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a b s t r a c t

When a multidimensional index is used for similar sequence matching, the traditional

approach is to transform high-dimensional window sequences to low-dimensional

sequences and bounding them into a low-dimensional minimum bounding rectangle

(MBR). In this paper, we propose a new approach which constructs a low-dimensional

MBR by directly transforming a high-dimensional MBR (calledMBR-transformation) bound-

ing the high-dimensional sequences. This approach significantly reduces the number of

lower-dimensional transformations needed in similar sequence matching. However, it

poses a risk that some transformed sequences may fall outside the transformed low-

dimensional MBR. We thus propose safe MBR-transformation which has the property that

every possible transformed sequence is inside a safe MBR-transformed MBR. Then, consid-

ering the discrete Fourier transform (DFT) and the discrete Cosine transform (DCT), we

prove that they are not safe as MBR-transformations, and modify them to become safe

MBR-transformations (called mbrDFT if DFT-based and mbrDCT if DCT-based). Then, we

prove the safeness and optimality of mbrDFT and mbrDCT. Analyses and experiments show

that the mbrDFT and mbrDCT reduce the execution time by several orders of magnitude

due to the reduction in the number of lower-dimensional transformations. The proposed

safe MBR-transformation provides a useful framework for a variety of applications that

require a direct transformation of a high-dimensional MBR to a low-dimensional MBR.

Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction

Time-series data are sequences of real numbers representing values at specific time points – examples are stock prices,

exchange rates, weather data, financial data, network traffic data, etc. Time-series data stored in a database are called data

sequences, and those given by the user are called query sequences. Finding data sequences similar to a given query sequence

from the database is called a similar sequence matching [1,8,23] problem. It is a common practice for efficiency’s sake to

divide each data or query sequence into window sequences and perform matching between each corresponding pair of data

and query window sequences [8,13,20,22,23]. Similar sequence matching has been widely used in many practical applica-

tions including image matching, handwritten recognition, speech recognition, query by humming, and biological sequence

matching [12,14,17,18,26]. Our solution can be used for such practical applications as it improves the overall performance of

similar sequence matching.
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One approach common to many similar sequence matching techniques is to construct minimum bounding rectangles

(MBRs) and use a multidimensional index structure like the R⁄-tree [4]. MBRs are used to reduce the number of datawindow

sequences stored in the index [8,20,25] or the number of query window sequences used to search the index [13,22,23]. All

these techniques use lower-dimensional transformation to reduce high-dimensional sequences to low-dimensional se-

quences. This transformation is needed to avoid the curse of high dimensionality [5]. Besides, MBRs reduce the required in-

dex storage space (if applied to data) or search time (if to queries), since only two diagonal corner points are needed for each

MBR instead of all individual points in it.

Thus, in the traditional approach, a low-dimensional MBR is constructed by dividing data or query sequences into win-

dow sequences, transforming each (high-dimensional) window sequence to a low-dimensional sequence, and bounding

the low-dimensional sequence points into MBRs [8,13,20,22,23,25]. This approach requires as many lower-dimensional

transformations as the number of window sequences, which can be very large. For example, in subsequence matching

[8,22,23], an MBR contains hundreds or thousands of sequences, and we thus need to execute hundreds or thousands

of lower-dimensional transformations to construct only one MBR. Likewise, if this overhead is too high, an alternate ap-

proach needs to be sought to reduce the number of lower-dimensional transformations. This is the problem addressed in

this paper.

The key idea of our approach is to bound high-dimensional window sequences into a high-dimensional MBR and trans-

form it directly to a low-dimensional MBR. (We call this transformation an MBR-transformation.) This obviously reduces the

number of lower-dimensional transformations to two per low-dimensional MBR. One caution, however, is that using a se-

quence-transformation as the MBR-transformation gives no guarantee that all possible window sequences in the high-

dimensional MBR are mapped into the low-dimensional MBR. (Details will appear in Section 4.) Fortunately, we have found

that such a guarantee can be made with a small relaxation of the transformed MBR boundary. We say an MBR-transforma-

tion is safe when such a guarantee can be made. This notion of safe MBR-transformation is novel to the best of our knowl-

edge, and our work is the first attempt to propose a practical solution to realize it.

In this paper we develop two kinds of safe MBR-transformations. One is based on the discrete Fourier transform (DFT),

and the other is based on the discrete Cosine transform (DCT). Both of these use sinusoidal functions as their transformation

functions, and both are widely used as lower-dimensional transformation techniques. For each of them, we prove that using

it as the MBR-transformation is not safe, and then propose a safe version, called mbrDFT and mbrDCT, respectively. We then

formally prove they are safe MBR-transformations and also show that each is optimal among all possible MBR-safe transfor-

mations of its kind.

We demonstrate the merits of the proposed safe MBR-transformation based approach through running-time analyses and

experiments. The experimental results show several orders of magnitude reduction in the number of lower-dimensional

transformations and the consequential efficiency improvement over the traditional approach. Another experimental results

show that there is hardly any adverse effect from the relaxation of the MBR-transformed MBR in practical cases, as typically

it suffices to use only the first one or two dimensions of a low-dimensional MBR [1].

The rest of this paper is organized as follows. Section 2 describes existing work related to similar sequence matching and

lower-dimensional transformations. Section 3 defines the safe MBR-transformation and outlines and analyzes the lower-

dimensional MBR construction algorithms. Section 4 formally develops the DFT- and DCT-based safe MBR-transformations.

Section 5 evaluates their performances through experiments. Section 6 concludes the paper.

2. Related work

We discuss the related work broadly in similar sequence matching and specifically in lower-dimensional transformation.

2.1. Similar sequence matching

A similar sequence matching problem can be classified into a whole matching problem and a subsequence matching

problem. The whole matching [1,6,31] is to find data sequences similar to a query sequence, where the lengths of data se-

quences and the query sequence are the same. The subsequence matching [3,8,13,20,22] is to find subsequences of data se-

quences that are similar to a query sequence of an arbitrary length. Subsequence matching is more general than whole

matching, and has broader applications [8,22]. The use of a low-dimensional MBR has been proposed mostly for subsequence

matching, but it can certainly be used for whole matching as well. The MBR-transformation technique proposed in this paper

is thus applicable to both whole matching and subsequence matching.

In these similar sequence matching problems, similarity is measured with a distance function DðX; YÞ.
(X � fx0; x1; . . . ; xnÿ1g and Y � fy0; y1; . . . ; ynÿ1g are two matched sequences of the same length n.) A commonly used distance

function is the Lp-distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pnÿ1
i¼0 jxi ÿ yijp

p

q

� �

, which includes the Manhattan distance ð¼ L1Þ, the Euclidean distance

ð¼ L2Þ, and the maximum distance ð¼ L1Þ [1,6,8,10,20,22,29]. There are also other distance measures like time warping

[2,9,13,17,31] and longest common subsequence (LCSS) [30]. Our MBR-transformation technique does not assume any par-

ticular distance measure, and thus can be used with a distance measure of any type.
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Some similar sequence matching techniques preprocess the data using various techniques, such as moving average

[18,25,29], shifting-and-scaling [7,9], and normalization [20,29], in order to remove distortions (e.g., offset translation,

amplitude scaling, linear trend, noise). Preprocessing and low-dimensional MBR construction are independent issues, and

thus our MBR transformation technique can be applied to data preprocessed using any kind of preprocessing technique.

2.2. Lower-dimensional transformation

As we mentioned in Section 1, most existing similar sequence matching techniques use lower-dimensional transfor-

mation to index high-dimensional (window) sequences using a multidimensional index. The lower-dimensional transfor-

mation has first been introduced in the whole matching technique of Agrawal et al. [1], and then widely used in other

whole matching techniques [6,18,31] and subsequence matching techniques [8,20,21,23,25]. It has also been used in sim-

ilar sequence matching on streaming time-series for the dimensionality reduction of the data or query sequences

[10,11,21].

A number of similar sequence matching techniques use MBRs to reduce the number of points to be stored in the index or

to reduce the number of range queries. For example, techniques in [8,20,25] divide data sequences into windows, transform

the windows to low-dimensional points, and then store in an index MBRs containing multiple transformed points. Similarly,

techniques in [13,22,25] divide a query sequence into windows, transform the windows to low-dimensional points, and then

construct range queries with MBRs containing multiple transformed points. Additionally, the technique in [11] transforms

multiple continuous query sequences on streaming time-series to low-dimensional points, and then stores in an index MBRs

containing multiple transformed points. All these techniques construct low-dimensional MBRs after transforming individual

high-dimensional sequences to low-dimensional sequences. In contrast, our approach transforms a high-dimensional MBR

itself to a low-dimensional MBR directly.

Well-known lower-dimensional transformation techniques are based on DFT, DCT, or Wavelet transform. The DFT-based

technique has been used most among these three techniques, and has been used mostly in similar sequence matching

[8,12,18,27,23–25] on various stored or streaming time-series (e.g., stock prices, weather changes). DCT has been used

mainly for compressing multimedia data (e.g., images, videos) [14,32], but recently began to be used for lower-dimensional

transformation in similar sequence matching on stored or streaming time-series [14,15] as well. Wavelet transform is used

for compressing similar images in [26] and for lower-dimensional transformation of time-series data in [6,22]. In addition,

piecewise aggregate approximation (PAA) [13,16] and singular value decomposition (SVD) [16,19] are also introduced as

lower-dimensional transformation techniques. All these techniques, however, are for transforming sequences or images.

To the best of our knowledge, our approach is the first one applied to MBRs.1 (In this paper we focus on DFT and DCT as

the techniques for MBR transformation. It is unknown whether DWT, PAA, and SVD are suitable for that purpose, nor whether

it is feasible; this is a subject for future work.)

3. MBR-transformations: concept and algorithm

3.1. Safe MBR-transformation

It is convenient for the purpose of this paper to distinguish between the transformation of a data or query sequence and

the transformation of an MBR. (Both are, after all, transformation of data or query points in a multidimensional space.) We

refer to them as a sequence-transformation (seqT) and an MBR-transformation (mbrT), respectively. Naturally, an MBR-trans-

formation of an MBR ½L;U� is done as two separate MBR-transformations on L and U. Table 1 summarizes the notations used

in the paper.

The key technical issue of the problem is to find an MBR-transformationmbrT that has the following property: for a given

sequence-transformation seqT, if a sequence is contained in an MBR, then the MBR transformed using mbrT always contains

the sequence transformed using seqT. The following definition formally defines this property.

Definition 1. For a sequence X and anMBR ½L;U� in a multidimensional space, and for a sequence-transformation seqT and an

MBR-transformation mbrT, we say mbrT is safe for seqT if the following Eq. (1) holds.

X 2 ½L;U� ! XseqT 2 ½L;U�mbrT
� ð1Þ

Fig. 1 illustrates the concept of safe MBR-transformation.

1 An earlier version of this paper has been published in [24], and this paper is an extended version of the previous work. Major changes and extensions are as

follows. (1) The notion of ‘‘MBR-safe transform’’ has been changed to ‘‘safe MBR-transformation’’. This new notion separates the transformation of an MBR from

the transformation of a data or query sequence. (2) Another type of safe MBR-transformation has been developed for discrete Cosine transform (DCT)-based

lower-dimensional transformation, in addition to the discrete Fourier transform (DFT)-based one presented in our previous work. (3) The optimality of the

proposed safe MBR-transformations has been proven as Corollaries, for both the DFT-based and DCT-based transformations. (4) Additional experiments have

been done using a real data set of stock ticker time-series.
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3.2. Low-dimensional MBR construction

The proposed technique which uses this safe MBR-transformation can drastically reduce the number of lower-dimen-

sional transformations, compared with using the traditional technique which constructs an MBR after tens or thousands

of lower-dimensional transformations for individual sequences. Algorithm 1 (called LMBR-seqT) and Algorithm 2 (called

LMBR-mbrT) outline the algorithms for constructing low-dimensional MBRs using the traditional sequence-transformation

and the proposed MBR-transformation, respectively. (Fig. 2 illustrates how the two algorithms work.) Algorithm 1 trans-

forms each high-dimensional sequence (of the window length n) to a low-dimensional sequence and bounds the resulting

low-dimensional sequences into low-dimensional MBRs, with r sequences per MBR. This requires as many transformations

as the number of high-dimensional sequences in the time-series data. In contrast, Algorithm 2 bounds high-dimensional se-

quences into a high-dimensional MBR, one MBR for each r sequences, and transforms each of the resulting MBRs to a low-

dimensional MBR. This requires only two transformations for each MBR (one for L and one for U of the MBR ½L;U�).

Algorithm 1. LMBR-seqT: Sequence-transformation based low-dimensional MBR construction.

Input: l (data or query sequence length), n (window sequence length), r (number of sequences per MBR)

Divide the data or query sequence into window sequences ðX0;X1; . . .Xp¼bl=ncÞ of length n each.

for all window sequence Xiði ¼ 0;1; . . . ; pÞ do
sequence-transform a high-dimensional sequence Xi to a low-dimensional sequence XseqT

i
.

end for

for all set Sjðj ¼ 0;1; . . . ; bp=rcÞ of r consecutive XseqT
i ’s do

construct a low-dimensional MBR ½Lj;Uj� to bound the low-dimensional sequence XseqT
i ’s in Sj.

end for

Fig. 1. A safe MBR-transformation ðmbrTÞ and a non-safe MBR-transformation ðmbrT
0Þ.

Table 1

Summary of notations.

Notations Definitions

X A sequence. ð� fx0; x1; . . . ; xnÿ1gÞ
XseqT A sequence transformed from X through a sequence-transformation seqT.

� xseqT0 ; xseqT1 ; . . . ; xseqTmÿ1

n o� �

½L;U� An MBR whose lower-left and upper-right points are L and U, respectively.

ð� ½fl0; l1; . . . ; lnÿ1g; fu0;u1; . . . ; unÿ1g�Þ
½L;U�mbrT An MBR transformed from ½L;U� through an MBR-transformation mbrT.

� ½LmbrT ;UmbrT � � l
mbrT
0 ; l

mbrT
1 ; . . . ; l

mbrT
mÿ1

n o

; umbrT
0 ;umbrT

1 ; . . . ;umbrT
mÿ1

� 	

h i� �

X 2 ½L;U� A predicate that evaluates to TRUE if the sequence X (or, precisely, the point representing X

in a multidimensional space) is contained in the MBR ½L;U� (i.e., for all i; li 6 xi 6 ui).
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Algorithm 2. LMBR-mbrT: MBR-transformation based low-dimensional MBR construction.

Input: l (data or query sequence length), n (window sequence length), r (number of sequences per MBR)

Divide the data or query sequence into window sequences (X0;X1; . . .Xp¼bl=nc) of length n each.

for all set Sjðj ¼ 0;1; . . . ; bp=rcÞ of r consecutive Xi’s do

construct a high-dimensional MBR ½Lj;Uj� to bound the high-dimensional sequence Xi’s in Sj.

end for

for all MBR ½Lj;Uj�ðj ¼ 0;1; . . . ; bp=rcÞ do
MBR-transform a high-dimensional MBR ½Lj;Uj� to a low-dimensional MBR ½LmbrT

j ;UmbrT
j �.

end for

The running-time of these algorithms is the summation of MBR construction time and lower-dimensional transformation

time. Each MBR construction takesHðrÞ, as it can be done in one scan of the data and, thus, the running-time is proportional

to the number of data or query points (i.e., sequences) enclosed in an MBR. As for the time for lower-dimensional transfor-

mations, if we denote the time for transforming a sequence of length n as f ðnÞ, then Algorithms 1 and 2 take rf ðnÞ and 2f ðnÞ,
respectively, to construct each low-dimensional MBR. The running-time of DFT and DCT is known to beHðn lognÞ [28]. Thus,
the total running-time of Algorithm 1 is Hðrn lognÞ þHðrÞ ¼ Hðrn lognÞ. Similarly, the running-time of Algorithm 2 is

HðrÞ þHð2n lognÞ ¼ Hðn lognÞ.

4. Safe MBR-transformations based on DFT and DCT

In this section we propose safe MBR-transformations based on DFT and DCT. Section 4.1 shows that using the original

DFT-based lower-dimensional transformation as the MBR-transformation is not safe, and proposes a safe MBR-transforma-

tion. Likewise, Section 4.2 shows that using the original DCT-based lower-dimensional transformation as the MBR-transfor-

mation is not safe, and proposes a safe MBR-transformation. Due to the similarity (i.e., sinusoidal forms) between

DFT – specifically, its real (cosine) part – and DCT, these two sections parallel each other in their presentations.

4.1. mbrDFT: DFT-based safe MBR-transformation

DFT transforms an n-dimensional sequence X � fx0; x1; . . . ; xnÿ1g where xtðt ¼ 0;1; . . . ;nÿ 1Þ is a real number to another

n-dimensional sequence Y � fy0; y1; . . . ; ynÿ1g where yiði ¼ 0;1; . . . ;nÿ 1Þ is a complex number defined as in Eq. (2) [1,28].

yi ¼
1
ffiffiffi

n
p

X

nÿ1

t¼0

xte
ÿj�2pn it for 0 6 i 6 nÿ 1: ð2Þ

From Euler’s formula [28] and the definition of a complex number, we can rewrite Eqs. (2) and (3) of the real part and

imaginary part.

yi ¼
1
ffiffiffi

n
p

X

nÿ1

t¼0

xt cos ÿ2p

n
it

� �

þ j � 1
ffiffiffi

n
p

X

nÿ1

t¼0

xt sin ÿ2p

n
it

� �

for 0 6 i 6 nÿ 1: ð3Þ

• • •

•

•

•

•

•

•

• • •

• • •

•

•

•

•

•

•

• • •

Fig. 2. Comparison of low-dimensional MBR constructions.
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DFT concentrates the energy in the first few coefficients, which means that the other coefficients are relatively negligible.

Thus, only a few coefficients in the first few dimensions of Y are used in the lower-dimensional transformation [1,8]. The fol-

lowing Definition 2 defines the traditional DFT-based lower-dimensional sequence-transformation.

Definition 2. The DFT-based lower-dimensional sequence-transformation, denoted as seqDFT, transforms an n-dimensional

sequence X to an mð� nÞ-dimensional sequence XseqDFT where each coordinate xseqDFT
i

; i ¼ 0;1; . . . ;mÿ 1, is computed as

xseqDFTi ¼
1
ffiffi

n
p

Pnÿ1
t¼0 xt cos hit if i is even;

1
ffiffi

n
p

Pnÿ1
t¼0 xt sin hit if i is odd

8

<

:

ð4Þ

where hit ¼ ÿ 2p
n
b i
2
ct.

In similar sequence matching, a high-dimensional sequence typically has an order of ten to thousand ð¼ nÞ dimensions

and a low-dimensional sequence has only one to six ð¼ mÞ dimensions.

If we apply this DFT-based lower-dimensional sequence-transformation as is to transform an n-dimensional MBR ½L;U� to
an m-dimensional MBR ½L;U�seqDFT � ½LseqDFT ;UseqDFT �, then LseqDFT and UseqDFT are computed in the same manner as XseqDFT is

computed in Definition 2. That is, for each integer i 2 ½0;mÿ 1�,

l
seqDFT
i ¼ 1

ffiffi

n
p

Pnÿ1
t¼0 lt cos hit ; useqDFT

i ¼ 1
ffiffi

n
p

Pnÿ1
t¼0 ut cos hit if i is even;

l
seqDFT
i ¼ 1

ffiffi

n
p

Pnÿ1
t¼0 lt sin hit ; useqDFT

i ¼ 1
ffiffi

n
p

Pnÿ1
t¼0 ut sin hit if i is odd:

8

<

:

ð5Þ

This lower-dimensional MBR-transformation, however, is not safe for the lower-dimensional sequence-transformation, as

shown in the following example.

Example 1. Consider a 4-dimensional sequence X ¼ f3:90;3:70;4:60;3:50g and a 4-dimensional MBR ½L;U� where

L ¼ f3:70;3:50;4:50;3:00g and U ¼ f4:00;4:00;5:00;4:00g. X 2 ½L;U� holds for these values. The DFT-based lower-dimen-

sional transformation (Definition 2) transforms X to XseqDFT ¼ f7:85;ÿ0:35g2 and transforms ½L;U� to ½LseqDFT ;UseqDFT � where

LseqDFT ¼ f7:35;ÿ0:50g and UseqDFT ¼ f8:50;ÿ0:40g. From these, we see that ÿ0:50 6 ÿ0:35iÿ 0:40 (i.e.,

l
seqDFT
2 6 xseqDFT2 iuseqDFT

2 ), that is, XseqDFT 2 ½L;U�seqDFT does not hold. h

In order to render the MBR-transformation safe, we need to make sure the resulting MBR contains every possible point

that can be transformed from all possible points in the original MBR ½L;U�. This is achieved by applying to MBR a modified

DFT-based lower dimensional transformation, called mbrDFT, as defined below.

Definition 3. The DFT-based lower-dimensional MBR-transformation, denoted as mbrDFT, transforms an n-dimensional MBR

½L;U� to an mð� nÞ-dimensional MBR ½L;U�mbrDFTð� ½LmbrDFT ;UmbrDFT �Þ where the coordinates l
mbrDFT
i and

umbrDFT
i ; i ¼ 0;1; . . . ;mÿ 1, are computed as in Eq. (6) for even i and Eq. (7) for odd i.

If i is even,

l
mbrDFT
i ¼ 1

ffiffiffi

n
p

X

nÿ1

t¼0

at cos hit ; umbrDFT
i ¼ 1

ffiffiffi

n
p

X

nÿ1

t¼0

bt cos hit where
at ¼ lt ; bt ¼ ut if cos hit P 0;

at ¼ ut ; bt ¼ lt if cos hit < 0;

�

ð6Þ

if i is odd,

l
mbrDFT
i ¼ 1

ffiffiffi

n
p

X

nÿ1

t¼0

ct sin hit; umbrDFT
i ¼ 1

ffiffiffi

n
p

X

nÿ1

t¼0

dt sin hit where
ct ¼ lt ;dt ¼ ut if sin hit P 0;

ct ¼ ut; dt ¼ lt if sin hit < 0;

�

ð7Þ

where hit ¼ ÿ 2p
n
b i
2
ct.

An MBR constructed using mbrDFT (Eqs. (6) or (7)) always contains an MBR that would be constructed using seqDFT (Eq.

(5)). The following Theorem 1 shows that mbrDFT is safe.

Theorem 1. For an n-dimensional sequence X and an n-dimensional MBR ½L;U�, if X 2 ½L;U� holds then XseqDFT 2 ½L;U�mbrDFT holds

as well, that is, mbrDFT is a safe MBR-transformation for the DFT-based lower-dimensional sequence-transformation seqDFT.

Proof. Given that X 2 ½L;U� holds, that is, lt 6 xt 6 ut for all t ¼ 0;1; . . . ;nÿ 1, we need to show that l
mbrDFT
i 6 xseqDFTi 6 umbrDFT

i

holds for all i ¼ 0;1; . . . ;mÿ 1. We prove this for the following two cases: (1) i is an even number and (2) i is an odd number.

Case 1 (i is even): In this case, xseqDFTi ¼ 1
ffiffi

n
p

Pnÿ1
t¼0 xt cos hit from Eq. (4). Moreover, if cos hit P 0 then the following three

equations hold: l
mbrDFT
i ¼ 1

ffiffi

n
p

Pnÿ1
t¼0 lt cos hit from Eq. (6), umbrDFT

i ¼ 1
ffiffi

n
p

Pnÿ1
t¼0 ut cos hit from Eq. (7), and

lt cos hit 6 xt cos hit 6 ut cos hitfrom the assumption lt 6 xt 6 ut . From these we conclude that l
mbrDFT
i 6 xseqDFTi 6 umbrDFT

i . On

2 In the DFT-based lower-dimensional transformation, the imaginary part of the first complex number (i.e., xseqDFT1 ) is always 0. Thus, we use xseqDFT0 ; xseqDFT2

n o

instead of xseqDFT0 ; xseqDFT1

n o

. The same is true for l
seqDFT
1 and useqDFT

1 as well.
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the other hand, if cos hit < 0 then the following three equations hold instead: l
mbrDFT
i ¼ 1

ffiffi

n
p

Pnÿ1
t¼0 ut cos hit from Eq. (6),

umbrDFT
i ¼ 1

ffiffi

n
p

Pnÿ1
t¼0 lt cos hit from Eq. (7), and ut cos hit 6 xt cos hit 6 lt cos hit from the assumption lt 6 xt 6 ut . From these we

also conclude that l
mbrDFT
i 6 xseqDFTi 6 umbrDFT

i .

Case 2 (i is odd): The proof is identical to the proof of Case 2 except for using sin hit instead of cos hit . We omit the details

here. h

The following example verifies that mbrDFT is a safe MBR-transformation.

Example 2. Consider the same sequence X and MBR ½L;U� as in Example 1. Then, the seqDFT-transformed sequence XseqDFT is

f7:85;ÿ0:35g and the mbrDFT-transformed MBR ½LmbrDFT ;UmbrDFT � is ½f7:35; ÿ0:65g; f8:50;ÿ0:25g�. From these we see that

both 7:35 6 7:85 6 8:50 (i.e., l
mbrDFT
0 6 xseqDFT0 6 umbrDFT

0 ) and ÿ0:65 6 ÿ0:35 6 ÿ0:25 (i.e., l
mbrDFT
2 6 xseqDFT2 6 umbrDFT

2 ) hold,

that is, XseqDFT 2 ½L;U�mbrDFT holds. h

The proposed mbrDFT is optimal in that it constructs the smallest MBR among the all possible DFT-based safe MBR-trans-

formations. The following Corollary 1 states it formally.

Corollary 1. Consider any n-dimensional MBR ½L;U� and its mbrDFT-transformed m-dimensional MBR ½LmbrDFT ;UmbrDFT �. If another
DFT-based safe MBR-transformation T transforms ½L;U� to an m-dimensional MBR ½LT ;UT �, then ½LmbrDFT ;UmbrDFT � is always

included in ½LT ;UT �.

Proof (By contradiction). Suppose ½LmbrDFT ;UmbrDFT � is not included in ½LT ;UT �. Then, lmbrDFT
i < l

T
i or umbrDFT

i > uT
i should be true

for some i ¼ 0;1; . . . ;mÿ 1. We will show both cases lead to a contradiction.

Case 1 l
mbrDFT
i < l

T
i

� �

: We distinguish this case further into the cases of an even number i and an odd number i. First,

assume an even i. Let X ¼ fx0; x1; . . . ; xnÿ1g be a sequence located at one of the corners of the MBR ½L;U�, where

xtðt ¼ 0;1; . . . ;nÿ 1Þ is either lt (if cos hit P 0) or ut (if cos hit < 0), where hit ¼ ÿ 2p
n

i
2

� �

t. Then, by comparing Eqs. (4) and (6),

we see that xseqDFT
i

and l
mbrDFT
i are the same. Furthermore, since T is a safe MBR-transformation, we see that l

T
i 6 xseqDFT

i
holds

and, since xseqDFTi ¼ l
mbrDFT
i ; l

T
i 6 l

mbrDFT
i holds as well. This contracts the condition l

mbrDFT
i < l

T
i of Case 1. Second, assume an

odd i. The proof of this case is identical to the proof of the even i case except for using sin hit instead of cos hit . We can prove in

the same manner that l
mbrDFT
i < l

T
i cannot be true.

Case 2 umbrDFT
i > uT

i

ÿ �

: The proof of this case is identical to the proof of Case 1 except for using the upper bounds (umbrDFT
i

and uT
i ) instead of the lower bounds (l

mbrDFT
i and l

T
i ). We can prove in the samemanner as in Case 1 that umbrDFT

i > uT
i cannot be

true. h

4.2. mbrDCT: DCT-based safe MBR-transformation

DCT is similar to DFT except that the transformed n-dimensional sequence Yð� fy0; y1; . . . ; ynÿ1gÞ is expressed as follows

[28].

yi ¼
2 � cðiÞ

n

X

nÿ1

t¼0

xt cos
p

n
t þ 1

2

� �

i

� �

for 0 6 i 6 nÿ 1 ð8Þ

where cðiÞ is expressed as

cðiÞ ¼
ffiffi

2
p

2
if i ¼ 0;

1 if 0 < i 6 nÿ 1:

(

ð9Þ

Like DFT, DCT concentrates the energy in the first few coefficients and thus, only a few coefficients in the first few dimen-

sions of Y are used in the lower-dimensional transformation. The following Definition 4 defines the traditional DCT-based

lower-dimensional sequence-transformation.

Definition 4. The DCT-based lower-dimensional sequence-transformation, denoted as seqDCT, transforms an n-dimensional

sequence X to a new mð� nÞ-dimensional sequence XseqDCT where each coordinate xseqDCTi ; i ¼ 0;1; . . . ;mÿ 1, is computed as

xseqDCTi ¼ 2 � cðiÞ
n

X

nÿ1

t¼0

xt cos hit ð10Þ

where hit ¼ p
n
ðt þ 1

2
Þi. h
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Like the DFT case, applying the above DCT-based lower-dimensional sequence-transformation to transform an n-dimen-

sional MBR ½L;U� to anm-dimensional MBR ½LseqDCT ;UseqDCT � results in an unsafe MBR-transformation, shown in Eq. (11) below.

Example 3 below verifies it.

l
seqDCT
i ¼ 2 � cðiÞ

n

X

nÿ1

t¼0

lt cos hit; useqDCT
i ¼ 2 � cðiÞ

n

X

nÿ1

t¼0

ut cos hit: ð11Þ

Example 3. Consider a 4-dimensional sequence X ¼ f2:40;2:40;2:50;2:20g and a 4-dimensional MBR ½L;U� where

L ¼ f2:00;2:20;2:30;2:10g and U ¼ f2:50;2:45;2:60;2:30g. Then, the DCT-based lower-dimensional transformation

(Definition 4) transforms X to XseqDCT ¼ f3:36;0:07g and ½L;U� to ½LseqDCT ; UseqDCT � ¼ ½f3:04;ÿ0:07g; f3:48;0:06g]. From these

we see that ÿ0:07 6 0:07i0:06 (i.e., l
seqDCT
1 6 xseqDCT1 iuseqDCT

1 ), that is, XseqDCT 2 ½L;U�seqDCT does not hold. h

The DCT-based safe MBR-transformation, denoted as mbrDCT, is defined as follows.

Definition 5. The DCT-based lower-dimensional MBR-transformation, denoted as mbrDCT, transforms an n-dimensional MBR

½L;U� to an mð� nÞ-dimensional MBR ½L;U�mbrDCTð� ½LmbrDCT ;UmbrDCT �Þ, where the coordinates l
mbrDCT
i and umbrDCT

i ;

i ¼ 0;1; . . . ;mÿ 1, are computed as

l
mbrDCT
i ¼ 2 � cðiÞ

n

X

nÿ1

t¼0

at cos hit ; umbrDCT
i ¼ 2 � cðiÞ

n

X

nÿ1

t¼0

bt cos hit where
at ¼ lt; bt ¼ ut if cos hit P 0;

at ¼ ut ; bt ¼ lt if cos hit < 0

�

ð12Þ

where hit ¼ p
n

t þ 1
2

ÿ �

i.

Like mbrDFT in Definition 3, in order to guarantee safeness of mbrDCT, we deliberately make LmbrDCT and UmbrDCT in Eq. (12)

contain every possible point that can be generated from the original MBR ½L;U�. The following Theorem 2 shows that mbrDCT

is a safe MBR-transformation.

Theorem 2. For an n-dimensional sequence X and an n-dimensional MBR ½L;U�, if X 2 ½L;U� holds, then XseqDCT 2 ½L;U�mbrDCT holds

as well, that is, mbrDCT is a safe MBR-transformation for the DCT-based lower-dimensional sequence-transformation seqDCT.

Proof. To prove XseqDCT 2 ½LmbrDCT ;UmbrDCT �ð¼ ½L;U�mbrDCTÞ, we need to show that l
mbrDCT
i 6 xseqDCTi 6 umbrDCT

i holds for all

i ¼ 0;1; . . . ;mÿ 1. Using the same steps as in the proof of Case 1 in Theorem 1, we can easily show that both
2�cðiÞ
n

Pnÿ1
t¼0 at cos hit ¼ l

mbrDCT
i

� �

6
2�cðiÞ
n

Pnÿ1
t¼0 xt cos hit ¼ xseqDCTi

� �

and 2�cðiÞ
n

Pnÿ1
t¼0 bt cos hit ¼ umbrDCT

i

ÿ �

P
2�cðiÞ
n

Pnÿ1
t¼0 xt cos hit ¼ xseqDCTi

� �

hold, that is, l
mbrDCT
i 6 xseqDCTi 6 umbrDCT

i holds, for all i ¼ 0;1; . . . ;mÿ 1. h

An MBR constructed using mbrDCT (Eq. (12)) always contains an MBR that would be constructed using seqDCT (Eq. (11)).

The following example verifies that mbrDCT is a safe MBR-transformation.

Example 4. Consider the same sequence X and MBR ½L;U� as in Example 3. Then, the seqDCT-transformed sequence XseqDCT is

f3:36;0:07g and the mbrDCT-transformed MBR ½LmbrDCT ;UmbrDCT � is ½f3:04; ÿ0:22g; f3:48;0:21g�. From these we see that both

3:04 6 3:36 6 3:48 (i.e., l
mbrDCT
0 6 xseqDCT0 6 umbrDCT

0 ) and ÿ0:22 6 0:07 6 0:21 (i.e., l
mbrDCT
1 6 xseqDCT1 6 umbrDCT

1 ) hold, that is,

XseqDCT 2 ½L;U�mbrDCT holds. h

Like mbrDFT, mbrDCT is also optimal among the all possible DCT-based safe MBR-transformations. The following Corol-

lary 2 states it formally.

Corollary 2. Consider any n-dimensional MBR ½L;U� and its mbrDCT-transformed m-dimensional MBR ½LmbrDCT ;UmbrDCT �. If

another DCT-based safe MBR-transformation T transforms ½L;U� to an m-dimensional MBR ½LT ;UT �, then ½LmbrDCT ;UmbrDCT � is always

included in ½LT ;UT �.

Proof (By contradiction). Suppose ½LmbrDCT ;UmbrDCT � is not included in ½LT ;UT �. Then, lmbrDCT
i < l

T
i or umbrDCT

i > uT
i should be true

for some i ¼ 0;1; . . . ;mÿ 1. We show that both cases lead to a contradiction.

Case 1 l
mbrDCT
i < l

T
i

� �

: Let X be a sequence located at one of the corners of the MBR ½L;U�, where xtðt ¼ 0;1; . . . ;nÿ 1Þ is
either lt (if cos hit P 0) or ut (if cos hit < 0), where hit ¼ p

n t þ 1
2

ÿ �

i. Then, by comparing Eqs. (10) and (12), we see xseqDCT
i

and

l
mbrDCT
i are the same. Furthermore, since T is a safe MBR-transformation, we see that l

T
i 6 xseqDCTi holds and, since

xseqDCTi ¼ l
mbrT
i ; l

T
i 6 l

mbrDCT
i holds as well. This contradicts the condition l

mbrDCT
i < l

T
i .
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Case 2 umbrDCT
i > uT

i

ÿ �

: The proof of this case is identical to the proof of Case 1 except for using the upper bounds (umbrDCT
i

and uT
i ) instead of the lower bounds (l

mbrDCT
i and l

T
i ). We can prove in the same manner as in Case 1 that umbrDCT

i > uT
i cannot

be true. h.

Our mbrDFT and mbrDCT guarantee the correctness of similar sequence matching, that is, they find all similar sequences

correctly in similar sequence matching. In order that a similar sequence matching algorithm guarantees its correctness (i.e.,

does not incur any false dismissal), it should use the lower-dimensional transformation that satisfies the Parseval’s theorem

[1,8], which means that the original distance (before applying the transformation) should be no less than the transformed

distance (after applying the transformation). Thus, most previous lower-dimensional transformations satisfy the Parseval’s

theorem. Our seqDFT in Definition 2 and seqDCT in Definition 4 are such examples. Moreover, our mbrDFT and mbrDCT sat-

isfy the Parseval’s theorem since they are safe MBR-transformations of seqDFT and seqDCT, respectively, as we presented in

Theorems 1 and 2. This means that mbrDFT and mbrDCT do not incur any false dismissal and guarantee the correctness of

similar sequence matching.

5. Performance evaluation

We have compared the efficiency of lower-dimensional MBR construction between the traditional sequence-transforma-

tion based technique (LMBR-seqT in Algorithm 1) and the proposed MBR-transformation based technique (LMBR-mbrT in

Algorithm 2). Additionally, we have compared the total boundary-lengths3 of the lower-dimensional MBRs resulting from

the two techniques; this is to examine the adverse effect of MBR-transformation based techniques’ trading the tightness of

MBR for the safeness of MBR. The experimental results show that the proposed LMBR-mbrT technique is more efficient than

the traditional LMBR-seqT technique by several orders of magnitude, and the resulting low-dimensional MBRs are tight enough

for practical use. In this section we first describe the experimental setup in Section 5.1 and then present the results and our

observations in Section 5.2.

5.1. Experimental setup

Data sets: What matters on the efficiency of MBR construction is the number of elements in time-series and not the val-

ues of elements. The element values, however, make a difference on the boundary-lengths of the constructed MBRs. With

this in mind, we have used three types of data sets which determine the element values in different ways.

� WALK-DATA: This data set contains a synthetic time-series of one million entries, and is the same data set as used in other

works on similar subsequence matching [8,22,23]. The entries are obtained using a random walk process. The first entry

ðx0Þ is set to 1.5, and subsequent entries ðx1; x2; . . . ; x999999Þ are obtained by adding to the previous entry a random value in

the range [ÿ0.001,0.001], i.e., xi ¼ xiÿ1 þ RANDOM½ÿ0:001;0:001�. Fig. 3(a) shows a part (10,000 entries) of WALK-DATA.

� SINE-DATA: This data set contains a synthetic streaming time-series of one million entries, and is similar to those used in

other works on continuous similarity matching on streaming time-series [10,11]. The entries are obtained by mixing a

sinusoidal fluctuation and a random walk. Specifically, the i-th entry yi is computed as

yi ¼ 100 sin 0:1xi þ 1:0þ i
1;000;000

� �

ði ¼ 0;1; . . . ;999;999Þ [10,11], where xi is the i-th entry of WALK-DATA. Fig. 3(b) shows

a part of SINE-DATA.

� STOCK-DATA: This data set contains a real stock ticker time-series of 329,112 entries, and is the same data set as used in

[8,22,23]. To facilitate a comparison with two synthetic data sets, we have increased the number of entries to one million

by repeating the same data set. Fig. 3(c) shows a part of STOCK-DATA.

Fig. 3. Part of experimental data sets (10,000 of 1,000,000 entries).

3 Using the boundary-length is adequate for the following reason: in similar sequence matching, a range query on a multidimensional index has the form of a

regular square and, thus, an MBR (in the index) with a longer boundary-length is more likely to be retrieved as the query result.
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Parameter setting: As seen in Algorithms 1 and 2, there are two key parameters affecting the efficiency of lower-dimen-

sional MBR construction: the length of a window sequence ðnÞ and the number of sequences enclosed in an MBR ðrÞ. (The
length of a data or query sequence ðlÞ is not relevant to each MBR construction time.) In the experiments, we have picked

the values of n and r from the following four numbers: 128, 256, 512, and 1024. Another parameter is the number of

dimensions used in a lower-dimensional transformation, which is the length of a low-dimensional sequence ðmÞ. For this

we use a value in the range of 1 to 4, as in [1]. This means that a 128- to 1024-dimensional sequence is transformed to a

1- to 4-dimensional sequence.

Hardware platform: All experiments have been done on a PC with Intel Pentium IV (2.80 GHz CPU, 512 MB RAM, 70.0 GB

hard disk) with GNU/Linux Version 2.6.6 operating system.

5.2. Experimental results

We have performed four sets of experiments to compare the traditional LMBR-seqT and the proposed LMBR-mbrT tech-

niques in terms of their lower-dimensional MBR construction performances. The first and second sets of experiments are to

compare the efficiency for varying rwith a fixed n, and for varying n with a fixed r, respectively. The third set of experiments

is to compare the boundary-length of constructed MBRs. The fourth set of experiments is to compare the actual performance

of similar sequence matching that exploits seqDFT, seqDCT, mbrDFT, or mbrDCT. In this subsection we refine the names of

the techniques, LMBR-seqT and LMBR-mbrT, with their actual transformation names (i.e., LMBR-seqDFT, LMBR-seqDCT,

LMBR-mbrDFT, LMBR-mbrDCT).

5.2.1. Experiment 1: efficiency for varying number of sequences per MBR ðrÞ
Fig. 4(a) shows the number of lower-dimensional transformations for all the three data sets, and Fig. 4(b) and (c) shows

the elapsed time per MBR for DFT-based and DCT-based lower-dimensional transformations, respectively, for varying r. We

have fixed the value of n to 256 andm to 2. The elapsed time is measured repeatedly over the entire time-series and averaged

out to remove the noise. As mentioned in Section 5.1, different data sets do not make any difference to the results of the first

and second sets of experiments; we thus show only one result regardless of the data set used.

As shown in Fig. 4(a), our LMBR-mbrDFT and LMBR-mbrDCT significantly reduce the number of transformations over

LMBR-seqDFT and LMBR-seqDCT, respectively. This is because LMBR-seqT has to consider all the individual sequences in

an MBR while LMBR-mbrT requires only two transformations for an MBR. In particular, as r increases, the number of MBRs

to be transformed in LMBR-mbrDFT and LMBR-mbrDCT decreases, and thus their number of transformations also decreases.

In Fig. 4(b) and (c) we see that LMBR-mbrDFT and LMBR-mbrDCT reduce the elapsed time over LMBR-seqDFT and LMBR-

seqDCT, respectively, by one to two orders of magnitude. The ratio of the elapsed time increases roughly linearly with r,

which is consistent with the running-time analysis done in Section 3.2. This confirms that the number of lower-dimensional

transformations is the main factor in the performance difference. (The curve appears to swerve upward because of the dif-

ference in scales between the vertical and horizontal axes.)

5.2.2. Experiment 2: efficiency for varying window sequence length ðnÞ
Fig. 5(a) shows the number of lower-dimensional transformations, and Fig. 5(b) and (c) shows the elapsed time per MBR

for DFT-based and DCT-based lower-dimensional transformations, respectively, for varying n. We have fixed the value of r to

256 and m to 2. As in Experiment 1, we average out the repeated measurements of elapsed time and show only one graph

regardless of the data set. From Fig. 5(a), we note that the numbers of transformations do not change even as the length of

sequences increases. This is because the numbers are dependent on the number of sequences in LMBR-seqT or the number of

MBRs in LMBR-mbrT, but are independent of the length of sequences in both LMBR-seqT and LMBR-mbrT. Additionally, in

Fig. 5(b) and (c) we see that LMBR-mbrDFT and LMBR-mbrDCT significantly reduce the elapsed time over LMBR-seqDFT and

LMBR-seqDCT, respectively. The ratio of the elapsed time is roughly constant to the value of r
2

¼ rn log n
2n logn

� 128
� �

over the vary-

ing n; this is consistent with the running-time analysis done in Section 3.2.

Fig. 4. Efficiency comparison of LMBR-seqT and LMBR-mbrT for varying r (n ¼ 256; m ¼ 2).
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5.2.3. Experiment 3: MBR boundary-length for varying number of lower-dimensions ðmÞ
Figs. 6 and 7 show the average boundary-lengths of MBRs constructed using DFT-based and DCT-based lower-dimen-

sional transformations, respectively, for varying m (from 1 to 4). We have fixed both r and n to 256. As mentioned in

Section 5.1, different data sets give different results in this set of experiments and, therefore, we show the results for all three

data sets. In the figures we see that the boundary-length of an MBR from using MBR-transformation is only 0.2% to 2.6% long-

er than that from using sequence-transformation when m is 1, 38.2% to 65.2% longer when m is 2, 71.8% to 126.8% longer

when m is 3, and 94.5% to 190.1% longer when m is 4. Note that it is adequate enough for m to be 1 or 2 in practice, since

DFT and DCT concentrate most of the energy in the first dimension [1].

It is interesting that the LMBR-seqDFT slope of the curve in Fig. 6(c) is a bit larger than the slopes in Fig. 6(a) and (b) (and

the same for LMBR-seqDCT in Fig. 7). It happens because the fluctuation of data values in the real stock data set is larger than

the fluctuations in the synthesis data sets. This larger fluctuation results in larger low-dimensional MBRs as it causes some of

the energy to diffuse into other dimensions.

5.2.4. Experiment 4: Similar sequence matching performance for varying the query sequence length

As we explained in Experiment 3, LMBR-mbrDFT and LMBR-mbrDCT increase boundary-lengths of MBR, that is, they

decrease the transformation accuracy in constructing MBRs, and this may degrade the overall matching performance. In gen-

eral, a similar sequence matching algorithm consists of two steps: (1) the index-filtering step and (2) the post-processing

step [6,8,23]. Our LMBR-mbrDFT and LMBR-mbrDCT improve the performance of the index-filtering step since they

Fig. 5. Efficiency comparison of LMBR-seqT and LMBR-mbrT for varying n (r ¼ 256; m ¼ 2).

Fig. 6. MBR boundary-length of LMBR-seqDFT and LMBR-mbrDFT.

Fig. 7. MBR boundary-length of LMBR-seqDCT and LMBR-mbrDCT.
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significantly reduce the number of transformations. On the other hand, it may not be the case in the post-processing step

since larger MBRs retrieve more candidate sequences. Thus, in this experiment we investigate the actual performance of

overall similar sequence matching considering both steps. As a similar sequence matching algorithm, we choose DualMatch

[13,22], an efficient subsequence matching algorithm. This is because DualMatch uses MBRs at query time, and thus we can

easily observe the performance changed by the MBR constructing methods. In the experiment, we set m to 2 and l to 128,

where l means the window size in subsequence matching [8,13,22,23]. We generate query sequences from each data set by

taking subsequences starting from random offsets [8,22]. To avoid the effects of noise, we experiment with ten different

query sequences of the same length and use the average as the result. We set the selectivity [8,22] to 0.01%, that is, assume

0.01% of all possible subsequences are retrieved as similar subsequences.

Fig. 8 shows the subsequence matching performance of LMBR-seqDFT and LMBR-mbrDFT for varying the query sequence

length from 256 to 1024. (Since we set the window size to 128, the query sequence length should start from 256 in Dual-

Match [13,22].) As shown in the figures, LMBR-mbrDFT improves the matching performance compared with LMBR-seqDFT.

However, the performance improvement in Fig. 8 is relatively small compared with Figs. 4 and 5. This is because the similar

sequence matching algorithm includes the post-processing step as well as the index-filtering step. That is, much time is re-

quired in the post-processing step, and thus the overall performance improvement becomes relatively small. In WALK-DATA,

we note that the performance difference is much smaller than those in SINE-DATA and STOCK-DATA. We can explain this

difference by the characteristics of adjacent entries as follows: adjacent entries of WALK-DATA are very similar [22] and

these similar entries cause the candidate set to be large and, accordingly, more effort is required in the post-processing step.

We have performed the same experiment for LMBR-seqDCT and LMBR-mbrDCT, but we omit their experimental results here

because the results are very similar to those of Fig. 8.

6. Conclusion

We have presented a new approach to constructing low-dimensional MBRs for similar sequence matching. The traditional

approach constructs one by bounding low-dimensional sequences transformed from high-dimensional window sequences.

In contrast, our proposed approach constructs one by directly transforming a high-dimensional MBR which bounds the high-

dimensional window sequences. This drastically reduces the number of required lower-dimensional transformations.

This approach, however, poses a risk that some of the high-dimensional sequences may end up outside the low-dimen-

sional MBR, that is, if the MBR is transformed using the same sequence-transformation. This, thus, brings a need for a new,

modified transformation specific to the MBR-transformation (as opposed to the sequence-transformation). We call it the safe

MBR-transformation. In this paper we have formally developed safe MBR-transformation based on DFT and DCT (called

mbrDFT and mbrDCT, respectively), and proved that they are optimal among all MBR-transformations of the same kind

(i.e., DFT- or DCT-based). We have also conducted experiments and confirmed that our proposed approach is one to two or-

ders of magnitude more efficient than the traditional approach and also showed that enlargement of a resulting low-dimen-

sional MBR is negligible in practice.

From these results we conclude that the proposed safe MBR-transformation will provide a useful framework for a variety

of applications that require a direct transformation of a high-dimensional MBR to a low-dimensional MBR. Thus, for the fu-

ture work we will apply the developed safe MBR-transformation to real applications, such as similarity search, multimedia

data retrieval, and geographic information system (GIS). In this paper we focused on DFT and DCT. Developing safe MBR-

transformation for other types of transformations, such as wavelet transform, piecewise aggregation approximation

(PAA), and singular value decomposition (SVD), would be an interesting and challenging future work.
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