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This paper addresses modeling causal relationships over event streams where data are
unbounded and hence incremental modeling is required. There is no existing work for
incremental causal modeling over event streams. Our approach is based on Popper’s three
conditions which are generally accepted for inferring causality – temporal precedence of
cause over effect, dependency between cause and effect, and elimination of plausible alter-
natives. We meet these conditions by proposing a novel incremental causal network con-
struction algorithm. This algorithm infers causality by learning the temporal precedence
relationships using our own new incremental temporal network construction algorithm
and the dependency by adopting a state of the art incremental Bayesian network construc-
tion algorithm called the Incremental Hill-Climbing Monte Carlo. Moreover, we provide a
mechanism to infer only strong causality, which provides a way to eliminate weak alterna-
tives. This research benefits causal analysis over event streams by providing a novel two
layered causal network without the need for prior knowledge. Experiments using synthetic
and real datasets demonstrate the efficacy of the proposed algorithm.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

People tend to build their understanding of events in terms of cause and effect, to answer such questions as ‘‘What caused
the IBM stock to drop by 20% today?’’ or ‘‘What caused the glucose measurement of this diabetic patient to increase all of a
sudden?’’. In recent years, there has been growing need for active systems that can perform such causal analysis in diverse
applications such as patient healthcare monitoring, stock market prediction, user activities monitoring and network intru-
sion detection systems. These applications need to monitor the events continuously and update an appropriate causal model,
thereby enabling causal analysis among the events observed so far.

In this paper, we consider the problem of modeling causality over event streams (not necessarily real-time) with a focus
on constructing a causal network. The causal network, a widely accepted graphical structure to represent causal relationships,
is an area of active research. All the existing works [4,6,9,15,22,24,26,28] in this area have been done for an environment
where a complete dataset is available at once. However, event instances in an event stream are unbounded, and in such a
case an incremental approach is imperative. Thus, the goal of our work is to model causal relationships in a causal network
structure incrementally over event streams. To the best of our knowledge, there exists no work done by others with this
objective.

Bayesian networks are in popular use for non-incremental causal modeling [4,9,15,22,24,26]. While the Bayesian network
encodes dependencies among all variables, it by itself is not the causal network. First, the causal network strictly requires
that the parent of a node is its direct cause, but the Bayesian network does not. Second, two or more Bayesian network struc-
tures, called the equivalence classes [7], can represent the same probability distribution and, consequently, the causal direc-
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tions between nodes are quite random. There is no technique for alleviating these problems in an event stream environment
where the entire dataset is not available at any given time.

To overcome this lack of suitable approach for incremental causal modeling over event streams, we propose the
Incremental Causal Network Construction (ICNC) algorithm. The ICNC algorithm is a hybrid method to incrementally
model a causal network, using the concepts and techniques of both temporal precedences and statistical dependencies.
Alone, neither dependency nor temporal precedence provides enough clue about causal relationships. The temporal
precedence information is learned incrementally in a temporal network with the proposed Incremental Temporal Net-
work Construction (ITNC) algorithm (see Section 5.2) whereas the statistical dependencies are learned incrementally
with a state of the art algorithm called the Incremental Hill Climbing Markov Chain (IHCMC) [1–3]. There are a
few works [14,23] where temporal precedence information is used to identify causal relationships between variables
(see Section 8), but none of them is for constructing causal networks. In our approach, we further provide measures
to eliminate confounding causalities that do not indicate strong enough causality. In this regard, our approach supports
Popper’s three conditions for inferring causality, which are temporal precedence, dependency, and no confounding cau-
sality [30].

We model an incremental causal network with a novel two layered network structure. The first layer is a network of
event types where an edge between two event types reflects the causality relationship observed between them so far in
a stream. The second layer is a network of event instances. It is a virtual layer in that there is no explicit link between
event instances. Instead, each event type in the first layer maintains a list of its instances which are then connected to
instances of another event type through a unique relational attribute (more on this in Section 6.1). The motivations for
this two layered causal network model are as follows. First, it allows for an incremental modification of the network
structure at the event type level in light of new event instances. Second, the idea of a virtual layer makes the model
flexible enough to add new or drop old event instances (drop when the volume of event instances grows too much)
while maintaining the overall causal relationships at the event type layer. In addition to the structural novelty, the cau-
sal network is semantically enriched with the notions of causal strength and causal direction confidence associated with
each edge.

We conduct experiments to evaluate the performance of the proposed ICNC algorithm using both synthetic and real data-
sets. The experiments measure how closely the constructed causal network resembles the true target causal network. Spe-
cifically, we compare the Bayesian network produced by IHCMC and the causal network produced by ICNC against a target
network. The results show considerable improvements in the accuracy of the causal network over the Bayesian network by
the use of temporal precedence relationship between events.

The contributions of this paper are summarized as follows.

� It presents a temporal network structure to represent temporal precedence relationships between event types and
proposes an algorithm to construct a temporal network incrementally over event streams.
� It introduces a two-layered causal network with rich causality semantics, and proposes an incremental causal network

construction algorithm over event streams. The novelty of the algorithm is in combining temporal precedence and
statistical dependency of causality to construct a causal network.
� It empirically demonstrates the advantages of the proposed algorithm in terms of how the temporal network increases

the accuracy of the causal network and how close the generated causal network is to the true unknown target causal
network.

The rest of the paper is organized as follows. Section 2 presents some preliminary concepts. Section 3 formulates the spe-
cific problem addressed in this paper and outlines the proposed approach. Section 4 describes the incremental Bayesian net-
work construction. Sections 5 and 6 propose the incremental temporal network construction and the incremental causal
network construction, respectively. Section 7 evaluates the proposed ICNC algorithm. Section 8 discusses related work.
Section 9 concludes the paper and suggests future work.
2. Preliminaries

In this section, we present some key concepts needed to understand the rest of the paper. The concepts are illustrated
with a representative use case – diabetic patient monitoring system [10]. We select a few important attributes from this
real-world case to make the explanations intuitive, and use them in a running example throughout the paper.
2.1. Event stream, instance, type

An event stream in our work is a sequence of continuous and unbounded timestamped events. An event refers to any
action that has an effect. One event can trigger another event in chain reactions. Each event instance belongs to one and only
one event type which is a prototype for creating the instances. We support concurrent events. In this paper an event instance
is often called simply an event or an instance if the context makes it clear.
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Each event instance is created by one event owner. An event type can have many instances, and an event owner can cre-
ate many instances of any type. Two event instances are related to each other if they share common attributes such as event
owner, location, and time. We call these attributes common relational attributes (CRAs). In Example 1, patient ID may be the
CRA, as the events of the same patient are causally related.

In this paper we denote an event type as Ej and an event instance as eij, where i indicates the CRA and j indicates the event
type ID.

Example 1. Consider a diabetic patient monitoring system in a hospital. There are hundreds of patients admitted to a
hospital, and a majority of the actions are related to clinical tests and measurements. Each patient is uniquely identifiable,
and each test or action of each patient makes one event instance. For example, a patient is admitted to the hospital, has blood
pressure and glucose level measured, and takes medication, creating the instances of the above event types as a result. These
instances are repeated for a couple of weeks or months till the patient is discharged. Typical event types from these actions
would include blood-glucose-measurement-decreased (BGMD), blood-glucose-measurement-increased (BGMI), NPH-insu-
lin-dose-given (NIDG), regular-insulin-dose-given (RIDG), and hypoglycemic-symptoms-exists (HSE), etc. (more in Table 3 in
Section 7.1.2).

An event type has the following schema: [type ID, type name, event container], where type ID is the primary key and
event container is a list of all instances of the type. An event instance has the following schema: [type ID, CRA, timestamp,
lifetime, attribute container], where type ID, CRA and timestamp together make the primary key, lifetime is the time dura-
tion up to which the event is alive, and attribute container is the set of attribute-value pairs storing any additional informa-
tion. Note that an event stream contains an indefinitely large number of event instances; hence, an event container, with
limited space, cannot store all of them, and therefore an event instance is removed from the event container once its lifetime
expires.

2.2. Causality and causal network

Causality (or causal relationship) is a relationship between a cause and an effect. An event can have multiple cause
events; similarly, it can have multiple effect events. The conceptual basis of causality in our work is that the effect is
dependent on the cause to occur and the cause must precede the effect. More specifically, we use the following notion
of causality.

Definition 1 (Causality). An event type Ei is a cause of another event type Ej (i – j) if a majority of instances of Ei and a
majority of instances of Ej are dependent and a majority of instances of Ei precede a majority of instances of Ej. (The specifics
of how many constitute a ‘‘majority’’ is application-dependent.) In addition, an event instance eki is said to be a cause of
another event instance ekj (i – j) if they have causality at the event type level and eki precedes ekj. Note that these two
instances share the same CRA (k).

Causal network is a popularly used data structure for representing causality [4,9,15,22,26]. It is a directed acyclic graph
with a strict requirement that, for every directed edge hu,vi, the parent node u is a direct cause of the child node v. We add to
this the temporal ordering, i.e., u should precede v, as another requirement.

Fig. 1(a) illustrates a causal network of the five event types mentioned in Example 1. The intuitions of the causality
among them are as follows – (1) an insulin dose is given to a patient (RIDG or NIDG) to decrease the blood glucose level
(BGMD), hence the edge from RIDG and NIDG to BGMD; (2) an increasing blood glucose level (BGMI) triggers the admin-
istration of a regular insulin dose (RIDG), hence the edge from BGMI to RIDG; and (3) it is common medical knowledge
that a decrease in blood glucose level (BGMD) can cause hypoglycemic symptom (HSE), hence the edge from BGMD to
HSE. (From here on, we denote BGMI, RIDG, NIDG, BGMD, and HSE with E1, E2, E3, E4, and E5, respectively, as shown in
Fig. 1(b).)
Fig. 1. Causal network for Example 1.
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3. Problem formulation and the proposed approach

3.1. Problem

There are three issues that constitute the problem addressed in this paper. First, due to the existence of equivalence
classes, the directions of edges in the Bayesian network are not reliable and prone to being incorrect. Therefore, we need
a method to learn the correct directions of causal relationships and thereby reduce the number of reversed edges in the
causal network. Second, there may be a number of spurious or missing causal relationships in a causal network.1 The
number of spurious edges and the number of missing edges are competing factors bringing a tradeoff in the accuracy of
the resulting causal network. Thus, an optimal causal network should have the minimum total number of spurious and
missing causal relationships. Third, an event stream is unbounded. Unlike the existing works [4,9,15,22,26] where a com-
plete dataset is expected to be available for causal modeling, we need an algorithm that constructs a causal network incre-
mentally. In summary, the problem addressed is to construct a causal network incrementally over event streams and while
doing so, to reduce the number of reversed edges and minimize the total number of missing and spurious edges in the
resultant causal network.

3.2. Overview of the approach

To learn a causal network incrementally over event streams, we propose the Incremental Causal Network Construction
(ICNC) algorithm (see Section 6.1) which models the causal relationships in a two layered network. In the algorithm, we meet
Popper’s three conditions for inferring causality – temporal precedence, dependency and no confounding causality [30]. We
propose the Incremental Temporal Network Construction (ITNC) algorithm (see Section 5) to model the temporal precedences
from an event stream into a temporal network incrementally. As mentioned earlier, Bayesian network is reliable to model
statistical dependencies and thus we adopt an incremental Bayesian network construction algorithm, the Incremental Hill-
Climbing Monte Carlo (IHCMC) algorithm (see Section 4.2). To resolve the equivalence class problem in Bayesian networks,
we use the DAG-to-CPDAG algorithm [7] to generate a complete partial directed acyclic graph (CPDAG) where unreliable
edges are rendered undirected. Then, the ICNC algorithm integrates the temporal network and the CPDAG. During the inte-
gration, spurious edges which do not indicate strong enough causality are removed and edges which indicate strong evi-
dence of causality are added with the aim of minimizing the total number of missing and spurious edges, respectively.
We rely on the temporal precedence information in the temporal network to identify the correct causal directions of the
undirected edges. Section 6 describes the rule for this integration and the algorithm for constructing the incremental causal
network.
4. Incremental Bayesian network

4.1. Bayesian network model

Bayesian network is a directed acyclic graph which encodes a joint probability distribution over a set of random variables.
The joint probability distribution of a set of n variables X � fX1; . . . ;Xng is specified as
1 The
therefo
relation
PðXÞ ¼
Yn

i¼1

PðXijPaiÞ
where Pai is the set of parent nodes of the variable Xi.
Bayesian network encodes the assertions of conditional independence between variables and, thus, is an appropriate net-

work structure to represent statistical dependency between events. Fig. 2(a) (in Section 4.3) shows the Bayesian network
corresponding to Example 1.

As already mentioned, however, the same probability distribution can be represented by different Bayesian network
structures that are in the same equivalence class [7]. For example in Fig. 2(a), E1 ? E2 ? E3 and E1 E2 ? E3 may represent
the same joint probability distribution and hence the same network topology. The differences in their network structures are
in the directions of the edges. Since the edge direction in a causal network indicates the causal direction between events, the
causal meaning becomes entirely different with the change in the edge direction. This ambiguity makes Bayesian networks
unsuitable to be used as causal networks. In the example above, the causal direction E1 ? E2 (recall E1 and E2 are BGMI and
RIDG, respectively) makes sense as an increase in blood glucose measurement (BGMI) causes the use of insulin (RIDG). How-
ever, the reverse causal direction E1 E2 (in the Bayesian network of Fig. 2(a)) is incorrect as the use of insulin does not in-
crease the blood glucose measurement. So, a Bayesian network cannot be trusted to detect the causal direction between
events.
causal network has a strict requirement that the parents of a node are its direct causes. However, the same is not true for a Bayesian network, and,
re, dependencies between event types detected in a Bayesian network may not be causal relationships. Such dependencies lead to spurious causal
ships in the causal network.



Fig. 2. Illustration of DAG-to-CPDAG. Source: Chickering [7].
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Bayesian variables in the constructed network represent event types. They are boolean variables indicating whether an
instance of the represented event type exists or not in the event stream.

4.2. Incremental Bayesian network construction algorithm

With the continuous arrival of an event stream with no definite end, it is imperative to construct a Bayesian network
incrementally by refining the existing network every time a new batch of data becomes available. Discarding and recon-
structing the entire network from scratch every time would be too expensive. As already mentioned, we use the Incremental
Hill-Climbing Monte Carlo (IHCMC), an incremental version of the HCMC algorithm [1,2]. In this subsection we summarize
the HCMC and the IHCMC algorithms implemented based on Alcobé’s work [1,2].

Algorithm 1. HCMC
Require: a dataset D on {X1,. . ...,Xn} variables, a variable ncr indicating whether to use NCR neighborhood or NR

neighborhood, a constant MAXTRIALS, a positive integer n
1: localMaximum = false, trials = 0;
2: Let G be an edgeless DAG.
3: Calculate the initial neighborhood N(G) (based on ncr) and sufficient statistics for D;
4: while localMaximum is false do
5: Reverse n randomly chosen edges in G; {//Escape from the local maximum to find the global maximum by randomly

reversing edges.}
6: Let G0 be the highest-score DAG in the neighborhood N(G). {//Select the best network structure in the neighborhood.}
7: if score (G) Pscore (G0) then localMaximum = true; {//There are no network structures with higher score than the

current one.}
8: if localMaximum is false {//The local maximum has not been reached.} then
9: trials = 0;
10: G = G0;
11: else if trials < MAXTRIALS {//Repeat the trial up to MAXTRIALS times to find the global maximum.} then
12: trials = trials + 1;
13: localMaximum = false;
14: end if
15: end while
The HCMC algorithm begins with a network with no edge and, at each iteration, enumerates the neighboring states of the
current network state (in the search space) by randomly adding, removing, or reversing edges, and then keeps the network
with the highest score. The algorithm terminates when none of the neighboring networks improves the score over the cur-
rent network. Algorithm 1 summarizes the implemented HCMC algorithm. In the algorithm, the NR (no reversal) neighbor-
hood refers to all DAGs with one arc more or less and do not introduce a directed cycle, whereas the NCR (non-covered
reversal) neightborhood refers to the NR neighborhood plus all DAGs with one non-covered edge reversed and does not
introduce a directed cycle. (An edge x ? y in a DAG G is said to be covered in G if parents(x) [ x = parents(y), that is, all
and only the parents of x are the parents of y).
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Algorithm 2. IHCMC

Require a new dataset D’ on {X1,. . ...,Xn} variables, the highest score network structure G in the old dataset D, the set Cij

of candidate parents of each variable Xi and parent Xj from the previous learning step, the ordered set O of operators
performed in the previous learning step, and the number n of operators to store in candidate lists. {In the first run, G is
an edgeless network and Cij and O are empty.}

1: Update the sufficient statistics of the old dataset D to reflect the new dataset D0;
2: localMaximum = false; k = 0; run = true;
3: G0 = G; {//Start with the network structure from the old dataset.}
4: Calculate neighborhood N(G0) with the operators in O;
5: while run is true and k < jOj do
6: Select the operator, o, that maximizes the score of networks in N(G0);

{//Find the best network from the neighborhood N(G0).}
7: run = false;
8: if o is present within the window of operators being considered in O then
9: Revise G0 by applying the operator o;
10: Calculate neighborhood N(G0) with the operators in O;
11: k = k + 1;
12: run = true;
13: end if
14: end while
15: Call the algorithm HCMC with G0, sufficient statistics, and the n best candidates in Cij;

Initially, the IHCMC algorithm behaves exactly like the HCMC algorithm, which finds a network structure achieving the
highest score given the provided data. During this process, the order in which the operators (i.e., add, delete, reverse) coupled
with edges are applied is stored for use in the next learning step. Then, with the arrival of a new dataset, the IHCMC algo-
rithm updates the ‘‘sufficient statistics’’ of the old dataset to reflects the new data. (Sufficient statistics is a statistical summary
of the dataset which contains all information necessary to calculate the scores of the Bayesian network.) Using the new suf-
ficient statistics and the order of operations from the previous step, it determines whether the current network structure
should be revised for the new dataset. If a revision is needed, the IHCMC algorithm starts with the highest-score network
in the previous step as the initial model. This approach makes the algorithm efficient. When updating the network for
the new dataset, IHCMC reduces the search space by restricting the set of operators and edges considered. In order to do that,
a certain (used-defined) number of pairs of operators and edges that give the score closest to the best one are stored for the
next learning step, and the search is restricted to only the neighboring networks obtained with these stored pairs. At the end,
IHCMC calls the HCMC algorithm so that it continues to build the network structure in light of the new data. Algorithm 2
summarizes the implemented IHCMC algorithm.
4.3. DAG-to-CPDAG algorithm

As mentioned earlier, we use the DAG-to-CPDAG algorithm to find the edges with ambiguous direction in a Bayesian net-
work. The algorithm takes a Bayesian network as the input and outputs a completed partial directed acyclic graph (CPDAG)
representation of the equivalence class to which that structure belongs. Undirected edges in the CPDAG are the ambiguous
edges. We particularly use the implementation proposed by [7]. Algorithm 3 outlines the three steps in the algorithm. First, it
performs a topological sort on the vertices in the input Bayesian network so that, for any pair of vertices x and y, x must pre-
cede y if x is an ancestor of y. Second, based on the topological sorting, the edges are sorted first in the ascending order of the
incident vertices and then in the descending order of the outgoing vertices. Finally, the ordered edges are labeled either
‘‘compelled’’ or ‘‘reversible’’. The ‘‘reversible’’ edges are made undirected while preserving the edge direction of the ‘‘com-
pelled’’ edges in the final CPDAG.

Algorithm 3. DAG-to-CPDAG

Require BayesianNetwork G.
1: Sort the vertices in G such that x precedes y if and only if x is an ancestor of y;
2: Based on the topological order of the vertices, sort the edges in G, first in the ascending order of the incident vertices

and then in the descending order of the outgoing vertices;
3: Label every edge in G as ‘‘unknown’’;
4: while there exists an edge labeled ‘‘unknown’’ in G

(continued on next page)



38 S. Acharya, B.S. Lee / Information Sciences 261 (2014) 32–51
5: Select the edge of the lowest order, x ? y, that is labeled ‘‘unknown’’;
6: run = true;
7: for every edge z ? x labeled ‘‘compelled’’ do
8: if z is not a parent of y {//If the path is z ? x ? y} then
9: Label x ? y and every edge incident into y as ‘‘compelled’’;
10: run = false;
11: End this FOR Loop;
12: else
13: {//If the path is z ? x,z ? y.}
14: Label z ? y as ‘‘compelled’’;
15: end if
16: end for
17: if run is true then
18: if there exists an edge w ? y such that w – x and w is not a parent of x then
19: Label x ? y and every ‘‘unknown’’ edge incident to y as ‘‘compelled’’;
20: else
21; Label x ? y and every ‘‘unknown’’ edge incident to y as ‘‘reversible’’;
22: end if
23: end if
24: end while
25: Make all ‘‘reversible’’ edges undirected;
Fig. 2 illustrates the Chickering’s algorithm [7]. Given the input Bayesian network in Fig. 2(a), the first step (topological
sorting of the vertices) gives E2, E3, E1, E4, and E5; then, the second step sorts the edges in the following order: E2 ? E3,
E2 ? E4, E2 ? E1, E3 ? E4, and E4 ? E5; finally, the third step labels the edge E2 ? E1 as ‘‘reversible’’ and the remaining edges
as ‘‘compelled’’ and, therefore, the ‘‘reversible’’ edge E2 ? E1 is made undirected, resulting in the final output CPDAG shown
in Fig. 2(b).

Note that the Chickering’s algorithm does not check repeatedly on all edges, hence computationally more efficient than
previous rule-based algorithms [25,29]. In these algorithms, the idea is to undirect every edge in a DAG, except for those
edges that participate in a v-structure. (Three nodes x, y and z are said to have a v-structure if their edges form the structure
x ? y z.) The rules are applied repeatedly on every edge to determine the edge direction until no rule has any effect on the
PDAG, that is, no edge becomes undirected.

5. Incremental temporal network

5.1. Temporal network model

In this paper the temporal network models the temporal precedences between pairs of events. It is a directed acyclic
graph of nodes representing event types. Its construction has to be incremental as well, as it is over a stream. For this pur-
pose, we place a window over the stream. The semantics of the window can be dependent on the application, and we use a
time-based window here without loss of generality. Typically, the application offers a natural observation period (e.g., day)
that makes a window.

As mentioned in Definition 1, causality is defined between events with the same common relational attribute (CRA). So, we
arrange the events in a window by CRA as they arrive, producing a partitioned window as a result. Events in the same par-
tition have the same CRA and are ordered by the timestamp. Fig. 3 illustrates it with an event stream from the patient dia-
betes monitoring system described in Example 1.
Fig. 3. Partitioned window of events.
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We assume events farther apart temporally are less likely to have a causal relationship between them. So, in a partitioned
window, we observe temporal relationships only between events that are near to each other, that is, at most k instances
apart. (We refer to k as the adjacency span of events.) For example, given a sequence of events {ei1,ei2,ei3,ei4}, and k specified
as 3, we observe the frequencies of event pairs {ei1,ei2}, {ei1,ei3}, {ei1,ei4}, {ei2,ei3}, {ei2,ei4}, and {ei3,ei4}. These events instances
have the same CRA (subscript i) but belong to different event types (E1,E2,E3 and E4).

With the arrival of a new batch of event instances, we augment each partition in the new window by prefixing it with the
last k instances of the partition with the same CRA value in the previous window. This is necessary in order to identify the
temporal precedence between instances that are separated into the two consecutive batches.

To determine when an edge, say Ei ? Ej, should be added in a temporal network, a measure providing an evidence of tem-
poral precedence between the event types should be defined. The evidence we use is that the observation of an instance of Ej

following an instance of Ei is made frequently enough. So, we use the measure temporal strength, as defined below.

Definition 2 (Temporal strength). Consider an edge Ei ? Ej (i – j) in a temporal network. Let fij be the total number of
observations in which an event of type Ei precedes an event of type Ej over all partitions in the partitioned window. Then, we
define temporal strength, sij, of the edge Ei ? Ej as
sij ,
fijPðNET�1Þ

k¼0 fik

ð1Þ
where NET is the number of event types. h

There are two relevant issues in selecting the edges in a temporal network. First, a temporal strength threshold (ds1) should
be provided. Only those edges whose temporal strength is greater than ds1 are included in the temporal network. (There is
another threshold, ds2 (>ds1) used in our work. The temporal strength of an edge higher than ds2 indicates even higher prob-
ability of the edge representing a causal relationship (see Definition 1). In Section 6, we use ds2 to add a causal relationship
missing in the Bayesian network.) Second, a criterion should be set to handle a case in which both an edge and its reverse
edge have temporal strengths higher than ds1. For this, we use a gap threshold (dg) which makes sure that when the stronger
edge direction is selected, the difference between the two opposite temporal strengths is significant enough. For example, an
edge Ei ? Ej (with frequency fij) is selected instead of its reverse edge Ej ? Ei (with frequency fji) if and only if fij�fji

fijþfji
>dg.

5.2. Incremental temporal network construction algorithm

The idea behind the Incremental Temporal Network Construction (ITNC) algorithm is to collect events from an event stream
in a window and then use temporal precedence information from the sequence of event pairs in the window to construct a
temporal network at the event type level.

Algorithm 4. Incremental temporal network construction

Require: window W, event adjacency span (k), gap threshold (dg), temporal strength threshold (ds1), attenuation
constant s, an edgeless network structure TN, attenuated frequency matrix (AFM).

1: Let Bp and Bc be two empty buffers (used to store ‘‘parent’’ events and ‘‘child’’ events, respectively).
2: for each partition P (corresponding to CRA a) in W {//Consider one partition at a time as the events of two partitions are

unrelated and therefore independent of each other.} do
3: for each unique ith timestamp ti in P do
4: Clear Bp and Insert all events with timestamp ti into Bp;
5: for d = 1 to k such that i + d 6 sizeOf (P) {//Iterate over all succeeding events within the adjacency span ‘‘k’’ in the

same partition.} do
6: Clear Bc and Insert all events with timestamp ti+d into Bc;
7: for each event instance eac and eap in Bc and Bp, respectively do
8: if type (eac) –type (eap) {//There cannot be causal relationships between events of the same type.} then
9: Increase the frequency of element ftypeðeapÞ;typeðeacÞ in AFM by e�(d � 1)s;
10: end if
11: end for
12: end for
13: end for
14: end for
15: Let SM be an empty strength matrix.
16: for each pair of elements fij and fji in AFM do
17: //Calculate the temporal strength of only those edges of which the temporal precedence directions are not ambiguous.

(continued on next page)
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18: Calculate the evidence of temporal edge direction, dij = fij�fji

fijþfji
;

19: if the value of jdijj is greater than dg then
20: if dij is positive (i.e., the evidence of fij is greater than fji) then
21: Calculate Sij (see Eq. (1)) and set Sji to 0;
22: else if dij is negative (i.e., the evidence of fji is greater than fij) then
23: Calculate Sji (see Eq. (1)) and set Sij to 0;
24: end if
25: end if
26: end for
27: for each pair of elements sij and sji in SM do
28: //Add only those edges whose temporal strengths are greater than ds1.
29: if sij > ds1 then
30: Add an edge Ei ? Ej in TN;
31: else if sji > ds1 then
32: Add an edge Ej ? Ei in TN;
33: end if
34: if an edge is added and it introduces cycle in TN then remove the edge with the lowest temporal strength (in SM)

in the cycle;
35: end for

The algorithm has three steps. The overall algorithm is centered on a attenuated frequency matrix, which is initially empty
(i.e., all zero elements) and updated with each new batch of events.

1. Update the attenuated frequency matrix AFM by observing the precedence relationships of event pairs within the adja-
cency span in the partitioned window (see lines 1–14 of Algorithm 4). An element fij in AFM reflects the total number of
times events of type Ei precede events of type Ej (i – j). Each time we observe an event pair (eoi,eoj) in the event stream
such that eoi precedes eoj, we increase the value of fij by e�ds where d is the distance between the two events and s 2 (0,1)
is an attenuation constant. The rationale for the attenuation is that, as the distance between events increases, the prob-
ability of them being cause and effect decreases.

2. Calculate the temporal strength of each edge in AFM and store it in a strength matrix SM (see lines 15–26 Algorithm 4). For
each pair of an edge and its reversed edge, set the strength of the edge with the lower frequency to zero. The calculated
strength of the selected edge, e.g., Ei ? Ej, is stored in the element sij of SM.

3. Determine the edges of the temporal network using the strength matrix (see lines 27–35 of Algorithm 4). Only those
edges whose temporal strengths are greater than the strength threshold ds1 are added. If a cycle is introduced, we remove
the edge with the lowest temporal strength in the cycle.

Let us illustrate the ITNC algorithm considering the event stream shown in Fig. 3. Suppose the adjacency span (k) and the
attenuation constant (s) are set to 2 and 0.5, respectively. Then, in the first step, Algorithm 4 (lines 1–14) constructs an atten-
uated frequency matrix shown in Fig. 4(a) from the event stream. In addition, suppose the gap threshold (dg) is set to 10%.
Then, in the second step, Algorithm 4 (lines 15–26) constructs a strength matrix shown in Fig. 4(b). Note that the edge
Fig. 4. Illustration of temporal network construction from the event stream in Fig. 3.
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E5 ? E4 fails the gap threshold test and, therefore, its strength is set to 0. In addition, suppose the temporal strength thresh-
old (ds1) is set to 25%. Then, in the third step, Algorithm 4 (lines 27–35) constructs from the strength matrix the temporal
network shown below in Fig. 4. Note that the strengths of the edges E2 ? E3 and E2 ? E5 (21% and 16%, respectively) are low-
er than the temporal strength threshold and, consequently, are pruned out.

The computational complexity of the ITNC algorithm for a temporal network is polynomial. Let n and ncra be the number
of event types and the number of CRAs, respectively. As explained earlier in Section 5.1, a partitioned window has ncra par-
titions. For a new batch of events, the step 1 (attenuated frequency matrix construction) of the ITNC algorithm goes through
all of ncra partitions to calculate the attenuated frequency. For each partition P, we find the temporal precedence relationship
between each event at a unique timestamp and another event at a later timestamp (within the k adjacency span). The max-
imum number of events that can occur at any timestamp is n, and the maximum value of k is the size of the partition, jPj; so,
for one partition the worst case running time is O(jPj � k � n2), which equals O(jPj2 � n2) since k 6 jPj. Thus, the running time of
the step 1, for ncra partitions, is O(jPj2 � n2 � ncra). In the step 2 (strength matrix construction), the running time is O(n2) as the
algorithm iterates n2/2 times on the frequency matrix. The step 3 (temporal network construction) iterates n2/2 times on the
strength matrix. At each iteration, the algorithm checks for a cycle if an edge is added to the network. In the worst case, every
edge in the network is inspected for a cycle to be detected and there are at most n � (n � 1)/2 edges in the network. So, the
running time of the step 3 is O(n4). Hence, the total running time for the ITNC algorithm is O(jPj2 � n2 � ncra + n2 + n4) which
equals O(n2 � (jPj2 � ncra + n2)).

6. Incremental causal network

6.1. Causal network model

As mentioned earlier, we propose to organize the causal network in two layers for compact and yet versatile causal mod-
eling. Representing causality of an unbounded event stream in a single causal network is not only complex but also raises
challenges in maintaining the network with the arrival of new events. So, we prefer a simple network that should be able
to represent causality at both the event type level and the event instance level. In the proposed causal network model,
the first layer is a network of event types. That means, several thousands of events are aggregated to several dozens of event
types, which gives general causal relationships for a majority of the events in the event stream and greatly reduces the size
and complexity of the network. The second layer has event instances, and it holds specific causal relationships among them.
The event instances are stored in the event container of an event type. So, the event instances assume the causal relationship
of their event types and an event instance of one event type is causally related to an event instance of another event type
through a uniquely identifiable CRA. The temporal precedence relationships between events play a key role in identifying
their causal relationship. In short, an event ea1 i is the cause of another event ea2 j if and only if (a) they share the same
CRA (i.e., a1 = a2), (b) there exists an edge from Ei to Ej (i – j) in the causal network (at the type level), and (c) ea1 i precedes
ea2 j within the adjacency span.

Fig. 5 illustrates the causal network structure, for the event stream shown in Fig. 3. The causality among event types are
modeled in the first layer. Both E2 and E3 are the direct causes of E4, while E1 causes E2 and E4 causes E5. The second (virtual)
layer holds the causal relationships between event instances. For example, suppose the adjacency span is 2. Then, the event
e33 is a cause of the event e34, as there is an edge from E3 to E4 and e33 precedes e34 within the adjacency span of the same
partition (i.e., under the same CRA) (see Fig. 3); on the other hand, e72 does not cause e73 even though e72 immediately pre-
cedes e73, as there is no edge from E2 to E3; similarly, e42 does not cause e45, as there is no path between them.

Note that the temporal strength gives a measure of the temporal precedence between event types, that is, how often the
instances of an event type occur after the instances of another event type. What is deemed more appropriate for causality,
however, is a probabilistic measure which determines the strength among all likely causes of an event type. This measure is
the causal strength defined below. The highest causal strength gives the most likely cause of an event type.

Definition 3 (Causal strength). Consider an edge Ei ? Ej (i – j) in the causal network and its frequency fij in the temporal
network. Then, we define the causal strength, cij, of the edge Ei ? Ej as
Fig. 5. Two-layered causal network.
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cij ,
fijP

k2parentsðEjÞfkj
In addition to the causal strength, we need a measure of the confidence in the causal direction of an edge.
Definition 4 (Causal direction confidence). Consider an edge Ei ? Ej (i – j) in the causal network and its frequency fij in the
temporal network. If its reversed edge has a frequency fji, then we define the causal direction confidence, dij, of the edge Ei ? Ej

as
dij ,
jfij � fjij
fij þ fji
Based on the notion of causality in Definition 1, now we propose the rule for merging a temporal network and a Bayesian
network.
Rule 1. [Temporal and Bayesian network integration]Given two event types, we add an edge in the causal network if there
exists an edge between them in both the Bayesian network and the temporal network. Moreover, if the temporal strength of
an edge in the temporal network is greater than the higher threshold value ds2, then the edge is added to the causal network
even if it does not exist in the Bayesian network. If there are any undirected edges in the Bayesian network (as a result of
DAG-to-CPDAG), the direction is set as in the temporal network.

Note that an edge direction in the Bayesian network can be ambiguous due to the existence of equivalence classes. Note
as well that an edge can be removed or added in the causal network depending on the values of the temporal strength
thresholds (ds1,ds2) and the gap threshold (dg).

6.2. Incremental causal network construction algorithm

Algorithm 5. Incremental causal network construction

Require: event stream, a list of event types, temporal strength threshold ds2

1: Construct an edgeless causal network CN with the nodes representing the given event types;
2: for each batch in the event stream do
3: Run the IHCMC algorithm to update the Bayesian network BN’ and then run the DAG-to-CPDAG algorithm [7] on

BN’ to obtain BN; //DAG-TO-CPDAG removes the edge direction of ambiguous edges.
4: Run the ITNC algorithm to update the temporal network TN;
5: // Merge TN and BN using Rule 1.
6: for each pair of event types Ei and Ej (i – j) do
7: if there is an edge in both BN and TN then
8: Add an edge in CN; set its direction as in BN if the edge in BN is directed or as in TN if undirected;
9: Calculate the causal strength as in Definition 3 and the causal direction confidence as in Definition 4;
10: else if there is no edge in BN but an edge in TN and its temporal strength is greater than ds2 then
11: Add an edge in CN and set its direction as in TN;
12: else
13: Add no edge in CN;
14: end if
15: if an edge is added and it introduces a cycle in CN then
16: Remove the edge with the lowest causal strength in the cycle;
17: end if
18: end for
19: end for

The algorithm requires an event stream, an observation period (during which a new set of events are collected from the
stream) and a list of event types. Initially, an edgeless causal network structure of the given number of nodes is built. Then it
is updated incrementally as soon as a new batch of events arrives, as outlined in Algorithm 5.

Recall that the Bayesian network is reliable in judging the existence of statistical dependency between two event types
but not the direction of the dependency. So, the key idea of the algorithm is to rely on the statistical dependency given by the
Bayesian network and the causal direction given by the temporal network. In addition, the temporal precedence relation-
ships can provide important clues for spurious edge removal or missing edge addition. The algorithm adopts the IHCMC algo-
rithm which finds incrementally a Bayesian network structure achieving the highest score. The Bayesian network thus
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obtained, however, is one of many possible equivalent network structures and so the edge directions are not reliable. Thus,
we run the DAG-to-CPDAG algorithm [7] which may render some edges undirected if it regards them ambiguous. The tem-
poral network is constructed using the ITNC algorithm (see Section 5). The remaining key task is to integrate them according
to Rule 1 as they are updated incrementally with a new batch of dataset. If a cycle is introduced in the causal network, we
remove the edge with the lowest causal strength in the cycle.

It is well known that the learning of Bayesian network structure, i.e., IHCMC in our case, is a NP hard problem [8]. Since
the computational complexity of the ITNC algorithm is polynomial (as shown in Section 5.2), the computational complexity
of the ICNC algorithm is governed by the computational complexity of the IHCMC algorithm.
7. Performance evaluation

We conduct experiments to evaluate the proposed ICNC algorithm against the IHCMC algorithm. The main focus of the
evaluation is on the resultant network structure. One evaluation is with respect to the topologies of the resulting networks,
and the other evaluation is with respect to the edge directions. In both cases, the networks generated by ICNC and IHMC are
compared against a true causal network unknown to the algorithms. In addition, the run-time overhead of ICNC is evaluated
against IHCMC. Section 7.1 describes the experiment setup, including the evaluation metrics, datasets and the platform used,
and Section 7.2 presents the experiment results.

7.1. Experiment setup

7.1.1. Evaluation metrics
Intuitively, the performances of causal network construction algorithms are best evaluated by examining how closely the

constructed causal network structures resemble the target causal network. In this regard, we adopt the structural Hamming
distance proposed by Tsamardinos et al. [31] as the quality metric of the output causal network. The nodes (i.e., event types)
are fixed as given to the algorithms, and therefore the network structures are compared with respect to the edges between
nodes.

There are three kinds of possible errors in the causal network construction: reversed edges, missing edges, and spurious
edges. We use the relative number of the erroneous edges of each kind with respect to the maximum possible number of
erroneous edges of that kind as the evaluation metric here. The maximum number of reversed or missing edges is the actual
number of edges in the target causal network. On the other hand, the maximum number of spurious edges is given as
NET ðNET�1Þ

2 � Nedges, where NET and Nedges are the number of nodes (=number of event types) and the number of edges, respec-
tively, in the target network.

7.1.2. Datasets
Experiments are conducted using both synthetic and real datasets.

7.1.2.1. Synthetic datasets. A synthetic dataset is reverse-engineered from a target causal network. Given control parameters
in Table 1, the idea is to generate a random causal network, and then convert the causal network to an event stream which
reflects the underlying probability distribution of the causal network. Specifically, there are three steps. First, NET nodes are
created and edges are added randomly, and random conditional probabilities are assigned to each edge. Each node can have
up to MaxNC edges from cause nodes and up to MaxNE edges to effect nodes. (We set both MaxNC and MaxNE to 3 for the exper-
iments presented here.) Second, a joint probability distribution (JPD) table is built from the conditional probabilities assigned
to edges of the target causal network. The rows of the JPD table collectively cover all event sequences possible, while each
row has its own probability. Third, the probability for each row in the JPD table is multiplied by NO to calculate the number of
repetitions of that event sequence in the dataset. We assume that the event owner is the CRA for the dataset.

The size of a JPD table grows exponentially with NET and therefore we use parallel processing for the event stream gen-
eration. The JPD table is divided into multiple partitions and the dataset is created by running parallel processes over each of
these partitions. The dataset is thus represented by a collection of files in which the events are shuffled according to the own-
er ID while preserving the temporal order.

There are five cases of datasets, DS1 through DS5, according to the number of nodes in the represented target causal net-
works (see their profiles in Table 2). The target causal networks have 4, 8, 12, 16 and 20 nodes, respectively, They are created
Table 1
Control parameters for synthetic event stream generation.

Parameter Meaning

NO Number of event owners (with unique ID)
NET Number of event types (i.e., nodes)
MaxNC Maximum number of cause events (parents)
MaxNE Maximum number of effect events (children)



Table 2
Profiles of the five synthetic datasets.

Dataset NET Nedges NO Ninstances

DS1 4 4 5000 15,128
DS2 8 15 30,000 124,475
DS3 12 22 500,000 3,173,246
DS4 16 39 6,553,600 50,247,293
DS5 20 49 52,428,800 510,971,687

Nedges is the number of actual edges in the network. Ninstances is the average number of event instances in the datasets of each case.
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with 1, 2, 16, 64 and 512 parallel processes, respectively, thus consisting of 1, 2, 16, 64 and 512 files, respectively. Each case
has 100 different datasets. So, there are a total of 500 different synthetic datasets representing 500 random causal networks.
Each row of a synthetic dataset represents one event instance with the schema [type ID, CRA, timestamp, lifetime, attribute
container] as discussed in Section 2.1.

7.1.2.2. Real dataset. The real dataset contains diabetes lab test results [10] of 70 different patients over a period ranging from
a few weeks to a few months. The dataset has a total 28,143 records, about 402 records for each patient. Each record has four
fields – date, time, test code, test value. The clinical data of a patient is independent of other patients. Therefore, the patient
ID is the CRA for this dataset. There are 20 different test codes appearing in the file (shown in the left column of Table 3). We
define event types of interest from these test codes (shown in the right column of Table 3).

7.1.3. Platform
The experiments are conducted on RedHat Enterprise Linux 5 operating system using GCC 4.1.2 in Vermont Advanced

Computing Core (VACC) cluster computers. VACC uses the IBM Bluemoon cluster with 364 nodes providing roughly 3000
computing cores.

7.2. Experiment results

We run the ICNC and IHCMC algorithms over each of the five cases of synthethic datasets and the real dataset. First, we
compare the topologies of the generated networks against the target causal network and determine how closely they resem-
ble the true causal network. Specifically, we count the number of spurious edges and the number of missing edges. Second,
we compare the number of reversed edges in the generated networks with the target causal network to evaluate the causal
edge directions. In addition, we compare the running time of the ICNC and IHCMC algorithms. In these experiments, we
choose the median value of NET/2 for the adjacency span (which ranges from 1 to NET). Similarly, we select the median value
of 0.5 for the attenuation constant s. We assume events in the stream are in temporal order.

We train and test the causal model to evaluate the performance of the ICNC algorithm. In the training phase, we run the
simulated annealing algorithm [18] (SIMULANEALBND function available in MATLAB) to determine the optimal values of
Table 3
Event types defined from the diabetes dataset.

Test Code Event Type

Regular insulin dose Regular-insulin-dose-given (RIDG)
NPH insulin dose NPH-insulin-dose-given (NIDG)
UltraLente insulin dose UltraLente-insulin-dose-given (UIDG)

Unspecified BGM⁄

Pre-breakfast BGM⁄

Post-breakfast BGM⁄ Blood-glucose-measurement-increased (BGMI)
Pre-lunch blood BGM⁄

Post-lunch BGM⁄ Blood-glucose-measurement-decreased (BGMD)
Pre-supper BGM⁄

Post-supper BGM⁄

Pre-snack BGM⁄

Hypoglycemic symptoms Hypoglycemic-symptoms-exist (HSE)
Typical meal ingestion Typical-meal-ingested (TMI)
More than usual meal ingestion More-than-usual-meal-ingested (MTUMI)
Less than usual meal ingestion Less-than-usual-meal-ingested (LTUMI)
Typical exercise activity Typical-exercise-taken (TET)
More than usual exercise activity More-than-usual-exercise-taken (MTUET)
Less than usual exercise activity Less-than-usual-exercise-taken (LTUET)

Note: BGM⁄: blood glucose measurement.
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temporal strength and gap thresholds (ds1,ds2,dg) at which the topology of the causal network is closest to the target causal
network. As discussed in Section 6.1, this topology is influenced by the threshold values. The upper and lower bounds of each
threshold are set to 0% and 100%. The optimized thresholds are then used against a new stream of events in the testing phase.

For the synthetic dataset experiment, we randomly divide each dataset into 70% and 30% for training and testing the cau-
sal model, respectively. The experiment is repeated ten times for each dataset of each case (DS1 through DS5) to calculate the
average relative number of erroneous edges. For the real dataset experiment, we randomly select 70% of the data for training;
to test the model, since the dataset is not big enough, we take 50% of the data (30% of the remaining data excluded in the
training and 20% of the data used in the training).
7.2.1. Comparison of the network topologies from ICNC and IHCMC
The accuracy of the causal network topology is evaluated by the average relative number of spurious and missing edges.
7.2.1.1. Synthetic dataset experiment. Figs. 6 and 7 show the results of the generated causal network (CN) and Bayesian net-
work (BN). (The results are shown in a chart form as well as a tabular form.) The optimal threshold values obtained in the
training phase are shown in Table 4. In addition, Fig. 8 shows the true causal network, the causal network generated by ICNC,
and the Bayesian network generated by IHCMC, given the dataset DS3. (Those for the other datasets are omitted in the inter-
est of space.)

Fig. 6 shows that the average relative number of spurious edges in CN is smaller than that in BN. It is because the ICNC
algorithm, through the temporal network, prunes out all edges whose temporal strengths are below ds1 in the temporal net-
work. Fig. 7 shows that the average relative number of missing edges in CN is also smaller than that of BN. This is due to the
ICNC algorithm’s ability to add edges even if they do not exist in BN when they have temporal strengths greater than ds2 in
the temporal network. Moreover, Figs. 6(b) and 7(b) show that the standard deviation in the relative number of spurious
edges and missing edges, respectively, is larger for BN than for CN. It is due to the reduction in the number of spurious
and missing edges in CN by using the temporal information.
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Fig. 6. Relative number of spurious edges in the causal network (CN) and the Bayesian network (BN) for the synthetic datasets.
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Fig. 7. Relative number of missing edges in the causal network (CN) and the Bayesian network (BN) for the synthetic datasets.



Table 4
Optimal threshold values in the synthetic dataset experiments.

Dataset dg ds1 ds2

DS1 18.3 7.1 84.7
DS2 6.2 0.5 69.8
DS3 23.3 5.6 91.4
DS4 33.7 15.1 86.6
DS5 30.5 3.8 78.4

Fig. 8. Causal and Bayesian networks from the synthetic dataset DS3.
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These results confirm the important role of the temporal network and the threshold mechanism to reduce the number of
spurious and missing causal relationships.

7.2.1.2. Real dataset experiment. For the diabetes lab test dataset, the optimal values of dg, ds1 and ds2 are 26, 23 and 78,
respectively. The causal network shown in Fig. 9(a) is used as the true causal network against which the causal model is
trained to determine the optimum threshold values. Fig. 9(b) and (c) are the causal network and the Bayesian network gen-
erated by ICNC and IHCMC, respectively. Their relative numbers of spurious and missing edges are compared in Fig. 10.

The causal network from ICNC has only one spurious relationship (RIDG causes NIDG) out of the 55 possible spurious rela-
tionships. Clearly, there are a higher number of spurious edges in the Bayesian network from IHCMC – 12 (i.e., 22% of the
possible spurious relationships). It is considered to be due to the fact that the parent of a node in a Bayesian network
may not necessarily be its cause (unlike the causal network where the parent of a node is always its cause). The lower num-
ber of spurious edges in the causal network is due to the temporal strength threshold ds1 and the gap threshold dg which
prune out the edges with lower temporal strength and narrower gap.

The causal network from the ICNC algorithm has no missing causal relationships out of the 11 causal relationships,
whereas the Bayesian network from the IHCMC algorithm has one edge (BGMI causes LTUMI) missing. Evidently, the IHCMC
algorithm has failed to identify the causal relationship between BGMI and LTUMI. The ICNC algorithm, on the other hand, has
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identified the edge as missing and added it, because the edge has temporal strength higher than the threshold ds2 in the tem-
poral network.

The target causal network (Fig. 9(a)), vetted by a physician, encodes the true causal relationships. We can confirm visually
that the causal network from ICNC (Fig. 9(b)) is an almost exact replica of the true causal network. Note the additional causal
strength and causal direction confidence labeled on each edge. The resultant causal network shows that NIDG and RIDG
respectively cause BGMD. Indeed, it is well known that insulin decreases the blood glucose level2; this also explains why
BGMI causes RIDG. BGMI also causes LTUMI. Clearly, patients with high blood glucose level are encouraged for less than usual
meal ingestion. In addition, BGMI causes MTEUT, which in turn causes BGMD and MTUMI. It is common knowledge that phys-
ical activity burns calories, resulting in a decreased blood glucose level (BGMD) and stronger appetite (MTUMI). Note, however,
the causal strengths for these two relationships are low, which means MTUET is not a major cause of BGMD. (RIDG and NIDG are
the major causes of BGMD.) In addition, BGMD is a strong cause of HSE, LTUET and MTUMI. It is a well-known medical fact that
HSE is caused by BGMD and the lower glucose level causes the patients to be prescribed to take less exercise and heavy meal. In
fact, HSE, effect of the decrease in blood glucose measurement, is the reason for more than usual meal ingestion (MTUMI).

In summary, these synthetic and real dataset experiments confirm that IHCMC alone is not suitable for building an accu-
rate causal network topology. We observe that ICNC is far superior to IHCMC at detecting causally related event types cor-
rectly. The results show that the gap threshold and the temporal strength threshold in the ICNC algorithm provides an
effective mechanism to identify and remove spurious relationships or add missing causal relationships.

7.2.2. Comparison of the edge direction of the networks from ICNC and IHCMC
We compare the causal edge directions of the network structures generated by the ICNC and IHCMC algorithms.

7.2.2.1. Synthetic dataset experiment. Fig. 11 shows that the average relative number of reversed edges in CN is zero for every
dataset. This demonstrates that the ITNC algorithm always detects correct temporal directions from the event stream when
generating the temporal network (TN) and the CN generated by the ICNC algorithm inherits these correct temporal direc-
tions from TN. In contrast, BN has a higher average relative number of reversed edges for every dataset. In addition, the stan-
dard deviation of the relative number of reversed edges in BN is particularly larger than those of spurious or missing edges.
This is the effect of equivalence classes in BN construction which typically involves different edge orientations. It confirms
that a Bayesian network cannot be relied upon for the causal direction.

7.2.2.2. Real dataset experiment. From the causal network and the Bayesian network shown in Fig. 9(b) and (c), we can count
the relative number of reversed edges as shown in Fig. 10. Not surprisingly, the Bayesian network has a large number (27%)
of reversed causal relationships – for example, the edges between HSE and BGMD, BGMI and MUTET, and BGMD and LTUET.
On the other hand, the causal network does not have any reversed causal relationship due to the correct causal direction
identified in the temporal network.

Clearly, these synthetic and real dataset experiments confirm that ICNC always gives correct causal directions, thus con-
firming the crucial merit of temporal precedence relationships in detecting causality. On the other hand, IHCMC can not be
relied upon for the causal edge direction.

7.2.3. Comparison of the running time between ICNC and IHCMC
Table 5 shows the CPU time spent on processing the complete event stream and the average CPU time per window, for the

IHCMC and ICNC algorithms. As expected, running time of the ICNC algorithm is very close to that of the IHCMC algorithm.
The running time of the ICNC algorithm is 15.78%, 12.87%, 12.86%, 6.71%, 6.46%, and 16.23% longer than that of the IHCMC
algorithm in DS1, DS2, DS3, DS4, DS5, and the real dataset, respectively. This confirms that the IHCMC part consumes most of
the running time of the ICNC algorithm and that the running time overhead of the ITNC part is negligible.

8. Related work

We discuss related work first with respect to the two main approaches used in our work for causal analysis – depen-
dency-based incremental Bayesian network construction and precedence-based incremental temporal network construc-
tion. Then, we discuss other work related to causality over data streams and show the uniqueness of our work.

As already mentioned, we use the IHCMC algorithm [2,3] for incremental Bayesian network construction to model the
statistical dependencies among events arriving in a stream. Our study concludes that IHCMC is superior to any other existing
approaches [5,11,21]. Buntine’s approach [5] can construct an alternative Bayesian networks incrementally given a dataset
and a proper ordering of the variables, but is designed to update the posterior probabilities only, not the network structure
itself. Therefore, this approach is not applicable as we are concerned about learning the network structure and updating it
with an arrival of new batch of events. Lam and Bachhus’s approach [21] only refines an already existing network under the
assumption that it correctly reflects an accurate model and thus the resulting network is biased toward the existing network
2 UIDG does not show causing BGMD. In fact, Ultralente insulin is not meant to decrease glucose level. Rather, it provides a baseline level of insulin to support
minimum metabolism regardless of ingestion or activity. So, this makes sense.



Fig. 9. Causal and Bayesian networks from the real dataset.
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structure. So, this approach is not suitable for event streams as the network structure needs to be updated as new events
arrive. Friedman and Goldszmidt [11] present three approaches which are not appropriate due to the following reasons.
The first approach stores all data items, hence is very memory-inefficient. In contrast, the second approach (called Maximum
A Posteriori probability) stores only one single network as the summary of past data, and consequently the learning proce-
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Fig. 10. Relative number of erroneous edges in the causal network (CN) and the Bayesian network (BN) for the real dataset.
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Fig. 11. Relative number of reversed edges in the causal network (CN) and the Bayesian network (BN) for the synthetic datasets.

Table 5
Running time of IHCMC and ICNC algorithms.

Datasets CPU Time (ms) Nw CPU time/window (ms)

IHCMC ICNC IHCMC ICNC

DS1 19 22 1 19 22
DS2 365 412 2 182.50 206
DS3 17,790 20,081 16 1111.87 1255.06
DS4 525,268 560,536 64 8207.21 8758.37
DS5 5,899,505 6,280,634 512 11522.47 12266.86
DSR 14,853 15,094 4 3713.25 3773.5

Nw and DSR are the number of partitioned windows observed and the real dataset, respectively.
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dure for new data is biased towards it. The third approach balances between the two, that is, it sacrifices the quality of the
constructed network for the reduction in required memory space. Alcobé in his work [1–3] has converted four well known
batch-mode Bayesian network construction algorithms (i.e., CL, K2, B and HCMC) to their incremental versions (i.e., ICL, IK2,
IB and IHCMC, respectively). Among these, IHCMC performs the most exhaustive search and yields a Bayesian network of the
highest quality within a reasonable time [2].

There is rich literature about temporal modeling or reasoning based on temporal precedence (e.g., [12,14,16,19,23]). The
most relevant to our project are TIMERS II algorithm by Hamilton and Karimi [14] and temporal causal graph construction by
Liu et al. [23], as both propose to use temporal information towards causal analysis. However, neither aims at constructing a
causal network as proposed in our work. Specifically, TIMERS II [14] classifies the relationship between decision attribute
and condition attributes into instantaneous, causal, or acausal based on temporal information, but it does not build a causal
network and only uses simple temporal conditions and decision tree to determine the nature of causal relationship. The tem-
poral causal graph in Liu et al.’s work [23] uses the Granger causality [13], the well known approach for determining causal
relationships in a time series data. Given two variables, say X and Y, Granger causality determines that X is a cause of Y if the
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past value of X can be used (via regression) to predict the future value of Y. This notion of causality is very different from
what is proposed in our work in that ours is based on the frequency of the occurrences of the variable values, not the values
themselves, and that each variable in our work can represent any event type, not only a time series variable.

The only existing work we find on causal relationships over data streams is by Kwon and Li [20]. It is about using tem-
poral, spatial, and spatio-temporal relationships between cause and effect to perform causality join query processing on sen-
sor streams. Similarly, there has been recent work by Meliou et al. [27] to support causal query processing in databases.
However, none of these works addresses causal modeling at all. To the best of our knowledge, there has been no previous
work done for causal network modeling by constructing a causal network in a dynamic environment (over event streams).
On the other hand, there exists a significant amount of research done on causal analysis in a static environment
[4,9,15,22,26]. Semantically, the work by Ishii et al. [17] is closer to the work we are proposing. Their incremental approach
is to extract causality for news articles and documents. They employ a lexical approach by comparing subject-verb-object
(SVO) tuples for causality detection using natural language processing for each news item. Thus, their work does not infer
causality from the observations of the overall data which we are doing in this paper. Our focus is on causality inference over
event stream. Besides, it is not useful in event streams where the lexical approach is not a viable option and the causal rela-
tionships need to be inferred from the observation of unbounded events.

9. Conclusion and future work

In this paper, we focused on the problem of constructing a causal network over continuous event streams incrementally.
We proposed a two layered causal network model and presented an algorithm utilizing temporal precedence relationships
and statistical dependency between events in combination. For the temporal precedence relationships, we presented a tem-
poral network model and the temporal network construction algorithm. Then, we combined it with an existing incremental
Bayesian network construction algorithm to propose the incremental causal network constructing algorithm, and then
through experiments demonstrated that the proposed approach increases the accuracy of causality detection significantly.

In this paper, we assumed the events in a stream are in temporal order. For the future work, we plan to consider the out-
of-order event stream which may introduce reversed edges in the temporal network, thereby reducing the reliability of the
temporal network. Another interesting direction for the future work is the inclusion of predictive causal query processing.
There are applications which can benefit from predicting upcoming events based on the history of prior events.
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