
Fast Causal Network Inference over Event Streams

Saurav Acharya and Byung Suk Lee

Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
{sacharya,bslee}@uvm.edu

Abstract. This paper addresses causal inference and modeling over
event streams where data have high throughput and are unbounded. The
availability of large amount of data along with the high data throughput
present several new challenges related to causal modeling, such as the
need for fast causal inference operations while ensuring consistent and
valid results. There is no existing work specifically for such a stream-
ing environment. We meet the challenges by introducing a time-centric
causal inference strategy that leverages temporal precedence informa-
tion to decrease the number of conditional independence tests required
to establish the dependencies between the variables in a causal network.
Dependency and temporal precedence of cause over effect are the two
properties of a causal relationship. We also present the Temporal Net-
work Inference algorithm to model the temporal precedence relations
into a temporal network. Then, we propose the Fast Causal Network In-
ference algorithm for faster learning of causal network using the temporal
network. Experiments using synthetic and real datasets demonstrate the
efficacy of the proposed algorithms.

Keywords: Causal inference; Event streams; Temporal data

1 Introduction

In recent years, there has been a growing need for active systems that can per-
form causal inference in diverse applications such as health care, stock markets,
user activity monitoring, smart electric grids, and network intrusion detection.
These applications need to infer the cause of abnormal activities immediately
such that informed and timely preventive measures are taken. As a case in point,
consider a smart electric grid monitoring application. The failure of a component
can cause cascading failures, effectively causing a massive blackout. Therefore,
the identification of such cause and effect components in a timely manner en-
ables preventive measures in the case of failure of a cause component, thereby
preventing blackouts.

Causal network, a directed acyclic graph where the parent of each node is
its direct cause, has been popularly used to model causality [1–7]. There are
two distinct types of algorithms for learning a causal network: score-based [1–4]
and constraint-based [5–8]. Both types of algorithms are slow and, therefore,
not suitable for event streams where prompt causal inference is required. Score-
based algorithms perform a greedy search (usually hill climbing) to select a causal
network with the highest score from a large number of possible networks. With
an increase in the number of variables in the dataset, the number of possible
networks grows exponentially, resulting in slow causal network inference. On the

other hand, constraint-based algorithms (e.g., PC algorithm [7]) discover the
causal structure via a large number of tests on conditional independence(CI).
There can be no edge between two conditionally independent variables in the
causal network [9]. In a causal network of n variables, two variables X and Y
are said to be conditionally independent given a condition set S if there is at
least one variable in S such that X and Y are independent. The condition set S
consists of all possible 2n−2 combinations of the remaining n− 2 variables, and
therefore the computational complexity grows exponentially as the number of
variables increases. So, the current techniques for causal inference are slow and
not suitable for event streams which have a high data throughput and where the
number of variables (i.e., event types) is large.

With this concern, this paper describes a new time-centric causal modeling
approach to speed up the causal network inference. Every causal relationship
implies temporal precedence relationship [10]. So, the idea is to incorporate tem-
poral precedence information as an important clue to reducing the number of
required CI tests and thus maintaining feasible computational complexity. This
idea achieves fewer computations of CI test due to two factors. First, since causal-
ity requires temporal precedence, we ignore the causality test for those nodes
with no temporal precedence relationship between them. Second, in the CI test
of an edge, we exclude those nodes from the condition set which do not have tem-
poral precedence relationship with the nodes of the edge. Therefore, it reduces
the size of the condition set which is a major cause of the exponential computa-
tional complexity. In addition, the temporal precedence relationship intuitively
orients the causal edge unlike the constraint-based algorithms where a separate
set of rules are needed to infer the causal direction (details in Section 3.3).

The contributions of this paper are summarized as follows. First, it presents
a temporal network structure to represent temporal precedence relationships be-
tween event types and proposes an algorithm, Temporal Network Inference(TNI),
to construct a temporal network applicable in streaming environment. Second,
it introduces a time-centric causal modeling strategy and proposes an algorithm,
Fast Causal Network Inference(FCNI), to speed up the learning of causal net-
work. Finally, it empirically demonstrates the advantages of the proposed algo-
rithm in terms of the running time and the total number of CI tests required for
the learning of causal network by comparing it against the state-of-art algorithm
for causal network inference, called the PC algorithm (details in Section 3.3).

The rest of this paper is organized as follows. Section 2 reviews the existing
work on causal network inference. Section 3 presents the basic concepts used in
the paper. Section 4 and Section 5 propose the learning of temporal network
and faster causal network, respectively. Section 6 evaluates the proposed FNCI
algorithm. Finally, Section 7 concludes the paper and mentions further research.

2 Related Work

As explained earlier, there are two main approaches for causal network inference.
The first approach, score-based [1–4], performs greedy search (usually hill

climbing) over all possible network structures in order to find the network that
best represents the data based on the highest score. This approach, however, has

two problems. First, it is slow due to the exhaustive search for the best network
structure. An increase in the number of variables in the dataset increases the
computational complexity exponentially. Second, two or more network struc-
tures, called the equivalence classes [11], may represent the same probability
distribution, and consequently the causal directions between nodes are quite
random. There is no technique for alleviating these problems in a streaming
environment. Thus, score-based algorithms are not viable for streams.

The second approach, constraint-based [5–8], does not have the problem of
equivalence classes. However, it is slow as it starts with a completely connected
undirected graph and thus performs a large number of CI tests to remove the
edges between conditionally independent nodes. The number of CI tests increases
exponentially with the increase in the number of variables in the dataset. To al-
leviate this problem, some constraint-based algorithms start with a minimum
spanning tree to reduce the initial size of condition sets. However, this idea
trades the speed with the accuracy of the causal inference. The constraint-based
algorithms include IC* [5], SGS [6], PC [7], and FCI algorithm [7]. The FCI
algorithm focuses on the causal network discovery from the dataset with latent
variables and selection bias, which is quite different from the scope of this pa-
per. The PC algorithm is computationally more efficient than IC* and SGS. This
is why we evaluate the proposed FCNI algorithm by comparing it against the
PC algorithm. Like the others, the PC algorithm starts with a completely con-
nected undirected graph. To reduce the computational complexity, it performs
CI tests in several steps. Each step produces a sparser graph than the earlier
step, and consequently, the condition set decreases in the next step. However,
the computational complexity is still O(n2 · 2n−2). (The details are explained in
Section 3.3.) Therefore, the current constraint-based algorithms are not suitable
for fast causal inference over streams.

To the best of our knowledge, there exists no specific work in the causal
network inference in a streaming environment. A new approach is needed for
faster causal network inference.

3 Basic Concepts

This section presents some key concepts needed to understand the paper.

3.1 Event streams, type, and instance

An event stream in our work is a sequence of continuous and unbounded times-
tamped events. An event refers to any action that has an effect and is created by
one event owner. One event can trigger another event in chain reactions. Each
event instance belongs to one and only one event type which is a prototype for
creating the instances. Two event instances are related to each other if they
share common attributes such as event owner, location, and time. We call these
attributes common relational attributes(CRAs).

In this paper we denote an event type as Ej and an event instance as eij ,
where i indicates the CRA and j indicates the event type.

Example 1. Consider a diabetic patient monitoring system in a hospital. Each
patient is uniquely identifiable, and each clinical test or measurement of each

patient makes one event instance. For example, a patient is admitted to the hos-
pital, has their blood pressure and glucose level measured, and takes medication
over a period of time. This creates the instances of the above event types as a
result. Typical event types from these actions include regular-insulin-dose-given,
hypoglycemic-symptoms-exists, blood-glucose-measurement-decreased, increased,
etc. Note that the patient ID is the CRA, as the events of the same patient are
causally related.

3.2 Conditional Mutual Information

A popular approach for testing the conditional independence, with respect to the
joint probability P , of two random variables X and Y given a subset of random
variables S is conditional mutual information(CMI) (e.g., [8, 12]). CMI gives the
strength of dependency between variables in a measurable quantity, which helps
to identify strong and weak causal relationships in the final causal network.

To test whether X and Y are conditionally independent given S, we compute
the conditional mutual information IMI(X,Y |S) as

IMI(X,Y |S) =
∑
x∈X

∑
y∈Y

∑
s∈S

pX,Y,S(x, y, s)log2
pX,Y |S(x, y|s)

pX|S(x|s)pY |S(y|s)

where p is the probability mass function calculated from the frequencies of vari-
ables.

We only keep the record of these frequencies, not the whole events, by up-
dating them as a new batch of events arrives. Consequently, the independence
test procedure is incremental in our case.

It is said that two variablesX and Y are independent when IMI(X,Y |S) = 0;
otherwise, they are dependent. However, this presents us with the risk of spurious
relationships due to weak dependencies (we cannot assume IMI(X,Y |S) = 10−5

and IMI(X,Y |S) = 10 provide the same degree of confidence in the dependency).
With an increase in the value of IMI(X,Y |S), the dependency between the vari-
ables X and Y grows stronger. Therefore, to prune out the weak dependencies,
we need to set a threshold value of mutual information below which we ignore
the evidence as weak. To do so, we relate CMI with G2 test statistics [7, 13] as
below where Ns is the number of samples.

G2(X,Y |S) = 2 ·Ns · loge2 · IMI(X,Y |S)
Under the independence assumption, G2 follows the χ2 distribution [14], with
the degree of freedom df equal to (rx − 1)(ry − 1)

∏
s∈S rs, where rx, ry, and

rs are the number of possible distinct values of X, Y, and S, respectively. So,
we use χ2 test, which provides a threshold based on df and significance level α,
to validate the dependency result. We set α as the universally accepted value of
95%.

3.3 The PC algorithm

The PC algorithm [7] (Algorithm 1) starts with a completely connected undi-
rected graph on which the CI tests are performed to remove edges between inde-
pendent nodes. The key idea is that a causal network has an edge between X and
Y in the topology if and only if X and Y are not independent given all condition
subsets of the remaining neighbor nodes [15]. In Algorithm 1, the topology of
the causal network is learned in the steps 1 to 10. The network topology is then
assigned causal direction in the steps 11 to 17.

Algorithm 1 PC algorithm

1: Construct the completely connected undirected graph G on the n nodes;
2: Initialize Neighbors(G,X) as the set of nodes adjacent to the node X in G, and

SepSet(X,Y), a set of nodes that causes independence between X and Y nodes, as
empty;

3: k ← 0;
4: repeat
5: repeat
6: Select any edge X − Y such that |Neighbors(G,X)\Y | ≥ k;
7: repeat
8: Select any subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |

= k;
9: If X and Y are independent given S, remove X−Y from G, remove Y from

Neighbors(G,X), remove X from Neighbors(G,Y), and add S to SepSet(X,Y)
and SepSet(Y,X);

10: until every subset S of Neighbors(G,X)\Y such that |Neighbors(G,X)\Y |
= k has been selected.

11: until every edge X − Y such that |Neighbors(G,X)\Y | ≥ k has been selected.
12: k = k + 1;
13: until every edge X ′ − Y ′ satisfies |Neighbors(G,X ′)\Y ′| < k.
14: for each triplet of nodes X, Y, Z such that the edges X − Y and Y −X exist in

G but not X − Z do
15: Orient X − Y − Z as X→Y←Z if and only if SepSet(X,Z) does not contain Y;
16: end for
17: repeat
18: If there exists X → Y and Y −Z, but not X−Z, then orient Y −Z as Y → Z;
19: If there exists X − Y and a directed path from X to Y, then orient X − Y as

X → Y ;
20: until no edge can be oriented.

4 Learning Temporal Precedence Relationships
In this section, we describe an incremental approach to model temporal prece-
dence relationships from time-stamped events into a temporal network.

4.1 Temporal Network Model
A temporal network is a directed acyclic graph of nodes representing event types
where an edge between two nodes represents the temporal precedence relation-
ship between them. To facilitate the handling of events in a streaming environ-
ment, we use a time-based window over the stream. Typically, the application
offers a natural observation period (e.g., hour) that makes a window.

As mentioned earlier in Section 3.1, two events are related to each other if
they share the same common relational attribute(CRA)). So, the events in a
window are arranged by CRA and ordered by the timestamp as they arrive,
producing a partitioned window as a result. Figure 1 illustrates it.

With the arrival of a new batch of event instances, we augment each parti-
tion in the new window by prefixing it with the last instance of the partition
with the same CRA value in the previous window. This is necessary in order to
identify the temporal precedence between instances that are separated into the
two consecutive batches.

(a) Events collected during an observation period (window).

(b) Events in the window partitioned by CRA.

Fig. 1. Partitioned window of events.

To determine when an edge, say Ei → Ej , should be added in a temporal
network, a measure providing an evidence of temporal precedence between the
event types should be defined. The evidence we use is the frequency of the ob-
servation of an instance of Ej following an instance of Ei. The temporal strength
of an edge identified is defined below.

Definition 1 (Temporal strength). Consider an edge Ei → Ej (i ̸= j) in a
temporal network of n event types. Let fij be the total number of observations
in which an event of type Ei precedes an event of type Ej over all partitions
in the partitioned window. Then, we define temporal strength, sij, of the edge
Ei → Ej as

sij ,
fij∑(n−1)

k=0 fik

4.2 Temporal Network Inference Algorithm
The idea behind the TNI algorithm is to collect events from an event stream
in a window and then use temporal precedence information from the sequence
of event pairs in the window to construct a temporal network at the event type
level. The overall algorithm is centered on a frequency matrix, which is initially
empty (i.e., all zero elements) and updated with each new batch of events. The
algorithm has two steps for each window, outlined in Algorithm 2.

1. Update the frequency matrix FM by observing the precedence relationships
of event pairs in the partitioned window (steps 3–13 in Algorithm 2). An
element fij in FM reflects the total number of times events of type Ei

precede events of type Ej (i ̸= j). Each time an event pair (eoi, eoj) is
observed in the event stream such that eoi precedes eoj , increase the value
of fij by 1.

2. Determine the edges of the temporal network using the frequency matrix
(steps 14–24 in Algorithm 2). For each pair of an edge and its reversed edge,
select the edge with the greater frequency. Calculate the temporal strength
of the selected edge, e.g., Ei → Ej , and store it in the element sij of the
strength matrix SM. Set the strength of the ignored edge with the lower
frequency to zero. If a cycle is introduced, remove the edge with the lowest
temporal strength in the cycle.

5 Learning Causal Network in Reduced Time
In this section, we describe a new approach to reduce the number of CI tests
needed to infer the causal structure, thereby speeding up the learning process.
The idea is to incorporate temporal precedence relationships to learn the causal
network. The correctness of our approach is shown as follows. First, a tempo-
ral precedence relationship is a mandatory condition for inferring causality [10].

Algorithm 2 Temporal Network Inference (TNI)

Require: an edgeless network structure TN, event stream(s) S
1: Initialize an empty frequency matrix (FM), an empty strength matrix SM, two

empty buffers Bp and Bc (used to store “parent” events and “child” events, re-
spectively);

2: for each window W in S do
3: for each partition P (corresponding to CRA a) in W do
4: for i = 1 to tn − 1 where tn is the number of unique timestamp in P do
5: Clear Bp and Bc;
6: Insert all events with timestamp ti and ti+1 into Bp and Bc, respectively;
7: for all event instances eap and eac in Bp and Bc, respectively, do
8: if type(eac) ̸= type(eap) {//There cannot be causal relationships between

events of the same type.} then
9: Increase the frequency of element ftype(eap),type(eac) in FM by 1;
10: end if
11: end for
12: end for
13: end for
14: for each pair of elements fij and fji in FM do
15: sij ← 0, sji ← 0;
16: if fij > fji then

17: Add an edge Ei → Ej in TN and set its strength to sij =
fij∑n−1

k=0
fik

;

18: else if fji > fij then

19: Add an edge Ej → Ei in TN and set its strength to sji =
fji∑n−1

k=0
fjk

;

20: end if
21: end for
22: if an edge is added and it introduces cycle in TN then
23: Remove the edge with the lowest temporal strength (in SM) in the cycle;
24: end if
25: end for

Therefore, causal relationship subsumes temporal precedence relationship, that
is, the causal network is a subgraph of the temporal network. Second, a causal
network should satisfy the Causal Markov Condition (CMC) [6, 9, 16] where for
every node X in the set of nodes N , X is independent of its non-descendants
excluding its parents (i.e., N\(Descendants(X) ∪ Parents(X))) conditional on
its parents. In a temporal network of vertex (or node) set N, a node is temporally
independent, and therefore causally independent, of all its non-descendants (ex-
cept its parents) given its parents. In other words, the temporal network obeys
CMC which is a necessary condition for the causal network. Therefore, our idea
of considering a temporal network as an initial causal network is correct.

5.1 Fast Causal Network Inference Algorithm

The idea behind FCNI algorithm is to reduce the number of CI tests by in-
corporating temporal precedence information. The algorithm has two steps, as
outlined in Algorithm 3.

1. The first step is to construct a temporal network by running the TNI al-
gorithm. The temporal network is set as the initial causal network. Note

that since temporal precedence is a requirement for a causal relationship, all
causal relationships are theoretically guaranteed be in the temporal network.

2. The second step is to adapt the ideas of constraint-based algorithms to
learn the final causal network by pruning out the edges between indepen-
dent nodes. We perform CI tests on every edge between nodes in the initial
causal network to verify dependency between them. Conditionally indepen-
dent nodes are considered to be spurious and hence the edge between them
is removed. Steps 2 to 22 perform this step. The main difference from the
PC algorithm is the manner in which CI tests are performed. In the PC
algorithm, the condition set S for an edge Ei − Ej considers the neighbors
of both Ei and Ej whereas in the FCNI algorithm, as the edges are already
directed, the condition set S for an edge Ei → Ej needs to consider only the
parents of Ej (Ej is independent of the parents of Ei that do not have edge
to Ej). Consequently, we need fewer CI tests.

Algorithm 3 Fast Causal Network Inference (FCNI)

Require: Window W, Edgeless Causal Network G = (N , ξ).{N and ξ are the set of
nodes and the set of edges, respectively.}

1: Run the TNI algorithm and initialize G with the learned temporal network;
2: for each directed edge (Ei, Ej) ∈ ξ do
3: independent = IsIndependent(Ei, Ej , ϕ), where ϕ is the empty set;

{IsIndependent(Ei, Ej , S) calculates IMI(Ei, Ej |S) for CI test.}
4: if independent is true then
5: Remove (Ei, Ej) from ξ;
6: end if
7: end for
8: k ← 0;
9: repeat
10: for each directed edge (Ei, Ej) ∈ ξ do
11: Construct a set of condition sets, Z, each of cardinality k from the parents of

Ej excluding Ei;
12: repeat
13: Select any subset S from Z;
14: independent = IsIndependent(Ei, Ej , S);
15: Remove S from Z;
16: until Z is empty or independent is true
17: if independent is true then
18: Remove (Ei, Ej) from ξ;
19: end if
20: end for
21: k = k + 1;
22: until number of parents of E′

j in every directed edge (E′
i, E

′
j) ∈ ξ is less than k.

5.2 Complexity Analysis

The complexity of the FNCI algorithm for a causal network G is bounded by
the largest degree of each node. Let n be the number of nodes (i.e., event types).
Then in the worst case, since the causal network inference starts with a temporal
network, the number of CI tests required by the algorithm is given as

CImax =
∑n

i=1 di2
|Zi|

where di ≡ (i−1) is the maximum degree of incoming edges to the node i (there

are
∑n

i=1 di =
n·(n−1)

2 directed edges in the network G) and Zi is the maximum
condition set to each edge involving node i such that |Zi| = di − 1 = i − 2. So
the computational complexity of FCNI algorithm is O(n · 2n−2) in the worst
case. In contrast, the PC algorithm (described in Section 3.3), whose condition
set of each node is of cardinality n− 2 nodes, has the worst case computational
complexity of O(n2 · 2n−2). Therefore, in the worst case, the FCNI algorithm is
n times faster than the PC algorithm.

In the best case, the causal network G takes the form of a minimum spanning
tree with n − 1 edges. In this case, the FCNI algorithm and the PC algorithm
require n− 1 and 4n− 6 CI tests, respectively.

Note that the FCNI algorithm starts with a sparse network as it has only
those edges that satisfy the temporal precedence relationships. So, in practice,
it starts closer to the best case. In contrast, the PC algorithm starts with a
completely connected dense network. So, it starts from the worst case.

6 Performance Evaluation

We conducted experiments to compare the proposed FCNI algorithm against the
PC algorithm in terms of the accuracy, the running time, and the number of CI
tests required on both the algorithms. Section 6.1 describes the experiment setup,
including the evaluation metrics and the platform used. Section 6.2 explains the
datasets used and Section 6.3 presents the experiment results.

6.1 Experiment setup

Evaluation metrics. Intuitively, the quality of causal network learning al-
gorithms are best evaluated by examining how closely the constructed causal
network structures resemble the target causal network. In this regard, we adopt
the structural Hamming distance proposed by [17] as the quality metric of the
output causal network. The nodes (i.e., event types) are fixed as given to the
algorithms, and therefore the network structures are compared with respect to
the edges between nodes. There are three kinds of possible errors in the causal
network construction: reversed edges, missing edges, and spurious edges. We use
the number of the erroneous edges of each kind as the evaluation metric.

Platform. The experiments are conducted on RedHat Enterprise Linux 5 op-
erating system using Java(TM) 2 Runtime Environment–SE 1.5.0 07 in Vermont
Advanced Computing Core (VACC) cluster computers.

6.2 Datasets

Experiments are conducted using both synthetic and real datasets.

Synthetic datasets. A synthetic dataset is reverse-engineered from a target
causal network. Given the control parameters – the number of event owners no

and the number of event types n, the idea is to generate a random causal net-
work, and then convert the causal network to an event stream which reflects
the underlying probability distribution of the causal network. In the interest of
space, the details of the event stream generation are not described here. We as-
sume that the event owner is the CRA. The dataset is represented by a collection

of files in which the events are shuffled according to the owner ID while preserv-
ing the temporal order. We create five datasets (see their profiles in Table 1),
representing target causal networks of 4, 8, 12, 16 and 20 nodes each.

Dataset n nedges no ninstances

DS1 4 4 5000 13108
DS2 8 16 30000 108334
DS3 12 32 500000 3163237
DS4 16 46 6553600 49008538
DS5 20 62 52428800 511972810

(nedges is the number of actual edges in the network. ninstances is the number of event
instances in the dataset.)

Table 1. Profiles of the five synthetic datasets.

Real dataset. The real dataset DR contains diabetes lab test results [18] of
70 different patients over a period ranging from a few weeks to a few months.
The dataset has a total 28143 records, about 402 records for each patient. Each
record has four fields – date, time, test code, test value. The clinical data of a
patient is independent of other patients. Therefore, the patient ID is the CRA
for this dataset. There are 20 different test codes appearing in the file from which
we define 13 different event types of interest. The details of the event types are
omitted due to the space limit.

6.3 Experiment results

We ran the FCNI and PC algorithms over each of the five synthetic datasets
and the real dataset. We present our evaluation results in three parts. First, we
compare the quality of the generated networks against the target causal network
and determine how closely they resemble the true causal network. (The details
of the true causal networks are omitted due to the space limit.) Specifically,
we count the number of spurious edges, the number of missing edges, and the
number of reversed edges. Second, we compare the running time (CPU time) of
the two algorithms, and finally, we evaluate the number of CI tests performed
on both algorithms. We show that reducing the number of CI tests is the key
to reducing the running time of causal network inference. The experiment is
repeated ten times for each dataset (DS1 through DS5 and DR) to calculate the
average number of erroneous edges, the average running time, and the average
number of CI tests. We assume the events are in temporal order.

Comparison of the accuracy of the PC and FCNI algorithms. Table 2
presents the number of erroneous edges in the causal network produced by the PC
and FCNI algorithms. The results show that the quality of the causal network
from the FCNI algorithm is similar to that of the PC algorithm. First, the
number of missing and spurious edges are comparable. This is due to the reliance
of both algorithms on the same test statistics (CMI in our case) to infer the
independence of two event types. Second, the number of reversed edges is zero
for the FCNI algorithm. Clearly the FCNI algorithm, through the temporal
network, is much better at determining the correct causal edge direction. It
is because the fact that the cause always precedes its effect is embodied in its

temporal precedence relationship. Overall, we conclude that the FCNI algorithm
produces almost the same topology as the PC algorithm, while the accuracy of
the causal direction is improved.

Algorithms DS1 DS2 DS3 DS4 DS5 DR

Missing Edges PC 0 0 0 0 1 1
FCNI 0 1 0 0 1 1

Reversed Edges PC 0 2 0 2 3 2
FCNI 0 0 0 0 0 0

Spurious Edges PC 0 3 0 4 3 1
FCNI 0 3 0 4 3 1

Table 2. Number of erroneous edges.

 0

 5000

 10000

 15000

 20000

 25000

 4 8 12 16 20

T
im

e
(m

se
c)

Number of Event Types (n)

PC
FNCI

(a) Running time for varying number of
event types.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 4 8 12 16 20

N
um

be
r

of
 C

I t
es

ts

Number of Event Types (n)

PC
FNCI

(b) Number of CI tests for varying num-
ber of event types.

Fig. 2. Comparison of the PC and FCNI algorithms

Comparison of the running time of the PC and FCNI algorithms.
Figure 2(a) plots the average running time of FCNI and PC algorithms against
the number of event types (n) in the synthetic dataset. In all cases, the FCNI al-
gorithm is much faster than the PC algorithm. Clearly, the temporal precedence
information helps to reduce the size of condition set and the edges to test. As
n increases, the running times of both PC and FCNI algorithms increase. How-
ever, the rate of increase of the running time of the PC algorithm is much higher
than that of the FCNI algorithm. Therefore, with an increase in n, the ratio
of running time between the two algorithms increases. The same observation is
made in the real dataset where the running time of the PC and FCNI algorithms
are 817 and 118 msecs, respectively. These results verify the important role of
temporal precedence relationships to reduce the running time.

Comparison of the number of CI tests of the PC and FCNI algorithms.
Figure 2(b) shows that the FCNI algorithm performs fewer CI tests than the

PC algorithm in all synthetic datasets. The CI tests required are minimized, due
to the temporal precedence information, by reducing the size of the condition
set and the number of edges to test. With an increase in the number of event
types (n), the rate of increase of the number of CI tests in the PC algorithm
is much higher than that in the FCNI algorithm. A similar observation is made
in the real dataset where the number of CI tests of the PC and FCNI algo-
rithms are 1239 and 192, respectively. These results confirm the important role
of temporal precedence relationships in reducing the number of CI tests. Note

the result of CI tests (Figure 2(b)) looks almost the same as that of the running
time (Figure 2(a)). This demonstrates that CI tests are the major performance
bottleneck and validates the key idea of our work that reducing the number of
CI tests reduces the run time.

7 Conclusion and Future Work
In this paper, we presented a novel strategy to incorporate temporal precedence
relationships to learn the causal network over event streams. First, we intro-
duced the Temporal Network Inference algorithm to model temporal precedence
information. Then, we presented the Fast Causal Network Inference algorithm
to reduce the running time complexity of learning causal network by eliminating
unnecessary CI tests. We showed the experiment results to validate our approach
by comparing against the state-of-the-art PC algorithm. For the future work, we
plan to explore the temporal semantics further for causal network inference over
out-of-order event streams.

References

1. Heckerman, D.: A Bayesian approach to learning causal networks. In: UAI. (1995)
285–295

2. Ellis, B., Wong, W.H.: Learning causal Bayesian network structures from experi-
mental data. J. American Statistics Association 103(482) (2008) 778–789

3. Li, G., Leong, T.Y.: Active learning for causal Bayesian network structure with
non-symmetrical entropy. In: PAKDD. (2009) 290–301

4. Meganck, S., Leray, P., Manderick, B.: Learning causal Bayesian networks from
observations and experiments: a decision theoretic approach. In: MDAI. (2006)
58–69

5. Pearl, J.: Causality: Models, Reasoning and Inference. 2nd edn. Cambridge Uni-
versity Press (2009)

6. Spirtes, P., Glymour, C.N., Scheines, R.: Causality from probability. In: ACSS.
(1990)

7. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT
Press (2000)

8. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks
from data: an information-theory based approach. Artificial Intelligence 137(1-2)
(2002) 43–90

9. Pearl, J.: Causal diagrams for empirical research. Biometrika 82 (1995) 669–88
10. Popper, K.: The Logic of Scientific Discovery. Reprint edn. Routledge (Oct 1992)
11. Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J.

Machine Learning Research 2 (2002) 445–498
12. de Campos, L.M.: A scoring function for learning Bayesian networks based on

mutual information and conditional independence tests. J. Machine Learning Re-
search 7 (2006) 2149–2187

13. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: The-
ory and Practice. MIT Press (1975)

14. Kullback, S.: Information Theory and Statistics. 2nd edn. Dover Publication (1968)
15. Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from

data. In: KDD. (1995) 294–299
16. Pearl, J.: Graphs, causality, and structural equation models. Sociological Methods

and Research 27 (1998) 226–84
17. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian

network structure learning algorithm. Mach. Learn. 65(1) (October 2006) 31–78
18. Frank, A., Asuncion, A.: UCI machine learning repository. (2010)

