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As location-based services using mobile devices have become globally popular these days, social network

analysis (especially, community detection) increasingly benefits from combining social relationships with

geographic preferences. In this regard, this paper addresses the emerging problem of geosocial community

detection. We first formalize the problem of geosocial co-clustering, which co-clusters the users in social

networks and the locations they visited. Geosocial co-clustering detects higher-quality communities than

existing approaches by improving the mapping clusterability, whereby users in the same community tend to

visit locations in the same region. While geosocial co-clustering is soundly formalized as non-negative matrix
tri-factorization, conventional matrix tri-factorization algorithms suffer from a significant computational

overhead when handling large-scale data sets. Thus, we also develop an efficient framework for geosocial

co-clustering, called GEOsocial COarsening and DEcomposition (GEOCODE). In order to achieve efficient

matrix tri-factorization, GEOCODE reduces the numbers of users and locations through coarsening and then

decomposes the single whole matrix tri-factorization into a set of multiple smaller sub-matrix tri-factorizations.

Thorough experiments conducted using real-world geosocial networks show that GEOCODE reduces the

elapsed time by 19–69 times while achieving the accuracy of up to 94.8% compared with the state-of-the-art

co-clustering algorithm. Furthermore, the benefit of the mapping clusterability is clearly demonstrated through

a local expert recommendation application.
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1 INTRODUCTION
The widespread use of location-aware mobile devices has made it feasible to collect precise locations

of the users. In many social networking services, the users’ locations play an important role in social
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(c) Mapping-centric approach.

Fig. 1. Comparison of the approaches for geosocial community detection.

analytics by enriching social relationships between users [25]. Particularly, geosocial networking
services such as Foursquare and Yelp have attracted much attention since they can provide location

intelligence through the analysis of not only users’ social relationships but also their favorite places.

For example, they recommend to users some popular places that their friends also like. Additionally,

traditional social networking services such as Foursquare and Twitter have adopted geo-tagging

capabilities to capture the location preferences of their users. Along these lines, a majority of social

networking services of today retain abundant data about users’ location preferences as well as

social relationships.

There is strong correlation between social relationships and spatial preferences, as has been

empirically proven by several researchers [4, 10, 42]. That is, people tend to interact more frequently

with other people who live closer than those who live farther [4] or tend to visit nearby places

which their friends or friends-of-friends have already visited [21, 42]. Thus, it is widely recognized

that the quality of social network analysis improves by considering spatial preferences together

with social relationships [44, 47]. Among various related analytic problems, we tackle the problem

of community detection [22–24] or, more specifically, geosocial community detection for finding

the sets of users who are densely connected through both close social relationships and similar

spatial preferences. In this paper we consider disjoint community detection, which has been actively

employed in its own set of applications, as indicated in a recent benchmark proposed by Wang et

al. [43].

Most of the existing algorithms use clustering based on a similarity measure that combines social
similarity and spatial similarity. Their approaches are distinguished into two categories depending

on which side the clustering performed is centered on. In the user-centric approach, the clustering
algorithm is essentially applied on the user side, with the spatial similarity incorporated into the

social similarity represented as the edge weight [37, 40], and in the location-centric approach, on
the location side with the social similarity incorporated into the spatial similarity measure [39].

As such, each category puts emphasis on a different perspective. As geosocial features become

increasingly integrated in real applications, however, the strong correlation between the user side

and the location side warrants a new, mapping-centric approach, which exploits the two sides of

similarity equitably and simultaneously.

Example 1.1. Figure 1 shows clustering results obtained by the three approaches, with a social

network view at the top and a mapping matrix view at the bottom. Figures 1a and 1b respectively

show what the clusters from the user-centric and location-centric approaches would look like. Note
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that these approaches are both disjoint community detection and are equipped to do clustering only

on one side—either users or locations—and, therefore, clustering on the other side—locations or

users—must be derived throughmapping from clusters on the original one side. It has been observed

that, as a result, clusters on the other side are blurred in their boundaries, hence poor in the quality

(see Section 5.2 for the empirical results). In contrast, Figure 1c shows what the clusters from our

mapping-centric approach would look like. It shows clearer clustering of mappings between users

and locations, i.e., with few crossings between the subsets of mappings. That is, the mappings are

neatly divided into bundles of mapping edges. □

1.1 Geosocial Co-Clustering
In this paper, we address mapping-centric geosocial community detection by way of geosocial

co-clustering. Co-clustering is a generic technique that clusters the rows and columns of a matrix

simultaneously [12]. In geosocial co-clustering, a row and a column of a matrix correspond to a user

and a location, respectively. Therefore, users are clustered based on their spatial preferences (i.e.,

the distributions of the locations visited by them) and, at the same time, locations are clustered

based on their user populations (i.e., the distributions of the users visiting them). As a result, it can

produce pairs of a cluster on the user side and a cluster on the location side simultaneously.

Geosocial co-clustering improves the quality of the detected communities by achieving mapping
clusterability, which indicates how well the mappings between the users and the locations are

clustered into sets of matching user-location pairs. In other words, higher mapping clusterability

means that there is a higher degree of one-to-one mapping between subsets of users and subsets of

locations. Intuitively, it means that users who belong to the same community tend to visit a certain

group of locations that are not visited by users who belong to a different community. Note that the

existing algorithms (e.g., [37, 39, 40]), which perform clustering only on one side, i.e., either users
or locations, do not care about the mapping clusterability.

Many applications can benefit from this mapping clusterability. One example application is to

organize marketing teams so that each team shares good collaborative relationship and common

expertise in the same region. Another example application is to recommend local experts [9] by

finding a community of mutually familiar users who are experts in the same region, as activities

concentrated on a certain topic often indicate high expertise in that topic [1]. This “regionalization”

is an important marketing (or business in general) strategy commonly preached and practiced in

view of today’s globalization climate [19].

Example 1.2. Let us elaborate on the first application mentioned above as an example. Suppose

we want to organize teams of personnel and assign a target region to each team for marketing and

promotion. Each team needs to have good collaborative relationship to make the team trustworthy

and harmonious and be sufficiently experienced in the target region to work efficiently. In addition,

locations in the region assigned to a team need to be spatially close to reduce the moving time. Under

this scenario, collaborative teams and their assigned regions need to be compactly co-regulated
in terms of the social, spatial, and mapping aspect as shown in Figure 1c. Note that one-sided

algorithms cannot be applied to this case since they only produce either collaborative teams or

target regions (but not both) as shown in Figures 1a and 1b. One may say that the corresponding

target regions (or collaborative teams) can be induced through mapping based on discovered

collaborative teams (or regions). However, since induced sets tend to be spread widely, a too large

region (or collaborative team) may be assigned to a small collaborative team (or region). In addition,

induced sets tend to easily overlap, resulting in unnecessary duplication. □

We formulate geosocial co-clustering as amatrix tri-factorization problem. Here, a user-to-location
matrix is constructed with elements that represent the frequencies of visits to a set of locations by

a set of users. This matrix is then factorized into a user membership matrix, a scale matrix, and a
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Fig. 2. Efficacy of GEOCODE for different degrees of mapping clusterability. The geosocial data set manifests
the highest degree of mapping clusterability and thus benefits from GEOCODE most.

location membership matrix. The user membership matrix defines the membership of a user in a

user-side cluster, and the location membership matrix defines the membership of a location in a

location-side cluster. While this formulation is theoretically sound, actually computing the solution

is known to be very costly. The state-of-the-art algorithm [16] has quadratic time complexity per

iteration with the number of users and the number of locations.

1.2 GEOCODE Framework
In order to address the efficiency issue of geosocial co-clustering, we propose a framework for

finding an approximate solution of the matrix factorization. We call this framework GEOCODE,
which stands for GEOsocial COarsening and DEcomposition. GEOCODE is geared for geosocial

networks which have a few intrinsic properties stemming from mapping clusterability (see Example

1.3): notably, (i) social relationships and geographic preferences are strongly correlated [4, 10, 42],

and (ii) the degrees of social relationships and the populations of the places all follow the power-law

distribution. We take advantage of these properties in order to improve the efficiency of geosocial

co-clustering without losing the accuracy.

Our GEOCODE framework follows a divide-and-conquer strategy and consists of three steps:

the first step reduces the size of the whole data set, and then the second step divides it into multiple

subsets; the third step conquers each subset.

• Step 1 (Coarsening): This step coarsens users and locations in order to reduce the numbers of

rows and columns in the user-to-location matrix. Here, a set of users is collapsed into a (virtual)

user, and a set of locations is collapsed into a (virtual) location. Because of the power-law

distributions, it is reasonable for heavy users or big locations to absorb nearby insignificant

users or locations. Furthermore, because of the correlation between users and locations, this

coarsening does not significantly change the structure of the user-to-location matrix.

• Step 2 (Decomposition): This step decomposes the two-layer graph in Figure 1c into multiple

subgraphs such that the mappings between a pair of clusters that do not cross subgraph bound-

aries are minimized. For this purpose, this step first orders users and locations separately in

a line by crossing minimization [2] and then detects the best cuts by the minimum description
length (MDL) [15] principle. Each subgraph serves as a sub-matrix of the user-to-location matrix.

The time complexity of this step is only linear logarithmic in terms of the numbers of users or

locations.

• Step 3 (Partial Co-Clustering): This step runs the state-of-the-art dual regularized co-clustering
(DRCC) algorithm [16] for the matrix factorization against each sub-matrix identified in Step 2.

Running the algorithm on each sub-matrix finishes much faster than running it on the whole

matrix and can overlap through parallel execution. Therefore, the elapsed time for partial

co-clustering is much shorter than that of co-clustering on the whole.

Example 1.3. Figure 2 shows the efficacy of GEOCODE visually using three data sets in an

increasing degree of correlation: (i) random data set, (ii) word-to-doc data set (NIPS) [34], and (iii)

geosocial data set (Gowalla). The random and word-to-doc data sets show poor correlation and thus

show poor mapping clusterability. As a result, the efficacy of GEOCODE is significantly degraded
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since the whole matrix cannot be decomposed into small sub-matrices and, thus, co-clustering

cannot be performed in parallel. □

1.3 Summary
Key Contributions:
• Problem Formalization (Section 3): We formally define the problem of geosocial co-clustering to

guarantee the mapping clusterability in geosocial community detection. Then, we formulate

this problem mathematically as non-negative matrix tri-factorization with dual regularizers.

• Efficiency Enhancement (Section 4): We develop the GEOCODE framework to quickly find an

approximate solution. Our framework reduces the size of the problem through coarsening and

decomposition and also supports parallel execution of the sub-problems.

• Comprehensive Evaluation (Section 5): We empirically demonstrate the benefit of geosocial

co-clustering and the efficiency improvement of GEOCODE (19–69 times) using four real-world

data sets. GEOCODE successfully finds the geosocial communities whose members’ interests

are highly coherent.

Problem Significance: We propose to use co-clustering for geosocial community detection. Al-

though co-clustering has been popularly used for related problemswith different goals, e.g., geosocial
recommendation [5, 29, 42, 48], it has not been a dominant player in geosocial community detection.

Thus, it is worthwhile to promote co-clustering for geosocial community detection in order to

share the benefit of the co-clustering approach.

2 RELATEDWORK
2.1 Geosocial Community Detection
The major algorithms can be classified depending on how the two types of similarity are combined.

• User-centric: In these algorithms, a social distance measure is extended to consider spatial

proximity [37, 40]. Shakarian et al. [37] proposed a community detection algorithm, Louvain-D,

based on modularity maximization. Instead of using the original modularity, they used the

distance modularity where the probability that two vertices are connected in a null model is

dependent on the distance between the two vertices. Van Gennip et al. [40] proposed a spectral

clustering algorithm for geosocial networks. The value of the adjacency matrix is updated by

the weighted sum of the original value (i.e., connectivity) and the Euclidean distance between

two individuals.

• Location-centric: In these algorithms, a spatial distance measure is extended to consider social

proximity [39]. Shi et al. [39] proposed a model called density-based clustering places in geo-social
networks (DCPGS). A new geosocial distance measure between two places is defined by the

weighted sum of social distance and spatial distance between the two places, where the social

distance is defined by the number of users who visited both places. Then, a variant of DBSCAN

is performed using this new distance measure.

2.2 Co-Clustering
Co-clustering is based on the duality between data points (e.g., locations) and features (e.g., users).

That is, data points are grouped according to their distributions on features, and features are

grouped according to their distributions on data points. A majority of the algorithms adopt matrix

factorization [6, 14, 16, 38].

Algorithms based on matrix factorization are categorized by the numbers of factors and regu-

larizers. Ding et al. [6] decompose a matrix into two factor matrices with one regularizer on data

points only. Cai et al. [14] decompose a matrix into three factor matrices without regularizers. More

recently, Gu and Zhou [16] and Shang et al. [38] decompose a matrix into three factor matrices

with two regularizers on data points and features, respectively. Because of the dual regularizers, the
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algorithm by Gu and Zhou is called dual regularized co-clustering (DRCC). It optimizes one variable

while fixing the other two variables, and the dynamic variable that is optimized alternates among

the three variables. This procedure repeats until convergence, and convergence is theoretically

guaranteed. The cost of this iterative optimization is known to be very high [41]. In fact, the work

on co-clustering has used only medium-size data sets which contain up to a few hundred thousand

data points.

2.3 Other Related Problems
2.3.1 Geosocial Recommendation. Geosocial recommendation (e.g., [5, 29, 42, 48]) and geosocial

community detection commonly try to exploit social influence (social relationship), geographic

influence (spatial distance), and user preference (mapping between users and locations) all together.

However, the goal of geosocial recommendation is clearly different from that of geosocial community

detection, because geosocial recommendation aims at predicting the probability that a user will

visit an unvisited location.

Because a few recommendation algorithms such as CLR [29] and CCCF [45] adopt co-clustering,

one might argue that the communities obtained by these algorithms could be used for our purpose.

However, co-clustering in recommendation is mainly used to confine the search space to a specific

community. Thus, co-clustering should be accompanied with further refinement or collaborative

filtering, and it does not need to be as sophisticated as our geosocial co-clustering. As far as we

know, none of co-clustering in recommendation fully uses the above-mentioned three aspects.

2.3.2 Geosocial GroupQuerying. Geosocial group querying (e.g., [3, 30, 33, 46]) and geosocial

community detection commonly aim at finding users that satisfy both social and spatial constraints,

but geosocial group querying is clearly distinct in that it requires a query user or location to be

given whereas geosocial community detection does not. Besides, although geosocial group querying

is proven to be useful for several applications, there are still many other applications that need

geosocial community detection, especially when providing a query point or user is infeasible or

inapplicable, e.g., terrorist monitoring [32, 37] and criminal monitoring [40].

3 PROBLEM STATEMENT
In this section, we formally define the problem of geosocial co-clustering and formulate it by matrix

factorization. Table 1 summarizes the notation used throughout this paper.

3.1 Geosocial Co-Clustering
First, the user-to-location matrix X is constructed by Eq. (1), where 𝑓 (𝑣𝑖 , 𝑙 𝑗 ) indicates the number of

visits by a user 𝑣𝑖 to a location 𝑙 𝑗 . The location vector and the visitor vector are introduced using X
in Definitions 3.1 and 3.2.

X = [𝑋𝑖, 𝑗 ], where 𝑋𝑖, 𝑗 = 𝑓 (𝑣𝑖 , 𝑙 𝑗 ) (1)

Definition 3.1. The location vector of a user 𝑣𝑖 , L(𝑣𝑖 ), is the 𝑖-th row vector of X, which represents

the number of times 𝑣𝑖 has visited 𝑙 𝑗 ( 𝑗 = 1, . . . , 𝑛𝐿). □

Definition 3.2. The visitor vector of a location 𝑙 𝑗 , V(𝑙 𝑗 ), is the 𝑗-th column vector of X, which
represents the number of times 𝑙 𝑗 has been visited by 𝑣𝑖 (𝑖 = 1, . . . , 𝑛𝑈 ). □

Next, a geosocial network is formally defined by adding the mappings to an ordinary graph, as in

Definition 3.3.

Definition 3.3. A geosocial network is an attributed graph G = (𝑉 , 𝐸, 𝐿, F ), where 𝑉 is the set

of vertices (i.e., users), 𝐸 is the set of edges (i.e., social relationships between users), 𝐿 is the set of

locations, and F is a mapping from a user 𝑣𝑖 onto a location vector L(𝑣𝑖 ). Formally, F : 𝑉 → N𝑛𝐿
.

□
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Table 1. Summary of the notation.

Notation Description

G = (𝑉 , 𝐸, 𝐿, F ) a geosocial network (𝑉 : users; 𝐸: user-user relationships; 𝐿:

locations; F : user-to-location mappings)

𝑣𝑖 or 𝑣 𝑗 ∈ 𝑉 a vertex, i.e., a user

𝑙𝑖 or 𝑙 𝑗 ∈ 𝐿 a location

𝑛𝑈 = |𝑉 | the total number of users

𝑛𝐿 = |𝐿 | the total number of locations

𝑓 (𝑣𝑖 , 𝑙 𝑗 ) frequency of user-to-location mappings

L(𝑣𝑖 ) the location vector of the user 𝑣𝑖

V(𝑙𝑖 ) the visitor vector of the location 𝑙𝑖

𝐷𝑆 (𝑣𝑖 , 𝑣 𝑗 ) the social distance between 𝑣𝑖 and 𝑣 𝑗
𝐷𝑃 (𝑙𝑖 , 𝑙 𝑗 ) the spatial distance between 𝑙𝑖 and 𝑙 𝑗
G𝐿 = {𝑉𝐿, 𝐸𝐿} a square grid graph (𝑉𝐿 : grid centers; 𝐸𝐿 : grid connections)

𝐶 ∈ C a geosocial community
𝑛𝐶 = |C| the number of geosocial communities

U the user membership matrix

𝑅 ∈ R a geosocial region
𝑛𝑅 = |R | the number of geosocial regions

K the location membership matrix

X the user-to-location matrix

𝜀

𝑙𝑖

𝑙𝑗

𝑔𝑗𝑔𝑖

Fig. 3. Square grid graph over the spatial domain.

For 𝑉 and 𝐿, any distance metrics can be used for the social distance 𝐷𝑆 and the spatial distance

𝐷𝑃 . We use the following metrics for simplicity, both based on the commonly used notion of the

shortest-path distance in a graph. Again, the framework is independent of the choice of distance

metrics.

• 𝐷𝑆 (𝑣𝑖 , 𝑣 𝑗 ): We use the shortest-path distance [31] between two users 𝑣𝑖 and 𝑣 𝑗 on G. That is, it is
the length (number of edges) of the shortest paths.

• 𝐷𝑃 (𝑙𝑖 , 𝑙 𝑗 ): We use the Manhattan-like distance because the users are likely to move within cities.

We first partition the spatial extent into square grids of side length 𝜀, thus constructing a square
grid graph G𝐿 = {𝑉𝐿, 𝐸𝐿} in Figure 3. Here, a vertex is the center of a grid square, and an edge

connects the centers of two adjacent grid squares. Let 𝑔𝑖 and 𝑔 𝑗 be the vertices (i.e., centers)

of grid squares holding two locations 𝑙𝑖 and 𝑙 𝑗 . Then, 𝐷𝑃 (𝑙𝑖 , 𝑙 𝑗 ) is the shortest-path distance

between 𝑔𝑖 and 𝑔 𝑗 on the square grid graph.

Then, the communities on the user side and the clusters (regions) on the location side are defined

in Definitions 3.4 and 3.5 respectively. Here, the number of geosocial communities, 𝑛𝐶 , and the

number of geosocial regions, 𝑛𝑅 , are given by users as in the 𝑘-means algorithm. There are several

heuristics (e.g., [7, 8, 17]) that can be applied to determine the values of 𝑛𝐶 and 𝑛𝑅 .

Definition 3.4. Geosocial communities are disjoint sets of similar users in terms of their spatial

presences and social relationships. The optimal set of 𝑛𝐶 geosocial communities is defined as

C = {𝐶1, . . . ,𝐶𝑛𝐶 } that satisfies the following conditions simultaneously:

(1)

∑
𝐶∈C

∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝐶,𝑣𝑖≠𝑣𝑗 ∥L(𝑣𝑖 ) − L(𝑣 𝑗 )∥ is minimized, and
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(2)

∑
𝐶∈C

∑
𝑣𝑖 ∈𝐶,𝑣𝑗 ∈𝐶,𝑣𝑖≠𝑣𝑗 𝐷𝑆 (𝑣𝑖 , 𝑣 𝑗 ) is minimized. □

Definition 3.5. Geosocial regions are disjoint sets of similar locations in terms of their spatial

distances and shared visitors. The optimal set of 𝑛𝑅 geosocial regions is defined as R = {𝑅1, . . . , 𝑅𝑛𝑅 }
that satisfies the following conditions simultaneously:

(1)

∑
𝑅∈R

∑
𝑙𝑖 ∈𝑅,𝑙 𝑗 ∈𝑅,𝑙𝑖≠𝑙 𝑗 ∥V(𝑙𝑖 ) − V(𝑙 𝑗 )∥ is minimized, and

(2)

∑
𝑅∈R

∑
𝑙𝑖 ∈𝑅,𝑙 𝑗 ∈𝑅,𝑙𝑖≠𝑙 𝑗 𝐷𝑃 (𝑙𝑖 , 𝑙 𝑗 ) is minimized. □

In addition, the goodness of geosocial co-clustering is formalized by Definition 3.6.

Definition 3.6. The mapping clusterability between communities and regions is the proportion of

the mappings in the matching pairs of a community and a region (e.g., solid-line boxes in Figure 1c)

out of all pairs between them. To formalize the matching pairs, first let𝑀𝑆 (𝐶, 𝑅) be the strength of

mapping between a community 𝐶 and a region 𝑅 defined by Eq. (2).

𝑀𝑆 (𝐶, 𝑅) =
∑

𝑣𝑖 ∈𝐶,𝑙 𝑗 ∈𝑅
𝑓 (𝑣𝑖 , 𝑙 𝑗 ) (2)

Then,M(C,R) defined by Eq. (3) is the set of matching pairs, with the maximum strength of

mapping, between C and R; the mapping is from the larger set to the smaller set, and argmax here

returns a singleton set by breaking a tie in the mapping strength arbitrarily.

M(C,R) =
{
{(𝐶;𝑅′) | 𝐶 ∈ C, 𝑅′ ∈ argmax𝑅∈R 𝑀𝑆 (𝐶, 𝑅)} if 𝑛𝐶 ≥ 𝑛𝑅
{(𝐶 ′;𝑅) | 𝐶 ′ ∈ argmax𝐶∈C𝑀𝑆 (𝐶, 𝑅), 𝑅 ∈ R} otherwise

(3)

The mapping clusterability is then formulated by Eq. (4), which calculates the ratio of the total

mapping strength of matching pairs over the total mapping strength of all pairs from C and R.

𝑀𝑎𝑝𝑝𝑖𝑛𝑔_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (C,R) =
∑
(𝐶 ;𝑅) ∈M(C,R) 𝑀𝑆 (𝐶, 𝑅)∑

𝐶∈C,𝑅∈R 𝑀𝑆 (𝐶, 𝑅)
(4)

There are three aspects considered altogether in geosocial co-clustering: (i) social similarity

on the user side, (ii) spatial similarity on the location side, and (iii) mapping between users and

locations. The social similarity aspect is addressed by the second requirement of Definition 3.4, and

the spatial similarity aspect by the second requirement of Definition 3.5. The mapping aspect, that

is mapping clusterability, is satisfied by the first requirements of Definitions 3.4 and 3.5, as they

make the mappings from a subset on one side head for the same subset on the other side.

Based on these three aspects, the geosocial co-clustering is defined as in Definition 3.7.

Definition 3.7. Given a geosocial networkG, geosocial co-clustering finds a disjoint set of geosocial
communities, C = {𝐶1, . . . ,𝐶𝑛𝐶 }, and a disjoint set of geosocial regions, R = {𝑅1, . . . , 𝑅𝑛𝑅 }, simulta-

neously in one process to maximize an objective that combines the three aspects in Definitions 3.4,

3.5, and 3.6. □

3.2 Formulation by Matrix Factorization
We translate the problem of geosocial co-clustering in Definition 3.7 to that of non-negative matrix

tri-factorization [16].

3.2.1 Input Data Matrices. There are three input matrices for the three aspects of geosocial

co-clustering.

• A user affinity matrix WU
in Eq. (5) is an 𝑛𝑈 × 𝑛𝑈 matrix, where an element𝑊𝑈

𝑖,𝑗 represents

whether two users 𝑣𝑖 and 𝑣 𝑗 are adjacent in G.

𝑊𝑈
𝑖,𝑗 =

{
1, 𝐷𝑆 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 1

0, otherwise

(5)
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• A location affinity matrix WL
in Eq. (6) is an 𝑛𝐿 × 𝑛𝐿 matrix, where an element𝑊 𝐿

𝑖,𝑗 represents

whether the locations 𝑙𝑖 and 𝑙 𝑗 are placed in the same grid square or in two adjacent grid squares.

𝑊 𝐿
𝑖,𝑗 =

{
1, 𝐷𝑃 (𝑙𝑖 , 𝑙 𝑗 ) ≤ 1

0, otherwise

(6)

• A user-to-location matrix X in Eq. (1) is an 𝑛𝑈 × 𝑛𝐿 matrix.

This simple affinity is widely used in co-clustering studies (e.g., [16, 41, 49]) since it has an

advantage that does not require tuning parameters [16]. Of course, other kinds of affinity, such as

heat kernel [18] and dot-product weighting [6], can be utilized as well; in such other affinity, WU

and WL
have a real value between 0 and 1, not just either 0 or 1.

3.2.2 Output Membership Matrices. The goal of our problem is to group the users into 𝑛𝐶
communities C = {𝐶1, . . . ,𝐶𝑛𝐶 } as well as to group the locations into 𝑛𝑅 regions R = {𝑅1, . . . , 𝑅𝑛𝑅 }.
Thus, we need to obtain the matrices that represent the membership of each user in a community

and that of each location to a region. The membership matrix U ∈ {0, 1}𝑛𝑈 ×𝑛𝐶 holds the clustering

result of users.𝑈𝑖, 𝑗 becomes 1 if the user 𝑣𝑖 belongs to the community𝐶 𝑗 and 0 otherwise. Similarly,

we use another membership matrix K ∈ {0, 1}𝑛𝐿×𝑛𝑅
that holds the clustering result of locations.

3.2.3 Objective Function. The objective function incorporates the three aspects of geosocial

co-clustering.

First, to support the social similarity aspect as in Definition 3.4, high similarity between two users

is penalized unless they belong to the same community. This requirement is formulated by Eq. (7).

Here, the graph Laplacian is given by K𝑈 = D𝑈 −W𝑈
; W𝑈

defined as Eq. (5) is the symmetric

adjacency matrix, and D𝑈
is a diagonal matrix with the degree of each vertex where 𝐷𝑈

𝑖,𝑖 =
∑

𝑗𝑊
𝑈
𝑖,𝑗 ,

i.e., the column sums of W𝑈
.

𝐽𝑠𝑜𝑐𝑖𝑎𝑙 =
∑
𝑖, 𝑗

∥𝑈𝑖 −𝑈 𝑗 ∥2𝑊𝑈
𝑖,𝑗 = 2Tr(U𝑇D𝑈U) − 2Tr(U𝑇W𝑈U) = 2Tr(U𝑇K𝑈U) (7)

Second, to support the spatial similarity aspect as in Definition 3.5, high similarity between two

locations is penalized unless they belong to the same region. This requirement is formulated by

Eq. (8). Here, the graph Laplacian is given by 𝐾𝐿 = D𝐿 −W𝐿
, where 𝐷𝐿

𝑖,𝑖 =
∑

𝑗𝑊
𝐿
𝑖,𝑗 .

𝐽𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =
∑
𝑖, 𝑗

∥𝐿𝑖 − 𝐿 𝑗 ∥2𝑊 𝐿
𝑖,𝑗 = 2Tr(K𝑇D𝐿K) − 2Tr(K𝑇W𝐿K) = 2Tr(K𝑇K𝐿K) (8)

Third, to support the mapping aspect as in Definition 3.6, the users in a specific community

and the locations in a specific region should have as tight connections as possible. This is where

co-clustering [16, 38, 41] kicks in. The objective function of co-clustering is usually represented

by non-negative matrix (tri-)factorization, as in Eq. (9). Here, ∥ · ∥ represents the Frobenius norm.

Compared to two-factor factorization, tri-factorization provides a better approximation by the

addition of the scale matrix S, which absorbs the different scales of X, U, and K [41].

𝐽𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = ∥X − USK𝑇 ∥2𝐹 (9)

Putting Eqs. (7), (8), and (9) together, our problem is to minimize Eq. (10) in accordance with

Definition 3.7. Here, 𝜆 ≥ 0 and 𝜇 ≥ 0 are used to balance the reconstruction error of co-clustering in

the first term (Eq. (9)) against the quality of the geosocial communities in the second term (Eq. (7))

and that of the geosocial regions in the third term (Eq. (8)), respectively. Thus, Eq. (10) is represented

as non-negative matrix tri-factorization with dual regularizers (i.e., the second term and the third

term). We relax the binary constraints of U and K to facilitate optimization as in other co-clustering

algorithms.

𝐽𝐺𝐸𝑂_𝐶𝐶 = ∥X − USK𝑇 ∥2𝐹 + 𝜆 · 2Tr(U𝑇K𝑈U) + 𝜇 · 2Tr(K𝑇K𝐿K) s.t. U ≥ 0,K ≥ 0 (10)
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Fig. 4. Illustration of the overall procedure of GEOCODE.

ALGORITHM 1: GEOCODE (Main Framework)

Input: G, 𝑛𝐶 , 𝑛𝑅 : Table 1; 𝜆, 𝜇: regularization parameters;

Output: C and R;
1: C ← ∅, R ← ∅; /* Initialization */

2: /* Step 1: Coarsening (Section 4.1) */

3: G′ = (𝑉 ′, 𝐸 ′, 𝐿′, F ′) ← Coarsening(G);
4: /* Step 2: Decomposition (Sections 4.2–4.3) */

5: Ordered 𝑉 ′ and 𝐿′← CrossingMinimization(G′); /* Step 2-1: Algorithm 2 */

6: G′
1
,G′

2
, . . .← Cut Point Detection(Ordered 𝑉 ′ and 𝐿′); /* Step 2-2: Algorithm 3 */

7: /* Step 3: Partial Co-Clustering (Section 4.4) */

8: parallel for each G′
𝑖
do

9: 𝑛′
𝐶
, 𝑛′

𝑅
← Parameter Setting(G′

𝑖
, 𝑛𝐶 , 𝑛𝑅 );

10: C𝑖 ,R𝑖 ← Partial Co-Clustering(G′
𝑖
, 𝑛′

𝐶
, 𝑛′

𝑅
, 𝜆, 𝜇);

11: C ← C ∪ C𝑖 , R ← R ∪ R𝑖 ;
12: end parallel for
13: return C and R;

3.2.4 Co-Clustering Algorithm. The DRCC algorithm [16] optimizes the objective with respect

to one variable while fixing the other variables. This procedure repeats until convergence, because

convergence is theoretically guaranteed [16]. Using dual regularizers and tri-factorization is shown

to improve the quality of the clustering result [16, 38]. Despite this advantage, the algorithm

notoriously suffers from slow computation speed because of intensive matrix multiplications

involved in each iteration step [41], which makes co-clustering difficult to support large-scale

geosocial networks in the real world. Its time complexity is proven to be 𝑂 (𝑁 2), where 𝑁 =

𝑚𝑎𝑥 (𝑛𝑈 , 𝑛𝐿).

4 GEOCODE FRAMEWORK
This section proposes GEOCODE developed for fast and accurate approximate processing of

geosocial co-clustering in Section 3.

Recap on Overall Procedure: GEOCODE consists of three steps, as illustrated in Figure 4. Algo-

rithm 1 outlines the overall procedure of GEOCODE.

• Step 1 (Coarsening) coarsens users and locations in order to reduce the size of a geosocial

network (Section 4.1). For example, 𝑣 ′
5
replaces a merger of 𝑣5, 𝑣7, and 𝑣9 in Figure 4.

• Step 2 (Decomposition) first reorders users and locations for easy decomposition (Section 4.2)

and then finds the optimal cuts to derive multiple sub-matrices (Section 4.3). For example, in

Figure 4 the nodes 𝑣1−𝑣4 and the nodes 𝑙7−𝑙10 constitute a sub-matrix.

• Step 3 (Partial Co-Clustering) solves co-clustering for each sub-matrix and merge the solu-

tions (Section 4.4).

Design Rationale: The coarsening and decomposition do not damage the accuracy significantly,

due to the following rationales behind them.

• Coarsening is mainly motivated by the power-law distributions of social connections and spatial

densities. The active users with many social connections become the centers of groups in social
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coarsening, and other neighboring users collapse into their groups. A similar idea holds for very

densely-populated grids in spatial coarsening.

• Decomposition benefits from the correlation between friendship and distance [4, 10, 42]. The

locations visited by a user have strong clustering tendency because their frequency degrades

inversely proportional to the distance from home [42, 48]. This clustering tendency tends to be

shared by the users tied with social friendship. Therefore, the subsets of the users and locations

connected by the common user-to-location mapping are typically cleanly identifiable.

4.1 Step 1: Coarsening
A geosocial network G = (𝑉 , 𝐸, 𝐿, F ) is reduced in size to G′ = (𝑉 ′, 𝐸 ′, 𝐿′, F ′) through social and

spatial coarsening. Social coarsening encapsulates a socially connected user group into one virtual

user (Definition 4.1). Spatial coarsening approximates the spatial coordinate of locations by space

partitioning (Definition 4.2).

Definition 4.1. Social coarsening converts the original set of vertices and edges (𝑉 , 𝐸) to a reduced
set of vertices and edges (𝑉 ′, 𝐸 ′), as defined by Eqs. (11) and (12). A single edge 𝑒𝑖, 𝑗 ∈ 𝐸 is selected

by a certain rule, and the two endpoints 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 are merged into 𝑣𝑛𝑒𝑤 . The edges that were

incident to either 𝑣𝑖 or 𝑣 𝑗 now point to the newly added vertex 𝑣𝑛𝑒𝑤 . □

𝑉 ′ = 𝑉 \ {𝑣𝑖 , 𝑣 𝑗 } ∪ {𝑣𝑛𝑒𝑤} (11)

𝐸 ′ = 𝐸 \ {𝑒𝑖, 𝑗 }
\ {𝑒𝑖,𝑘 | 𝑒𝑖,𝑘 ∈ 𝐸 ∧ 1 ≤ 𝑘 ≤ 𝑛𝑈 } \ {𝑒𝑘,𝑗 | 𝑒𝑘,𝑗 ∈ 𝐸 ∧ 1 ≤ 𝑘 ≤ 𝑛𝑈 }
∪ {𝑒𝑛𝑒𝑤,𝑘 | 𝑒𝑖,𝑘 ∈ 𝐸 ∧ 1 ≤ 𝑘 ≤ 𝑛𝑈 } ∪ {𝑒𝑘,𝑛𝑒𝑤 | 𝑒𝑘,𝑗 ∈ 𝐸 ∧ 1 ≤ 𝑘 ≤ 𝑛𝑈 }

(12)

In social coarsening, the key issue is how to pick the edges whose end vertices will be merged.

We use a simple yet effective heuristic called the sorted heavy edge matching [20], following the

power-law distributions of social connections. It visits the vertices in the ascending order of their

degrees while breaking ties randomly; for each vertex visited, it selects an incident edge with the

highest weight among those whose end vertices have not merged yet, and then goes to the next

vertex in the order of degree. This step repeats until the total number of vertices becomes a certain

percentage of that of the original graph. A benefit of this heuristic is that the partitions of a coarser

graph tend to have relatively small edge cuts [20].

Definition 4.2. Spatial coarsening converts the original set of locations 𝐿 to a reduced set of

locations 𝐿′ by dividing the spatial domain into larger grid squares of side length 𝜀 ′ (> 𝜀). Note that
locations are collapsed to the center points of the grid squares of G𝐿 . (See Figure 3 about G𝐿 .) □

The mapping between users and locations, F , is updated to reflect the coarsened users and

locations.

4.2 Step 2-1: Crossing Minimization
This step aims to achieve the same effects as the three terms in Eq. (10) with regard to the co-

clustering. In Eq. (10), the first term pressures the algorithm toward clustering themappings between
users and locations into “bundles” (i.e., partitioned collections of mappings), the second term toward

clustering similar users together, and the third term toward clustering similar locations together.
With the coarsening in place, in GEOCODE we use crossing minimization to pressure the algorithm

toward clustering the mappings and use two types of network motifs—social motif and spatial
motif—toward clustering similar users and similar locations, respectively.

Crossing minimization reorders the vertices on both sides of a bipartite graph such that the

number of edge crossings is minimized. For example, the input bipartite graph in Figure 5a has

28 crossings, whereas the optimal solution in Figure 5b has only 10 crossings. It has the same

effect of minimizing the first term in Eq. (10) because it can be used to obtain a solution of spectral
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Fig. 5. Example of crossing minimization.
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Fig. 6. Concept of the motif-based weighting.

clustering [2]. Note that Laplacian-based spectral clustering is equivalent to non-negative matrix

factorization [13]. Because optimal crossing minimization is NP-hard [2], several heuristics have

been proposed, including the barycenter heuristic [2]. This heuristic assigns a new rank of a vertex

on one side using theweightedmean of the ranks of its neighbors on the other side until convergence

is reached. The intuition here is that the vertices with similar mappings (i.e., set of neighbors on

the other side) should have similar ranks.

4.2.1 Motif-Based Weighting Scheme. In order to support the second and third terms as well,

we extend the barycenter heuristic by proposing a novel weighting scheme, called the motif-based
weighting. In Definition 4.3, the weight of an edge ⟨𝑣𝑖 , 𝑙 𝑗 ⟩ between a user 𝑣𝑖 and a location 𝑙 𝑗 contains
not only the number of visits by 𝑣𝑖 to 𝑙 𝑗 but also the number of triads formed by social relationship,

called social motifs, and that of triads formed by spatial adjacency, called spatial motifs. For example,

a social motif is formed by 𝑣3, 𝑣5, and 𝑙5 in Figure 6, where the edge between 𝑣3 and 𝑣5 indicates

social relationship.

Definition 4.3. The motif-based weighting is to assign the weight of an edge ⟨𝑣𝑖 , 𝑙 𝑗 ⟩ by 𝑤𝑖, 𝑗 =

𝑋𝑖, 𝑗 + 𝜆 · 𝑠𝑚𝑖, 𝑗 + 𝜇 · 𝑝𝑚𝑖, 𝑗 , where 𝑠𝑚𝑖, 𝑗 and 𝑝𝑚𝑖, 𝑗 are, respectively, the numbers of social and

spatial motifs that the edge belongs to. 𝑋𝑖, 𝑗 is the number of visits by 𝑣𝑖 to 𝑙 𝑗 , and 𝜆 and 𝜇 are the

regularization parameters in Eq. (10). □

By adding the motif-based weighting to the barycenter heuristic, the rank of a vertex on each

side is determined by Eq. (13).

𝑟𝑛𝑒𝑤𝑖 =

∑
𝑗 ∈N(𝑖) 𝑤𝑖, 𝑗 × 𝑟 𝑗∑

𝑗 ∈N(𝑖) 𝑤𝑖, 𝑗

(13)

Here, 𝑟𝑛𝑒𝑤
𝑖

is the new rank of the 𝑖-th vertex on one side, 𝑟 𝑗 is the current rank of the 𝑗-th vertex on

the other side, and N(𝑖) is the neighbors of the 𝑖-th vertex.

The weight of an edge is boosted if it is involved in social or spatial motifs, which makes the

rank of a common neighbor vertex more heavily affect those of the vertices socially or spatially

close. For example, the ranks of 𝑣3 and 𝑣5, which are socially close, are heavily affected by the rank

of 𝑙5. In this way, reordering takes account of social relationship and spatial adjacency as well as

mapping clusterability.

Example 4.4. In Figure 6, suppose that 𝑋𝑖, 𝑗 ’s are all 1. In the typical weighting scheme using only

𝑋𝑖, 𝑗 , the new ranks on the user side are determined by the averages of the ranks of the neighbors,

which are 1.5, 1.5, 3.5, 3.5, and 4. Then, 𝑣3 and 𝑣5 may not have consecutive ranks since 𝑣4 can be

placed between them. In contrast, assuming 𝜆 = 𝜇 = 1 for simplicity of calculation, the motif-based
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weighting boosts the ranks of 𝑣3 and 𝑣5 to 4 and 4.3 respectively. Now, 𝑣3 and 𝑣5 should have

consecutive ranks. □

ALGORITHM 2: Motif-Based Crossing Minimization

Input: G′; unordered 𝑉 ′ and 𝐿′;
Output: ordered 𝑉 ′ and 𝐿′;
1: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝑖𝑑𝑒 ← 𝑉 ′, 𝑠𝑡𝑎𝑡𝑖𝑐𝑆𝑖𝑑𝑒 ← 𝐿′;
2: repeat
3: 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒;

4: for each 𝑖 ∈ 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝑖𝑑𝑒 do
5: 𝑟𝑛𝑒𝑤

𝑖
← Calculate using Eq. (13); /* Determine 𝑖’s new rank */

6: if 𝑟𝑖 ≠ ⌊𝑟𝑛𝑒𝑤𝑖
⌋ and 𝑟𝑖 ≠ ⌈𝑟𝑛𝑒𝑤𝑖

⌉ then
7: 𝑟𝑖 ← 𝑟𝑛𝑒𝑤

𝑖
, 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒;

8: end if
9: end for
10: Sort all vertices in 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝑖𝑑𝑒 by 𝑟𝑖 ’s;

11: Adjust their ranks in the sorted order;

12: Swap 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝑖𝑑𝑒 and 𝑠𝑡𝑎𝑡𝑖𝑐𝑆𝑖𝑑𝑒;

13: until 𝑖𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ≠ 𝑡𝑟𝑢𝑒;

14: return ordered 𝑉 ′ and 𝐿′;

4.2.2 Algorithm Details. Algorithm 2 outlines the steps of motif-based crossing minimization.

One side of the input bipartite graph in Figure 1 is static, and the other sides is dynamic; the

roles of the two sides are switched through iterations until there occurs no more change of ranks.

Specifically, in each iteration, for each vertex 𝑖 on the dynamic side (either 𝑉 ′ or 𝐿′), its new rank

𝑟𝑛𝑒𝑤
𝑖

is calculated by Eq. (13) (Line 5). Finally, the ranks are determined by assigning a unique

integer index in the order of 𝑟𝑖 (Lines 10 to 11).

Theorem 4.5. The time complexity of the motif-based crossing minimization in Algorithm 2 is
𝑂 (𝑡 ( |𝑉 ′ | + |𝑉 ′ | log |𝑉 ′ | + |𝐿′ | + |𝐿′ | log |𝐿′ |)), where 𝑡 is the number of iterations performed. This
complexity can be expressed as 𝑂 (𝑡 𝑁 log𝑁 ), where 𝑁 = max( |𝑉 ′ |, |𝐿′ |).

Proof. Suppose that the dynamic side is 𝑉 ′. In each iteration of the REPEAT loop (Lines 2 to

13), calculating 𝑟𝑛𝑒𝑤
𝑖

for each vertex takes 𝑂 (⟨𝑑𝑣⟩ · |𝑉 ′ |), where ⟨𝑑𝑣⟩ is the average number of

user-to-location mappings per user (Lines 4 to 9); sorting all vertices takes 𝑂 ( |𝑉 ′ | log |𝑉 ′ |) (Line
10); adjusting the ranks of the vertices takes𝑂 ( |𝑉 ′ |). When the dynamic side is switched to 𝐿′, |𝑉 ′ |
should be replaced with |𝐿′ |. Since 𝑑𝑣 ≪ |𝑉 ′ | and 𝑑𝑙 ≪ |𝐿′ |, the total complexity of the REPEAT

loop can be expressed as 𝑂 (𝑡 ( |𝑉 ′ | + |𝑉 ′ | log |𝑉 ′ | + |𝐿′ | + |𝐿′ | log |𝐿′ |)). It can be further simplified

to 𝑂 (𝑡 𝑁 log𝑁 ), where 𝑁 = max( |𝑉 ′ |, |𝐿′ |). □

4.3 Step 2-2: Cut Detection
After the vertices on the two sides are reordered individually, this step aims to split them into

multiple subsets like those boxed in Figure 5b, each of which forms a sub-matrix of the user-to-

location matrix X. A set of 𝑘 − 1 cuts divide the set of users (or locations) into 𝑘 subsets with

maintaining their order. That is, the elements until the cut and those after the cut are allocated to

different subsets. Then, each sub-matrix is determined by Definition 4.6. The two subsets of the

same order form a sub-matrix since the users should have dense mappings with the locations of

similar ranks, and vice versa.

Definition 4.6. 𝑉 ′ is split into {𝑉 ′
1
, . . . ,𝑉 ′

𝑘
} where ∀𝑖 ≠ 𝑗 ,𝑉 ′𝑖 ∩𝑉 ′𝑗 = ∅ and

⋃𝑘
𝑖=1𝑉

′
𝑖 = 𝑉 ′; 𝐿′ is split

into {𝐿′
1
, . . . , 𝐿′

𝑘
} where ∀𝑖 ≠ 𝑗 , 𝐿′𝑖 ∩ 𝐿′𝑗 = ∅ and

⋃𝑘
𝑗=1 𝐿

′
𝑖 = 𝐿

′
. Then, a sub-matrix 𝐷𝑖 = ⟨𝑉 ′𝑖 , 𝐿′𝑖 ⟩ is

defined as mappings between users in 𝑉 ′𝑖 and locations in 𝐿′𝑖 . □

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00. Publication date: 0000.
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Table 2. The notation for the MDL formulation.

Notation Description
𝐷𝑖 a sub-matrix

𝑠𝑉 (𝐷𝑖 ) the number of users in 𝐷𝑖

𝑠𝐿 (𝐷𝑖 ) the number of locations in 𝐷𝑖

𝑛(𝐷𝑖 ) the number of possible mappings in 𝐷𝑖 (= 𝑠𝑉 (𝐷𝑖 ) × 𝑠𝐿 (𝐷𝑖 ))
𝑛0 (𝐷𝑖 ) the number of mapping absences in 𝐷𝑖

𝑛1 (𝐷𝑖 ) the number of mapping existences in 𝐷𝑖

𝐶 (𝐷𝑖 ) the code cost of 𝐷𝑖

The key technical challenge is to select the optimal set of cuts. To this end, we contend that

conciseness and homogeneity should be satisfied. Conciseness keeps the cut from generating too

many small sub-matrices, because communities or regions crossing sub-matrix boundaries cannot

be discovered by GEOCODE. Homogeneity drives the user-to-location mappings within each

sub-matrix to be as similar as possible. That is, the users should have similar location vectors

(Definition 3.1), and at the same time, the locations should have similar visitor vectors (Definition

3.2).

Evidently, there is a trade-off between these two properties. In one extreme, one can make the

entire user-to-location matrix a sub-matrix, but then the homogeneity in the entire matrix will be

very poor. In the other extreme, one can make each pair of vertices a sub-matrix, which achieves

the highest homogeneity because a single user or location has the same mapping by itself. It thus

offers an optimization problem, which can be formulated by the minimum description length (MDL)

principle [15].

4.3.1 Formalization Using the MDL Principle. The cost of the MDL principle consists of two

components: 𝐿(𝐻 ) and 𝐿(𝐷 |𝐻 ). Here, 𝐻 means the hypothesis, and 𝐷 means the data. The two

components are informally stated as follows [15]: “𝐿(𝐻 ) is the length, in bits, of the description of

the hypothesis; and 𝐿(𝐷 |𝐻 ) is the length, in bits, of the description of the data when encoded with

the help of the hypothesis.” The best hypothesis 𝐻 to explain 𝐷 is the one that minimizes the sum

of 𝐿(𝐻 ) and 𝐿(𝐷 |𝐻 ).
𝐻 corresponds to the cuts of the user and location sides, and𝐷 corresponds to the user-to-location

mappings. As a result, finding a good split translates to finding the best hypothesis using the MDL

principle. Table 2 summarizes the notation used here.

• 𝐿(𝐻 ) is formulated by Eq. (14). The first term is required to describe the number of sub-matrices.

Here, log
∗
is the universal code length for integers [26]. The second and third terms are required

to describe the number of users and the number of locations, in each sub-matrix 𝐷𝑖 .

𝐿(𝐻 ) = log
∗ 𝑘 +

𝑘∑
𝑖=1

{
⌈log

2
𝑠𝑉 (𝐷𝑖 )⌉ + ⌈log2 𝑠𝐿 (𝐷𝑖 )⌉

}
(14)

• 𝐿(𝐷 |𝐻 ) is formulated by Eq. (15). The first term is required to describe the number of possible

mappings in 𝐷𝑖 . The second term, called the code cost, represents the number of bits required to

transmit the user-to-location mappings within 𝐷𝑖 . If the mappings coincide among all users

(or locations), which means that 𝐷𝑖 is perfectly homogeneous, 𝐶 (𝐷𝑖 ) becomes zero, but if the

mappings are different among them, 𝐶 (𝐷𝑖 ) becomes high.

𝐿(𝐷 |𝐻 ) =
𝑘∑
𝑖=1

{
⌈log

2
(𝑛(𝐷𝑖 ) + 1)⌉ +𝐶 (𝐷𝑖 )

}
(15)

For the derivation of 𝐶 (𝐷𝑖 ), we regard that a mapping between a user and a location is binary,

ignoring the frequency for simplicity of entropy calculation. Then, 𝑛(𝐷𝑖 ) = 𝑛0 (𝐷𝑖 ) + 𝑛1 (𝐷𝑖 ).
By the information theory, an existence of a mapping and an absence of a mapping can be
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ALGORITHM 3: Cut Detection by MDL

Input: Ordered 𝑉 ′ and 𝐿′ by Algorithm 2;

Output: A set of sub-matrices {G′
1
, . . . ,G′

𝑘
}

1: D← {⟨𝑉 ′, 𝐿′⟩},𝑚𝑖𝑛𝐶𝑜𝑠𝑡 ← 𝑀𝐷𝐿(D);
2: repeat
3: 𝑖𝑠𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒;

4: /* Pick up the one with the largest code cost */

5: 𝑚 ← argmax
1≤𝑚≤ |D | 𝐶 (⟨𝑉 ′𝑚, 𝐿′𝑚⟩);

6: /* Find the best split on the location side */

7: 𝑝 ← argmin
1≤𝑝≤𝑙𝑒𝑛𝑑

{
𝐶 (⟨𝑉 ′𝑚, 𝐿′𝑚 [1, 𝑝]⟩) +𝐶 (⟨𝑉 ′𝑚, 𝐿′𝑚 (𝑝, 𝑙𝑒𝑛𝑑 ]⟩)

}
;

8: /* Find the best split on the user side */
9: 𝑞 ← argmin

1≤𝑞≤𝑣𝑒𝑛𝑑
{
𝐶 (⟨𝑉 ′𝑚 [1, 𝑞], 𝐿′𝑚 [1, 𝑝]⟩) +𝐶 (⟨𝑉 ′𝑚 (𝑞, 𝑣𝑒𝑛𝑑 ], 𝐿′𝑚 (𝑝, 𝑙𝑒𝑛𝑑 ]⟩)

}
;

10: /* Check if the MDL cost decreases */

11: D′ ← D \ {⟨𝑉 ′𝑚, 𝐿′𝑚⟩} ∪ {⟨𝑉 ′𝑚 [1, 𝑞], 𝐿′𝑚 [1, 𝑝]⟩, ⟨𝑉 ′𝑚 (𝑞, 𝑣𝑒𝑛𝑑 ], 𝐿′𝑚 (𝑝, 𝑙𝑒𝑛𝑑 ]⟩};
12: 𝑛𝑒𝑤𝐶𝑜𝑠𝑡 ← 𝑀𝐷𝐿(D′);
13: if 𝑛𝑒𝑤𝐶𝑜𝑠𝑡 < 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 then
14: D← D′,𝑚𝑖𝑛𝐶𝑜𝑠𝑡 ← 𝑛𝑒𝑤𝐶𝑜𝑠𝑡 ;

15: 𝑖𝑠𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒;

16: end if
17: until 𝑖𝑠𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 ≠ 𝑓 𝑎𝑙𝑠𝑒;

18: return D; /* Best set of sub-matrices */

(a) (b) (c) (d)

locations
u
sers

p

q p

q

1st 2nd

Fig. 7. The first two iterations of Algorithm 3.

encoded using − log
2
𝑛1 (𝐷𝑖 )/𝑛(𝐷𝑖 ) bits and − log2 𝑛0 (𝐷𝑖 )/𝑛(𝐷𝑖 ) bits, respectively, on average.

Thus, 𝐶 (𝐷𝑖 ) is formulated by Eq. (16).

𝐶 (𝐷𝑖 ) = −𝑛(𝐷𝑖 )
∑

𝑗 ∈{0,1}

𝑛 𝑗 (𝐷𝑖 )
𝑛(𝐷𝑖 )

log
2

𝑛 𝑗 (𝐷𝑖 )
𝑛(𝐷𝑖 )

(16)

4.3.2 Algorithm Details. Although theoretically plausible, finding the best hypothesis is compu-

tationally prohibitive since we need to consider all possible splits of the entire matrix even without
knowing the number of cuts. Thus, Algorithm 3 is designed as an approximation algorithm that

progressively divides the matrix and finds a better set of sub-matrices alternately for the users

and for the locations in a greedy fashion. Initially, all users and locations form a single sub-matrix

(Line 1). In every iteration, the sub-matrix with the largest code cost is selected for split (Lines 4 to

5). Then, the best split point is determined each for the location side and the user side such that

the split minimizes the code cost (Lines 6 to 9). Here, a split is denoted by the interval of ranks

in a subset, e.g., [1, 𝑝] and (𝑝, 𝑙𝑒𝑛𝑑 ]. If this split reduces the MDL cost, the set of sub-matrices D is

updated to reflect the split (Lines 10 to 16). These procedures repeat until the MDL cost does not

decrease any longer. We note that the number of cuts is automatically determined.

Theorem 4.7. The time complexity of the cut detection in Algorithm 3 is 𝑂 (𝑡 ( |𝑉 ′ | + |𝐿′ |)), where
𝑡 is the number of iterations performed. This complexity can be expressed as 𝑂 (𝑡 𝑁 ), where 𝑁 =

max( |𝑉 ′ |, |𝐿′ |).
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Table 3. Profiles of the four real-world geosocial networks.

Data #users #locations #check-in’s #edges geosocial properties

Set (𝑛𝑈 ) (𝑛𝐿) (

∑
𝑖 𝑗 𝑓 (𝑣𝑖 , 𝑙 𝑗 )) (|𝐸 |) (𝛼) (𝛽𝑠𝑜𝑐𝑖𝑎𝑙 ) (𝛽𝑠𝑝𝑎𝑡𝑖𝑎𝑙 )

Brightkite 50,886 72,434 4,730,778 197,167 0.64 2.48 1.83

Gowalla 99,563 79,725 6,272,297 456,830 0.68 2.65 1.85

Foursquare 301,228 152,427 10,021,823 2,616,276 0.52 1.57 2.13

Foursquare_s 383 451 9,188 258 0.32 1.71 1.64

Proof. In each iteration of the REPEAT loop (Lines 2 to 17), finding the best split takes at most

𝑂 ( |𝐿′ |) for the location side (Line 7) and 𝑂 ( |𝑉 ′ |) for the user side (Line 9), because there are up to

𝑙𝑒𝑛𝑑 ≤ |𝐿′ | and 𝑣𝑒𝑛𝑑 ≤ |𝑉 ′ | possible choices, respectively. Thus, the total complexity of the REPEAT

loop can be expressed as 𝑂 (𝑡 ( |𝑉 ′ | + |𝐿′ |)). □

Figure 7 illustrates the first two iterations of Algorithm 3. In this figure, the rows indicate users,

and the columns indicate locations. A mapping is denoted by a point at the intersection of a user

and a location. In the first iteration, the best split is found along the location side (Figure 7(a))

and then the user side of the entire matrix (Figure 7(b)). In the second iteration, there are two

sub-matrices, and the second sub-matrix is selected for split. The same procedure is applied to this

sub-matrix (Figures 7(c)–(d)).

4.4 Step 3: Partial Co-Clustering
After identifying the set of sub-matrices, we can use any conventional co-clustering algorithm

for each sub-matrix. In this paper, our natural choice is the DRCC algorithm [16]. When applying

DRCC to each sub-matrix, we need to provide the number of geosocial communities and the number

of geosocial regions in that sub-matrix. To this end, 𝑛𝐶 and 𝑛𝑅 are distributed to each sub-matrix in

proportion to the sum of 𝑋𝑖, 𝑗 (i.e., the numbers of visits) in that sub-matrix out of the total sum

of 𝑋𝑖, 𝑗 . Then, the DRCC algorithm runs concurrently by using multiple threads or machines. The

results of DRCC for all sub-matrices are merged to form the final result of geosocial co-clustering.

5 EVALUATION
The evaluation was done through two sets of experiments with the following respective focuses: (i)

the benefits of using the geosocial co-clustering approach on the cluster quality (Section 5.2) and (ii)

the resulting performances of GEOCODE (Section 5.3).

All experiments were performed on a PC with Intel Core i7-3770 3.4 GHz CPU and 32 Gbyte

RAM, running Windows 7. The number of parallel threads in Step 3 was set to be 4, equal to the

number of cores. All algorithms were implemented in Java.

5.1 Experiment Setup
5.1.1 Data Sets. Four real-world geosocial networks were used in our experiments. Brightkite

and Gowalla are the popular data sets available at the SNAP repository [27]. Foursquare is provided
by the courtesy of Sarwat et al. [36]. Foursquare_s is a proprietary data set [11] collected from

Gangnam District in Seoul, Korea during the period from April to December 2012, and contains the

reviews left by users for each venue. Since Foursquare_s covers only a single district, we use it only

for case study in Section 5.2.2.

Table 3 shows the profiles of the data sets. The first four columns are generic network parameters,

and the last three columns under geosocial properties are unique to GEOCODE. Specifically, the

last three columns are geosocial correlation’s exponent (𝛼) and the power-law’s exponent (𝛽𝑠𝑜𝑐𝑖𝑎𝑙
for social connections and 𝛽𝑠𝑝𝑎𝑡𝑖𝑎𝑙 for spatial densities), expressing the two properties benefiting

GEOCODE (see Section 1.2) according to the model described below.
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Geosocial Properties Model: The geosocial correlation is defined as 𝑃 (𝑑) = 𝑑−𝛼 , the probability
that two users at distance 𝑑 are friends given the exponent 𝛼 that indicates the degree of correlation.

The power-law distribution is defined as 𝑌 = 𝑘𝑋−𝛽 , the frequency 𝑌 of a node (a user or a spatial

grid) that has the degree 𝑋 , given the scale 𝑘 and the power-law’s exponent 𝛽 . Taking the log

on both sides of the equations gives us log 𝑃 (𝑑) = −𝛼𝑑 and log𝑌 = −𝑘𝛽𝑋 , and therefore the

relationship between 𝑃 (𝑑) and 𝑑 and the relationship between 𝑌 and 𝑋 are linear in a log-log scale

when the relationships are exponential in a linear-linear scale. In this regard, the exponents 𝛼

and 𝛽 can be used as parameters indicating the geosocial properties mentioned in Section 1.2. All

geosocial network data sets showed adequate linear fitting in the log-log scale.

5.1.2 Compared Algorithms. In the first set of experiments, we compared GEOCODE with the

user-centric approach of Louvain-D [37] and the location-centric approach of DCPGS [39]. In
the second set of experiments, we compared GEOCODE with the state-of-the-art co-clustering

algorithm DRCC [16].

5.1.3 Parameter Settings. For both GEOCODE and DRCC, which are based on co-clustering, we

used the same parameter values. The regularization parameters in Eq. (10) were set to be 𝜆 = 𝜇 = 250

as empirically determined by Gu and Zhou [16]. We also verify the impact of these parameter values

in Section 5.3.3. Additionally, we set 𝑛𝐶 and 𝑛𝑅 to be a common number by a widely-accepted

heuristic for estimating the number of clusters [7, 8, 17], i.e., to ⌊𝑛𝑈 ·𝑛𝐿/|X>0 |⌋, where |X>0 | denotes
the number of non-zero elements in X. For the parameters unique to GEOCODE, the number of

sub-matrices was automatically determined by Algorithm 3, and the proportions of 𝑛𝐶 and 𝑛𝑅 for

each sub-matrix were distributed by the heuristic in Section 4.4.

For user-centric and location-centric approaches, since the semantics of their parameters are

not compatible with our approach, we used the default settings suggested by the authors. For

DCPGS, we set the minimum number of neighbors𝑚𝑖𝑛𝑃𝑡𝑠 , social constraint 𝜏 , geosocial distance

constraint 𝜖 , and balancing parameter 𝜔 for social and spatial distance to be 5, 0.7, 0.4, and 0.5,

respectively, following the default values.𝑚𝑎𝑥𝐷 , the maximum distance between two adjacent

spatial grid squares, was naturally 2

√
2 × grid square size. For Louvain-D, we set the exponential

distance decay 𝛾 to be 1/𝑒 , following the default value, too.

5.1.4 Coarsening Schemes. Coarsening is performed by GEOCODE to reduce the numbers of

users and locations almost without sacrificing accuracy. Level 0 means the original sets of users
and locations. At level 0, the grid square size in Figure 3 was set to be 5 kilometers in the first three

data sets and 100 meters in the fourth data set because it was collected from a much smaller region.

As the level increases by 1, the numbers of users and locations are reduced by approximately 20%.

In social coarsening, the sorted heavy matching algorithm [20] stops when the 20% criterion is met;

in spatial coarsening, the grid square size is gradually enlarged until the criterion is met. As a result,

|𝑉 ′ | ≈ 0.80|𝑉 | and |𝐿′ | ≈ 0.80|𝐿 | at level 1, |𝑉 ′ | ≈ 0.64|𝑉 | and |𝐿′ | ≈ 0.64|𝐿 | at level 2, and so on.

5.1.5 Performance Metrics. The following quality metrics were adopted or designed to show the

merits of GEOCODE.

User-Side Community Quality (Figure 8a): The conductance [28] was used because it is designed
for clustering of graph data.

1
It is defined as the fraction of total edge volume that points outside a

cluster. A lower value means higher cluster quality.

Location-Side Cluster Quality (Figure 8b): The silhouette coefficient [35] was used because it is

designed for clustering of spatial or numeric data. It measures how similar locations within the

1
We also used the internal density [28] as another metric. The results showed almost the same trend as the conductance.
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(c) Mapping cluster quality.

Fig. 8. Comparison of clustering quality in three aspects between geosocial co-clustering and existing
approaches.
same cluster are compared with locations in different clusters. A higher value means higher cluster

quality.

Mapping Clusterability (Figures 8c, 10, and 13): Eq. (4) in Definition 3.6 was used to quantify the

mapping clusterability.

Semantic Similarity (Table 4 and Figure 9): Additionally, we designed the following two semantic
similarity metrics for the quantifiable benefits of geosocial co-clustering in real-world applications

discussed in Section 5.2.2.

• The review similarity in Eq. (17) means the textual similarity of the review collections written

by the users in a community 𝐶 . For this measure, a term vector is created for each user using

his/her reviews, and cosine similarity is calculated for each pair of the term vectors 𝒖𝑖 and 𝒖 𝑗 .

Then, the cosine similarities between pairs, 𝑐𝑜𝑠 (𝒖𝑖 , 𝒖𝑖 ), are averaged over all pairs.

Review similarity =

∑ |𝐶 |
𝑖=1

∑ |𝐶 |
𝑗=1
𝑐𝑜𝑠 (𝒖𝑖 , 𝒖 𝑗 )

|𝐶 | ( |𝐶 | − 1)/2 , where 𝑖 < 𝑗 (17)

• The category similarity in Eq. (18) means the similarity in the categories of the places visited by

the users in a community. Let 𝑅 be the set of such places visited. Then, for each pair of places 𝑙𝑖
and 𝑙 𝑗 in 𝑅, the sum of the path lengths to the lowest common ancestor, 𝐿𝐶𝐴(𝑙𝑖 , 𝑙 𝑗 ), is measured

in the hierarchical category tree
2
. Then, converting dissimilarity to similarity by an exponential

decay function, 𝑒−𝐿𝐶𝐴(𝑙𝑖 ,𝑙 𝑗 ) between pairs are averaged over all pairs.

Category similarity =

∑ |𝑅 |
𝑖=1

∑ |𝑅 |
𝑗=1
𝑒−𝐿𝐶𝐴(𝑙𝑖 ,𝑙 𝑗 )

|𝑅 | ( |𝑅 | − 1)/2 , where 𝑖 < 𝑗 (18)

High review and category similarities in a community or cluster indicate coherent interests of users
in the community, that is, the high quality of the cluster as a community representation.

5.2 Benefits of Geosocial Co-Clustering
5.2.1 Quantitative Analysis. In order to verify that geosocial co-clustering works as designed

with real-world data sets, we compared GEOCODE, the user-centric approach of Louvain-D, and

the location-centric approach of DCPGS in three aspects: (i) the quality of communities on the user

side, (ii) the quality of regions (clusters) on the location side, and (iii) the mapping clusterability

between them, as in Figure 8. In these experiments, the coarsening level was set to be 0. Since the

user-centric and location-centric approaches produce clusters on only one side, the clusters on

the other side were derived for comparison purpose through the mappings, as shown with the

overlapping broken-line boxes in Figure 1.

As for the quality of user-side communities in Figure 8a, Louvain-D performed the best since its

clustering was centered on the user side, and DCPGS performed the worst. GEOCODE achieved

high quality, too, as close as 81.2–86.7% of Louvain-D. In contrast, as for the quality of location-side
clusters in Figure 8b, DCPGS performed the best, and Louvain-D performed the worst. Again,

2
See https://developer.foursquare.com/docs/resources/categories.
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Table 4. Semantic similarity of the users in communities.

Review similarity Category similarity

Louvain-D 0.141 0.011

DCPGS 0.152 0.014

GEOCODE 0.228 0.024

: Eastern Restaurant : Dessert :Western Restaurant : Nightlife : Shop&Service

𝐂𝐋𝟏(0.019) 𝐂𝐋𝟐(0.007)

𝐂𝐋𝟑(0.015)

(a) Louvain-D.

𝐂𝐃𝟏(0.027) 𝐂𝐃𝟐(0.008)

(b) DCPGS.

𝐂𝐆𝟏(0.029) 𝐂𝐆𝟐(0.022)

𝐂𝐆𝟑(0.019)

(c) GEOCODE.

Fig. 9. Location-side clusters discovered by Louvain-D, DCPGS, and GEOCODE (best viewed in color).

GEOCODE achieved high quality, too, as close as 78.7–87.7% of DCPGS. Therefore, GEOCODE

achieved balanced high quality on both sides as opposed to the one-sided quality (at the expense of

the other side) achieved by Louvain-D and DCPGS.

As for the mapping clusterability in Figure 8c, GEOCODE significantly outperformed the other

two approaches by up to 2.6 times, as expected from the fact that GEOCODE improves the mapping

clusterability through multiple iterations alternating on each side. In summary, we confirm that

GEOCODE additionally guarantees the mapping clusterability while marginally degrading the

quality of communities or regions on either side.

5.2.2 Case Study with Real Application. We aim to demonstrate the effect of the mapping

clusterability in local expert recommendation using the Foursquare_s data set. This dataset contains

records of users’ visits to restaurants, including the venue categories
3
and locations of restaurants

and comments left by users about the restaurants. As discussed earlier, the mapping clusterability

enables us to find the communities of local experts who exclusively concentrate on specific topics.

Thus, high coherency within a community or region should be achieved by GEOCODE. The review

similarity measures the coherency within a community (i.e., on the user side) in terms of the review

contents, and the category similarity measures the coherency within a region (i.e., on the location

side) in terms of the venue categories.

Louvain-D, DCPGS, and GEOCODE produced 18, 16, and 18 communities or regions, respectively,

from this data set. Table 4 shows the average values of the review and category similarities from the

three approaches. GEOCODE naturally achieved significantly higher similarities than Louvain-D

and DCPGS. This result means that the interests of the users were shared more closely in GEOCODE

than in the other two approaches.

Location-Side Semantics: Figure 9 shows the category similarity aspect through visualization. In

this figure, the categories of different venues are color-coded, and the boundaries of regions (clusters)

are shown in broken lines; the category similarity of each region is shown in parentheses next to

the cluster label. In Figure 9a, Louvain-D incorrectly separated venues of the same category (in

the orange area) into different regions. In contrast, GEOCODE in Figure 9c correctly put them in

the same region. In Figure 9b, DCPGS incorrectly put venues of several different categories (in

the grey area) in the same region. In contrast, GEOCODE in Figure 9c more correctly put them in

separate regions. Overall, GEOCODE is doing the best job in putting venues in regions coherently

and completely among the three approaches. Note that the category information is not used at all

for geosocial co-clustering.

3
“Venue category” is a FourSquare Developers term. See footnote 2.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00. Publication date: 0000.



00:20 J. Kim et al.

Table 5. Top ten keywords from the reviews in the colored areas of Figure 9 (best viewed in color).

Louvain-D vs. GEOCODE(orange area) DCPGS vs. GEOCODE (grey area)

Louvain-D GEOCODE DCPGS GEOCODE

coffee, ice flakes, spicy

seafood noodle, bread,

beer, parking, refill,

wine, service, spaghetti

bread, beer, pizza, fried

food, salad, music,

reservation, discount,

wine, weekend

coffee, ice flakes, beer,

refill, service, pizza,

wine, kindness,

spaghetti, noodle

coffee, ice flakes, refill,

service, pizza, beer,

wine, bread, pizza,

salad
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Fig. 10. Mapping clusterability of GEOCODE and DRCC with varying the coarsening level.
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Fig. 11. Elapsed time of GEOCODE and DRCC with varying the coarsening level.

User-Side Semantics: Regarding the review similarity aspect, Table 5 shows the top ten most

frequent keywords appearing in the reviews by the users of the communities mapped from the

colored areas in Figure 9. The keywords are color-coded by the colors of their categories. Louvain-D

and GEOCODE were compared for the orange area in Figures 9a and 9c, and DCPGS and GEOCODE

for the grey area in Figures 9b and 9c. In both cases, the topics (i.e., colors) of the keywords were
more coherent in GEOCODE than in Louvain-D or DCPGS, which can be visually confirmed by

counting the number of different colors in the keyword list as well as confirmed numerically

(see Table 4). For instance, for the DCPGS in the grey area, the keyword “noodle” about eastern
restaurants blurred the overall main topics, western restaurants and nightlife. Overall, the review
similarity observed is highly coherent, thus showcasing the community quality of GEOCODE on

the user side as well.

5.3 Performances of GEOCODE
5.3.1 Comparison with Co-Clustering on the Whole. Please recall that GEOCODE transforms

co-clustering into the parallel execution of multiple partial co-clustering. In this regard, we aim to

verify that GEOCODE significantly improves the efficiency over the state-of-the-art co-clustering

algorithm DRCC while observing the resulting degree of compromise in accuracy. Figures 10 and 11

show the accuracy and efficiency, respectively, resulting from GEOCODE and DRCC with varying

the coarsening level for each data set. Evidently, the coarsening level had a nontrivial effect in

GEOCODE but was irrelevant to DRCC. Besides, DRCC failed to produce results for the Foursquare

data set (in Figures 10c and 11c) because of an out-of-memory error.

Accuracy: The accuracy shown in Figure 10 is the mapping clusterability measured when the

coarsening level varied from 0 to 5. The value of GEOCODE was very close to that of DRCC

(different by as small as 5.2–7.2%) when the coarsening level was 0 (i.e., no coarsening), and when

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00. Publication date: 0000.



Geosocial Co-Clustering 00:21

: Step 1 : Step 2 : Step 3

0 1 2 3 4 5

E
la

p
se

d
 t

im
e 

(s
ec

)

Coarsening level

1000

500

0

(a) Brightkite.

0 1 2 3 4 5

E
la

p
se

d
 t

im
e(

se
c)

Coarsening level

3000

1000

0

2000

(b) Gowalla.

0 1 2 3 4 5

E
la

p
se

d
 t

im
e 

(s
ec

)

Coarsening level

20000

0

10000

(c) Foursquare.

Fig. 12. Breakdown of GEOCODE elapsed time with varying the coarsening level.
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Fig. 13. Impact of the regularization parameters 𝜆 and 𝜇 (𝜆 = 𝜇) on the mapping clusterability.

the level was increased to 5, the gap of the value increased to only 22.1–24.7%, about 4 times the

initial gap.

Efficiency: The efficiency shown in Figure 11 is the elapsed time when the coarsening level varied

from 0 to 5. Even without coarsening (i.e., at level 0), GEOCODE greatly outperformed DRCC by

19–23 times and by the time the level was increased to 5, the ratio reached 56–69 times, about 3

times the initial ratio.

These results demonstrate GEOCODE’s ability to enhance the efficiency of geosocial co-clustering

at only marginal expense of the accuracy. We assert that this improved efficiency is significant

enough to make GEOCODE resolve the inability of the conventional co-clustering algorithm to

handle large networks due to the high computational overhead.

5.3.2 Breakdown of Elapsed Time. Figure 12 shows the breakdown of the elapsed time of

GEOCODE into the three steps discussed in Section 4. We observe that the first two steps took

only a minor portion of the total elapsed time—no more than 6.8% for Step 1 and no more than

21.2% for Step 2, both much less than 72.6–82.1% for Step 3. This difference is understandable from

the running time complexities of the individual steps. Step 1 (coarsening) takes linear-logarithmic

time [20], Step 2 (decomposition) also takes linear-logarithmic time by Theorems 4.5 and 4.7, and

Step 3 (partial co-clustering) takes quadratic time. The breakdown profile thus indicates that the

overhead of the extra two steps (Steps 1 and 2) on the total elapsed time is not significant at all;

in other words, the efficiency gain achieved by GEOCODE comes at little additional cost for the

pre-processing steps.

5.3.3 Sensitivity to Regularization Parameters. We performed a sensitivity test of the mapping

clusterability
4
for varying the values of the two regularization parameters 𝜆 and 𝜇. Please recall

that 𝜆 and 𝜇 are used to adjust the influences of the second and third terms, respectively, in the

GEOCODE motif-based weighting scheme (Definition 4.3) and also in the DRCC objective function

(Eq. (10)). Thus, our goal in this test was to see whether and how the second and third terms of the

modif-based weighting scheme play the same roles as those in the DRCC objective function.

Figure 13 shows the results, where 𝜆 and 𝜇 were always set to the same value varying from 0

to 1250, and the coarsening level was set to be 0. We observe that GEOCODE and DRCC showed

4
We conducted the tests on the qualities of communities and regions as well, and the results looked almost the same.
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Fig. 14. Scalability with data size (×1 to ×5).

almost exactly the same pattern as the parameter values changed. The quality remained stable and

close to the maximum while the parameter values were in the range of 250 to 750. Additionally, the

parameter value 250, used for both 𝜆 and 𝜇 for DRCC according to Gu and Zhou [16], was shown to

be a reasonable value for GEOCODE as well. Thus, the results empirically confirm that the social

and spatial motifs of the motif-based weighting scheme do address the social similarity and spatial

similarity aspects, respectively.

5.3.4 Scalability with Data Size. We increased the size of the Foursquare data set, the largest

among the four data sets in Table 3, up to 5 times. In each step of the increase, we replicated the

original network structure and added new users, locations, and mappings between them.

Figure 14 shows the resulting elapsed time of GEOCODE. DRCC failed to run even for the

original Foursquare data set. It also shows GEOCODE_12, the portion of GEOCODE including only

the preprocessing steps (i.e., Steps 1 and 2) and excluding the partial co-clustering (i.e., Step 3).

When the data size increased five times from ×1 to ×5, the elapsed time increased by 5.4 times for

GEOCODE_12 and by 6.7 times for GEOCODE. These results show that GEOCODE’s runtime, in

fact, increases sub-quadratically with dataset size, as the worst-case time complexity of Steps 1 and

2 is 𝑂 (𝑁 log𝑁 ) but that of Step 3, which takes about 70% of the total execution time, is 𝑂 (𝑁 2).
Figure 14 shows the elapsed times of Lovain-D and DCPGS as well. Admittedly GEOCODE is

not as fast as Louvain-D and DCPGS, apparently because of the overhead of multiple iterations.

Notwithstanding, we assert that GEOCODE is sufficiently fast, as it finishes in 5 to 6 hours for

a large-scale geosocial network with about 1 million users and 40 million check-in’s on a single

machine.

6 CONCLUSION
In this paper, we proposed geosocial co-clustering, which efficiently co-clusters the users in social

networks and the locations they visited. Geosocial co-clustering proved to detect more desirable

communities than the existing approaches by maximizing the mapping clusterability. We first

formulated it as a mathematical non-negative matrix tri-factorization problem. Then, we developed

the GEOCODE framework to improve its computational efficiency through the coarsening and

decomposition of social users and locations, respectively, into groups. The decomposition used

the crossing minimization technique as well as the MDL principle and enabled partitioning of a

user-to-location matrix into sub-matrices so that individual sub-matrices could be co-clustered

separately. The effect was several orders of magnitude speedup while maintaining comparable

accuracy. Besides, the overheads of the coarsening and decomposition steps proved to be very

light, thus adding to the efficacy of the GEOCODE framework. Overall, we believe that GEOCODE

is a practical and useful framework for running geosocial community detection from large-scale

geosocial networks.

The future work includes supporting overlapping communities and handling temporal evolution

of communities.
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