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Abstract. This paper addresses causal inference and modeling over
event streams where data have high throughput, are unbounded, and
may arrive out of order. The availability of large amount of data with
these characteristics presents several new challenges related to causal
modeling, such as the need for fast causal inference operations while en-
suring consistent and valid results. There is no existing work specifically
for such a streaming environment. We meet the challenges by introduc-
ing a time-centric causal inference strategy which leverages temporal
precedence information to decrease the number of conditional indepen-
dence tests required to establish the causalities between variables in a
causal network. (Dependency and temporal precedence of cause over ef-
fect are the two properties of a causal relationship.) Moreover, we employ
change-driven causal network inference to safely reduce the running time
further. In this paper we present the Order-Aware Temporal Network In-
ference algorithm to model the temporal precedence relationships into a
temporal network and then propose the Enhanced Fast Causal Network
Inference algorithm for learning a causal network faster using the tempo-
ral network. Experiments using synthetic and real datasets demonstrate
the efficacy of the proposed algorithms.
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1 Introduction

In recent years, there has been a growing need for active systems that can per-
form causal inference in diverse applications such as health care, stock markets,
user activity monitoring, smart electric grids, and network intrusion detection.
These applications need to infer the cause of abnormal activities immediately
from their event streams, where the event arrival may be in order (e.g., [1, 2]) or
out of order (e.g., [3–7]) such that informed and timely preventive measures can
be taken. As a case in point, consider a smart electric grid monitoring applica-
tion. The failure of a component can cause cascading failures, effectively causing
a massive blackout. The identification of such cause and effect components in
a timely manner enables preventive measures in the case of failure of a cause
component, thereby preventing blackouts.

Causal network, a directed acyclic graph where the parent of each node is its
direct cause, has been popularly used to model causality [8–14]. There are two



distinct types of algorithms for learning a causal network: score-based [8–11] and
constraint-based [12–15]. Both types of algorithms are slow and, therefore, not
suitable for event streams where prompt causal inference is required. Score-based
algorithms perform a greedy search (usually hill climbing) to select a causal net-
work with the highest score from a large number of possible networks. With
an increase in the number of variables in the dataset, the number of possible
networks grows exponentially, resulting in slow causal network inference. On the
other hand, constraint-based algorithms (e.g., PC algorithm [14]) discover the
causal structure via a large number of tests on conditional independence(CI).
There can be no edge between two conditionally independent variables in the
causal network (e.g., [16, 17]). Two variables X and Y are said to be conditionally
independent given a condition set S if there is at least one variable in S such that
X and Y are independent (e.g., [18, 19]). In a causal network of n variables, the
condition set S consists of all possible 2n−2 combinations of the remaining n− 2
variables, and therefore the computational complexity grows exponentially as
the number of variables increases. So, the current techniques for causal inference
are slow and not suitable for event streams which have a high data throughput
and where the number of variables (i.e., event types) is large. Besides, these tech-
niques perform the time-consuming causal inference computations every time a
new batch of events arrives even though there may not be significant enough
changes in the event stream statistic.

With these concerns, this paper describes a new time-centric causal modeling
approach to speed up the causal network inference. Every causal relationship
implies temporal precedence relationship (e.g., [20, 21]). So, the idea is to exploit
temporal precedence information as an important clue to reducing the number of
required CI tests and thus maintaining feasible computational complexity. Four
strategies are employed utilizing this idea to achieve fewer computations of CI
tests. First, since causality requires temporal precedence, we ignore the causality
test for those nodes with no temporal precedence relationship between them.
Second, in the CI test of an edge, we exclude those nodes from the condition set
which do not have temporal precedence relationship with the nodes of the edge;
this strategy reduces the size of the condition set which is a major cause of the
exponential computational complexity. Third, we perform the CI tests for weaker
edges (i.e., having lower temporal strength) earlier to reduce the size of the
condition set of stronger edges, thereby reducing the overall number of CI tests.
The rationale for this is that weaker edges are more likely to be eliminated than
stronger edges [22]. Fourth, we perform the causal inference computations only
if there is a significant enough change in the temporal precedence relationships,
which is a necessary condition for a change to occur in the resulting causal
relationships. Such a change detection strategy helps to avoid unnecessary causal
inference computations, and therefore, saves time.

Due to the reliance on the temporal precedence relationships in an event
stream, events arriving out of order can bring ambiguities in the resulting causal
directions. For instance, the precedence relationships represented in an edge and
its reversed edge in a temporal network, which models the temporal precedence



relationships, may not be significantly different enough to determine the edge
direction. Intuitively, an undirected edge can be used to signify such an ambigu-
ity. Thus, we propose a mechanism to decide between directed and undirected
edge in the temporal network in such cases. Note that the constraint-based al-
gorithms like the PC algorithm naturally handle out-of-order event arrivals, as
these algorithms do not depend on the temporal ordering of events, and so they
can provide a suitable baseline to evaluate the handling of out-of-order events
in our proposed method.

The main contributions of this paper are summarized as follows. First, it
presents a temporal network structure to represent temporal precedence rela-
tionships between event types and proposes an algorithm, Order-Aware Tem-
poral Network Inference (OATNI), to construct a temporal network applica-
ble in the streaming environment. Second, it introduces a time-centric causal
modeling strategy and proposes an algorithm, Enhanced Fast Causal Network
Inference (EFCNI), to speed up the learning of causal network. Third, it em-
pirically demonstrates the advantages of the proposed algorithm in terms of the
accuracy and speed of learning the causal network by comparing it against two
state-of-art algorithms, the PC algorithm (details in Sections 3.4) and the FCNI
algorithm [23].

This paper contains the results of a comprehensive study extended from our
earlier work [23]. The two algorithms in our prior work, the Temporal Network
Inference (TNI) and the Fast Causal Network Inference (FCNI), are extended
to the OATNI and the FECNI algorithms, respectively. Specifically, two major
extensions have been made. First, the speed of the causal inference mechanism
has been increased with two strategies. As the first strategy, the CI tests are
performed in the increasing order of the temporal strengths of the edges in
order to remove the most probable spurious edge as early as possible, which
decreases the condition set size. As the second strategy, presumably unnecessary
causal inference computations are avoided by determining whether the changes
in temporal precedence information in the event stream are significant enough to
warrant such computations. Second, the previous work made an assumption that
the event stream is in order. In this paper, the support for fast causal modeling
over an out-of-order event stream is added so that the temporal precedence
relationships cannot be relied upon as they are. In addition to these two major
extensions, the presentation has been extended throughout in many parts of the
paper.

The rest of this paper is organized as follows. Section 2 reviews the existing
work on causal network inference. Section 3 presents the basic concepts used in
the paper. Section 4 and Section 5 propose the learning algorithms of temporal
network (OATNI) and faster causal network (EFCNI), respectively. Section 6
evaluates the proposed EFNCI algorithm. Section 7 concludes the paper and
suggests further research.



2 Related Work

As explained earlier, there are two main approaches for causal network inference.

The first approach, score-based [8–11], performs greedy search (usually hill
climbing) over all possible network structures in order to find the network that
best represents the data based on the highest score. This approach, however, has
two problems. First, it is slow due to the exhaustive search for the best network
structure. An increase in the number of variables in the dataset increases the
computational complexity exponentially. Second, two or more network struc-
tures, called the equivalence classes [24], may represent the same probability
distribution, and consequently the causal directions between nodes are quite
random. There is no technique for alleviating these problems in a streaming
environment. Thus, score-based algorithms are not suitable for streams.

The second approach, constraint-based [12–15], does not have the problem
of equivalence classes. However, it is slow as it starts with a completely con-
nected undirected graph and thus performs a large number of CI tests to remove
the edges between conditionally independent nodes. The number of CI tests in-
creases exponentially with the increase in the number of variables in the dataset.
To alleviate this problem, some constraint-based algorithms start with a mini-
mum spanning tree to reduce the initial size of condition sets. However, this idea
trades the speed with the accuracy of the causal inference. The constraint-based
algorithms include IC* [12], SGS [13], PC [14], and FCI algorithm [14]. The FCI
algorithm focuses on the causal network discovery from the dataset with latent
variables and selection bias, which is quite different from the scope of this paper.
The PC algorithm is computationally more efficient than IC* and SGS. This is
why we evaluate the proposed EFCNI algorithm by comparing it against the
PC algorithm. Like the others, the PC algorithm starts with a completely con-
nected undirected graph. To reduce the computational complexity, it performs
CI tests in several steps. Each step produces a sparser graph than the earlier
step, and consequently, the condition set decreases in the next step. However,
the computational complexity is still O(n2 · 2n−2). (The details are explained in
Section 3.4.) Therefore, the current constraint-based algorithms are not suitable
for fast causal inference over streams.

There have been a number of research works on handing out-of-order event
streams [3–7]. To the best of our knowledge, however, there exists no work ap-
plicable to the causal network inference. (Thus, a new approach is needed, and
our approach is to allow undirected edges in the temporal network.) Johnson et
al. [3] propose an algorithm for regular expression matching on streams with
out-of-order data, which is not related to causal inference. The works by Li et
al. [4] and Liu et al. [5] discuss the problem of processing event pattern queries
over event streams that may contain out-of-order data. Li et al. [6] present a
new architecture for stream systems for out-of-order query processing whereas
Wang and Yu [7] propose algorithms for generating and matching queries to raise
accuracy and shorten the response time as much as possible over out-of-order
events. None of these works is related to causal network inference.



3 Basic Concepts

This section presents some key concepts needed to understand the paper.

3.1 Event streams

An event stream in our work is a sequence of continuous and unbounded times-
tamped events. An event refers to any action that has an effect and is created
by an event owner. One event can trigger another event in chain reactions. Each
event instance belongs to one and only one event type which is a prototype for
creating the instances. Two event instances are related to each other if they
share common attributes such as event owner, location, and time. We call these
attributes common relational attributes (CRAs).

In this paper we denote an event type as Ej and an event instance as eij ,
where i indicates the CRA and j indicates the event type.

Example 1. Consider a diabetic patient monitoring system in a hospital. Each
patient is uniquely identifiable, and each clinical test or measurement of each
patient makes one event instance. For example, a patient is admitted to the
hospital, has their blood pressure and glucose level measured, and takes medica-
tion over a period of time. This creates the instances of the above event types as
a result. Typical event types from these actions include hypoglycemic-symptoms-
exists, blood-glucose-measurement-decreased, increased, regular-insulin-dose-given,
etc. Note that the patient ID is the CRA, as the events of the same patient are
causally related.

To facilitate the handling of events in a streaming environment, we use a
time-based window over the stream. Typically, the application offers a natural
observation period (e.g., hour) that makes a window. The causal relationship
is only possible between events with the same CRA. Therefore, the events in a
window are arranged by CRA and then ordered by the timestamp as they arrive,
producing a partitioned window as a result. Figure 1 illustrates it. (We refer to
the partitioned window simply as the window for the rest of the paper.)

With the arrival of a new batch of event instances, we augment each partition
in the new window by prefixing it with the last instance of the partition with the
same CRA value in the previous window. This is necessary in order to identify
the related instances that are separated into the two consecutive batches.

We support event streams which may be in order or out of order. An event
stream is said to be in order if and only if every event in every partition arrives
in the same temporal order as it was created. In other words, the stream is out
of order if any event in any partition arrives in a different temporal order than
it was created. The degree of out-of-order, doo, is given as

doo =

∑np

k=1 ok
nins

(1)

where np is the number of partitions, ok is the number of out-of-order events in
the k-th partition and nins is the total number of events in all partitions. Note
that doo is zero for in-order event streams.



(a) Events collected during an observation period (window).

(b) Events in the window partitioned by CRA.

Fig. 1. Partitioned window of events.

3.2 Causal networks

Causal network is a popularly used data structure for representing causality [8–
11, 25]. It is a graph G = (N, ξ) where N is the set of nodes (representing event
types) and ξ is the set of edges between nodes. For each directed edge, the parent
node denotes the cause, and the child node denotes the effect.

Consider the event stream of Figure 1. The causal relationships among the
event types in the stream may be modeled as a causal network like the one shown
in Figure 2.

Fig. 2. Causal network.

The joint probability distribution of a set of n event types E ≡ {E1, ..., En}
in a causal network is specified as

P (E) =

n∏
i=1

P (Ei|Pai)

where Pai is the set of the parent nodes of event type Ei.

3.3 Conditional mutual information

A popular approach for testing the conditional independence, with respect to
the joint probability P , of two random variables X and Y given a subset S of



random variables is conditional mutual information(CMI) (e.g., [15, 26]). CMI
gives the strength of dependency between variables in a measurable quantity,
which helps to identify strong and weak causal relationships in the final causal
network.

To test whether X and Y are conditionally independent given S, we compute
the conditional mutual information IMI(X,Y |S) as

IMI(X,Y |S) =
∑
x∈X

∑
y∈Y

∑
s∈S

pX,Y,S(x, y, s)log2
pX,Y |S(x, y|s)

pX|S(x|s)pY |S(y|s)

where p is the probability mass function calculated from the frequencies of vari-
ables.

We only keep the record of these frequencies, not the whole events, by up-
dating them as a new batch of events arrives. Consequently, the independence
test procedure is incremental in our case.

It is said that two variablesX and Y are independent when IMI(X,Y |S) = 0;
otherwise, they are dependent. However, this presents us with the risk of spurious
relationships due to weak dependencies (we cannot assume IMI(X,Y |S) = 10−5

and IMI(X,Y |S) = 10 provide the same degree of confidence in the dependency).
With an increase in the value of IMI(X,Y |S), the dependency between the
variables X and Y grows stronger. Therefore, to prune out weak dependencies,
we need to set a threshold value of mutual information below which we ignore
the evidence as weak. To do so, we relate CMI with G2 test statistics [14, 27] as
below, where Ns is the sample size.

G2(X,Y |S) = 2 ·Ns · loge2 · IMI(X,Y |S)

G2 follows the χ2 distribution [28], with the degree of freedom df equal to
(rx−1)(ry−1)

∏
s∈S rs, where rx, ry, and rs are the number of possible distinct

values of X, Y, and S, respectively. So, we use χ2 test, which provides a threshold
based on df and significance level α, to validate the dependency result. We set
α to the universally accepted value of 95%.

3.4 The PC algorithm

The key idea of the PC algorithm [14] is that a causal network has an edge
between two nodes, X and Y , if and only if X and Y are not independent given
any of the condition subsets of the remaining neighbor nodes [16, 17]. Algorithm 1
outlines the PC algorithm.

The algorithm has two parts. In the first part, the algorithm learns the
topology of the causal network (Lines 1– 18). It starts with a completely con-
nected undirected graph G of n nodes. Two sets are used for bookkeeping –
Neighbors(G,X) and SepSet(X,Y ). Neighbors(G,X) gives the set of nodes ad-
jacent to X, and SepSet(X,Y ) gives the set of nodes which causes X and Y to
be conditionally independent. Initially, Neighbors(G,X) has the remaining n−1
nodes and SepSet(X,Y) is empty. Then, the CI tests are performed between ev-
ery pair of nodes that have an edge between them to determine whether they



Algorithm 1 PC algorithm

Require: Window W
1: Construct the completely connected undirected graph G of all nodes;
2: for each node X in G do
3: Initialize Neighbors(G,X) as the set of nodes adjacent to X in G;
4: end for
5: for each pair of nodes X and Y in G do
6: Initialize an empty set SepSet(X,Y ) as the set of nodes that causes independence

between X and Y in G;
7: end for
8: k ← 0;
9: repeat
10: repeat
11: Select any edge X − Y such that |Neighbors(G,X)\Y | ≥ k;
12: repeat
13: Select any subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |

= k;
14: If X and Y are independent given S, remove X−Y from G, remove Y from

Neighbors(G,X), remove X from Neighbors(G,Y), and add S to SepSet(X,Y)
and SepSet(Y,X);

15: until every subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |
= k has been selected.

16: until every edge X − Y such that |Neighbors(G,X)\Y | ≥ k has been selected.
17: k = k + 1;
18: until no edge X ′ − Y ′ satisfies |Neighbors(G,X ′)\Y ′| ≥ k.
19: for each triplet of nodes X, Y, Z such that the edge X − Y and Y − Z exists in

G but not X − Z do
20: Orient X − Y − Z as X→Y←Z if and only if SepSet(X,Z) does not contain Y;
21: end for
22: repeat
23: If there exists X → Y and Y −Z, but not X−Z, then orient Y −Z as Y → Z;
24: If there exists X − Y and a directed path from X to Y, then orient X − Y as

X → Y ;
25: until no edge can be oriented.

are conditionally independent of any other nodes in G. The edge between the
conditionally independent nodes is removed. To ensure that all possible combi-
nation of nodes are considered in the condition set, the algorithm starts with an
empty condition set and ends with the condition set with the maximum possible
number of nodes. That is, in the algorithm k refers to the number of nodes in the
condition set and is initially set to 0 to denote an empty condition set, and then
k is gradually increased (by 1 at each iteration) and the CI tests are performed
between every pair of nodes with the condition set of size k. This process is re-
peated until there is no edge left in G whose condition set size is greater than k.
Eventually, an undirected network is obtained where an edge between two nodes
denotes that these nodes are not conditionally independent in the presence of
any of the other n− 2 nodes.



In the second part, the undirected network topology is assigned causal direc-
tions (Lines 19 – 25). It is done in three steps. First, if there are two edges X−Y
and Y −Z but not X−Z and SepSet(X,Z) does not contain Y , then X−Y −Z
is assigned the edge orientations X → Y ← Z. The reason is that X and Z are
dependent given Y , as the absence of Y in SepSet(X,Z) indicates that X and
Z are not conditionally independent given Y [29, 30]. Second, if there are edges
X → Y and Y − Z but not X − Z, then Y − Z is oriented as Y → Z. The
absence of an edge between X and Z means that X and Z are not dependent.
A directed edge from X to Y and Y to Z with no edge between X and Z makes
X and Z independent of Y [29, 30]. Thus, the edge between Y and Z is oriented
as Y → Z. Third, if there are edges X − Y and a directed path from X to
Y through any number of nodes, then X − Y is oriented as X → Y . This is
necessary to make the graph acyclic, as the edge direction X ← Y would make
the graph cyclic.

4 Learning Temporal Precedence Relationships

In this section, we describe an incremental approach to model temporal prece-
dence relationships from time-stamped events into a temporal network.

4.1 Temporal network model

A temporal network is a network of nodes representing event types where an
edge between two nodes represents the temporal precedence relationship between
them. To determine when an edge should be added in a temporal network, a
measure providing an evidence of temporal precedence between the event types
should be defined. The evidence we use is the frequency of the observation of an
instance of Ej following an instance of Ei. We call this the precedence frequency.

Definition 1 (Precedence frequency). The precedence frequency fij between
two event types Ei and Ej is the total number of observations in which an event
of type Ei precedes an event of type Ej over all partitions in the partitioned
window.

fij =

np∑
k=1

n(eki,ekj)

where np is the number of partitions and n(eki,ekj) is the number of observations
in which an event of type Ei precedes an event of type Ej in the k-th partition.

In our prior work [23], we assume that the event stream is in order and the
temporal network from such an event stream is directed and acyclic. However,
in an event stream with out-of-order event arrivals, the reliance on the tempo-
ral order for a definite temporal edge direction between event types may lead
to ambiguous scenarios. For instance, the precedence frequencies between two
event types Ei and Ej of an edge Ei → Ej and its reversed edge Ei ← Ej may



not differ significantly enough to determine an edge direction between them. An
undirected edge Ei − Ej is warranted to reflect such ambiguity. Thus, we sup-
port undirected edges as well as directed edges in the temporal network model. A
directed edge between two nodes reflects a strong temporal precedence relation-
ship between them, whereas an undirected edge reflects an ambiguous temporal
precedence relationship between them. A threshold called the temporal confi-
dence (θ) is used to select between directed and undirected edges, as presented
in Rule 1 below.

Rule 1. Temporal edge direction selection
Suppose the precedence frequencies of an edge Ei → Ej and its reversed edge
Ei ← Ei are fij and fji such that either fij > 0 or fji > 0, respectively. Then,
the edge direction between these two event types Ei and Ej (i.e., Ξ(Ei, Ej)) is
selected as follows.

Ξ(Ei, Ej) =


Ei → Ej if

fij−fji
fij+fji

> θ

Ei ← Ej if
fji−fij
fij+fji

> θ

Ei − Ej if| fij−fji
fij+fji

| ≤ θ

Given a temporal network, we define the edge strength, called the temporal
strength, as follows.

Definition 2 (Temporal strength). Consider an edge Ei → Ej (i ̸= j) in a
temporal network of n event types. Let fij be the precedence frequency from the
event type Ei to the event type Ej. Then, we define the temporal strength, sij,
of the edge Ei → Ej as

sij ,
fij∑n
k=1 fik

That is, the temporal strength of Ei → Ej is the precedence frequency of (Ei, Ej)
relative to the total precedence frequency over all children nodes of Ei.

4.2 Order-aware temporal network inference algorithm

The idea behind the OATNI algorithm is to collect events from an event
stream in a window and then use temporal precedence information from the
sequence of event pairs in the window to construct a temporal network at the
event type level. The overall algorithm is centered on a frequency matrix, which
is initially empty (i.e., all zero elements) and updated with each new batch of
events.

The algorithm has two steps for each window, as outlined in Algorithm 2.

1. Update the frequency matrix FM by observing the precedence relationships
of event pairs in the partitioned window (Lines 3–15). An element fij in FM
reflects the total number of times events of type Ei precede events of type
Ej (i ̸= j). Each time an event pair (eoi, eoj) is observed in the event stream
such that eoi precedes eoj , increase the value of fij by 1.



Algorithm 2 Order-Aware Temporal Network Inference (OATNI)

Require: Edgeless network structure TN, Event stream(s) S, Temporal confidence θ
1: Initialize an empty frequency matrix FM, an empty strength matrix SM, two empty

buffers Bp and Bc (used to store “parent” events and “child” events, respectively);
2: for each window W in S do
3: for each partition P (corresponding to CRA a) in W do
4: for i = 1 to tn − 1 where tn is the number of unique timestamps in P do
5: Clear Bp and Bc;
6: Insert all events with timestamp ti and ti+1 into Bp and Bc, respectively;
7: for each event instance eap in Bp do
8: for each event instances eac in Bc do
9: if type(eac) ̸= type(eap) {//There cannot be causal relationships be-

tween events of the same type.} then
10: Increase the frequency of element ftype(eap),type(eac) in FM by 1;
11: end if
12: end for
13: end for
14: end for
15: end for
16: for each pair of elements fij and fji such that fij > 0 or fji > 0 in FM do
17: sij ← 0, sji ← 0;

18: if
fij−fji
fij+fji

> θ then

19: Add an edge Ei → Ej in TN and set its strength to sij =
fij∑n

k=1
fik

;

20: else if
fji−fij
fij+fji

> θ then

21: Add an edge Ei ← Ej in TN and set its strength to sji =
fji∑n

k=1
fjk

;

22: else if
|fij−fji|
fij+fji

≤ θ then

23: Add an edge Ei − Ej in TN and set the strengths to sij =
fij∑n

k=1
fjk

and

sji =
fji∑n

k=1
fjk

;

24: end if
25: end for
26: end for

2. Determine the edges of the temporal network using FM (Lines 16–25). For
each pair of nodes, add an edge according to Rule 1. For a directed edge
added, e.g., Ei → Ej , calculate its temporal strength and store it in sij of
SM. For an undirected edge added, e.g., Ei − Ej , calculate the temporal
strengths of both directions and store them in sij and sji of SM.

Note that when the events arrive in order, the OATNI algorithm reduces to the
TNI algorithm by setting the threshold θ to 0 so that Rule 1 always chooses
between the first two cases.

5 Learning Causal Network in Reduced Time

In this section, we describe a new approach which reduces the number of CI
tests needed to infer the causal structure, thereby speeding up the learning pro-



cess. Specifically, we explain the key ideas employed and discuss the concrete
algorithm. We then prove the correctness of the algorithm and analyze its com-
putational complexity.

5.1 Key ideas

Given that the key approach is to exploit temporal precedence relationships
to learn the causal network, there are a number of ideas employed to reduce
the causal network construction time. We begin by proposing some preliminary
lemmas.

Lemma 1. A CI test between two event types with no temporal precedence re-
lationship is unnecessary.

Proof. Two event types can a have causal relationship only if they have a tem-
poral precedence relationship. Therefore, it is not necessary to perform a CI
test (for detecting causality) between two event types which are not temporally
related.

Lemma 2. Event types which do not have temporal precedence relationships
with either of the two event types being tested for causality are not needed in
the condition set of the CI test.

Proof. Consider two event types, Ei and Ej , tested for causality, and consider
another event type Ek (k ̸= i, j). Ek can causally influence Ei (or Ej) only if Ek

has a temporal precedence relationship with Ei (or Ek). Therefore, the CI tests
between Ei and Ej can safely exclude from the condition set those event types
(i.e., Ek) which are not temporally related to either of them.

Based on Lemma 1, the CI tests are performed only for the edges in the tem-
poral network. That is, not every possible edges are considered for the CI tests
leading to a reduced number of CI tests. Moreover, since the size of the condi-
tion set contributes to the number of CI tests exponentially, we use Lemma 2
to reduce the condition set size by including only those event types which have
temporal relationships, hence possibly causal relationships, to the event types
being tested.

We employ another idea to speed up the network inference further, based on
Lemma 3 below.

Lemma 3. The number of CI tests performed in the causal network inference
decreases if the CI tests between event types are performed in an increasing order
of their temporal strength.

Proof. Event types with weaker temporal strengths between them have higher
likelihood of being conditionally independent than those with stronger temporal
strengths. Therefore, if the CI tests are performed between event types with the
lowest temporal strength first, then the initial causal network becomes sparser
faster and, consequently, the condition sets for the CI tests between event types
become smaller faster. This leads to the reduction in the total number of CI
tests performed through the causal network inference.



Evidently, the reduction in the number of CI tests brings the reduction of running
time.

Further, we employ the idea of reducing the overhead of causal network
inference by performing it only when there are significant enough changes in
temporal precedence relationships in the event stream. The rationale for this
is that the causal network tends to absorb changes in the temporal network
until the changes are significant enough. We introduce the temporal precedence
probability as the measure to normalize the precedence frequencies between event
types. The changes in the precedence probabilities give a normalized measure of
the changes that have occurred in the temporal network since the last batch of
events in the stream.

Definition 3 (Precedence probability). The precedence probability pij be-
tween two event types Ei and Ej is defined as the ratio of fij and the summation
of all precedence frequencies.

pij =
fij∑n

x=1

∑n
y=1 fxy

Let PM@ti and PM@ti+1 be the matrices representing the precedence proba-
bilities at the timestamps ti and ti+1, respectively. Then, the measure of change
in the precedence information, called precedence change (Cp), is calculated as
follows.

Cp =
n∑

x=1

n∑
y=1

|pxy@ti+1 − pxy@ti|

where pxy is the element at the position (x, y) (i.e., event types (Ex, Ey)) in PM.
Given this change measure, we update the causal network only if the calculated
Cp exceeds a certain threshold, called the precedence change confidence (δ).

5.2 Enhanced fast causal network inference algorithm

The algorithm has four steps, as outlined in Algorithm 3.

1. The first step (Line 1) learns a temporal network by running the OATNI
algorithm. The temporal network, which can have both directed and undi-
rected edges, is set as the initial causal network.

2. The second step (Line 2) checks if there has been a significant enough change
in the temporal precedence statistic (i.e., Cp) in the event stream from the
last observation period, and stops if not.

3. The third step (Line 3) sorts the edges of the initial causal network in the
increasing order of their temporal strength.

4. The fourth step (Lines 4–24) constructs the final causal network by prun-
ing out the edges between independent nodes. CI tests are performed on
every edge between adjacent nodes in the initial causal network to verify
dependency between them. Conditionally independent nodes are considered
spurious, and hence the edge between them is removed.



Algorithm 3 Enhanced Fast Causal Network Inference (EFCNI)

Require: Window W, Precedence change confidence δ, Edgeless causal network G.
1: Run theOATNI algorithm and initialize G = (N, ξ) with the learned temporal

network; {N and ξ are the set of nodes and the set of edges, respectively.}
2: Calculate Cp. If Cp < δ, then exit; {Stop if there is no significant change in the

event stream.}
3: Sort the edges in ξ in the increasing order of their temporal strength.
4: for each edge (Ei, Ej) ∈ ξ do
5: independent = IsIndependent(Ei, Ej , ϕ), where ϕ is the empty set;

{IsIndependent(Ei, Ej , S) calculates IMI(Ei, Ej |S) for CI test.}
6: if independent is true then
7: Remove (Ei, Ej) from ξ;
8: end if
9: end for
10: k ← 0;
11: repeat
12: for each edge (Ei, Ej) ∈ ξ do
13: Construct a set of condition sets, Z, each of cardinality k from the parents of

Ej excluding Ei;
14: repeat
15: Select any subset S from Z;
16: independent = IsIndependent(Ei, Ej , S);
17: Remove S from Z;
18: until Z is empty or independent is true
19: if independent is true then
20: Remove (Ei, Ej) from ξ;
21: end if
22: end for
23: k = k + 1;
24: until there is no Ej in any edge (Ei, Ej) ∈ ξ with k incident edges.

The main difference from the PC algorithm is the manner in which the CI tests
are performed. In the PC algorithm, the condition set S for an edge Ei − Ej

(undirected) considers the neighbors of both Ei and Ej whereas in the EFCNI
algorithm, the condition set S for an edge Ei → Ej (directed) needs to consider
only the parents of Ej . (Ej is independent of the parents of Ei that do not have
edge to Ej .) Consequently, fewer CI tests are needed. In addition, note that the
EFCNI algorithm reduces to the FCNI algorithm by omitting the second and
the third steps.

5.3 Correctness of the algorithm

To prove the correctness of the algorithm, it suffices to prove the correctness
of our approach which starts with a temporal network as the initial causal net-
work and removes edges through CI tests on them. We show the correctness
as follows. First, a temporal precedence relationship is a necessary condition
for inferring causality [20]. Therefore, causal relationship subsumes temporal



precedence relationship, that is, the causal network is a subgraph of the tempo-
ral network (Lemma 1). Second, a causal network should satisfy the Causal
Markov Condition (CMC) [13, 16, 31] where for every node X in the set of
nodes N , X is independent of its non-descendants excluding its parents (i.e.,
N\(Descendants(X)∪Parents(X))) given its parents. In a temporal network of
vertex (or node) set N, a node is temporally independent, and therefore causally
independent, of all its non-descendants (except its parents) given its parents
(Lemma 2).

5.4 Complexity analysis

Given n nodes, the computational complexity of the EFCNI algorithm
is O(n2 · 2n−2) in the worst case and O(n) in the best case.

Proof. The computational complexity of the EFCNI algorithm is governed by the
total number of possible CI tests which is calculated by summing up the number
of CI tests involving each edge. In the worst case, the number of edges in the
network is that of a completely connected graph and all edges are undirected.

The number of edges in a completely connected graph of n nodes is n(n−1)
2 . For

every edge between two nodes, the remaining n− 2 nodes are considered in the
condition set, as the graph is completely connected and undirected. Therefore,
to test conditional independence between a pair of nodes in an edge, there are
2n−2 CI tests to perform. Consequently, the total number of CI tests for all edges

is n(n−1)
2 · 2n−2, resulting in the computational complexity of O(n2 · 2n−2).

In the best case, the initial causal network (i.e., temporal network) is a di-
rected linear graph and the number of edges is the minimum (i.e., n−1). In such
a graph, there are n−2 edges with one incoming edge to either of the nodes and
one edge with no incoming edge to either of the nodes. For the edges with one
incoming edge, the condition set size is one, and therefore there are two CI tests
to perform. For n − 2 such edges, there are 2n − 4 CI tests. For the remaining
one edge with no incoming edge to either of the nodes, there is only one CI test
to perform. Therefore, there are 2n − 3 CI tests to perform in the best case,
resulting in the computational complexity of O(n).

The computational complexity of the PC algorithm is O(n) in the best case
and O(n2 ·2n−2) in the worst case [14]. Note that, while the computational com-
plexities are the same, the EFCNI algorithm starts with a sparse network as
the use of temporal precedence relationships removes many of the edges. So, it
starts closer to the best case. In contrast, the PC algorithm always starts with a
completely connected dense network. So, it starts from the worst case. As a re-
sult, in practice the EFCNI algorithm shows significant improvement
in runtime over the PC algorithm.

The computational complexity of the FCNI algorithm is O(n) in the best case
and O(n · 2n−2) in the worst case [23]. FCNI’s worst case computation complex-
ity is lower than that of EFCNI by a factor of n. However, unlike the EFCNI
algorithm, the FCNI algorithm is not suitable for out-of-order event streams.



Moreover, as mentioned earlier, the EFCNI algorithm reduces to the FCNI al-
gorithm when the events are in order and θ is zero. As a result, in practice
the EFCNI algorithm is at least as fast and accurate as the FCNI
algorithm when the events are in order and preserves the accuracy in
the face of out-of-ordered events, compromising the runtime to some
extent as an increasing number of events arrive out of order.

6 Performance Evaluation

We conducted experiments to compare the proposed EFCNI algorithm against
the FCNI and the PC algorithms. There are three sets of experiments – first
in terms of the accuracies of the resulting causal networks, second the running
time, and third the number of CI tests required. In each set of experiments, we
consider both the cases of stream being in order and out of order and also see
the effect of the EFCNI’s change-driven causal network construction strategy by
comparing it with FCNI and PC when there are changes in the event stream
statistic. Section 6.1 describes the experiment setup, Section 6.2 explains the
datasets used, and Section 6.3 presents the experiment results.

6.1 Experiment setup

6.1.1 Evaluation metrics. The evaluation metrics are the speed of the
causal network generation and the accuracy of the generated causal network.
The running time is the CPU time, and the number of performed CI tests affects
the speed. The accuracy is evaluated by examining how closely the constructed
causal network structure resembles the target causal network. For this, we adopt
the structural Hamming distance proposed by Tsamardinos et al. [32] as the
measure. The nodes (i.e., event types) are fixed as given to the algorithms,
and therefore the network structures are compared with respect to the edges
between nodes. There are three kinds of possible errors in the causal network
construction: reversed edges, missing edges, and spurious edges. We use the
number of erroneous edges of each kind as the evaluation metric.

6.1.2 Platform. The experiments are conducted on RedHat Enterprise Linux
5 operating system using Java(TM) 2 Runtime Environment–SE 1.5.0 07 in Ver-
mont Advanced Computing Core (VACC) cluster computers.

6.2 Datasets

Experiments are conducted using both synthetic and real datasets.

Synthetic datasets. A synthetic dataset is reverse-engineered from a target
causal network. Given control parameters in Table 1, the idea is to generate
a random causal network, and then convert the causal network to an event



stream which reflects the underlying probability distribution of the causal net-
work. Specifically, there are three steps. First, NET nodes are created and edges
are added randomly, and random conditional probabilities are assigned to each
edge. Each node can have up toMaxNC edges from cause nodes and up toMaxNE

edges to effect nodes. (We set both MaxNC and MaxNE to 3 for the experiments
presented here.) Second, a joint probability distribution (JPD) table is built from
the conditional probabilities assigned to edges of the target causal network. The
rows of the JPD table collectively cover all event sequences possible, while each
row has its own probability. Third, the probability for each row in the JPD table
is multiplied by NO to calculate the number of repetitions of that event sequence
in the dataset. We assume that the event owner is the CRA for the dataset.

Parameter Meaning

NO Number of event owners (with unique ID)

NET Number of event types (i.e., nodes)

MaxNC Maximum number of cause events (parents)

MaxNE Maximum number of effect events (children)
Table 1. Control parameters for synthetic event stream generation.

The size of a JPD table grows exponentially with NET and therefore we use
parallel processing for the event stream generation. The JPD table is divided
into multiple partitions and the dataset is created by running parallel processes
over each of these partitions. The dataset is thus represented by a collection of
files in which the events are shuffled according to the owner ID while preserving
the temporal order.

There are five cases of datasets, DS1 through DS5, according to the number
of nodes in the represented target causal networks (see their profiles in Table 2).
The target causal networks have 4, 8, 12, 16 and 20 nodes, respectively. They
are created with 1, 2, 16, 64 and 512 parallel processes, respectively, thus con-
sisting of 1, 2, 16, 64 and 512 files, respectively. Each row of a synthetic dataset
represents one event instance. To obtain out-of-order event streams, each case
of datasets is shuffled randomly up to the required degree of out-of-order (see
Equation 1). Changes in the event stream statistic is achieved by altering the
precedence frequencies of events. Specifically, we generate six batches of the
event stream for six observation points (t1 through t6) with the Cp values of
14%, 16%, 4%, 6%, 10%, and12%, respectively, for each case of the datasets.

Real dataset. The real dataset DR contains diabetes lab test results [33] of
70 different patients over a period ranging from a few weeks to a few months.
The dataset has a total 28143 records, about 402 records for each patient. Each
record has four fields – date, time, test code, test value. The clinical data of a
patient is independent of other patients. Therefore, the patient ID is the CRA
for this dataset. There are 20 different test codes appearing in the file (shown in



Dataset NET Nedges NO Nins

DS1 4 4 5000 15128

DS2 8 15 30000 124475

DS3 12 22 500000 3173246

DS4 16 39 6553600 50247293

DS5 20 49 52428800 510971687

(Nedges is the number of actual edges in the network. Nins is the average number of
event instances in the datasets of each case.)

Table 2. Profiles of the five synthetic datasets.

the left column of Table 3) from which we define event types of interest (shown
in the right column of Table 3).

Test Code Event Type

Regular insulin dose Regular-insulin-dose-given(RIDG)

NPH insulin dose NPH-insulin-dose-given(NIDG)

UltraLente insulin dose UltraLente-insulin-dose-given(UIDG)

Unspecified BGM*

Pre-breakfast BGM*

Post-breakfast BGM* Blood-glucose-

Pre-lunch blood BGM* measurement-increased(BGMI)

Post-lunch BGM* Blood-glucose-

Pre-supper BGM* measurement-decreased(BGMD)

Post-supper BGM*

Pre-snack BGM*

Hypoglycemic symptoms Hypoglycemic-symptoms-exist(HSE)

Typical meal ingestion Typical-meal-ingested(TMI)

More than usual meal ingestion More-than-usual-meal-ingested(MTUMI)

Less than usual meal ingestion Less-than-usual-meal-ingested(LTUMI)

Typical exercise activity Typical-exercise-taken(TET)

More than usual exercise activity More-than-usual-exercise-taken(MTUET)

Less than usual exercise activity Less-than-usual-exercise-taken(LTUET)

(Note BGM* : blood glucose measurement)

Table 3. Event types defined from the diabetes dataset.

6.3 Experiment results

We run the EFCNI, FCNI and PC algorithms over each type of the five synthetic
datasets and the real dataset. We present our evaluation in each of the three sets
of experiments. First, we evaluate the accuracy of the generated causal networks
against the target causal network and determine how closely they resemble the
true causal network. Specifically, we count the number of spurious edges, the
number of missing edges, and the number of reversed edges. Second, we evaluate



the running time (CPU time), and third, we evaluate the number of CI tests
performed. We show that reducing the number of CI tests is the key to reducing
the running time of causal network inference. In each set of experiments, the
evaluation covers the scenarios of the event stream being in order and out of
order, and, additionally, the scenario of the event stream statistic changing. For
the latter scenario, the value of the precedence change confidence δ is set to
9% for all synthetic datasets (DS1 through DS5). For the experiments involving
in-order event streams, the temporal precedence confidence θ is set to zero (so
EFCNI reduces to FCNI) and, for the experiments involving out-of-order event
streams, it is set to 24.80%, 17.23%, 18.19%, 21.97%, 26.50% (each determined
after training from 70% of the data) for all synthetic datasets. The experiment
is repeated ten times for each dataset (DS1 through DS5 and DR) to calculate
the average.

6.3.1 Comparison of the accuracies of the PC, FCNI, and EFCNI
algorithms

6.3.1.1 When the events arrive in order
Table 4 presents the number of erroneous edges in the causal network produced
by the PC, FCNI, and EFCNI algorithms. The results show that the accuracy
of the causal network from the EFCNI algorithm is similar to that of the FCNI
and PC algorithms. First, the number of missing and the number of spurious
edges are comparable among all three algorithms. This is due to the reliance of
the three algorithms on the same test statistics (CMI in our case) to infer the
independence of two event types. Additionally, each number is the same between
EFCNI and FCNI because EFCNI reduces to FCNI. Second, the number of
reversed edges is zero for both the FCNI and EFCNI algorithms. Clearly the
FCNI and EFCNI algorithms, through the temporal network, are much better
at determining the correct causal edge directions. It is because of the fact that
the cause always precedes its effect is embodied in the temporal precedence
relationship. Overall, the results show that, when the event stream is in order,
the EFCNI algorithm produces the same topology as the FCNI algorithm and
almost the same topology as the PC algorithm, while the accuracy of the causal
directions in the EFCNI algorithm remains the same as the FCNI algorithm and
is improved over the PC algorithm.

6.3.1.2 When the events arrive out of order
Table 5 presents the number of erroneous edges in the causal network produced
by the three algorithms for varying degree of out-of-order in the event stream.
We show the results for the two datasets DS4 and DS5 only; the results from the
other datasets are consistent with the results from the two datasets. We make
two observations from the results. First, the PC algorithm is more resilient to
the out-of-order event arrival than the FCNI or EFCNI algorithm. The number
of spurious edges and the number of missing edges are higher in the



Type of Algorithm Dataset
Erroneous Edges DS1 DS2 DS3 DS4 DS5 DR

Missing PC 0 0 0 0 1 1
FCNI 0 1 0 0 1 1
EFCNI 0 1 0 0 1 1

Reversed PC 0 2 0 2 3 2
FCNI 0 0 0 0 0 0
EFCNI 0 0 0 0 0 0

Spurious PC 0 3 0 4 3 1
FCNI 0 3 0 4 3 1
EFCNI 0 3 0 4 3 1

Table 4. Number of erroneous edges in an in-order event stream.

EFCNI algorithm than in the PC algorithm when the degree of out-
of-order is large (i.e., doo = 20%, 25%). The reason is that the PC algorithm
does not depend on the temporal precedence order for causal network inference
at all whereas FCNI and EFCNI do. Second, between the FCNI algorithm and
the EFCNI algorithm, EFCNI results in a comparable number of erroneous edges
as PC while FCNI results in a larger number of erroneous edges than EFCNI
or PC. The FCNI algorithm completely depends on the temporal order of the
events to generate the causal network structure and, consequently, is sensitive
to even a small change in the order of the events. In contrast, the EFCNI algo-
rithm employs the OATNI algorithm where the temporal confidence threshold
mechanism selects undirected edges in the temporal network when the temporal
precedence is ambiguous, and this mechanism makes EFCNI more resilient to
the changes than FCNI.

Type of Algorithm doo for DS4 doo for DS5

Erroneous Edges 0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%

Missing PC 0 0 0 0 0 0 1 1 1 1 1 1
FCNI 0 1 3 4 4 7 1 4 6 7 11 13
EFCNI 0 0 0 0 1 2 1 1 1 1 1 2

Reversed PC 2 2 2 2 2 2 3 3 3 3 3 3
FCNI 0 2 3 5 8 14 0 3 5 6 9 15
EFCNI 0 0 0 0 0 0 0 0 0 0 0 0

Spurious PC 4 4 4 4 4 4 3 3 3 3 3 3
FCNI 4 7 9 12 13 17 3 5 9 11 18 23
EFCNI 4 4 4 4 4 6 3 3 3 3 4 7

Table 5. Number of erroneous edges in an out-of-order event stream for different
degrees of out-of-order (doo) (datasets: DS4 and DS5).

6.3.1.3 When the event stream has changing temporal precedence statis-
tic
Table 6 presents the number of erroneous edges in the causal networks resulting



from the three algorithms for the event stream with changing temporal prece-
dence statistic. As expected, the number of erroneous edges from the FCNI or
PC algorithm is not affected by these changes because the causal network infer-
ence is run every time a new batch of events arrives. In contrast, for the EFCNI
algorithm, the number of erroneous edges increases when Cp is lower than δ (at
t3 and t4). (Note that in such cases the causal network inference is not run.) Ad-
ditionally, the errors are larger at t4 than t3. This is because the higher value of
Cp results in a greater difference between the causal network constructed and the
true causal network and, more importantly, because the accuracy of the resulting
causal network keeps on degrading as we keep on skipping the causal inference.
On the other hand, for a batch of events with Cp greater than δ (i.e., at t1, t2, t5,
and t6), the EFCNI algorithm rebuilds the causal network and, consequently, the
resulting causal network reflects the true causal network representing the event
stream seen thus far. Therefore, at these time points the number of erroneous
edges remains the same as if the event stream had no change.

Type of Algorithm DS4 DS5

Erroneous Edges t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6
Missing PC 0 0 0 0 0 0 1 1 1 1 1 1

FCNI 0 0 0 0 0 0 1 1 1 1 1 1
EFCNI 0 0 1 2 0 0 1 1 2 4 1 1

Reversed PC 2 2 2 2 2 2 3 3 3 3 3 3
FCNI 0 0 0 0 0 0 0 0 0 0 0 0
EFCNI 0 0 0 1 0 0 0 0 1 2 0 0

Spurious PC 4 4 4 4 4 4 3 3 3 3 3 3
FCNI 4 4 4 4 4 4 3 3 3 3 3 3
EFCNI 4 4 5 7 4 4 3 3 5 8 3 3

Table 6. Number of erroneous edges in a changing event stream over the six observation
points t1 through t6 (datasets: DS4 and DS5).

6.3.2 Comparison of the running time of the PC, FCNI, and EFCNI
algorithms.

6.3.2.1 When the events arrive in order
Figure 3(a) shows the average running time of the EFCNI, FCNI, and PC

algorithms for varying number of event types in the synthetic datasets. In all
cases, the running time of the EFCNI algorithm is the shortest while the run-
ning time of the PC algorithm is the longest. Clearly, the temporal precedence
information helps to reduce the size of condition set and the number of edges
for CI tests in both the FCNI and EFCNI algorithms. In addition, the EFCNI
algorithm sorts the edges based on their temporal strength and then tests the
conditional independence of the weaker edges, which are more likely to fail the
tests, earlier and therefore further reduces the running time. As the number (n)



of event types increases, the running time increases in all three algorithms, but
the rate of increase is the highest for the PC algorithm and the lowest for the
EFCNI algorithm. The same observation is made in the real dataset where the
running time of the PC, FCNI, and EFCNI algorithms are 817, 118, and 112
msecs, respectively. These results verify the important role of temporal prece-
dence relationships in reducing the running time.
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Fig. 3. Comparison of the running time of the PC, FCNI and EFCNI algorithms for
in-order event streams.

6.3.2.2 When the events arrive out of order
Figure 4 shows that the EFCNI algorithm performs the fastest causal net-

work inference among the three algorithms when the event stream is in order
(i.e., degree of out-of-order doo = 0). As doo increases, the running time of the
EFCNI algorithm increases rapidly. It is due to the strategy that renders the
edges with temporal strength lower than θ in the temporal network undirected.
Consequently, the number of CI tests increases, resulting in an increase in the
running time. On the other hand, as seen in the figure, the running time of
FCNI algorithm remains short for the out-of-order event arrivals. However, the
FCNI algorithm compromises the accuracy in such an event stream as discussed
in Section 6.3.1. In addition, the result shows that the running time of the PC
algorithm is constant as it is not affected by the out-of-order event arrivals.

6.3.2.3 When the event stream has changing temporal precedence statis-
tic
Figure 5 shows that the EFCNI algorithm performs the fastest causal network
inference among the three algorithms over the event stream with changing tem-
poral precedence statistic. In the figure, for all values of n, the FCNI and PC
algorithms perform the CI tests for the causal network inference every time a
new batch of events arrives. On the other hand, the EFCNI algorithm performs
it only when the precedence statistic changes significantly enough in the event
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Fig. 4. Comparison of the running time of the PC, FCNI, and EFCNI algorithms for
out-of-order event streams.

stream. (Cp is greater than δ at t1, t2, t5, and t6.) The EFCNI algorithm skips
the causal inference at t3 and t4, which helps to reduce the overall running time.

6.3.3 Comparison of the number of CI tests of the PC, FCNI, and
EFCNI algorithms.

6.3.3.1 When the events arrive in order
Figure 3(b) shows that the EFCNI algorithm performs fewer CI tests than the
PC and FCNI algorithms in all synthetic datasets. The CI tests are decreased
by reducing the size of the condition set and the number of edges to test with
the help of the temporal precedence information. In addition, the sorting of the
edges (based on the their temporal strengths) helps to reduce the number of CI
tests. With an increase in the number of event types (n), the rate of increase
in the number of CI tests of the PC algorithm is much higher than that of the
EFCNI and FCNI algorithms. A similar observation is made in the real dataset
where the number of CI tests of the PC, FCNI, and EFCNI algorithms are
1239, 192, and 176, respectively. These results confirm the important role of
temporal precedence relationships in reducing the number of CI tests. Note the
result of CI tests (Figure 3(b)) looks almost the same as that of the running
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Fig. 5. Comparison of the running time of the PC, FCNI, and EFCNI algorithms for
changing event streams.

time (Figure 3(a)). This demonstrates that CI tests are the major performance
bottleneck and validates the key idea of our work that reducing the number of
CI tests reduces the run time.

6.3.3.2 When the events arrive out of order
Figure 6 shows that, as the degree of out-of-order increases, the number of CI

tests of the EFCNI algorithm increases. A higher degree of out-of-order leads to
the temporal strengths of more edges lower than the temporal confidence thresh-
old (i.e., θ), and this results in rendering more edges undirected and therefore
performing more CI tests. Consequently, as the degree of out-of-order increases,
the number of CI tests of the EFCNI algorithm becomes closer to that of the
PC algorithm. Note that the PC algorithm is not affected by the out-of-order
event arrivals and, thus, the number of CI tests does not change for varying
degree of out-of-order. The results also show that the FCNI algorithm performs
the smallest number of CI tests when the events arrive out of order. However, its
accuracy is the worst among the three algorithms as discussed in Section 6.3.1.

6.3.3.3 When the event stream has changing temporal precedence statis-
tic
Figure 7 shows that the EFCNI algorithm performs the smallest number of CI
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Fig. 6. Comparison of the number of CI tests of the PC, FCNI, and EFCNI algorithms
for out-of-order event streams.

tests among the three algorithms over the event stream with changing temporal
precedence statistic. As discussed earlier, the FCNI and PC algorithms regener-
ate the causal network with the arrival of every new batch of events while the
EFCNI algorithm does it only when the change in the event stream (i.e., Cp) is
greater than δ (as seen at t1, t2, t5, and t6). As a result, the EFCNI algorithm
skips causal inference computations involving a large number of CI tests at t3
and t4 where the value of Cp is less than δ. As expected, the number of CI tests
is highest for the PC algorithm at every observation point t1 through t6 due to
its highest computational complexity.

6.3.4 Summary of experiment results
The EFCNI algorithm is faster than the FCNI algorithm for an event stream

where the events arrive in order. The EFCNI algorithm enhances the FCNI
algorithm with two additional strategies to reduce the number of CI tests. It has
been demonstrated that the CI tests are the performance bottleneck and thus
the reduction in the number of CI tests is the key to decreasing the running time
of the algorithm. Moreover, unlike the FCNI algorithm which requires events to
arrive in order, the EFCNI algorithm can perform the causal network inference
accurately even when the events arrive out of order. As the degree of out-of-
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Fig. 7. Comparison of the number of CI tests of the PC, FCNI, and EFCNI algorithms
for changing event streams.

orderness doo increases, the accuracy of the EFCNI algorithm comes
at the expense of the running time (i.e., the number of CI tests) to
some extent.

The EFCNI algorithm is much faster than the PC algorithm in all experi-
ments. In some scenarios (e.g., medical applications like patient health
tracking), the accuracy of the result may be more important than the
runtime. In case the accuracy of the EFCNI algorithm is not satis-
factory in such scenarios – for example, if the event stream has many
out-of-order events (i.e., with large doo) – then the OATNI algorithm
can be tweaked to increase the EFCNI algorithm’s accuracy by set-
ting θ to a larger value (e.g., toward 100%). A larger θ value forces
the edges more to be undirected and, therefore, makes the EFCNI
algorithm behave more like the PC algorithm, thus achieving higher
accuracy.

Furthermore, the EFCNI algorithm saves time by avoiding causal inference
computations when there is not significant enough changes in the statistic of the
event stream.



7 Conclusion and Future Work

In this paper, we presented a novel strategy to exploit temporal precedence rela-
tionships to learn the causal network over event streams. First, we introduced the
Order-Aware Temporal Network Inference algorithm to model temporal prece-
dence information. Then, we presented the Enhanced Fast Causal Network In-
ference algorithm to reduce the running time of learning causal network by
reducing the number of performed CI tests significantly. These algorithms effi-
ciently handle the event streams even if the events are out of order and saves
the running time further by performing causal inference only if the temporal
precedence statistic changes significantly enough. We showed the experiment re-
sults to validate our approach by comparing against the state-of-the-art PC and
FCNI algorithms.

There are a number of future work in the plan. First, we plan to support
cyclic causality. Second, we plan to investigate the effect of concept drift in the
causal network inference so that the computations are performed only among
the event types affected by the changes. Third, we plan to perform the
experiments on datasets with a much larger number (i.e., hundreds
to thousands) of event types to show the practicality of our proposed
algorithms in a big data environment.

References

1. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through
time: A vision for event stream processing. In: Proceedings of the Third Biennial
Conference on Innovative Data Systems Research. CIDR’07 (2007) 363–374

2. Zhao, Y., Strom, R.: Exploitng event stream interpretation in publish-subscribe
systems. In: Proceedings of the Twentieth Annual ACM Symposium on Principles
of Distributed Computing. PODC ’01 (2001) 219–228

3. Johnson, T., Muthukrishnan, S., Rozenbaum, I.: Monitoring regular expressions on
out-of-order streams. In: Proceedings of the IEEE 23rd International Conference
on Data Engineering. ICDE’07 (2007) 1315–1319

4. Li, M., Liu, M., Ding, L., Rundensteiner, E.A., Mani, M.: Event stream processing
with out-of-order data arrival. In: Proceedings of the 27th International Conference
on Distributed Computing Systems Workshops. ICDCSW ’07, Washington, DC,
USA, IEEE Computer Society (2007) 67–74

5. Liu, M., Li, M., Golovnya, D., Rundensteiner, E., Claypool, K.: Sequence pattern
query processing over out-of-order event streams. In: Proceedings of the IEEE 25th
International Conference on Data Engineering. ICDE ’09 (2009) 784–795

6. Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., Maier, D.: Out-of-
order processing: A new architecture for high-performance stream systems. Pro-
ceegins of the VLDB Endowment 1(1) (August 2008) 274–288

7. Wang, K., Yu, Y.: A query-matching mechanism over out-of-order event stream in
iot. Int. J. Ad Hoc Ubiquitous Comput. 13(3/4) (July 2013) 197–208

8. Heckerman, D.: A Bayesian approach to learning causal networks. In: Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence. UAI’95 (1995)
285–295



9. Ellis, B., Wong, W.H.: Learning causal Bayesian network structures from experi-
mental data. J. American Statistics Association 103(482) (2008) 778–789

10. Li, G., Leong, T.Y.: Active learning for causal Bayesian network structure with
non-symmetrical entropy. In: Proceedings of the 13th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining. PAKDD ’09 (2009) 290–301

11. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from ob-
servations and experiments: A decision theoretic approach. In: Modeling Decisions
for Artificial Intelligence. Volume 3885 of Lecture Notes in Computer Science.,
Springer Berlin Heidelberg (2006) 58–69

12. Pearl, J.: Causality: Models, Reasoning and Inference. 2nd edn. Cambridge Uni-
versity Press (2009)

13. Spirtes, P., Glymour, C.N., Scheines, R.: Causality from probability. In: Proceed-
ings of the Conference on Advanced Computing for the Social Sciences. ACSS ’90
(1990)

14. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT
Press (2000)

15. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks
from data: an information-theory based approach. Artificial Intelligence 137(1-2)
(2002) 43–90

16. Pearl, J.: Causal diagrams for empirical research. Biometrika 82 (1995) 669–710
17. Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from

data. In: Proceedings of the First International Conference on Knowledge Discovery
and Data Mining. KDD’95 (1995) 294–299

18. Chow, Y.S., Teicher, H.: Probability theory : independence, interchangeability,
martingales. Springer-Verlag, New York (1978)

19. Prakasa Rao, B.: Conditional independence, conditional mixing and conditional
association. Annals of the Institute of Statistical Mathematics 61(2) (2009) 441–
460

20. Popper, K.: The Logic of Scientific Discovery. Reprint edn. Routledge (Oct 1992)
21. Hamilton, H.J., Karimi, K.: The TIMERS II algorithm for the discovery of causal-

ity. In: Proceedings of the 9th Pacific-Asia conference on Advances in Knowl-
edge Discovery and Data Mining. PAKDD’05, Berlin, Heidelberg, Springer-Verlag
(2005) 744–750

22. Utrera, A.C., Olmedo, M.G., Callejon, S.M.: A score based ranking of the edges for
the pc algorithm. In: Proceedings of the 4th European workshop on probabilistic
graphical models. PGM’08 (2008) 41 – 48

23. Acharya, S., Lee, B.: Fast causal network inference over event streams. In: Data
Warehousing and Knowledge Discovery. Volume 8057 of Lecture Notes in Computer
Science., Springer Berlin Heidelberg (2013) 222–235

24. Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J.
Machine Learning Research 2 (2002) 445–498

25. Borchani, H., Chaouachi, M., Ben Amor, N.: Learning causal Bayesian networks
from incomplete observational data and interventions. In: Proceedings of the 9th
European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty. ECSQARU ’07, Berlin, Heidelberg, Springer-Verlag (2007) 17–29

26. de Campos, L.M.: A scoring function for learning Bayesian networks based on
mutual information and conditional independence tests. J. Machine Learning Re-
search 7 (2006) 2149–2187

27. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: The-
ory and Practice. MIT Press (1975)



28. Kullback, S.: Information Theory and Statistics. 2nd edn. Dover Publication (1968)
29. Verma, T., Pearl, J.: Causal networks: Semantics and expressiveness. In: Proceed-

ings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence. UAI
’88 (1988) 69–78

30. Geiger, D., Pearl, J.: On the logic of causal models. In: Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelligence. UAI ’88 (1988) 3–14

31. Pearl, J.: Graphs, causality, and structural equation models. Sociological Methods
and Research 27 (1998) 226–84

32. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1) (October 2006) 31–78

33. Frank, A., Asuncion, A.: UCI machine learning repository. http://archive.ics.
uci.edu/ml/datasets/Diabetes (2010)


