mirror windows with a bitmap structure. Second, in
this paper we considered only two-way joins and only one
of many possible semijoin reduction programs. We plan to
build a distributed join query optimizer which considers all
possible semijoin reduction programs for multi-way joins
and chooses the best one. Third, we plan to conduct ex-
periments in a real distributed environment with real data
streams. Fourth, we assumed there is no transmission delay
between nodes and no processing overload in a node. We
will relax these assumptions and study how to handle those
problems through, for example, approximating the tuples
missed (due to delay) or lost (due to overload).

Acknowledgments
This research has been supported by US National Sci-

ence Foundation through Grant No. IIS-0415023. We thank
the anonymous reviewers for their constructive comments.

References
[1] The TCP extentions (RFC1323) published

by the Internet Engineering Task Force:
http://www.ietf.org/rfc/rfc1323.txt?number=1323.

[2] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to
solve relational queries. J. ACM, 28(1):25–40, 1981.

[3] P. A. Bernstein and N. Goodman. Power of natural semi-
joins. SIAM J. Comput., 10(4):751–771, 1981.

[4] M.-S. Chen and P. S. Yu. Combining join and semi-join
operations for distributed query processing. IEEE TKDE,
5(3):534–542, 1993.

[5] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik. Scalable dis-
tributed stream processing. In CIDR, page 23, 2003.

[6] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s
different: Distributed, continuous monitoring of duplicate-
resilient aggregates on data streams. In ICDE, page 57,
2006.

[7] A. Das, S. Ganguly, M. N. Garofalakis, and R. Rastogi.
Distributed set expression cardinality estimation. In VLDB,
page 312, 2004.

[8] P. B. Gibbons and S. Tirthapura. Distributed streams algo-
rithms for sliding windows. In SPAA, page 63, 2002.

[9] M. Gorawski and P. Marks. Fault-tolerant distributed stream
processing system. In DEXA Workshops, page 395, 2006.

[10] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window
joins over unbounded streams. In ICDE, page 341, 2003.

[11] R. Keralapura, G. Cormode, and J. Ramamirtham.
Communication-efficient distributed monitoring of thresh-
olded counts. In SIGMOD, page 289, 2006.

[12] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource-aware distributed stream management
using dynamic overlays. In ICDCS, page 783, 2005.

[13] V. Kumar, B. F. Cooper, and K. Schwan. Distributed stream
management using utility-driven self-adaptive middleware.
In ICAC, page 3, 2005.

[14] Z. Li and K. A. Ross. Perf join: An alternative to two-way
semijoin and bloomjoin. In CIKM, page 137, 1995.

[15] H. Oh’Uchi, T. Miura, and I. Shioya. Querying on news
stream by using random projection. ICITA, 01:185–190,
2005.

[16] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-
tinuous queries over distributed data streams. In SIGMOD,
page 563, 2003.

[17] M. T. Ozsu and P. Valduriez. Principles of distributed
database systems (2nd ed.). 1999.

[18] S. Seshadri, V. Kumar, and B. F. Cooper. Optimizing mul-
tiple queries in distributed data stream systems. In ICDE
Workshops, page 25, 2006.

[19] I. Sharfman, A. Schuster, and D. Keren. A geometric ap-
proach to monitoring threshold functions over distributed
data streams. In SIGMOD, page 301, 2006.

[20] K. Thompson, G. J. Miller, and R. Wilder. Wide-area In-
ternet traffic patterns and characteristics. IEEE Network,
11(6):10–23, Nov./Dec. 1997.

[21] C. Wang, A. L. P. Chen, and S.-C. Shyu. A parallel execu-
tion method for minimizing distributed query response time.
IEEE TPDS, 3(3):325–333, 1992.

[22] T. Xia, C. Jin, X. Zhou, and A. Zhou. Filtering duplicate
items over distributed data streams. In WAIM, page 779,
2005.

[23] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. B. Zdonik. Pro-
viding resiliency to load variations in distributed stream pro-
cessing. In VLDB, page 775, 2006.

[24] D. Zhang, J. Li, K. Kimeli, and W. Wang. Sliding window
based multi-join algorithms over distributed data streams. In
ICDE, page 139, 2006.

[25] D. Zhang, J. Li, W. Wang, L. Guo, and C. Ai. Processing
frequent items over distributed data streams. In APWeb, page
523, 2005.

[26] Y. Zhou, Y. Yan, B. C. Ooi, K.-L. Tan, and A. Zhou.
Optimizing continuous multijoin queries over distributed
streams. In CIKM, page 221, 2005.

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00 © 2007

