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Abstract

Once a cardiac alarm is triggered in the intensive care
unit (ICU), accurately classifying whether the alarm is
true of false is of critical importance. Incorrect classifi-
cation may lead to patient’s death if the alarm is true or
to disruption in patient care if false. There has been a
body of research, as signified by the 2015 PhysioNet/CinC
Challenge; due accomplishments have been made in the
relevant computational technology, and yet the highest ac-
curacy known thus far is in the mid-80% range (85%).
Our work achieved much higher accuracy and, addition-
ally, very early classification almost at the onset of an ar-
rhythmia alarm, by utilizing state of the art deep learning
methods. The machine learning model used is a Residual
Network (ResNet) and a Bi-directional Long Short Term
Memory (BiLSTM) connected in tandem. Using the Phy-
sioNet dataset of 750 recorded ECG segments published
with the challenge, our method performed the classifica-
tion with 96% accuracy in 0.52 seconds from the onset of
an alarm on average over all test ECG segments.

1. Introduction
Research presented in this paper stems from the 2015 Phy-
sioNet/CinC Challenge [1], particularly the “retroactive”
classification test to determine within 10 seconds whether
an arrhythmia alarm is true or false in the ICU. The ac-
curacy of classification is undoubtedly important; mis-
classifying a true alarm as false may result in a patient’s
death and misclassifying a false alarm as true may result in
wasteful disruption and disturbance. Thus, the goal of the
challenge was to achieve as high true/false alarm classifi-
cation accuracy as possible. The result of the challenge [2]
was limited to 85% accuracy for the top method, and there
has been no further advancement since then. Our work
adds novel advancements to this state of the art.

There are two advancements. First, our work enhanced
the accuracy to a high 90% range (96%) by using a deep
learning model as the computational method. None of the
published papers on this problem (e.g., reported by Clif-

ford et al. [2]) used deep learning, which has proven to pro-
duce powerful models given adequate training data. Sec-
ond, our work addresses early classification of true or false
alarms, which is attributed to the excellent feature extrac-
tion ability of a deep learning model. Early classification is
as important as accurate classification. A delayed classifi-
cation of true alarm is potentially dangerous to the patient,
and a delayed classification of false alarm deprives the op-
portunity to suppress it in time. Thus, this paper presents
the computational methods and the results of using a deep
learning model to determine whether an alarm is true or
false accurately and early in the ICU.

The deep learning model we used was inspired by Zhou
et al.’s work [3], where a model combining Residual Net-
work (ResNet) and Bi-directional Long Short Term Mem-
ory (BiLSTM) in tandem has been used to achieve im-
pressive ECG heartbeat classification accuracy. Prequen-
tial evaluation [4] was used to train the model interleaved
with testing while augmenting training data set incremen-
tally through the evaluation cycle. The training data set
and test data set were obtained by splitting training data
set published in the 2015 PhysioNet/CinC Challenge.

The deep learning model outputs the probability of an
alarm being true. (Its 1’s complement is the probability
of the alarm being false.) It was observed that the out-
put probability is always either increasing or decreasing
monotonously, and this observation enabled an early clas-
sification of true or false alarm as early as the first sign of
the direction of change (namely the “polarity”), either pos-
itive or negative. Through a progressive study of decreas-
ing the time interval of outputting the probability, a conclu-
sion was made that the ECG sample interval achieved the
earliest classification, amounting to 0.52 seconds (for 125
samples) on average while achieving higher classification
accuracy (96%) than the published methods [2]. Source
codes and data sets of the methods used in our work and
select results are available in a GitHub repository [5].

The rest of this paper presents the computational meth-
ods in Section 2, the experiment results and discussion in
Section 3, and the conclusion in Section 4.



2. Methods

2.1. Deep learning model
Experimenting with different deep learning models led to
our choice of a model comprising ResNet and BiLSTM in
tandem, based on the work by Yang Zhou et al. [3]. Fig-
ure 1 shows the model structure. ResNet is used to extract
complex features from the ECG time series, and BiLSTM
is used to build a prediction model based on the tempo-
ral order of features. The ResNet architecture we used is
from the work by Ismail Fawaz [6], and consists of three
residual convolutional blocks with filter sizes 64, 128, and
128, respectively, effectively extracting 128 features from
a given ECG segment. The BiLSTM is a standard Tensor-
Flow model ‘Bidirectional.’

Figure 1: Deep learning model structure (source: [3]).

2.2. Prequential evaluation
Time series data are arriving as chronologically ordered
samples. Therefore, we used prequential evaluation [4] (as
opposed to the conventional cross-validation) to consider
the effect of such temporal ordering. Basically, each new
batch of data is first used as test data and then appended
to the existing training data. Thus, the training data size
keeps increasing, and so does the training time as the to-
tal training size increases (see Figure 2). Our prequential
evaluation is a ‘growing window’ version adopted from the
empirical study done by Cerqueira et al. [7]

Figure 2: Prequential evaluation (source: [7]).

2.3. Data sets
The 2015 PhysioNet/CinC Challenge public dataset con-
tains 750 five-minute ECG recordings from four hospi-
tals with known and categorized life-threatening arrhyth-
mia ICU alarms that occur at the beginning of the last 10
seconds of each segment. ECG signals in the public dataset
were re-sampled to 250 Hz, and passed through a band-
pass filter of 0.05 to 40 Hz to reduce baseline drift and

noise. Two ECG leads (II and VII) and one arterial blood
pressure lead are included in the dataset, and the ECG lead
I was used in this work.

The training dataset provided in the 2015 Phys-
ioNet/CinC Challenge was split to training and test data
sets at the ratio of 80% to 20% for the purpose of our eval-
uation, as the test data set used in the challenge was not
available.

3. Results and Discussion

3.1. True/false alarm classification perfor-
mance

The performance has two factors: classification accuracy
(i.e., how accurate the classification output is) and clas-
sification time (i.e., how quickly the classification can be
made). The classification accuracy was measured as in
Equation 1 following the 2015 PhysioNet/CinC Challenge,
and the classification time was measured as wall-clock
time (or, equivalently, the number of ECG samples).

Accuracy score =
TP + TN

TP + TN + FP + 5× FN
(1)

We first tried a threshold-based approach, that is, wait
until the probability reaches a certain threshold value be-
fore outputting the classification result. Specifically, the
model training and testing were done at different batch in-
tervals of ECG samples, progressively decreased from 10
seconds down to 2, 1, 0.5 seconds and then further down
to one sample interval (4 milliseconds). The result showed
an increase in the classification time without any gain in
the classification accuracy when the interval was reduced.
That is, the time until the probability reaches a threshold
was the same (0.96 seconds) regardless of the batch inter-
val, but a longer interval delayed the classification time due
to the latency to reach the end of the interval (see Figure 3).

Figure 3: Mean classification time for varying interval.

Careful inspection of this phenomenon revealed that, for
all test ECG segments, the probability changed rapidly and
monotonously, either positive (true alarm case) or negative
(false alarm case)—see Figure 4. Based on this observa-
tion, the notion of threshold was dismissed, and the earli-
est possible sample point of detecting the polarity of the



probability change was examined. We would call this a
“polarity” approach. The resulting classification time was
about 125 samples, amounting to 0.52 seconds, on aver-
age, which was far shorter than 1.88 seconds on average for
the threshold-based approach (see Figure 5). Notably, the
classification time in the polarity approach was also more
consistent across different test ECG segments; moreover,
earlier classification did not compromise the accuracy at
all, and actually raised it a bit to 96.23% compared with
95.00% for the threshold approach.

(a) Increase (true alarm).

(b) Decrease (false alarm).

Figure 4: Change of model’s output probability over time.

(Interval = sample interval (4 ms))

Figure 5: Classification times of the two approaches.
The remarkably early classification with such a high ac-

curacy drew our suspicion at first and triggered a thor-
ough investigation. The prequential evaluation was part
of the investigation effort, to prevent overfit of the model
for time series. Visual inspection of a significant number
of the ECG segments used suggested that the key to such
early classification is the substantial regularity inherent in
the ECG waveform morphology. This regularity enables
the deep learning model to quickly capture the signature
features of samples that predict the polarity of the output

probability (i.e., increase or decrease). In our work, it was
typically after “seeing” the first wavelet (e.g., P-, QRS, T-
wave) in an ECG beat. A further, larger-scale investigation
is warranted involving more diverse ECG segments reflect-
ing different patient cohorts (e.g., gender, age, body mass
index).

3.2. Ablation study of the model
To assess the merit of using the combined model of ResNet
and BiLSTM in tandem as opposed to using either one
of them, an ablation study was done to compare with
ResNet only and BiLSTM only. The result was that
ResNet+BiLSTM achieved 5.7% and 34.51% higher ac-
curacy than ResNet-only and BiLSTM-only, respectively
(see Table 1). Note that Table 1 also shows accuracy mea-
sured without bias against FN (see Equation 2). The result
is even higher accuracy, which is encouraging as detect-
ing true alarms is as important as, or more important than,
detecting false alarms.

Accuracy score =
TP + TN

TP + TN + FP + FN
(2)

Table 1: Classification accuracy among the three model
structures (interval = sample interval (4 ms)).

Measure ResNet+BiLSTM ResNet BiLSTM
Equation 1 96.23% 91.05% 71.54%
Equation 2 98.71% 93.43% 78.93%

3.3. Sanity check on incorrect classification
Despite the high accuracy of 96.23%, we made an effort
to identify the cause of the 3.77% incorrect classifications.
We first checked if the diagnostic type of ECG anomaly
was the cause, but found no correlation with the five diag-
nostic types of ECG in the data set (i.e., asystole, extreme
bradycardia, extreme tachycardia, ventricular tachycardia,
ventricular flutter/fibrillation [1]: Table 1). Then, upon ex-
amination of visualized ECG signals of the 3.77% con-
cerning segments, it was revealed that all incorrect classi-
fication was attributed to extreme noise in the ECG signal
(see Figure 6) independently of the diagnostic type.

3.4. Comparison with prior art
Table 2 summarizes the top four methods that achieved
higher than 80% accuracy (according to Equation 1) in the
retroactive classification test among the contestants [2]; the
‘voting algorithm’ was not a contestant but added by the
challenge organizer to always pick the best result via ma-
jority vote of the select top 13 methods. Note that none
of them used deep learning. Note as well that the aspect
of “early classification” is unique to our work, so is not
applicable to their work.

It should be noted that the accuracy results of the com-
pared work are based on a test dataset used by organizer of
the 2015 PhysioNet/CinC Challenge, whereas the accuracy



Figure 6: Example noisy post-alarm segments.

Table 2: Comparison with other work.
Publication Method Accuracy
This paper ResNet+BiLSTM 96.23%
Voting algorithm
(top 13) [2]

Majority vote 87.04%

Fallet et al. [8] Rule-based 85.04%
Plesinger et al. [9] Rule-based 84.96%
Kalidas et al. [10] Support vector machine 81.85%

result of our work is based on a random 20% of the Phy-
sioNet training dataset that was used in all the compared
work. We used the remaining 80% of PhyioNet dataset as
our own training dataset without any overlap to the 20%
used as our test dataset. We believe this has no or little
impact on the validity of the accuracy results.

4. Conclusion
This paper presented a novel work that achieved accu-
rate and early classification of true or false arrhythmia
alarm in the ICU, surpassing the state of the art. The en-
abling computational method was deep learning. The deep
learning model, the prequential evaluation, and the exper-
iments were presented. Our immediate further work is to
adopt the method into the “real-time test” case of the Phy-
sioNet/CinC 2015 Challenge [2], to predict a true alarm
early and accurately before an arrhythmia alarm is trig-
gered. The method can be also applied more broadly to
other time-critical arrhythmia monitoring settings as well,
like remote cardiac care via an implanted monitor [11].
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