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SUMMARY In this paper, we study the problem of processing continu-
ous range queries in a hierarchical wireless sensor network. Recently, as the
size of sensor networks increases due to the growth of ubiquitous comput-
ing environments and wireless networks, building wireless sensor networks
in a hierarchical configuration is put forth as a practical approach. Con-
trasted with the traditional approach of building networks in a “flat” struc-
ture using sensor devices of the same capability, the hierarchical approach
deploys devices of higher-capability in a higher tier, i.e., a tier closer to
the server. While query processing in flat sensor networks has been widely
studied, the study on query processing in hierarchical sensor networks has
been inadequate. In wireless sensor networks, the main costs that should
be considered are the energy for sending data and the storage for storing
queries. There is a trade-off between these two costs. Based on this, we
first propose a progressive processing method that effectively processes a
large number of continuous range queries in hierarchical sensor networks.
The proposed method uses the query merging technique proposed by Xiang
et al. as the basis. In addition, the method considers the trade-off between
the two costs. More specifically, it works toward reducing the storage cost
at lower-tier nodes by merging more queries and toward reducing the en-
ergy cost at higher-tier nodes by merging fewer queries (thereby reducing
“false alarms”). We then present how to build a hierarchical sensor net-
work that is optimal with respect to the weighted sum of the two costs.
This allows for a cost-based systematic control of the trade-off based on
the relative importance between the storage and energy in a given network
environment and application. Experimental results show that the proposed
method achieves a near-optimal control between the storage and energy and
reduces the cost by 1.002 − 3.210 times compared with the cost achieved
using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.
key words: hierarchical sensor network, progressive processing, continu-
ous range queries

1. Introduction

As the computing environment evolves toward ubiquitous
computing, there has been increasing attention and research
on sensor networks. In the sensor networks environment,
sensor nodes are connected through the network to the
server (or base station) which collects data sensed at the
nodes [1]. Example applications in such an environment in-
clude environment monitoring (e.g., temperature, humidity),
manufacturing process tracking, traffic monitoring, and in-
trusion detection in a surveillance system.

In particular, as wireless networks become more com-
mon, there has been a lot of research on wireless sensor net-
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works in which sensor nodes are connected in an ad-hoc
network configuration in order to reduce the cost of deploy-
ment. In general, the objective in a wireless sensor network
is to deploy cheap sensor nodes with limited resources (e.g.,
battery power, storage space) effectively and to collect data
from those sensor nodes by using their limited resources ef-
ficiently [10].

There is an increasing trend lately toward large-scale
wireless sensor networks [14], [15], as the scope of appli-
cations extends to municipality management, global envi-
ronmental monitoring, etc. These networks typically aim
at supporting a large number of sensor nodes deployed in
a large area for use by a large number of users. For ex-
ample, in the Network for Observation of Volcanic and At-
mospheric Change (NOVAC) project [13], wireless sensor
networks deployed in 15 volcanoes spread across five conti-
nents are connected in a multi-tier configuration to support a
global volcano monitoring project. As another example, the
EarthNet Online [5] collects earth observation information
such as the worldwide weather and bird migrations through
wireless sensor networks and makes the information avail-
able for thousands of individuals or organizations. This kind
of scale upgrade will bring about a proportionate increase of
the number of concurrent queries and the amount of sensor
data. Thus, we expect an increasing importance of process-
ing a large number of queries and a high volume data effec-
tively in wireless sensor networks. In addition, we expect
that building such large scale wireless sensor networks eco-
nomically is important as well.

With this background, in this paper, we consider stor-
age requirement needed to store queries in sensor nodes and
energy consumption (i.e., battery capacity) needed to send
the collected data from those nodes to the server. There ex-
ists a trade-off between these two cost factors. Let us ex-
plain this trade-offwith the centralized approach and the dis-
tributed approach [17], which are the two naive approaches
to building wireless sensor networks. In the centralized ap-
proach, the sensor nodes do not store any query and sim-
ply send all data to the server, which then processes all the
queries on the data received. In this case, there is no stor-
age cost to store queries in individual sensor nodes but the
energy cost is very high. In the distributed approach, on the
other hand, individual sensor nodes store all the queries and
send only the results of processing the queries to the server,
which then simply collects the received query results (This
scheme is known as in-network query processing [24]). In
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this case, the energy cost can be reduced but the storage cost
is high.

Neither of these two approaches is suitable for building
large scale sensor networks. In the centralized approach,
since data are accumulated over the course of being relayed
toward the server, sensor nodes near the server should send
more data than the nodes farther from the server. Thus, the
nodes near the server consume more energy than the ones
farther from the server; as a result, they will be burnt out in
a shorter time. On the other hand, the distributed approach
becomes infeasible as the number of queries increases. A
sensor node is not able to store and process a large num-
ber of queries (e.g., several thousands of queries) due to the
limitation in its memory and computing power.

Recently, in order to overcome these large scale prob-
lems, building wireless sensor networks in a hierarchical
configuration is considered a practical alternative. A hier-
archical wireless sensor network is organized in a multi-tier
architecture [2] configured with sensor nodes having differ-
ent amounts of resources and computation power. Nodes
closer to the server have more resources and computation
power than those farther from the server, and this makes it
possible to carry out the processing that cannot be done with
low-capacity nodes only. In hierarchical wireless sensor net-
works, nodes with smaller resources and computing power
are recursively connected to nodes with more resources and
computing power [2], [16], [18]; thus, nodes near the server
are capable of handling the larger amount of data accumu-
lated from lower tiers.

This paper proposes a method for building large scale
hierarchical sensor networks to process queries effectively
with respect to the trade-off between the energy cost and
the storage cost. The queries considered in this paper are
continuous range queries. Here, the continuous query rep-
resents the query that is executed continuously and period-
ically (unlike the one-time query that is executed once) [3],
[4], [10]. Range queries are an important query type in
many sensor network applications, particularly in monitor-
ing applications [10], and there has been active research
done to improve range query processing performance [8].
The method proposed in this paper systematically controls
the trade-off between the energy cost and the storage cost
through controlled merging of queries with similar ranges.
Some current methods can reduce the energy cost by merg-
ing queries to avoid duplicate transmission of query re-
sults [12], [21]–[23]. They, however, all focus on flat sensor
networks and, therefore, cannot utilize the characteristics of
the hierarchical sensor network in which nodes at different
tiers have different capabilities. Besides, their work does
not reflect anything about the trade-off because they do not
consider the storage cost at all. In contrast, in this paper,
we fully utilize the characteristics of the hierarchical sen-
sor network by employing a progressive approach, which
merges increasingly more queries as the tier goes from the
server toward the lowest tier and, in this way, finds the opti-
mal merging at each tier.

In this paper, we first propose the model and algorithms

of the progressive query processing method. This method
has two phases: query merging and query processing. In
the query merging phase, we merge queries progressively as
the tier goes from the highest (i.e., the server) to the low-
est. That is, we first merge the input queries to generate the
queries for the second-tier nodes and then merge them to
generate the ones for the third-tier nodes, and so on. We say
that the queries thus stored at multiple tiers form the inverted
hierarchical query structure† as a whole. The inverted hi-
erarchical query structure is a new structure proposed in
this paper. In the query processing phase, the queries are
processed progressively, that is, by refining the query result
to be more accurate as data are sent from a lower tier to a
higher tier. For this, the inverted hierarchical query structure
is used to retrieve the query result at each tier.

Next, we propose a method that builds an optimal hi-
erarchical sensor network by systematically controlling the
trade-off between the storage cost and the energy cost ac-
cording to their weights. Since the relative importance be-
tween the two costs may vary depending on the application
and environment, we formulate the cost of building the net-
work as a weighted sum of the two costs and minimize the
total cost. As the optimization target parameter, we use the
optimal merge rate – the average rate of merging queries at
each tier.

Finally, we show through experiments that the pro-
posed method is useful for building a hierarchical sen-
sor network in a cost-effective manner. Specifically, first
we show that there is little difference between the optimal
merge rate obtained from an analytic model and the rate ob-
tained from experiments; second, we show the superiority
of the proposed method over the existing query processing
method for flat sensor networks in terms of the total cost.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the model
and the algorithms of the proposed progressive processing
method for hierarchical sensor networks. Section 4 pro-
poses an analytical method for effectively building a hier-
archical sensor network. Section 5 shows the superiority of
the proposed method over the existing method through ex-
periments. Section 6 concludes the paper.

2. Related Work

In this section, we review the existing research on the range
query processing in sensor networks and the state of the art
in the hierarchical wireless sensor networks.

2.1 Range Query Processing in Sensor Networks

Recently, there has been research to complement the cen-
tralized approach and the distributed approach. Specifically,
the proposed methods are to share query processing in an
overlapping region in case there are overlapping query con-
ditions. By identifying the overlapping regions among the

†It is a forest structure to be more precise (see Fig. 2).
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user queries and rewriting the queries accordingly, the pro-
posed methods eliminate duplicate processing and duplicate
data transmission. These methods can be classified into the
partitioning method and the merging method.

Partitioning method

The server partitions the individual query regions into over-
lapping regions and non-overlapping regions. Then, it sends
the partitioned regions and the original queries to sensor
nodes, which store them. Query processing is done for each
partitioned region, and the query results are merged in the
server or sensor nodes. Trigoni et al. [20] and Yu et al. [25]
use this method to process range queries on the location
information of sensor nodes. This method has the advan-
tage that the result of merging the results of processing each
partition is the same as the result of processing the orig-
inal queries and, therefore, no “false alarm” will happen.
It, however, has the disadvantage that, if there are a large
number of overlapping query conditions, then the number
of partitions to be stored in certain sensor nodes increases
and, thus, the necessary storage increases as well.

Merging method

The server merges the regions of overlapping queries into
one merged query region. The server then sends the merged
queries to the sensor nodes that store them. Query process-
ing results are then “reorganized” into those of the original
queries in the server or sensor node. This method has the
advantage that it can process a large number of queries at
the same time by reducing the number of queries stored in a
sensor node. It, however, has the disadvantage that a “false
alarm” may happen as a result of merging queries. Muller
and Alonso [12] propose a method that compares the pred-
icates of the range queries to extract those common to all
queries and generates one query that has only the common
predicates as the query condition. In this method, if there
is no predicate common to all queries, then one query with
no query condition is generated and, thus, has the problem
of incurring a lot of false alarms in that case. In the liter-
ature [21], [22], Xiang et al. have proposed a method that
incrementally merges overlapping query regions and pro-
cesses the resulting merged queries instead of the original
queries. Here, the incremental merging is done until the
cost of sending the false alarms occurring when queries are
merged is no larger than the cost of sending duplicate results
of overlapping query regions when queries are not merged.
Xiang et al.’s query processing method has the meaning of a
hybrid approach (i.e., reducing the needed memory amount
and the data transmission amount) taking advantage of both
the centralized approach and the distributed approach. Then,
in the literature [23], Xiang et al. have proposed methods
that reduce energy consumption of each sensor node in the
wireless network by eliminating duplicate data transmission
and avoiding data retransmission caused by the link fail-
ures. However, all the work targets “flat” sensor networks
in which all sensor nodes in the network have the same ca-
pability and store the same set of merged queries. Thus,
these methods have the problem that they cannot utilize the

characteristics of hierarchical sensor networks. Our method
in this paper basically uses the same query merging method
as Xiang et al.’s, but enhances it to control the rate of merg-
ing queries depending on the capabilities of individual nodes
and to build a hierarchical sensor network. Our method
has the advantage that it allows for a systematic control of
the trade-off between the memory amount needed and the
amount of data sent.

2.2 Hierarchical Wireless Sensor Networks

As the scale of sensor networks increases, the hierarchical
structure is used more in real applications than the flat struc-
ture in which all sensor nodes have the same capability [2].

Representative examples of such hierarchical wireless
sensor networks are PASTA (Power Aware Sensing, Track-
ing and Analysis) [18] mentioned in COSMOS [18] and
SOHAN [6]. PASTA is used in military applications for
enemy movement surveillance and is configured with the
server and about 400 intermediate tier nodes each clustering
about 20 sensor nodes. SOHAN is used in traffic congestion
monitoring applications to measure the traffic volume using
roadside sensor nodes and is configured with the server and
about 50 intermediate tier nodes each clustering about 200
sensor nodes.

We expect that hierarchical sensor networks will be in-
creasingly more utilized in the future as the scale and the re-
quirement of applications increase. However, there has not
been any research done on processing multiple queries tak-
ing advantage of the characteristics that sensor nodes at dif-
ferent tiers have different capabilities. Srivastava et al. [19]
investigated how and on which node to process each oper-
ation during query processing in a hierarchical sensor net-
work. This research, however, mainly deals with single
query processing and, thus, is difficult to apply to multiple
query processing.

3. Progressive Processing in Hierarchical Sensor Net-
works

In this section, we present the progressive processing model
and algorithms in hierarchical (i.e., multi-tier) wireless sen-
sor networks.

3.1 Overview

In progressive processing, we systematically control the to-
tal processing cost by having the larger number of lower-
capacity nodes (at lower tiers) partially process queries and
the smaller number of higher-capacity nodes (at higher tiers)
process the remainder.

Example 1 (Progressive processing in hierarchical wireless
sensor networks): Figure 1 (a) shows an example of a hier-
archical sensor network organized in three tiers. The nodes
at the third (i.e., lowest) tier are the largest in number but the
smallest in capability and are connected to the more capable
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This figure shows a three-tier network as an example.

Fig. 1 Inverted hierarchical query structure in a hierarchical wireless
sensor network.

nodes at the second tier. All nodes except the server gen-
erate data (i.e., partial query results) periodically and send
them to the server relayed via the nodes at higher tiers. The
server then provides the final query result to the user. Fig-
ure 1 (b) shows the set of queries stored in the nodes at each
tier at the end of the query merging phase. In this figure, the
rectangular regions represent range queries, and the bound-
ary rectangle represents the domain space defined by the at-
tributes specified in the queries. The server stores six origi-
nal queries, the second-tier nodes store three queries result-
ing from the merge of the six original queries, and the third
tier stores two queries resulting from further merging them.
In the query processing phase, sensor nodes at the lowest
tier process the two queries on the sensed data and send to
the second tier only the data satisfying the conditions (i.e.,
ranges) of the two queries. Then, the sensor nodes at the
second tier process the three queries on the data sent from
nodes at the lower tier and the data they generate on their
own, and send to the server only the data satisfying the query
conditions. Since nodes at a higher tier have queries of finer
granularity, they can reduce “false alarms” and thereby re-
duce energy consumption. The server processes the original
queries on the data sent from all nodes at lower tiers and
provides the final result to the user.

From Fig. 1 (b), we can see that the stored queries al-
together form an inverted structure of a multi-dimensional
index tree. It is built from a multi-dimensional index stor-
ing the query ranges, by partitioning the index into multi-
ple levels and then storing the root level of the index at the
lowest-tier sensor nodes and the leaf level of the index in the
server. In contrast to a multi-dimensional index tree struc-
ture in which all objects are stored in the leaf nodes and are
merged to become more abstract at a higher level, in the pro-
posed structure, the root (i.e., server) stores all objects (i.e.,
queries) and they are merged to become more abstract at a
lower level.

The progressive processing has the query merging
phase which generates queries to be stored at each tier of
the hierarchical sensor network to form an inverted hierar-
chical query structure and the query processing phase which
processes sensed data and sends the result to the server using
the inverted hierarchical query structure. Query merging is
performed off-line in batch processing, and query process-
ing is performed on-line every time data are generated. In
query merging, queries are sent toward the lowest tier while

merged “progressively”, and, in query processing, the sen-
sor data are sent toward the server while being filtered “pro-
gressively”.

In the query merging phase, minimum bounding rect-
angles (MBRs) are obtained from the queries and expressed
as merged queries. In this case, it is important to decide how
many MBRs the queries should be merged into because the
number of MBRs affects the trade-off between the energy
consumption and the storage usage. That is, if more queries
are merged, then the storage space used by the sensor nodes
to store queries is reduced, but the energy consumption is
increased due to more frequent false alarms. In this section,
we present the model and algorithms under the assumption
that the number of merged queries is known as each tier.
Then, in Sect. 4, we present a method for determining the
optimal number of merged queries analytically using a cost
model.

In the query processing phase, all sensor nodes except
the server process their own sensed data and the data re-
ceived from the nodes at lower tiers, and send the results to
the nodes at the next higher tier. Since more queries (of finer
granularity) are stored at the higher-tier nodes, the accuracy
of query result is higher in them, thus generating the query
result progressively.

3.2 Network and Data Models

In this section, we first define the hierarchical sensor net-
work. Then, we explain data and queries used in this paper.

The hierarchical sensor network

We make the following assumption about the configuration
of a hierarchical sensor network. All sensor nodes are con-
nected to form a tree rooted at the server, and the nodes at
the same depth make one tier. Data are generated by not
only the nodes at the lowest tier but also those at intermedi-
ate tiers, and the sensed data are sent to the server though the
nodes at higher tiers. All sensor nodes at the same tier have
the same capability, that is, the same amount of memory and
battery power. Nodes closer to the server have higher capa-
bility, that is, a larger amount of memory and battery power.
In addition, all nodes at the same tier store the same set of
queries.

There have been various research on the hierarchical
sensor network in the literature. However, the definitions of
the hierarchical sensor network vary depending on specific
environments. Nevertheless, it is a common understand-
ing that a hierarchical sensor network consists of multiple
tiers and deploys devices of different capabilities at different
tiers [2], [6], [19]. We define the hierarchical sensor network
as in Definition 1.

Definition 1 (The hierarchical sensor network): The
hierarchical sensor network is defined as a tree T = (V, E)
of height h, where V is a set of vertices representing the sen-
sor nodes and the server in the network (the root represents
the server), and E is a set of edges representing the direct
connection between a sensor node and its parent node. Let
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Fig. 2 An example of progressive query merging.

nodei denote the node at ith tier (1 ≤ i ≤ h). Let si and ei

denote the amount of storage and the amount of energy of
nodei, respectively. Then, a hierarchical sensor network sat-
isfies relationship: s j > sk and e j > ek (1 ≤ j < k ≤ h).

Query and data

In this paper, we focus on the range query as the query type
in the hierarchical sensor network since it is an important
query type in sensor networks applications [8], [10], [12],
[21]. Consider a multi-dimensional domain space defined
by the query attributes. Then, in the domain space, a query
and a data element are represented as a hyper rectangular
region and a point, respectively [9].

3.3 Progressive Query Merging

3.3.1 The Model

Query merging in the first phase of progressive process-
ing is done by finding the MBR enclosing the queries to
be merged. Progressive query merging means that more
queries are merged as the merging progresses to lower tiers.
Thus, the size of a query region is larger at a lower tier while
the number of queries is smaller. Let us refer to a query rep-
resented by an MBR that encloses certain queries at a higher
tier node as a merged query, and denote the set of queries
(or the query set) stored at the ith tier node as Qi. Then, we
can represent the set of merged queries at each tier as one
level in the inverted hierarchical query structure, as shown
in Fig. 2. In this figure, an arrow represents the direction of
query merging; queries at the tail of an arrow are merged to
the query at the head of the arrow. For instance, the queries
q1,1,q1,2 and q1,3 at the 1st tier are merged to the query q2,1

at the 2nd tier.

3.3.2 The Algorithm

For each ith tier, the progressive query merging algorithm
generates a merged query set Qi. The objective of the algo-
rithm is to minimize the query processing cost in considera-
tion for the limited memory of sensor nodes. It is difficult to
predict the cost of query processing for a given set of merged
queries. The reason for this is that the cost depends not only

on the network-specific factors like routing but also on un-
known factors such as the query and data distributions. In
this paper, we use the simplified model proposed by Xiang
et al. [21], in which the cost metric is the amount of data
sent during the query processing, as the basis and extend it
to fit into the hierarchical sensor network and take the mem-
ory usage into consideration. In Xiang et al.’s model, the
size O of the overlapping region among queries and the size
D of the dead region (i.e., the extra region added to make
the MBR enclose the overlapping queries; it causes the false
alarms) are calculated for each pair of two queries that are
candidates to be merged, and the pair that maximizes the
difference between the sizes of the two regions, O − D, are
merged. The effect of this is to merge queries with large
overlapped regions, which is a reasonable strategy for re-
ducing the data transmission cost.

The proposed algorithm performs the query merging
using a greedy approach based on the same strategy. Let
O(qi, q j) be the size of the overlapping region between two
queries qi and q j, and D(qi, q j) be the size of dead region
between them. The algorithm chooses two queries qi and q j

with the largest O(qi, q j) − D(qi, q j) from the set of queries
that are either merged queries or the original queries and
merge them first. This strategy is the same as the strategy
used by Xiang et al. [21] except that they consider only the
pairs that satisfy O(qi, q j) − D(qi, q j) ≥ 0. Specifically, in
consideration of the storage cost for storing queries and the
energy cost for sending query results, our approach deter-
mines the fixed number of queries that are to be stored into
a sensor node at each tier. Then, we merge queries using
a greedy method until we reach the number while Xiang et
al.’ approach determines the number of queries to be stored
so as to only minimize the amount of data sent.

Figure 3 shows the progressive query merging algo-
rithm. Inputs to this algorithm are the set of the original
queries Q, the height h of the hierarchical sensor network to
be built, and the set of the numbers of merged queries K to
be stored in every node at each tier. The output is the sets
of merged queries that are stored in every node at each tier.
At each tier t, the algorithm repeats merging two queries at
a time until the number of merged queries falls lower than kt

(lines 3-6). In order to find the pair of queries to be merged,
it calculates the difference between the overlapping region
and the dead region over every pair of queries and merges
the pair with the maximum difference (lines 4-5).

3.4 Progressive Query Processing

3.4.1 The Model

In the query processing phase, for a given query, it is de-
cided whether a data element falls inside the query region,
that is, whether the attribute values representing the data el-
ement satisfy the range predicates representing the region.
Progressive query processing is the process of propagating
data elements bottom up in the inverted hierarchical query
structure from the lowest-tier nodes to the highest tier node
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Fig. 3 The progressive query merging algorithm.

Fig. 4 An example of progressive query processing.

(server), while filtering the data elements depending on the
result of evaluating the range predicates of the queries at
each tier. (Precisely speaking, multiple data elements are
sent in a batch for the sake of efficiency.)

Figure 4 shows an example of query processing. In this
figure an arrow denotes an upward flow of a data item (v) as
it satisfies the range predicate of the query at the arrow tail.
In this example, the query q1,1 at the server retrieves the data
element v.

Fig. 5 The progressive query processing algorithm.

3.4.2 The Algorithm

Figure 5 shows the progressive query processing algorithm.
The algorithm is run separatively at each tier of the hierar-
chical sensor network. The algorithm is designed to run for
each query on each data element, which may not be the most
efficient in terms of the query processing time. However, the
query processing time is independent of the energy cost and
the storage cost which are the main cost items considered.
Thus, it is not the focus of this paper.

In the progressive query processing, a sensor node at
the tth tier(t ≥ 2) considers the data Dt generated by itself
and the data Rt+1 resulting from the query processing at the
(t + 1)th tier as the target data for query processing (line 1).
The node compares the set of merged queries Qt with the
target data and inserts only the data elements that satisfy the
query condition into Rt(lines 2-9). In order to prevent the
node from sending duplicate results of overlapping query
regions among merged queries, the algorithm stops the com-
parison once it finds a query whose region contains the tar-
get data element (line 6)† as is done by Xiang et al. [23].
Then, the node sends Rt to its parent node at the (t − 1)th

tier. This algorithm is run separately in every node at each
tier to progressively filter the data to arrive at the highest

†When the algorithm is run at the server, Line 6 should be re-
moved because the server must answer each query.
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tier (i.e., server). Finally, the server (i.e., the 1st tier) per-
forms post-processing to select the query results satisfying
the condition of each query.

4. Determining the Optimal Number of Merged
Queries

In this section, we propose an analytic method for deter-
mining the optimal number of merged queries to be stored
at each tier when designing the hierarchical sensor network.
We first propose the cost model in Sect. 4.1 and then the cost
optimization method in Sect. 4.2.

4.1 The Cost Model

In this paper, we use the weighted sum of the storage cost
for storing queries and the energy cost for sending the query
result as the total cost. We use the total amount of memory
used in all nodes as the storage cost and the total amount of
data sent during the query processing as the energy cost. We
use byte as the unit of both the storage cost and the energy
cost.

Eq. (1) shows the cost model expressed as the function
weightd sum.

Weighted Sum =α · the total amount of data sent

+ the total amount of memory used,

where α(> 0) is the scale factor provided by the user
(1)

In this equation, the value of α indicates the relative im-
portance of the energy cost over the storage cost, and is set
by the user based on one’s preference. That is, in the envi-
ronments where the energy cost is more important than the
storage cost, the user gives a larger value of α, whereas in
the environments where the storage cost is more important
than the energy cost, the user gives a smaller value of α.
In this paper, in order to control the trade-off between the
two costs, we define the reference value of α, denoted as α0,
which makes the importance of the two costs equal. This α0

is the value for balancing between the two costs which use
different scales, and is used as an example to determine the
appropriate value of α for a given application. Eq. (2) shows
the definition of α0:

α0 =
the maximum possible total amount of memory used

the maximum possible total amount of data sent
(2)

In this equation, the denominator represents the total amount
of data sent from sensor nodes when every node stores only
one query merged from all the original queries, and the nu-
merator represents the total amount of memory used for stor-
ing queries into sensor nodes when every node stores all the
original queries. That is, α0 is the result of dividing the
worst case memory usage amount by the worst case data
transmission amount.

In Eq. (1), the total memory usage amount is deter-
mined by the number of queries stored in the nodes at each
tier, and the total data transmission amount is determined by
the amount of data sent at each tier based on the queries.
We first introduce the notion of the merge rate in order to
formulate the number of queries stored in sensor nodes at
each tier. We use it as the optimization parameter for the
Weighted Sum. The merge rate is defined as the ratio of the
memory usage amounts of two nodes at adjacent tiers, as
shown in Eq. (3).

merge rate

=
the number of queries stored at a node at the ith tier

the number of queries stored at a node at the (i − 1)th tier
for all 2 ≤ i ≤ h, where h is the height of the hierarchical

sensor network, and the server is at the first (highest) tier

storing all the original queries. (3)

According to the definition above, the merge rate has
the value in the range of 0 to 1. If the value is closer to 0,
it means that more queries are merged. On the other hand,
if the value is closer to 1, it means that fewer queries are
merged. That is, the number of queries stored in a node at
each tier is determined by the merge rate. For example, if
the merge rate is 0, our approach is equivalent to the cen-
tralized approach and if 1, it is equivalent to the distributed
approach.

Next, we introduce the notion of cover to formulate the
amount of data sent at each tier. The cover is defined as
the ratio of the size of the domain space filled by all query
regions over the size of the entire domain space. In order
to obtain the exact amount of data transmission, we need
additional information at each tier such as the selectivity of
each merged query and the size of each dead region caused
by query merging. This kind of information, however, is af-
fected significantly by the application environment includ-
ing the data and query distributions, making it difficult to
obtain exact information at the time of designing the net-
work. Thus, in this paper, we use an approximate model of
the cover instead. Definition 2 shows the definition of the
cover of a query set Q.

Definition 2 (The cover of a query set Q): For a given
query set Q = { q1, q2, · · · , qn }, its cover cover(Q) is
defined as:

cover(Q) =
‖ Φ(q1)

⊕ · · ·⊕Φ(qn) ‖
‖ D ‖

for qi, q j ∈ Q(1 ≤ i < j ≤ n),

where D is the domain space,

Φ(qi) is the region of the query qi,

Φ(qi)
⊕
Φ(q j) represents the union of the two regions

Φ(qi) and Φ(qi), and

‖ · ‖ denotes the size of the given region. (4)
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Fig. 6 The cover model.

Assuming that both queries and data are uniformly dis-
tributed in the same domain space, the amount of query re-
sults is approximately proportional to cover(Q) because the
cover represents the size of the union of the query regions
(simply, the union query region) when the size of domain
space is 1 in Definition 2.

Now, we approximate the cover of merged queries
stored at the nodes at each tier as follows. Let NQ denote
the number of original queries in Q, n(≤ NQ) the number
of merged queries, s the average selectivity of the set of
the original queries, and c the cover of the set of the orig-
inal queries, then ̂cover(n) in Fig. 6 is an approximation of
cover(Q).

̂cover(n) has the following properties: (1) If n = 1,
̂cover(n) equals 1; (2) As n increases, ̂cover(n) decreases

becoming c when n= c
s . That is, ̂cover(n) ≤ ̂cover(n − 1) ≤

· · · ≤ ̂cover(1) = 1.
These properties are from fact that the proposed merge

method is based on MBR. Since the region of a merged
query is represented by an MBR enclosing the regions of
the queries to be merged, the size of the region of the merged
query is always greater than or equal to that of the union of
the regions of the queries merged. Thus, as the query merg-
ing proceeds, the number of merged queries n decreases,
but the size of the region that is equivalent to the union of
merged queries increases. In this paper we have assumed an
environment in which we process a large number of queries
with the uniform distribution, and thus, we assume that,
when all queries are merged into one query, the cover of the
merged query is 1. Even though this property does not guar-
antee the linearity of ̂cover(n), in order to make the model
simple, we assume that the cover linearly increases as n de-
creases, and then, estimate the theoretical number of queries
for which the cover is completely filled without overlap re-

gion as
c(the cover of original queries)

s(the average selectivity of original queries) .

4.2 Optimization

In this subsection, we first formulate Weighted Sum using
the merge rate and the cover model explained in Sect. 4.1,
and then, analytically obtain the optimal merge rate – the
merge rate that minimizes Weighted Sum. For ease of ex-
position, we assume that each sensor node generates only
one data element per unit time and both data and queries are

Table 1 The notation.

Symbol Definition

NQ The number of original queries
α The scale factor provided by the user
c The cover of original queries
s The average selectivity of original queries
d The dimension of original queries
h The height of a hierarchical sensor network
f The fanout of a hierarchical sensor network
S izede The size of a data element
m The merge rate

uniformly distributed in the domain space. We also assume
that the range predicate of a query has start and end values.
Table 1 shows the notation used in this section.

The total transmission (i.e., the total amount of data
sent per unit time) is the cost of sending the query results
at all nodes at all tiers to the server. The cost is repre-
sented as the sum of the amount of the query results. In
this section, we represent total transmission as the sum of
the amount of data (i.e., query result) sent from the nodes
at each tier to the nodes at their parent tier. We denote the
amount of the data sent at each tier as the tier transmissioni.
Thus, the total transmission is formulated as the summation
of tier transmissioni’s. As we have explained in Sect. 3.1,
in the query processing phase, a node processes its own
sensed data and the data received from the nodes at the
next lower tier. Thus, the amount of query results that
the node sends to its parent node is equal to the sum of
(1) the amount of query results on the sensed data (sim-
ply, Amt Qresultown data) and (2) that of the query results
on the received data (simply, Amt Qresultrcv data). Here,
by the cover property, (1) Amt Qresultown data at the ith-
tier nodes is computed as ci · Amt Datai, where ci is the
cover of the merged queries at the ith tier, and Amt Datai is
the amount of sensed data at the nodes of the ith tier, and
(2) Amt Qresultrcv data at the ith-tier nodes is computed as

ci

ci+1
· tier transmissioni. We note that the size ci of the union

query region at the ith tier is smaller than the size ci+1 of
that at the (i + 1)th tier since a query at a lower tier is repre-
sented by an MBR that encloses certain queries at a higher
tier, and the received data from the (i + 1)th tier fall inside
the union query region whose size is ci+1 as explained in
Sect. 3.4. Hence, at the ith tier, the amount of query results
on the received data from the (i + 1)th tier is reduced in pro-
portion to ci

ci+1
.

The total storage (i.e., the total amount of memory
used) is the cost of storing merged queries at all nodes at
all tiers. The cost is represented as the sum of the amount
of memory used to store the merged queries. In this section,
we represent total storage as the sum of the amount of mem-
ory (i.e., the memory used to store merged queries) used by
all nodes at each tier. We denote the amount of memory
used by each tier as tier storagei. Thus, the total storage
is formulated as the summation of tier storagei’s. As we
have shown in Table 1, each node except for the nodes at
the leaf tier has f (i.e., the fanout of a hierarchical sensor
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network) child nodes. Thus, tier storagei is computed as
f i−1· Amt Memi where Amt Memi is the amount of mem-
ory used to store merged queries at a node of the ith tier.
Here, we show the formulas for the total transmission and
total storage as follows.

total transmission =
h∑

i=2

(tier transmissioni)

tier transmissioni

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ci · Amt Datai

+
ci

ci+1
· tier transmissioni+1 (2 ≤ i < h)

ci · Amt Datai (i = h)

=

h∑
j=i

(ci · Amt Data j) (5)

total storeage =
h∑

i=2

(tier storagei)

tier storagei = f i−1 · Amt Memi (2 ≤ i ≤ h) (6)

From Eq. (5) and Eq. (6), Weighted Sum is formulated as
follows (refer to Appendix for details).

Weighted S um

= α · total transimission + total storage

= S izede ·
h∑

i=2

⎛⎜⎜⎜⎜⎜⎜⎝ f i−1 ·
⎡⎢⎢⎢⎢⎢⎢⎣α ·

i∑
j=2

(−a · mj−1 · NQ + b)

+ 2 · NQ · mi−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠

where a =
s · (1 − c)

c − s
, and b = 1 + a (7)

In order to obtain the optimal merge rate, we take the
derivative of the Weighted Sum formula with respect to m
and compute the roots from the derivative formula. Then,
we substitute each root for m in the formula, and find the
root that minimizes the computed Weighted Sum. We use
Maple [11], a mathematics software tool, for this computa-
tion.

5. Performance Evaluation

5.1 Experimental Data and Environments

We use two sets of experiments. In the first set, we show the
accuracy of the proposed cost model as the parameters are
varied. In the second set, we show the merit of our progres-
sive approach over the iterative approach proposed by Xiang
et al. [21] in terms of the total cost (i.e., the weighted sum)
of query processing as the parameters are varied. A common
set of seven parameters are used in both sets of experiments:
the scale factor α for controlling the “importance” between
the amount of data transmission and the amount of memory

usage, the cover of original queries c, the average selectiv-
ity of original queries s, the dimension of original queries d,
the height of the sensor network h, the fanout of the sensor
network f , and merge rate m. We use the optimal merge rate
as the accuracy measure and the weighted sum(WS ) as the
performance measure.

We use the same data and query sets in both sets of
experiments. We randomly generate synthetic queries and
data with the uniform distribution. Here, “uniform” means
that the locations of the queries (or the data elements) are
set randomly in the query space (or the domain space). We
generate queries with the same width in all domains (i.e.,
hypercubes) in two alternative ways: either by controlling
the number of original queries or by controlling the cover of
original queries. The latter is used only in the experiments
for varying the cover of original queries, and the former is
used in all the other experiments. The reason we do not
control the number and the cover of the queries together is
that there is a dependency between the two values. That is,
given a set of random queries with a uniform distribution, if
the number of queries increases (with the query selectivity
fixed) then the cover also increases. This makes it impossi-
ble to generate a query set with a uniform distribution when
both number and cover are controlled at the same time.

In the first set of experiments, we experimentally eval-
uate the accuracy of our model for estimating the optimal
merge rate that minimizes the weighted sum of the storage
cost and the energy cost (i.e., Eq. (1)). We first analytically
compute the estimated optimal merge rate as explained in
Sect. 4.2. Next, we experimentally find the actual optimal
merge rate. Finally, we compare the two optimal merge
rates.

In the second set of experiments, we compare the per-
formance merit of our progressive approach with the itera-
tive approach proposed by Xiang et al. [21]. We measure the
weighted sums while varying parameters explained above.
Here, in our approach, we use the estimated optimal merge
rates measuring the weighted sums while varying parame-
ters explained above. Table 2 summarizes all the experi-
ments and the parameters used.

All experiments have been conducted using a Linux-
Redhat system with a 4 GHz processor and 1 Gbytes of main
memory. Since it is difficult to build an actual large-scale
sensor network and change its configuration as we need, in
order to conduct the experiments, we have implemented a
simulator program using C as in existing sensor networks-
related database research [8], [10], [21]. Table 3 summarizes
the notation used in the next section to discuss the experi-
mental results.

5.2 Experimental Results

5.2.1 Accuracy of the Cost Model

Experiment 0: existence of the trade-off and the optimal
merge rate
Figure 7 (a) shows the trade-off between the total storage
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Fig. 7 The existence of trade off and the optimal merge rate measured.

Table 2 Experiments and parameters used for showing the accuracy of
the cost model and the performance merit of our approach.

Experiments Parameters

Exp’s. 1 accuracy (Exp. 1) h 4
and 7 and f 8

performance (Exp. 7) α α0 · 2−2,α0 · 2−1, α0,
as α is varied α0 · 21, α0 · 22

s 10−4

d 2
Exp’s. 2 accuracy (Exp. 2) h 4
and 8 and f 8

performance (Exp. 8) α α0

as c is varied d 2
c 0.01, 0.05, 0.10, 0.39,

0.50, 0.99
Exp’s. 3 accuracy (Exp. 3) h 4
and 9 and f 8

performance (Exp. 9) α α0

as s is varied s 10−5,10−4,10−3

d 2
Exp’s. 4 accuracy (Exp. 4) h 3, 4, 5
and 10 and f 8

performance (Exp. 10) α α0

as h is varied s 10−4

d 2
Exp’s. 5 accuracy (Exp. 5) h 4
and 11 and f 2, 4, 8, 16

performance (Exp. 11) α α0

as f is varied s 10−4

d 2
Exp’s. 6 accuracy (Exp. 6) h 4
and 12 and f 8

performance (Exp. 12) α α0

as d is varied s 10−4

d 1, 2, 3

cost and the total transmission cost (i.e., energy cost) as m
is varied. In Fig. 7 (a), Term1 represents the first term of
Eq. (1), Term2 represents the second term of Eq. (1), and
Term1+Term2 represents Eq. (1). Here, we measure the
cost for 5000 randomly generated queries (i.e., NQ=5000,
s=10−4, c=0.39, and α0=3492.82). Hereafter, we use
NQ=5000 unless otherwise specified. As explained in
Sect. 3.1, Term1 (i.e., α·total transmission) has a tendency

Table 3 Notation for explaining experiments.

Symbol Definition

mopt act The actual optimal merge rate measured
mopt est The estimated optimal merge rate obtained using

the analytical model
accuracym

∗ The accuracy of mopt est over mopt act=

1 − |mopt act−mopt est |
mopt act

accuracyws The accuracy of the weighted sum measured us-
ing mopt est(WS m=mopt est ) over the weighted sum
measured using mopt act

(WS m=mopt act )=

1 − |WS m=mopt act−WS m=mopt est |
WS m=mopt act

gainws (the weighted sum measured using
Xiang et al.’s iterative approach)

WS m=mopt est∗When accuracym < 0, it implies that mopt est is larger than mopt act by
(|accuracym |+2) times according to the definition of accuracym.

to decrease as m increases. Term2 (i.e., total storage) has
a tendency to increase as m does. Thus, a value of m that
minimizes Term1+Term2 (i.e., the weighted sum) exists as
shown in Fig. 7 (a). Figure 7 (b) shows the trend of the op-
timal merge rate as m is varied. Here, WS α=α0·2−1 , WS α=α0 ,
and WS α=α0·21 represent the weighted sum measured using
α = α0 · 2−1, α = α0, and α = α0 · 21, respectively. We ob-
serve that the optimal merge rate has a tendency to increase
as α does.

Experiment 1: accuracy as α is varied
Figure 8 shows experimental results as α is varied. Here,
the value of α0 is 3492.82. We have different optimal
merge rates for different scale factors as shown in this fig-
ure. In Fig. 8, WS m=mopt est and WS m=mopt act represent the
weighted sum measured using mopt est and that measured us-
ing mopt act, respectively. From Fig. 8, we see that accuracym

ranges from 0.610 to 0.864, and accuracyws ranges from
0.950 to 0.984. We also see that, as α increases, the total
transmission cost becomes prevailing over the total storage
cost, and thus, the optimal merge rate is determined towards
reducing the total transmission cost, i.e., is made close to
1.0.
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Fig. 8 The accuracy of our model as α is varied (α0=3492.82, s=10−4,
h=4, f=8, d=2, and NQ=5000).

Experiment 2: accuracy as c is varied
Figure 9 shows the experimental results as the cover is
varied. The query sets for different covers are NQ=101
and α0=70.56 when c=0.01, NQ=513 and α0=358.36 when
c=0.05, NQ=1046 and α0=731.00 when c=0.10, NQ=5000
and α0=3492.82 when c=0.39, NQ=6916 and α0=4831.27
when c=0.50, and NQ=52685 and α0=36803.88 when
c=0.99. From Fig. 9, we see that accuracym ranges from
−18.719 to 0.992. Other than the value −18.719 (i.e.,mopt est

is larger than mopt act by (18.719+2) times as we have ex-
plained in the footnote in Page 11.) when the cover is 0.99,
accuracym is larger than 0.774 for all the other values of the
cover. That is, the optimal merge rates measured from the
experiments are similar to those obtained from the analy-
sis. Besides, we see that accuracyws ranges from 0.964 to
1.000. That is, the weighted sum measured from the exper-
iments is very close to that obtained from the analysis. As
the cover of the original queries approaches 1.0, it becomes
similar to that of the merged queries because the union of
the original query regions is similar to the domain space by
the definition of the cover. In this case, although the num-
ber of merged queries changes, the total transmission cost
hardly does. Thus, the total data transmission cost has no
significant influence on the total cost. Hence, the optimal
merge rate is determined towards reducing the total storage
cost, i.e., is made close to 0.

Experiment 3: accuracy as s is varied
Figure 10 shows the experimental results as the selectivity is
varied. Here, the value of α0 is 3492.82. In Fig. 10, we see

Fig. 9 The accuracy of our model as c is varied (α = α0, s = 10−4, h=4,
f=8, and d=2).

Fig. 10 The accuracy of our model as s is varied (α = α0=3492.82, h=4,
f=8, d=2, and NQ=5000).

that accuracym ranges from 0.524 to 0.895, and accuracyws

ranges from 0.959 to 0.999. Increase of the selectivity is
closely related to increase of the cover. That is, if the selec-
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Fig. 11 The accuracy of our model as h is varied (α = α0, s = 10−4,
f=8, d=2, and NQ=5000).

tivity increases while the number of queries is fixed, then the
cover of the original queries increases as well, and thus, like
the case of varying the cover, the optimal merge rate moves
close to 0.

Experiment 4: accuracy as h is varied
Figure 11 shows the experimental results as the height is var-
ied. Here, we use α0=5294.12 when h=3, α0=3492.82 when
h=4, and α0=2592.94 when h=5. We see that accuracym

ranges from 0.613 to 0.865, and accuracyws ranges from
0.909 to 0.976. When the height of the sensor network in-
creases, the data transmission cost increases faster than the
memory usage cost. This stems from the fact that the data
sent are accumulated at each tier. Thus, the optimal merge
rate moves towards reducing the total data transmission cost,
i.e., is made close to 1.0.

Experiment 5: accuracy as f is varied
Figure 12 shows the experimental results as the fanout is
varied. Here, we use α0=4117.65 when f=2, α0=3684.21
when f=4, α0=3492.82 when f=8, and α0=3408.24 when
f=16. We see that accuracym ranges from 0.671 to 0.808,
and accuracyws ranges from 0.950 to 0.967. For the same
reason as explained in Experiment 4, the optimal merge rate
has a tendency to move close to 1.0 as f increases.

Experiment 6: accuracy as d is varied
Figure 13 shows the experimental results as the dimen-
sion is varied. Here, the value of α0 is 3492.82. We see
that accuracym ranges from 0.707 to 0.945, and accuracyws

ranges from 0.964 to 0.996.

Fig. 12 The accuracy of our model as f is varied (α = α0, s = 10−4,
h=4, d=2, and NQ=5000).

Fig. 13 The accuracy of our model as d is varied (α = α0=3492.82, s =
10−4, h=4, f=8, and NQ=5000).
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Fig. 14 The performance of progressive and iterative approaches as α is
varied (α0=3492.82, s = 10−4, h=4, f=8, d=2, and NQ=5000).

5.2.2 Performance Merit of our Approach

Experiment 7: performance as α is varied
Figure 14 shows the experimental result as α is varied.
Here, the value of α0 is equal to that used in Experiment
1. In Fig. 14, WS progressive represents the weighted sum
measured in the progressive approach (i.e., our approach),
and WS iterative represents the weighted sum measured in
the iterative approach (i.e., Xiang et al.’s approach [21]).
The optimal merge rates estimated for different scale fac-
tors are mopt est=0.132 when α=α0 ·2−2, mopt est=0.242 when
α=α0 · 2−1, mopt est=0.456 when α=α0, mopt est=0.785 when
α=α0 · 21, and mopt est=0.886 when α=α0 · 22. The weighted
sum measured in the progressive approach has a tendency
to linearly increase as α increases since it is a linear func-
tion of α in Eq. (7). From this figure, we see that gainws

(i.e., the ratio of WS iterative to WS progressive) ranges from
1.002 to 3.210. That is, the weighted sum in the progres-
sive approach is smaller than that in the iterative approach
because our progressive approach can near-optimally reduce
the weighted sum by controlling the merge rate. From these
results, we see that the progressive approach improves the
performance over the iterative approach when memory us-
age is the prevailing cost (i.e., α is small), while giving a
competitive performance when data transmission is the pre-
vailing cost (i.e., α is large).

Experiment 8: performance as c is varied
Figure 15 shows the experimental result as the cover is var-
ied. Here, the values of α0 are equal to those used in Ex-
periment 2. The optimal merge rates estimated for different
covers are mopt est=0.602 when c=0.01, mopt est=0.585 when
c=0.05, mopt est=0.562 when c=0.10, mopt est=0.456 when
c=0.39, mopt est=0.409 when c=0.50, and mopt est=0.021
when c=0.99. The query sets for different covers are
NQ=101 when c=0.01, NQ=513 when c=0.05, NQ=1046
when c=0.10, NQ=5000 when c=0.39, NQ=6916 when
c=0.50, and NQ=52685 when c=0.99. We see that gainws

ranges from 1.019 to 2.498. This result shows that the pro-
gressive approach outperforms the iterative approach in the
entire range of the cover. It also shows that, as the cover

Fig. 15 The performance of progressive and iterative approaches as c is
varied (α = α0, s = 10−4, h=4, f=8, and d=2).

Fig. 16 The performance of progressive and iterative approaches as s is
varied (α = α0=3492.82, h=4, f=8, d=2, and NQ=5000).

increases, the performance benefit of our approach over the
iterative approach decreases. When the cover of the original
queries approaches 1.0, all the original queries are merged
into one query in both the progressive approach and the it-
erative approach; as a result, the total transmission amounts
and the total storage amounts of the two approaches become
similar and, therefore, the weighted sums of the two ap-
proaches become similar as well. Our proposed approach
shows more performance benefit when the cover of the orig-
inal queries is smaller, which is the case more likely to hap-
pen in a real environment.

Experiment 9: performance as s is varied
Figure 16 shows the experimental result as the average
selectivity is varied. Here, the value of α0 is equal to
that used in Experiment 3. The optimal merge rates es-
timated for different selectivities are mopt est=0.589 when
s=10−5, mopt est=0.456 when s=10−4, and mopt est=0.111
when s=10−3. We see that gainws ranges from 1.016 to
1.788. This result shows that the progressive approach out-
performs the iterative approach in the entire range of selec-
tivity. It also shows that, as the selectivity increases, the
performance benefit of the progressive approach decreases.
As already mentioned in Experiment 3, if the selectivity
increases, then the cover increases as well causing the de-
crease of performance benefit. Thus, our proposed approach
shows more performance benefit when the selectivity of the
original queries is smaller.
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Fig. 17 The performance of progressive and iterative approaches as h is
varied (α = α0, s = 10−4, f=8, d=2, and NQ=5000).

Fig. 18 The performance of progressive and iterative approaches as f is
varied (α = α0, s = 10−4, h=4, d=2, and NQ=5000).

Experiment 10: performance as h is varied
Figure 17 shows the experimental result as the height of the
sensor network is varied. Here, the values of α0 are equal
to those used in Experiment 4. The optimal merge rates es-
timated for different heights are mopt est=0.284 when h=3,
mopt est=0.456 when h=4, and mopt est=0.560 when h=5. We
see that gainws ranges from 1.242 to 1.391. This result
shows that the progressive approach outperforms the iter-
ative approach in the entire range of the height.

Experiment 11: performance as f is varied
Figure 18 shows the experimental result as the fanout of
the sensor network is varied. Here, the values of α0 are
equal to those used in Experiment 5. The optimal merge
rates estimated for different fanouts are mopt est=0.377 when
f=2, mopt est=0.434 when f=4, mopt est=0.456 when f=8,
and mopt est=0.466 when f=16. In Fig. 18, gainws ranges
from 1.272 to 1.357; thus, for all ranges of f , the progres-
sive approach outperforms that of the iterative approach.

Experiment 12: performance as d is varied
Figure 19 shows the experimental result as the dimension
of a query is varied. Here, the value of α0 is equal to
that used in Experiment 6. The optimal merge rates es-
timated for different dimensions are mopt est=0.455 when
d=1, mopt est=0.456 when d=2, and mopt est=0.469 when
d=3. In Fig. 19, gainws ranges from 1.018 to 2.366; thus,
for all ranges of d, the progressive approach outperforms
that of the iterative approach.

Fig. 19 The performance of progressive and iterative approaches as d is
varied (α = α0=3492.82, s = 10−4, h=4, f=8, and NQ=5000).

In summary, the experimental results show that our cost
model gives accurate optimal merge rates, and the progres-
sive approach outperforms the iterative approach by up to
3.210 times as the parameters such as α, the cover, aver-
age selectivity, dimension of original queries, and height and
fanout of the sensor network vary.

6. Conclusions

In this paper, we have proposed progressive processing as
a new approach to processing multiple continuous range
queries in hierarchical sensor networks. The contribution
of this paper are summarized as follows.

First, we have proposed a progressive processing
model that considers the trade-off between energy and stor-
age. This model takes advantage of the characteristics of the
hierarchical sensor networks in which higher-capability sen-
sor nodes are deployed at a tier closer to the server. It also
has the advantage of reducing the cost of building the net-
work by reducing the storage cost at lower tier nodes, which
are larger in number. We have also presented query merging
and query processing algorithms for this model.

Second, based on the proposed model, we have pro-
posed a method for optimizing the total cost (formulated as
the weighted sum of the energy and storage costs) accord-
ing to the given weight, and have proposed a method for
systematically building a hierarchical sensor network that
minimizes the total cost.

Third, we have verified the merit of the proposed ap-
proach through extensive experiments. In the experiments
for evaluating the accuracy of the proposed cost model, the
results show that the accuracy of the optimal cost obtained
from the analytical cost model over the optimal cost mea-
sured is 0.950 to 1.0. From these results we see that a hier-
archical sensor network with near-optimal total cost can be
built using the proposed model. In the experiments for eval-
uating the query processing performance, the results show
that our approach outperforms the approach proposed by Xi-
ang et al. [21] by up to 3.210 times. Moreover, if the height
of the sensor network increases, our approach shows a bet-
ter performance than Xiang et al.’s approach. Thus, we can
see that our approach is suitable for a large-scale sensor net-
work.
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In conclusion, our approach provides a new framework
for building a large-scale hierarchical sensor network that
efficiently processes a large number of queries while con-
sidering the trade-off between the energy consumed and the
storage required.

For further work, we plan to improve the query pro-
cessing model and algorithms to consider different data and
query distributions as well as different query types such as
aggregate queries.
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Appendix: Derivation of the Formulas for Total Trans-
mission and Total Storage

Derivation of total transmission
ci of Eq. (5) is formulated as in Eq. (A· 1). Here, NQ · mi−1

represents the number of queries stored at the ith tier.

ci = ̂cover(NQ · mi−1) (A· 1)

Next, Amt Data j of Eq. (5) is formulated as in Eq. (A· 2).

Amt Data j= (the number of sensor nodes at

the jth tier)

· (the size of a data element)

= f j−1 · S izede (A· 2)

By substituting ci and Amt Data j in Eq. (5) for Eq. (A· 1)
and Eq. (A· 2), we can rewrite the formula for to-
tal transmission as follows.

total transmission

=

h∑
i=2

h∑
j=i

(ci · Amt Data j)
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=

h∑
i=2

(ci · Amt Datai + · · · + ci · Amt Datah)

= Amt Data2 ·
2∑

j=2

c j + · · · + Amt Datah ·
h∑

j=2

c j

=

h∑
i=2

(Amt Datai ·
i∑

j=2

(c j))

=

h∑
i=2

(S izede · f i−1 ·
i∑

j=2

( ̂cover(NQ · mj−1)))

=

h∑
i=2

(S izede · f i−1 ·
i∑

j=2

(−a · mj−1 · NQ + b))

where a =
s · (1 − c)

c − s
, and b = 1 + a (A· 3)

Derivation of total storage
Amt Memi of Eq. (6) is formulated as in Eq. (A· 4).

Amt Memi = (the number of merged queries stored at

a node at the ith tier)

· (the amount of memory used to store

one query)

= (NQ · mi−1) · (2 · S izede) (A· 4)

By substituting Amt Memi in Eq. (6) for Eq. (A· 4), the for-
mula for total storage can be rewritten as follows.

total storage =
h∑

i=2

( f i−1 · Amt Memi)

=

h∑
i=2

( f i−1 · NQ · mi−1 · 2 · S izede) (A· 5)
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