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LinkBlackHole∗: Robust Overlapping Community
Detection Using Link Embedding

Jungeun Kim, Sungsu Lim, Jae-Gil Lee, and Byung Suk Lee

Abstract—This paper proposes LinkBlackHole∗, a novel algorithm for finding communities that are (i) overlapping in nodes and (ii)
mixing (not separating clearly) in links. There has been a small body of work in each category, but this paper is the first one that
addresses both. LinkBlackHole∗ is a merger of our earlier two algorithms, LinkSCAN∗ and BlackHole, inheriting their advantages in
support of highly-mixed overlapping communities. The former is used to handle overlapping nodes, and the latter to handle mixing links
in finding communities. Like LinkSCAN and its more efficient variant LinkSCAN∗, this paper presents LinkBlackHole and its more
efficient variant LinkBlackHole∗, which reduces the number of links through random sampling. Thorough experiments show superior
quality of the communities detected by LinkBlackHole∗ and LinkBlackHole to those detected by other state-of-the-art algorithms. In
addition, LinkBlackHole∗ shows high resilience to the link sampling effect, and its running time scales up almost linearly with the
number of links in a network.

Index Terms—Community Detection, Graph Clustering, Overlapping Communities, Link Clustering, Graph Drawing, Link Embedding
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1 INTRODUCTION

COMMUNITY detection in real-world networks such as
social networks, collaboration networks, citation net-

works, and communication networks warrants that indi-
viduals may belong to multiple communities, e.g., families,
friends, colleagues, and schools [37]. Thus, recently there
has been increasing emphasis on overlapping community
detection [1], [6], [15], [22], [33], whereby each individual
can belong to more than one communities. Overlapping
community detection is known to be harder than disjoint
community detection [33], [48]. Currently, LinkSCAN∗ [33],
which introduced the novel concept of link-space transforma-
tion, has been regarded as the state-of-the-art algorithm. It
transforms the original graph to a link-space graph, where
each node is mapped from a link (i.e., edge) in the original
graph in such a way that two nodes are adjacent if the
corresponding links in the original graph share a common
end node. The benefit of the transformation is that disjoint
community detection from the link-space graph produces
overlapping communities.

Overlapping community detection is further compli-
cated by another issue: mixing of links between commu-
nities. Quantitatively, mixing is defined as the fraction of
links in the network that are crossing between different
communities [24]. Such links ambiguate the detection of
boundaries between communities and consequently make
community structures harder to detect. Lim et al. [32]
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showed that clustering accuracy of the existing community
detection algorithms indeed degrades drastically as the mix-
ing increases. This study was done in the context of disjoint
community detection, but the adverse effect of mixing is
observed to be worse for overlapping community detection,
as it is confounded by overlapping nodes.

Lim et al. [32] resolved the mixing problem by incor-
porating a geometric embedding technique in their algorithm
BlackHole, which we call the black hole transformation hence-
forth. It is modified from the graph drawing which is a
well-known technique used for aesthetic visualization of
a graph. Multiple nodes that are likely to belong to the
same community are mapped to (almost) the same position
(dubbed a “black hole”) as a result of the embedding.
Clustering is then performed on the resulting positions.

One intuitive idea for achieving robust overlapping com-
munity detection despite the mixing effect is to combine (1)
the link-space transformation [33] and (2) the black hole
transformation [32]. We propose this combined algorithm
and call it LinkBlackHole∗. The algorithm is essentially link
embedding that is done by BlackHole when it works on the
link-space graph output by LinkSCAN∗ because the nodes
embedded are mapped from links in the original graph.
It may generate too many unnecessary overlaps once the
nodes in the communities are mapped back to links in the
original graph (details in Section 4.4). This problem has
been resolved by adopting the belonging coefficient used in
a node-based community detection method, e.g., the label
propagation algorithm [15].

Figure 1 summarizes the merit of link embedding in
LinkBlackHole∗, inherited from the link-space transfor-
mation of LinkSCAN∗ and the black hole transforma-
tion (geometric embedding) of BlackHole. Concretely, the
link-space transformation enables us to accurately find over-
lapping communities in the original graph through finding
disjoint communities in the link-space graph while preserv-
ing the original graph structure. In turn, the black hole
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Fig. 1: The advantage of link embedding in LinkBlackHole∗.

transformation achieves robust accuracy of finding highly-
mixed overlapping communities.

In this paper, we first present LinkBlackHole, a robust
overlapping community detection algorithm based on link
embedding, and then its variant LinkBlackHole∗, which
improves the clustering efficiency of LinkBlackHole by re-
ducing the number of links through random sampling while
maintaining comparable clustering accuracy. This algorithm
development structure parallels that of LinkSCAN and
LinkSCAN∗ [33].

LinkBlackHole∗ has four main steps, as illustrated in
Figure 2. First, the original graph G is converted to a
link-space graph LS(G) by the link-space transformation,
and the links of LS(G) are sampled. (Please note that this
sampling is not part of LinkBlackHole.) Second, every node
in the sampled link-space graph LS′(G) is mapped to a
point in a low dimensional space. Third, the positions are
clustered using a conventional clustering algorithm such as
DBSCAN [10], and link-space communities in LS′(G) are
determined from the clusters. Fourth, the link membership
in LS′(G) is translated back to node membership in G.

Contributions made through this paper are as follows.
1. We propose a novel link embedding framework that incor-

porates the advantages of both the link-space transfor-
mation and the black hole transformation.

2. We present a robust algorithm LinkBlackHole for highly-
mixed overlapping community detection and its enhanced
algorithm LinkBlackHole∗ that achieves higher efficiency
with negligible error compared with LinkBlackHole.

3. We empirically show that LinkBlackHole∗ achieves
higher accuracy than the state-of-the-art algorithm
LinkSCAN∗ and others, especially for detecting highly-
mixed overlapping communities.
The content of this paper is an extension of our two prior

papers [32], [33] that constitute the bases of the work. The
extensions made are mainly in (1) proposing link embedding,
which integrates the link-space transformation [33] and
the black hole transformation [32], to achieve high-quality
community detection from highly-mixed and overlapping
networks structures; (2) solving the problem of excessively
overlapping communities when the two transformations
are integrated into one, by way of adopting the belonging
coefficient [15]; (3) significantly extending the literature
review and conducting a new set of experiments to eval-
uate LinkBlackHole∗ in conjunction with LinkBlackHole. In

addition, the contents adopted from the two base papers
[32], [33] have been completely rewritten to fit the objective
and scope of this paper.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 provides key preliminary
background helpful to understand the rest of the paper.
Section 4 discusses our proposed overlapping community
detection algorithm LinkBlackHole∗. Section 5 presents the
evaluations and their results. Section 6 concludes the paper.

2 RELATED WORK

Many algorithms have been proposed for overlapping com-
munity detection. Xie et al. [48] conducted an extensive
survey on this topic. Representative algorithms in their sur-
vey are based on five classes of approaches: clique percola-
tion, link partitioning, local expansion, fuzzy detection, and
agent-based [48]. Let us discuss them briefly here. We will
also discuss two additional categories: network property-
based and egonet-based. Note that an algorithm may belong
to more than one category.

The clique percolation is density-based. It builds each com-
munity by forming k-cliques and enlarging them through
merging to maximize the modularity [50] or percolation by
union if, for example, two k-cliques share k − 1 nodes [22],
[23]. Thus, for a given k, the members in a community ob-
tained by this approach can be reached through connected
subsets of nodes, and the communities may share nodes
with each other. This approach has the inherent problem
of being sensitive to the parameter k, which affects the
trade-off between the quality of clustering and the cover-
age depending on the value of k. Specifically, when k is
large, it tends to find high-quality communities, but the
communities cover only a small fraction of nodes (i.e., lower
coverage).

The link-partitioning is based on the similarity among
relationships [1], [11]. It first converts the graph G to a line
graph L(G), where each node of L(G) represents a link of
G and two nodes of L(G) are adjacent if and only if their
corresponding links share a common node in G. Then, it
can easily show that the node-partition of L(G) has one-
to-one correspondence to the link-partition of G, which is
an overlapping clustering for a set of nodes. However, this
approach tends to find unnecessary small clusters, and too
many nodes overlap between clusters.

The local expansion is based on local optimization [6]. It
first finds initial seeds based on a certain seeding strategy,
such as random nodes [24], high degree nodes [3], [47],
centroids of disjoint pre-clusters [47], and maximal cliques
[26], [43]. Then, it expands from the seeds to form clusters,
mostly using a certain local fitness benefit function as the
fitness function. OSLOM [25] is somewhat unique in that
it uses the statistical significance of community structure for
fitness. All these local expansion algorithms greedily expand
seeds until the fitness function is locally optimized. Their
performances, therefore, are highly dependent on initial
seeds, which is problematic.

The fuzzy detection is based on measuring the strength of
association between nodes and communities using a mem-
bership vector, which denotes a belonging factor. This ap-
proach covers such algorithms as spectral clustering using
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Fig. 2: The main steps of LinkBlackHole∗.

fuzzy C-means clustering [51], nonlinear constrained opti-
mization with fuzzy node membership [34], non-negative
matrix factorization using Bayesian inference to matrix par-
titioning [39], and mixture models built as generative mod-
els for edges [41] or nodes [13] in the network. However,
this approach requires the selection of the dimensionality k
of the membership vector, which is not feasible to determine
before community detection.

The agent-based approach includes the label propagation
algorithm [15], general speaker-listener based information
propagation framework [49], and game-theoretic frame-
work [4]. Based on our observation, the representative one
is the label propagation algorithm, where all nodes propa-
gate their labels to their neighbors for one step so that they
reach a consensus on their community membership in many
cases. For overlapping community detection, it extends the
label and propagate steps to include the information about
more than one community [15]. Owing to the simplicity of
the procedure, the label propagation method is very fast,
but it fails to converge in general [17].

Network properties are used by some algorithms to pro-
vide a clue to clustering. CONGA [14] utilizes a network
property called betweenness to split nodes so that overlap-
ping clusters are possible. ModuLand [21] introduces a
centrality-type property based on the influence of a node
on a link and uses it in clustering. These algorithms suffer
from very high computational cost, hence generally are not
considered effective.

An egonet in the network is a subgraph made of groups,
where each group consists of a node and its neighbors
and the links among them. Overlapping communities are
formed by merging these groups [40]. A more recent work
in this category is ego-splitting [9], which constructs local
egonets using local expansion and splits them through
node replications to allow for overlapping clusters and then
performs global partitioning on the resulting network.

3 PRELIMINARIES

In this section, we give an overview of basic techniques
needed by the two base algorithms, LinkSCAN∗ [33] and
BlackHole [32]. The notations used in this paper are sum-
marized in Table 1.

3.1 Link Clustering
A community of links is known to have a theoretical ad-
vantage over a community of nodes in that a link is likely
to have a unique identity whereas a node tends to have
multiple identities [20]. Thus, recently, there has been a few
community detection studies based on link clustering [1],
[11], [46], formally defined in Definition 1.

TABLE 1: Summary of the notation.
Notation Description
G an original undirected weighted graph
LS(G) the link-space graph of G
vi a node in an original graph
eij a link in an original graph
veij a node in a link-space graph
kv the degree of a vertex v
wv the weight of a vertex v
wu,v the weight of an edge {u, v}
σ(·, ·) similarity between two links in G
ω(·, ·) similarity between two nodes in LS(G)
p(v) the position of a vertex v by a graph layout p
E(p|G) the energy with a graph layout p for G
a, r the parameters of the (a, r)-energy model
B a set of black holes
LC a set of link-space communities in LS(G)
C a set of overlapping communities in G

Definition 1. Let G = (V,E) be a given network. Then, a
collection, L, of subsets of E is said to be a link clustering
of G if the elements of L are pairwise disjoint and the
union of the elements of L is equal to E.

Most notably, Ahn et al. [1] proposed the link-partition
method, which uses a Jaccard-type similarity score between
links. The membership of a node was determined by those
of its incident links. Note that a node participates in multiple
communities if it has multiple incident links with different
types of relationship.

Link clustering of a graph G is translated to graph par-
titioning of the line graph L(G) that represents the structure
among the links of G. Specifically, each link of G is mapped
a node of L(G), where two nodes of L(G) are adjacent if
the corresponding links of G intersect at some node in G.
With this mapping scheme, however, L(G) gives too much
prominence to high-degree nodes of the original graph G
because a node of degree ki in G is mapped to form a clique
of size ki, which has ki(ki − 1)/2 links, in L(G) [11].

3.2 Graph Drawing

For a given graph G = (V,E), graph drawing (or graph layout)
produces a node-link diagram that pictorially represents the
topological structure (i.e., vertices and edges) of the graph
in a two-dimensional drawing space. A layout is a function
p : V 7→ S that maps from vertices in V to vertex positions
in a drawing space S(= R2). The traditional graph drawing
approaches aim to produce graphs that are aesthetic, sym-
metric, and crossing-free in their layouts according to their
own layout strategies. Among these approaches, we adopt
the force-directed layout approach, as it is simple and intuitive
[45], and theoretically strong [27].
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The force-directed layout approach is based on the
physical metaphor of attractive force and repulsive force in
mechanical springs or molecular mechanics [8], [12], [35].
The metaphor is that (1) there is the attractive force between
adjacent vertices connected via a spring and (2) there is
the repulsive force between vertices (electrically charged
particles). Thus, adjacent vertices attract to form a group of
densely-connected vertices, and all pairs of vertices repulse
to separate sparsely-connected vertices.

Formally, for a layout p and two vertices u and v (u 6= v),
the attractive force exerted on u by v is defined by Eq. (1), and
the repulsive force exerted on u by v is defined by Eq. (2)
[36]. The strengths of the forces are often chosen to be
proportional to some power of the distance.

Attractive force : wu,v‖p(u)− p(v)‖a
−−−−−→
p(u)p(v) (1)

Repulsive force : wuwv‖p(u)− p(v)‖r
−−−−−→
p(v)p(u) (2)

Here, ‖p(u) − p(v)‖ denotes the distance between u and v,
and

−−−−−→
p(u)p(v) denotes a unit-vector pointing from p(u) to

p(v).
The approach finds an equilibrium state such that the

net force on each vertex becomes zero. It is achieved by
minimizing the energy defined in Definition 2.
Definition 2. [36] The energy E(p|G) of a layout p for a graph
G = (V,E) is given by Eq. (3). Thus, graph drawing
is solved as an optimization problem with the objective
function in Eq. (3) in a search space of all possible layouts
(i.e., p’s).

E(p|G) =
∑

{u,v}∈E

wu,v
‖p(u)− p(v)‖a+1

a+ 1

−
∑

{u,v}∈V (2)

wuwv
‖p(u)− p(v)‖r+1

r + 1
(3)

Noack [36] has studied a general framework for the
force-directed layout approach. There, the energy model in
Eq. (3) is called the (a, r)-energy model. This model is used in
several well-known traditional graph drawing algorithms,
such as the Fruchterman-Reingold algorithm [12] (with
a = 2, r = −1), the Davidson-Harel algorithm [8] (with
a = 1, r = −3), and the LinLog algorithm [35] (with
a = 0, r = −1). Note that these algorithms have different
layout characteristics depending on the values of the two
parameters a and r.

4 THE LINKBLACKHOLE∗ FRAMEWORK

This section discusses the LinkBlackHole∗, the framework
developed for robust overlapping community detection, in
conjunction with LinkBlackHole. As mentioned in Section 1,
the framework has four major steps, outlined in Algorithm
1. Recall that LinkBlackHole has no link sampling done in
Step 1, and otherwise the same as LinkBlackHole∗.

4.1 Step 1: Link-Space Transformation and Sampling
4.1.1 Link-Space Transformation
As stated in Section 1, the link-space transformation con-
verts a graph to a link-space graph. Definition 3 shows three
characteristics required of the transformation.

Algorithm 1 LinkBlackHole/LinkBlackHole∗

INPUT: a graph G = (V,E)
OUTPUT: a set of overlapping communities C found in G;

1: /* STEP 1. LINK-SPACE TRANSFORMATION AND SAM-
PLING (§4.1) */

2: LS(G) = (VLS , ELS)← Link-Space Transformation(G);
3: LS(G)←Link Sampling(LS(G),α,β); /* LinkBlackHole∗

only */
4: /* STEP 2. BLACK HOLE TRANSFORMATION (§4.2) */
5: a←−0.95, r← −1.0; /* Embedding params (§4.2.1) */
6: B ← Geometric Embedding(LS(G), a, r); /* (§4.2.2) */
7: /* STEP 3. CLUSTERING (§4.3) */
8: ε,MinPts←Estimate Param(B);/* Clustering params */
9: BC ← DBSCAN(B, ε,MinPts); /* Clustering */

10: for each BCj ∈ BC do
11: /* Compose a community from clusters */
12: LCj ← Set of links from a black hole cluster BCj ;
13: LC ← LC ∪ {LCj};
14: end for
15: /* STEP 4. MEMBERSHIP TRANSLATION (§4.4) */
16: C ←Membership Translation(LC, LS(G), τ );
17: return C

Definition 3. Given a graph G, its link-space graph LS(G)
satisfies the following properties.
• A node veij in LS(G) represents the link eij between

the nodes vi and vj in G.
• Two nodes, veik and vejk , in LS(G) are adjacent if and

only if their corresponding links share a common end
node, vk, in G.

• The weight ω(veik , vejk) on the link between veik and
vejk is assigned by a similarity function σ(eik, ejk)
calculated on G.

Regarding the link similarity σ(·, ·) in Definition 3, a
simple yet effective Jaccard-type measure proposed by Ahn
et al. [1] (see Section 3.1) is used. (Other measures, such
as those in [31], could be used as well.) The link similarity
σ(·, ·) is formally defined as Eq. (4).

ω(veik , vejk) = σ(eik, ejk) =
|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

(4)

Here, Γ(v) is {u : d(v, u) ≤ 1}, and d(v, u) is the length
of a shortest path between v and u. This similarity measure
provides a natural way to calculate the similarity between
two incident links since it is free of the degree of the
common end node vk.
Example 1. Figure 3 shows the link-space transformation

from the original graph G to the link-space graph LS(G).
Two links eik and ejk in G are mapped to two nodes
veik and vejk in LS(G) since they share a common
node vk in G. The weight of the link σ(eik, ejk) is
assigned using the structure of G as follows: Γ(vi) =
{v0, v1, v2, vi, vk} and Γ(vj) = {v1, v2, v3, v4, vj , vk};
then, Γ(vi) ∩ Γ(vj) = {v1, v2, vk} and Γ(vi) ∪ Γ(vj) =
{v0, v1, v2, v3, v4, vi, vj , vk}; hence, the similarity score is
σ(eik, ejk) = 3

8 = 0.375. �

Algorithm 2 outlines the steps of the link-space trans-
formation. The links in G are transformed to the nodes
in LS(G) (Lines 1∼4). The nodes in LS(G) are connected
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Fig. 3: An illustration of constructing a link-space graph.

Algorithm 2 Link-Space Transformation

INPUT: a graph G = (V,E)
OUTPUT: the link-space graph LS(G) = (VLS , ELS)

1: /* Create the nodes of LS(G) */
2: for each (vx, vy) ∈ E do
3: insert vexy

into VLS ;
4: end for
5: /* Create the links of LS(G) */
6: for each vz ∈ V do
7: create N(vz) = {vw|d(vz, vw) = 1};
8: for each vw1

∈ N(vz) do
9: for each vw2

∈ N(vz)\{vw1
} do

10: insert (vezw1
, vezw2

) into E′;
11: end for
12: end for
13: end for
14: /* Assign a weight to each link of LS(G) */
15: for each (vezw1

, vezw2
) ∈ E′ do

16: ω(vezw1
, vezw2

) =
|Γ(vw1

)∩Γ(vw2
)|

|Γ(vw1
)∪Γ(vw2

)| ;
17: end for
18: return LS(G) = (VLS , ELS) /* the link-space graph of
G */

directly if the corresponding links in G are incident to a
common end node (Lines 5∼13). Weights are calculated
using the links in G and are assigned to each link in LS(G)
(Lines 14∼17).

Theorem 1. The time and space complexity of Algorithm
2 is O(|E| + |V |〈k2〉), where 〈k2〉 is the average of the
square of the degree of the G.

Proof 1.
Time complexity: Generating the nodes of a link-space
graph LS(G) takes O(|E|) at Lines 1–4, and generating
the links of LS(G) takes O(|V |〈k2〉) at Lines 5–13, be-
cause every pair of incident links should be checked for
each node.
Space complexity: The space complexity is the sum of
the storage requirement for G and that for LS(G). The
former is O(|V |+ |E|), and the latter is O(|E|+ |V |〈k2〉)
[33]. This completes the proof. �

This transformation algorithm as such takes into account
two types of graphs—the original graph (G) and the link-
space graph (LS(G))—and thereby enables finding over-
lapping communities using a non-overlapping community
detection algorithm while preserving the structure of the
original graph. In a sense, this idea resembles that of the
kernel trick [16], where the support vector machine (SVM)

attempts to find a separating plane in a higher-dimensional
feature space while the kernel function is evaluated against
the original data points.

4.1.2 Link Sampling
As noted already, link sampling applies to LinkBlackHole∗

only. One inherent effect of the link-space transformation is
that the number of links resulting from the transformation
can be excessive. Since the running time of LinkBlackHole
is heavily dependent on the number of links, it would
be reasonable to reduce the computational overhead by
reducing the number of links considered in the link-space
graph LS(G) = (VLS , ELS). Thus, for each node v ∈ VLS ,
LinkBlackHole∗ takes a random sample from the set of
incident links of v and, consequently, produces a smaller
network LS′(G) = (VLS , E

′
LS), where E′LS ⊂ ELS .

Determining the sample size, nv , is certainly a key issue
to achieving an adequate performance. LinkBlackHole∗ de-
termines the sample size nv of each node v using Eq. (5).

nv = min{kv, α+ β ln kv} (5)

Here, kv is the degree of the node v, and α and β are non-
negative constants used to control the sample size. If the
degree kv of a node is smaller than α + β ln kv , all incident
links are included in the sample. This sampling technique
has proven to incur an insignificant error even when the
sample size nv is small. For details of the proof, readers are
referred to Theorem 2 (based on Chernoff bound [5], [33])
in the LinkSCAN* paper [33].

What is important in determining the values of the
control parameters (α, β) is to achieve high computational
efficiency while maintaining low error due to the sampling.
In this regard, the average degree of nodes has been chosen
to be the most relevant factor [28]. The average degree in
a link-space graph, 〈k′〉, is computed as in Eq. (6), where
〈k〉 is the average degree in the original graph. Under the
assumption that the distribution of degrees is not skewed,
〈k′〉 can be approximated as 2〈k〉 − 2.

〈k′〉 =
2
∑
v∈V kv(kv − 1)/2∑

v∈V kv/2
= 2(〈k2〉/〈k〉 − 1) ≈ 2〈k〉 − 2

(6)
In the case of LinkSCAN∗ [33], it performs well at α =

2〈k〉 and β = 1, but in the case of LinkBlackHole∗, high accu-
racy is achieved even at a smaller sample size thanks to the
high clustering tendency of the black hole transformation.
Extensive experiments indeed show that LinkBlackHole∗

achieves high accuracy even at a much smaller sample size
(i.e., when α = 1

2 〈k〉 and β = 1) than LinkSCAN∗.

4.2 Step 2: Black Hole Transformation
This step uses the geometric embedding technique from
graph drawing, adopted from the BlackHole robust com-
munity detection algorithm [32]. With this technique, each
vertex in the sampled link-space graph is mapped to a posi-
tion in a 2-dimensional drawing space. (The dimensionality
of drawing space may well be higher than 2, albeit finite.)

A position in the graph drawing space to which multiple
vertices are mapped is called a black hole as in Definition 4.
Definition 4. Given a graph G = (V,E) and mapping of V

to a set of positions P in a graph drawing space, a black
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hole Bi ∈ P is a position to which two or more vertices,
VBi
⊆ V , are mapped. For practical purpose, positions

that are only slightly different in their coordinates are
merged to the same position through truncation of their
coordinates. The set of all black holes found this way is
denoted by B.

4.2.1 Model Selection
The layout of a graph drawn varies greatly depending
on the graph drawing model and, therefore, the choice of
the model is important to find a layout of points suitable
for community detection. For this choice, the (a, r)-energy
model (see Section 3.2), which is a general model used in
many graph drawing and has been used successfully in
BlackHole, is used in LinkBlackHole∗ as well. The layout of
a graph drawn under this model depends on the values of a
and r, therefore, it is necessary to find their optimal values.
For this purpose, LinkBlackHole∗ uses the same optimal
values determined by BlackHole, a = −0.95 and r = −1.0,
explained below.

Regarding the value of a = −0.95, ideally all vertices
belonging to the same community in a graph should be
mapped to a single position in the drawing space. Thus,
analogously to real black holes in the outer space, the
attractive force should become stronger as connected ver-
tices become closer to each other in the drawing space. As
shown in Figure 4, when a approaches −1.0 the attractive
force grows stronger exponentially as the distance between
vertices approaches 0. In addition, a ≥ −1.0 is required
[36]. Thus, a = −0.95 proves to be a suitable value.

0
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e a = −1
a = 0
a = 1
a = 2

Fig. 4: Attractive force depending on a. (This figure shows
how the attractive force changes with the distance between
points in the drawing space for different values of a under
the (a, r)-energy model.)

Regarding the value of r = −1.0, it is the typical
value of r used in several popular force-directed graph
layout algorithms such as LinLog [35], ForceAtlas [18], and
Fruchterman-Reingold [12]. r must be smaller than a, and
distances between vertices are less dependent on densities
for large a− r [36]. Since a large negative value of r makes
a − r large and the value of r should be smaller than
a(= −0.95), r = −1.0 is the right value.

For further validation of the values chosen for a and
r, the clustering tendency of the resulting black holes was
examined for varying a with r fixed to −1.0. Since our
graph drawing can be considered micro clustering [52], the
clustering boundaries are less ambiguous when clustering
tendency is higher. Figure 5 shows the Hopkins statistic,
which measures the clustering tendency of a data set [2].
The closer it is to 1, the higher the clustering tendency is.

We generated a set of 24 various graphs by changing the
parameters of the LFR benchmark and, for each value of a,
measured the Hopkins statistic of the layout results for the
set of the graphs. In the box plot of Figure 5, the Hopkins
statistic tends to increase as a approaches−1.0 and becomes
almost 1 when a = −0.95. Overall, this examination con-
firms that our model selection with a = −0.95 and r = −1.0
is indeed correct for our purposes.
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Fig. 5: Hopkins statistic for different values of a.

Thus, the graph drawing model used in LinkBlackHole∗

is to minimize the energy expressed as Eq. (7), which is
derived from Eq. (3) in Section 3.2 by setting a = −0.95 and
r = −1.0 and by transforming ‖p(u)− p(v)‖−1+1/(−1 + 1)
into ln ‖p(u)− p(v)‖ because d

dx (lnx) = 1
x .

E(p|G) =
∑

{u,v}∈E

wu,v‖p(u)− p(v)‖0.05 × 20

−
∑

{u,v}∈V (2)

wuwv ln ‖p(u)− p(v)‖ (7)

4.2.2 Geometric Embedding Algorithm
Algorithm 3 shows the geometric embedding by graph
drawing, which places each vertex in a 2-dimensional space
and determines a set of black holes. The algorithm first
distributes the vertices randomly in the drawing space
(Lines 1∼4) and then keeps updating their positions toward
a lower energy (Lines 5∼25). More specifically, in each
iterative step, it builds a quadtree of given positions (Lines
7∼8), calculates the attractive and repulsive forces exerted
on each vertex using the quadtree (Lines 9∼20), and then
changes to positions that have lower energy (Lines 21∼24).
In the actual implementation, the repulsive force expressed
in Eq. (2) is divided by the total weight of all vertices in
order to prevent vertices from spreading too much in the
drawing space (Line 15).

Calculating the repulsive energy requires calculating the
distance between every pair of vertices. A straightforward
approach would take O(|V |2), which is quite expensive. To
reduce this cost, the algorithm approximates the calculation
using a quadtree (Lines 8, 14∼16). Specifically, the drawing
space is recursively partitioned into quadrants until a quad-
rant satisfies the following stop condition: s/d < θ, where s
is the quadrant’s side length, d is the distance between the
quadrant’s centroid and the entire drawing space’s centroid,
and θ is a certain threshold value. Then, all positions in the
same quadrant at the leaf level are approximated to the cen-
troid of those positions, and the centroid is given the sum of
their weights. The approximation error was formally proven
in the context of the n-body problem [42]. Thus, it is easier
to set the stop condition using the quadtree than using other
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Algorithm 3 Geometric Embedding

INPUT: An undirected weighted graph G = (V,E)
Parameter values of a and r

OUTPUT: A set of black holes B = {p(v)|v ∈ V }
1: /* Generate initial positions of vertices */
2: for each v ∈ V do
3: p(v)← Unif ([−0.5, 0.5]× [−0.5, 0.5]);
4: end for
5: /* Minimize the energy by moving positions */
6: repeat
7: /* Construct a quadtree for a layout */
8: T ← quadtree({p(v)|v ∈ V });
9: /* Compute the net force acting on each vertex */

10: for each v ∈ V do
11: for each u such that {u, v} ∈ E do
12:

−→
f (a)(v)←

−→
f (a)(v)+ Eq. (1); /* attractive */

13: end for
14: for each leaf R ∈ T do
15:

−→
f (r)(v)←

−→
f (r)(v)+ Eq. (2); /* repulsive */

16: end for
17:

−→
f (v)←

−→
f (a)(v) +

−→
f (r)(v); /* net force */

18: end for
19: /* Choose step size γ to minimize E(p|G) (Eq. (7)) */
20: γ ← argminγ∈{2−i|i=0,...,6}E(p+ γ

−→
f |G);

21: /* Determine new positions. */
22: for each v ∈ V do
23: p(v)← p(v) + γ

−→
f (v);

24: end for
25: until energy is not decreasing
26: return B = {p(v)|v ∈ V } /* the set of black holes */

structures such as the R-tree. This approximation reduces
the required number of distance calculations significantly to
O(|V | log |V |) [32].
Theorem 2. When Algorithm 3 is run against LS(G), the

time complexity isO(|V |〈k2〉+|E| log |E|), and the space
complexity isO(|E|+|V |〈k2〉), where 〈k2〉 is the average
of the square of the degree of the G.

Proof 2.
Time complexity: In a link-space graph LS(G), the number
of nodes becomes |E|, and the number of links becomes
|V |〈k2〉. The time complexity of Algorithm 3 is linear
to the number of links plus quasilinear (n log n) to the
number of nodes [32].
Space complexity: The space complexity is the sum of the
storage requirement for LS(G) and that for the quadtree
for the nodes of LS(G). The former is O(|E| + |V |〈k2〉)
[33], and the latter is O(|E|) because the space complex-
ity of the quadtree is linear to the input size [38]. This
completes the proof. �

4.3 Step 3: Clustering
The set of black holes, B, determined in Step 2 is passed
to a clustering algorithm to generate a set of clusters of
black holes, BC. Each cluster of black holes, BCj (j =
1, 2, . . .) ∈ BC, represents a link-space community specified
in Definition 5.
Definition 5. A link-space community LCj (j = 1, 2, ...) is a

set of vertices in the link-space graph LS(G) that were

mapped to the black holes in BCj ∈ BC. That is, LCj =
{VBi

| Bi ∈ BCj} where VBi
(⊂ VLS) denotes the set of

vertices mapped to the black hole Bi in Step 2.

Note that each black hole belongs to only one link-space
community, i.e., BCi ∩ BCj = ∅ for i 6= j. The set of all link-
space communities, LC, is composed of LCj ’s (j = 1, 2, ...)
as specified in Lines 10∼14 of Algorithm 1.

Practically any clustering algorithm can be used to gen-
erate BC, and LinkBlackHole∗ uses DBSCAN [10], which
is one of the representative density-based clustering algo-
rithms. DBSCAN is particularly suitable to meet two con-
ditions inherent in LinkBlackHole∗: the number of clusters
is not known in advance, and the shape of a cluster is not
necessarily circular.

DBSCAN(B, ε,MinPts) and Estimate Param(B): DB-
SCAN needs two input parameters—the size (i.e., distance)
of a cluster (ε) and the minimum required number of points
in a cluster (MinPts). LinkBlackHole∗ determines their val-
ues following the heuristic suggested by the authors of
DBSCAN. That is, MinPts is set to approximately twice
the dimensionality, thus 5 for a 2-dimensional space. Then,
the value of ε is estimated by plotting the distance to the
(MinPts−1)th nearest neighbor for each of sampled points,
sorted in descending order, and finding the distance to an
“elbow” of the curve.

Note that the clustering in this step is performed on the
black hole positions in the graph drawing space, and the
resulting clusters (BC) are mapped (one-to-one) back to node
clusters in the link-space graph LS(G), which are link-space
communities in Definition 5. The resulting set of all link-
space communities, LC, is passed to Step 4.

4.4 Step 4: Membership Translation
This step identifies the membership of a node translated
from the result of clustering (LC) in Step 3. A straightfor-
ward approach would be to map the community mem-
bership of a link to those of its end nodes such that a
node that has multiple incident links belongs to multiple
communities. However, this approach has a strong tendency
to produce unnecessary memberships with weak ties (i.e.,
sparse connections) because of the high clustering tendency
of the black hole transformation. That is, for highly-mixed
community structures, every edge that lies between two
communities can be incorrectly assigned and, consequently,
unnecessary highly-mixed overlapping communities can be
formed. It has been observed that preventing such unnec-
essary memberships can significantly improve the perfor-
mance of community detection. LinkBlackHole∗ does it by
adopting the belonging coefficient, which is used in node-
based clustering methods for overlapping community de-
tection, e.g., label propagation [15].
Definition 6. For a vertex vi and a community Ck, the

belonging coefficient of vi in Ck, bc(vi, Ck), denotes the
strength of vi’s membership in Ck and is calculated as
the fraction of vi’s incident edges that belong to Ck.

Membership Translation(LC, LS(G), τ ): Using the be-
longing coefficient, the membership translation can be im-
plemented straightforwardly as specified in Definition 7.
With a threshold value τ , the membership translation as-
signs a vertex to a community if its belonging coefficient is
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𝑏𝑐 𝑣, 𝐶1 = 6/11 > 𝜏
𝑏𝑐 𝑣, 𝐶2 = 4/11 > 𝜏
𝑏𝑐 𝑣, 𝐶3 = 1/11 < 𝜏

Threshold 𝜏 = 0.1

𝐶1 𝐶2

𝐶3

𝒗

Fig. 6: An example of membership translation.

larger than the threshold, i.e., if more than a cutoff fraction
of its incident edges have the same membership.
Definition 7. For a vertex vi, the membership translation

assigns vi to a set C(vi) of communities such that
C(vi) = {Ck | bc(vi, Ck) > τ}, where bc(vi, Ck) is the
belonging coefficient of vi in Ck and τ is a given thresh-
old.

Figure 6 illustrates the membership translation. The
community membership C3 is not assigned to the node
v because bc(v, C3) < τ . Note that the straightforward
approach mentioned above is equivalent to this membership
translation with τ = 0.

The optimal value of the threshold τ may vary de-
pending on the characteristics of network configuration.
As in Figure 7, the simulation showed that the network
density (i.e., the average degree 〈k〉) has the dominant effect
on determining the optimal belonging coefficient. This is
because a higher average degree of nodes means overall
more incident links to individual nodes, and it results in
an increase of overlapping nodes connected to weak ties.
In addition, as shown in Figure 7a, the optimal value of
τ is approximately equal to 〈k〉 × 0.01. In contrast, other
configuration parameters (e.g., µ, On, and Om) have little or
no effect on determining the optimal value of τ , as shown
in Figures 7b, c, and d.

5 EVALUATIONS
The performances of LinkBlackHole and LinkBlackHole∗

were evaluated through extensive experiments. In Sec-
tions 5.1 and 5.2, these two algorithms are compared with
five state-of-the-art overlapping community detection algo-
rithms in terms of the quality of community output. The
algorithms compared are listed below. (They are referred to
using the acronyms in the parentheses.)
• LinkBlackHole (LB)
• LinkBlackHole∗ (LB∗)
• LinkSCAN∗ (LS): Link-space transformation + SCAN [33]
• COPRA (CO): Label propagation method [15]
• CPM (CPM): Clique percolation method [22]
• LinkPartition (LP): Link clustering method [1]
• DEMON (DEM): Local expansion method [6]

In Section 5.3, the effect of link sampling on
LinkBlackHole∗ is examined in terms of the community
quality and running time compared with LinkBlackHole. In
Section 5.4, the running time scalability of LinkBlackHole∗ is
compared with those of the five state-of-the-art algorithms.

All experiments were done on Ubuntu Linux Servers
with one CPU (Intel Xeon Processor E5-2670) and 96 GBytes
of main memory. LinkBlackHole and LinkBlackHole∗ were

implemented in Java. For all other algorithms, we used the
software packages provided by the authors. LinkSCAN∗

was implemented in C++, COPRA in Java, CPM in Python,
LinkPartition in C++, and DEMON in Python.

5.1 Community Quality for Synthetic Networks

5.1.1 Data Sets
Synthetic networks were generated by the Lancichinetti-
Fortunato-Radicchi (LFR) benchmark [23]. LFR benchmark
networks are generated with a built-in community structure
that resembles the features found in most real-world net-
works with power degree distribution [23], and are widely
used for comparing community detection algorithms [19],
[30], [48]. The LFR benchmark also allows for rich flexibility
in controlling the network topology by tuning network
configuration parameters. Table 2 lists the parameters used
in this experiment. The networks size N = 5000 is the most
common setting for evaluating overlapping community de-
tection algorithms [30], [33], [48]. On and Om are two
parameters1 that collectively reflect how the communities
overlap in their nodes overall.

For each setting of the parameters, ten network instances
were generated, and the performance was measured by
taking an average of repeating the same experiment against
the ten network instances.

The belonging coefficient cutoff threshold τ (see Sec-
tion 4.4) was adjusted to its empirical optimal depending
on the setting of the network density parameter 〈k〉, which
is dominantly influential on τ .

5.1.2 Performance Measure
The normalized mutual information (NMI) [7] was chosen to
measure the quality of output communities, i.e., the accu-
racy of community detection. The NMI is an information-
theoretical measure that compares the memberships of two
sets and is widely used for community detection. (One of the
two sets is the set of communities found by the algorithm,
and the other is the set of ground-truth communities.) Its
value ranges from 0 to 1, and a higher value means better
quality.

5.1.3 Results
We discuss the accuracy results in three aspects of the
network, for varying (1) network density (〈k〉), (2) degree
of community mixing (µ), and (3) degree of community
overlap (On) and community membership count of a node
(Om), while fixing the others parameters to the default
values shown in Table 2.

Varying network density: Figure 8 shows the effect
of the average degree 〈k〉, varying from 5 to 25, on the
clustering accuracy for two different values of com mixing
(µ), 0.1 and 0.3. For all algorithms, the accuracy increases
as the average degree increases. This result is natural from
the fact that overlapping community structures are harder
to detect for sparse networks [33], [48]. LinkBlackHole and
LinkBlackHole∗ perform better than all the other algorithms

1. The original LFR benchmark defines On as the number of overlap-
ping nodes, but we redefine it as the fraction of overlapping nodes for
ease of exposition.
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Fig. 7: Effects of the belonging coefficient on the quality of output community for different values of network configuration
parameters. (See Table 2 in Section 5.1.1 for the parameters and their default values.)

TABLE 2: Network configuration parameters for the LFR benchmark.
Symbol Measure Definition Short name Default
N network size the number of nodes node count 5000
〈k〉 network density the average degree of all nodes average degree 10
µ degree of community mixing the fraction of edges crossing different communities

among all edges
com mixing 0.1, 0.3

On degree of community overlap the fraction of nodes belonging to multiple communities
among all nodes

com overlap 0.3

Om community membership count
of a node

the number of communities a node belongs to membership count 2

in the entire range of 〈k〉 regardless of the degree of commu-
nity mixing (µ). Notably, the performance advantage holds
strong even when the network is sparse (e.g., for 〈k〉 ≤ 15),
specifically, achieving 1.14 to 2.96 (1.53 on average) times
higher accuracy when µ = 0.1 and 1.29 to 5.69 (1.95 on
average) times higher accuracy when µ = 0.3.

Examining the other algorithms a bit further, it is ob-
served that LinkSCAN∗ shows the second best performance
overall for sparse networks (e.g., when 〈k〉 ≤ 10); COPRA
and CPM show low accuracy in sparse networks but show
increasingly competitive accuracy as the network becomes
denser (e.g., when 〈k〉 ≥ 20); LinkPartition and DEMOM
consistently perform poorly in the entire range of 〈k〉.
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Fig. 8: Effect of the average degree of a node (〈k〉).

Varying a clustering algorithm for the link-space
graph: In order to verify that the link-space transformation
and the black hole transformation are a good match, we
replaced the BlackHole algorithm in LinkBlackHole∗ with
modularity optimization (Louvain) and spectral clustering,
which were the second best algorithms in our earlier work
[32]. These new variations are denoted by LinkModular-
ity and LinkSpectral. Figure 9 shows the result of these
variations. LinkBlackHole∗ significantly outperforms both
LinkModularity and LinkSpectral, achieving 1.17 to 2.03
(1.64 on average) times higher accuracy when µ = 0.1 and
1.75 to 3.28 (2.26 on average) times higher accuracy when

µ = 0.3. Thus, this result indeed shows the validity of the
merger of our two earlier algorithms.
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 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

LB*

N
M

I

Average degree (<k>)

(a) Com mixing (µ) = 0.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

LB*

Average degree (<k>)

(b) Com mixing (µ) = 0.3.

Fig. 9: Effect of a clustering algorithm for the link-space
graph in the experiment of Figure 8.

Varying the degree of community mixing: Figure 10
shows the effect of the com mixing (µ), varying from 0.1 to
0.5, on the clustering accuracy for two different values of the
average degree (〈k〉), 5 and 10. For all algorithms, the accu-
racy decreases as the degree of community mixing increases,
which is a natural result from the fact that discovering
overlapping communities becomes harder as the communi-
ties are mixed to a higher degree [33], [48]. LinkBlackHole
and LinkBlackHole∗ outperform the other algorithms in the
entire range of the com mixing, specifically, outperforming
the next best algorithm (LinkSCAN∗) by 1.18 to 2.39 times
as µ changes from 0.1 to 0.5 and overall achieving 1.19 to
5.4 (3.03 on average) times higher accuracy than all the
other algorithms when 〈k〉 = 5 and 1.17 to 4.59 (2.31 on
average) times when 〈k〉 = 10. Notably, the performance
advantage becomes more prominent as the com mixing
increases. This result demonstrates the superior robustness
of LinkBlackHole and LinkBlackHole∗ to the com mixing,
which blurs the community boundaries.

Varying degree of community overlap and member-
ship count of a node: Figures 11 and 12 show the effects of
com overlap (On) varying from 0.1 to 0.5 and membership
count (Om) varying from 2 to 5, respectively, for two differ-
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Fig. 10: Effect of the degree of community mixing (µ).

ent values of com mixing (µ), 0.1 and 0.3. For all algorithms,
the accuracy decreases as the com overlap and membership
count increase, which is from the fact that discovering
overlapping community structures is harder when there
are more overlapping communities in the network [33],
[48]. Here again, LinkBlackHole and LinkBlackHole∗ are the
best performers, and outperform the next best algorithm
(LinkSCAN∗) 1.12 times when On = 0.1 or Om = 2 and
1.68 times whenOn = 0.5 orOm = 5, overall achieving 1.09
to 3.04 times higher accuracy than all the other algorithms
when µ = 0.1 and 1.05 to 4.18 times when µ = 0.3.
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Fig. 11: Effect of the degree of community overlap (On).
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Fig. 12: Effect of the community membership count of a
node (Om).

Summary of synthetic network experiment results:
LinkBlackHole and LinkBlackHole∗ achieved higher accu-
racy than the other algorithms in both highly-mixed net-
works (Figure 10) and highly overlapping networks (Figures
11 and 12). In addition, in every case of increasing com mix-
ing (µ), com overlap (On), and membership count (Om), the
performance gap between the proposed algorithms and the
other algorithms increased. These results demonstrate that
LinkBlackHole and LinkBlackHole∗ are more robust than
the state-of-the-art algorithms when the networks become
increasingly mixed and/or overlapping in the communities.

5.2 Community Quality for Real-World Networks

5.2.1 Data sets
The data sets are real-world networks obtained from the
Stanford Large Network Data Set Collection [29]. They
comprise 14 data sets that collectively cover the following
eight categories: social networks, collaboration networks,
citation networks, communication networks, product net-
works, road networks, autonomous system networks, and
peer-to-peer networks. Table 3 summarizes the network
profiles of the data sets. For each network, its average degree
of a node 〈k〉 was measured and used to calculate the
belonging coefficient cutoff threshold τ (see Section 4.4).

TABLE 3: Profiles of real-world networks.
Category Data set Number Number Ave.

of nodes of edges deg.

Social
Brightkite 58,228 214,078 17.48
Epinions 75,879 508,837 13.41
Slashdot 77,360 905,468 23.41

Collaboration

col-HepPh 12,008 118,521 19.74
AstroPh 18,772 198,110 21.11
CondMat 23,133 93,497 8.08
DBLP 317,080 1,049,866 6.62

Citation cit-HepTh 27,770 352,807 25.41
Communication Enron-email 36,692 183,831 10.02
Product Amazon 334,863 925,872 5.53
Road RoadNet-PA 1,088,092 1,541,898 2.83
Autonomous Oregon 10,900 31,180 5.72
system Caida 26,475 106,762 8.07
Peer-to-peer Gnutella 26,518 65,369 4.93

5.2.2 Performance Measure
There is no ground truth available for the real-world net-
works and, in such a case, overlapping modularity Mov is
a suitable, popular cluster quality measure of overlapping
communities [44]. For each cluster, its overlapping modu-
larity measures how densely modularized (i.e., connected
inward and disconnected outward) the connected nodes
are in the cluster and is calculated by aggregating over all
nodes in the cluster the differences between the number of
incoming links and the number of outgoing links relative to
the degree of each node. The aggregate value is normalized
to the range of −1.0 to 1.0, where 1.0 means the maximum
modularity.

While the modularity is an effective quality measure, it
tends to penalize small communities because they may not
have enough nodes to be aggregated over. Thus, clustering
coverage CC was used as another counter-balancing mea-
sure. Its value is calculated as the fraction of nodes having
a cluster membership [1] and, thus, gives equal merit to all
nodes regardless of the size of the cluster they belong to.
The coverage value ranges from 0.0 to 1.0, where 1.0 means
that every node belongs to a certain cluster.

5.2.3 Results
Figure 13 shows the results for the real-world networks.
Mov and CC, each normalized to the range of 0 to 1, are
overlaid in the same plot so that their values can be com-
pared between algorithms not only as a whole measure but
also in separate measures. Trivial clusters with fewer than
three nodes have been excluded from consideration when
calculating Mov and CC. Each individual algorithm has its
own sets of performance parameters, and they have been
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Fig. 14: Effect of sampling rate on LinkBlackHole∗ performance.

tuned respectively to achieve the best performance. The
results are impressive. LinkBlackHole∗ and LinkBlackHole
show significantly better performance than the other algo-
rithms for 13 out of 14 data sets. Even in the one exception
for Gnutella, LinkPartition shows only slightly (6%) bet-
ter performance than LinkBlackHole∗ and LinkBlackHole,
which are the close second best performers.

Among the other algorithms, LinkSCAN∗ generally
shows a decent, next best performance to LinkBlackHole∗

and LinkBlackHole; COPRA shows high clustering coverage
but somewhat low modularity because it is a partitioning-
based algorithm and, therefore, assigns community mem-
berships to every node; CPM shows relatively decent per-
formance in dense networks, but very poor performance
in sparse networks (e.g., RoadNet-PA (〈k〉 = 2.83), Ore-
gon (〈k〉 = 5.72), and Gnutella (〈k〉 = 4.93)) because it
is hard to detect the base structure (i.e., clique) in sparse
networks; LinkPartition and DEMON consistently perform
poorly on most real-world data sets because LinkPartition
tends to discover many small communities while DEMON
tends to discover very large communities compared with
the communities discovered by other algorithms.

5.3 Effects of Sampling on LinkBlackHole∗

The clustering accuracy and running time of
LinkBlackHole∗ were compared with those LinkBlackHole
while varying the link sampling rate in the networks. The
sampling rate was controlled by doubling the value of α
from 1

8 〈k〉 to 8〈k〉 while fixing β to 1.0, where 〈k〉 is the
average degree of a node in the original graph.

Figure 14 shows the results for Brightkite and col-HepPh
network data sets. These two data sets represent each of the

two main cohorts in Table 3, and the other data sets also
showed similar results. Naturally, the community accuracy
and running time of LinkBlackHole∗ approach those of
LinkBlackHole as the sampling rate increases. Even when
the sampling rate is only 10% (marked by a red circle in the
figure), which corresponds to α = 1

2 〈k〉 and β = 1 according
to the empirical result mentioned in Section 4.1.2, the accu-
racy of LinkBlackHole∗ still exceeds 90% that of LinkBlack-
Hole while the running time is reduced by approximately
10 times. This solid result demonstrates LinkBlackHole∗’s
strong resilience to sampling, that it significantly improves
the efficiency of LinkBlackHole with negligible compromise
of the accuracy.

5.4 Running Time Scalability
Because the algorithms compared are implemented in differ-
ent languages (e.g., Java, C/C++, Matlab, and Python), the
primary intention of this test is to examine the running time
increase of each algorithm, including LinkBlackHole∗, as the
data size increases. Scalability was measured particularly
over network density by increasing the number of edges in
the network from 100,000 to 3,200,000 in the synthetic LFR
benchmark data sets. Scalability with the network density
is meaningful because what LinkBlackHole∗ does is link
clustering.

Figure 15 shows the result. It shows that LinkBlackHole∗

achieves near-linear scalability, and so do all the other
algorithms except CPM and DEMON, which show faster,
apparently exponential growth of running time. As the
number of links doubled from 10 ·104 to 320 ·104 five times,
the running time of LinkBlackHole∗ increased by 2.1, 2.2,
2.2, 2.6, and 2.5 times, but that of DEMON increased by 2.4,
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2.6, 3.9, 5.6, and 4.7 times. Although LinkBlackHole∗ takes
longer than the other algorithms, it is still sufficiently fast,
finishing in approximately 2 hours on a single machine for
dense networks with over 1 million edges.
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Fig. 15: Running time scalability with the number of links.

6 CONCLUSION

LinkBlackHole∗ combines LinkSCAN∗’s ability to detect
overlapping communities and BlackHole’s robustness to
mixing between communities, and thereby can accurately
detect highly-mixed overlapping communities from large
networks. Specifically, it combines the link-space transfor-
mation of LinkSCAN∗ and the black hole transformation of
BlackHole to materialize link embedding.

Extensive evaluation through synthetic network experi-
ments and real-world network experiments demonstrated
the performance merit of LinkBlackHole and its link-
sampled version LinkBlackHole∗ compared with other al-
gorithms that define the state of overlapping community
detection. LinkBlackHole∗ and LinkBlackHole showed the
best quality of mixed overlapping communities as reflected
in the clustering accuracy, and, more notably, the accu-
racy advantage increased as the degree of community mix-
ing and/or overlap increased. In addition, LinkBlackHole∗

showed very strong resilience to the link sampling and also
showed acceptable running time scalability with the number
of links.

As future work, we plan to develop a parallel em-
bedding algorithm that can simultaneously run on mul-
tiple machines to further improve the running time of
LinkBlackHole∗ as well as BlackHole.
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