
The Journal of Systems and Software 73 (2004) 169–180

www.elsevier.com/locate/jss
A top-down approach for density-based clustering
using multidimensional indexes

Jae-Joon Hwang a,*, Kyu-Young Whang a, Yang-Sae Moon a, Byung-Suk Lee b

a Department of Computer Science and Advanced Information Technology Research Center, Korea Advanced Institute of Science and Technology, 373-1,

Kusong-Dong, Yusong-Gu, Daejeon 305-701, South Korea
b Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Received 30 March 2003; received in revised form 24 August 2003; accepted 27 August 2003

Available online 25 December 2003

Abstract

Clustering on large databases has been studied actively as an increasing number of applications involve huge amount of data. In

this paper, we propose an efficient top-down approach for density-based clustering, which is based on the density information stored

in index nodes of a multidimensional index. We first provide a formal definition of the cluster based on the concept of region contrast

partition. Based on this notion, we propose a novel top-down clustering algorithm, which improves the efficiency through branch-

and-bound pruning. For this pruning, we present a technique for determining the bounds based on sparse and dense internal regions

and formally prove the correctness of the bounds. Experimental results show that the proposed method reduces the elapsed time by

up to 96 times compared with that of BIRCH, which is a well-known clustering method. The results also show that the performance

improvement becomes more marked as the size of the database increases.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Databases; Clustering; Density-based pruning; Multidimensional indexes
1. Introduction

Data mining has become a research area of increasing

importance. In particular, clustering on a large database

has become one of the most actively studied topics of

data mining (Chen et al., 1996). Clustering, also known

as unsupervised learning, distinguishes dense areas with

high data concentration from sparse areas to find useful

patterns of data distribution in the database (Ankerst
et al., 1999; Ester et al., 1996; Karypis et al., 1999;

Kaufman and Rousseeuw, 1990; Ng and Han, 1994;

Schikuta, 1996). The purpose of clustering is to group

the objects of a database into meaningful subclasses,

called clusters (Ester et al., 1996). Clustering is widely

used in various applications such as customer purchase
*Corresponding author. Tel.: +82-42-869-5562; fax: +82-42-869-

3510.

E-mail addresses: jjhwang@mozart.kaist.ac.kr (J.-J. Hwang), kyw-

hang@mozart.kaist.ac.kr (K.-Y. Whang), ysmoon@mozart.kaist.ac.kr

(Y.-S. Moon), bslee@cs.uvm.edu (B.-S. Lee).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2003.08.237
pattern analysis, medical data analysis, geographical
information analysis, and image analysis. An example is

seismic fault detection in a geographic information

system when provided with data on earthquakes in

seismic regions (see <http://www.ceri.memphis.edu> for

examples). Here, we can locate the faults by partitioning

the data into two regions, one with frequent earthquakes

and the other without, via clustering. Basically, the

focus of clustering methods has been on the accuracy of
clusters and the computation time. As databases become

larger, however, most clustering methods are no longer

practical because of excessive processing time. There-

fore, recent clustering techniques are focusing on the

scalability (Breunig et al., 2001; Ganti et al., 1999).

In this paper, we propose a novel top-down clustering

approach that avoids such excessive computations by

searching an index for densely populated regions in a
database. In particular, this method takes advantage of

a multidimensional index commonly used in large data-

base applications (such as data warehouses and geo-

graphical information systems). In a multidimensional

http://www.ceri.memphis.edu
mail to: jjhwang@mozart.kaist.ac.kr


170 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
index, objects that are closer to each other have a higher

probability of being stored in the same or adjacent data

pages. This is called the clustering property (Ester et al.,

1995; Lee et al., 1997). By taking advantage of this

property, we identify the neighboring objects by using

only density information but without accessing the ob-
jects themselves or doing a lot of distance calculations.

We further improve the efficiency by reducing the

number of index nodes accessed using the pruning

mechanism in a top-down search of the index.

Specifically, we first provide a formal definition of a

cluster based on the notion of the density of regions

(which we formally define in Section 3.2) in the multi-

dimensional index. For this definition, we introduce the
concept of the region contrast partition, which divides

the database space into the higher-density section and

the lower-density section based on the density of re-

gions. Then, we present a branch-and-bound algorithm

for pruning the index search to do the region contrast

partition efficiently. Given two bounds (high and low),

the pruning eliminates the index nodes whose region

densities are out of the bounds. For this algorithm, we
describe how the bounds are calculated and formally

prove their correctness.

We demonstrate empirically that the proposed

method is more efficient than BIRCH (Zhang et al.,

1996), a well-known clustering algorithm, while pro-

ducing clusters with the same or better accuracy. For

this experiment, we use the elapsed time as the efficiency

metric and introduce a new accuracy metric based on
the relative number of objects in a cluster. The experi-

mental results show that our algorithm is one or two

orders of magnitude more efficient if we consider the

index as already available from other applications. Even

if we take the index creation and maintenance cost into

consideration, our algorithm is significantly more effi-

cient when the creation cost is amortized over a number

of clustering operations performed until the index (if at
all) needs to be recreated.

The rest of this paper is organized as follows. Section

2 introduces related work on existing clustering algo-

rithms for large databases. Section 3 provides a formal

definition of the cluster based on density represented by

the multidimensional index. Section 4 presents the pro-

posed top-down clustering algorithm. Section 5 shows

the experimental results comparing the proposed algo-
rithm and BIRCH. Finally, Section 6 summarizes and

concludes the paper.
2. Related work

For an efficient clustering of large databases, some

methods use sampling techniques (Breunig et al., 2001;
Guha et al., 1998; Palmer and Faloutsos, 2000), and

others use cluster summary information (Ganti et al.,
1999; Zhang et al., 1996). The former methods extract

samples from large databases and perform clustering on

the samples. These methods have the advantage of being

simple and easy to apply. However, they have the dis-

advantage that the accuracy of the clusters found de-

pends largely on the sampling accuracy. The latter
methods define the summary information that repre-

sents the shape of target clusters, and perform clustering

using the information. These methods have the advan-

tage of facilitating complex data analysis with a domain-

specific summary. However, they have the disadvantage

that the cluster shape is predetermined by the summary

information.

BIRCH (Zhang et al., 1996) is a well-known clus-
tering algorithm that uses summary information. It

calculates the summaries of clusters (called clustering

features (CFs)) from the original database, constructs a

tree of nodes (called a CF-tree) containing the calculated

summaries, and performs clustering using the tree in-

stead of the original database. Each CF represents

multiple objects. Thus, we can adjust the number of CFs

by adjusting the number of objects represented by one
CF. As a result, the size of the CF-tree can be adjusted

depending on the available memory. This algorithm is

fast because its clustering is based on CFs which are far

fewer than the objects in the original database. Addi-

tionally, BIRCH is the first algorithm that handles noise

objects (Sheikholeslami et al., 1998). However, BIRCH

requires at least one scan over the entire database to

build the initial CF-tree and does not yield accurate
results for non-spherical clusters (Guha et al., 1998;

Sheikholeslami et al., 1998).

CURE (Guha et al., 1998) is another clustering al-

gorithm that uses summary information. Unlike

BIRCH, which expresses a cluster with a single CF

value, CURE selects several representative points for a

cluster and calculates the distance between each of them

and a point to check the membership of this point in the
cluster. For scalability to large databases, it optionally

performs sampling to reduce the search space. It further

partitions the sampled space and then performs pre-

clustering for each partition to obtain partial clusters,

and finally merging them into clusters. Additionally,

CURE offers a filtering function that prevents noise

objects from being included in the clusters. However,

CURE basically requires a scan over the entire database
unless sampling is done. Even when sampling is used,

since the result of clustering depends highly on the ac-

curacy of sampling, it requires that samples of an ade-

quate size must be used (Palmer and Faloutsos, 2000;

Whang et al., 1990).

These methods using sampling or cluster summary

have a critical drawback that the cluster quality deteri-

orates as we increase the data compression rate of
sampling or summarizing. Recently, Breunig et al.

(2001) proposed a method for increasing the data



J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180 171
compression rate using random sampling or summary

(CF of BIRCH) without degrading the cluster quality.

Palmer and Faloutsos (2000) proposed a density-biased

sampling method, which solved the problem that uni-

form sampling is not suitable for finding relatively small-

sized or low-density clusters.
WaveCluster (Sheikholeslami et al., 1998) uses a data

transformation technique for clustering on large spatial

databases. It performs clustering in a multidimensional

data space mapped from the original database using

wavelet transforms. Using multiresolution property of

wavelet transforms, it can effectively identify clusters of

arbitrary shapes at different levels of accuracy. Its effi-

ciency, however, is affected significantly by the cost of
accessing the entire database.

Regardless of the particulars of the techniques, all

these methods require at least one exhaustive scan over

the entire database every time clustering is performed.

These limitations render the methods inapplicable to

large databases.
3. Definition of the cluster

In this section we provide some definitions to for-

mally define the cluster based on density represented by

the multidimensional index. In Section 3.1, we introduce

the terminology related to multidimensional indexes. In

Section 3.2, we present the notion of the region contrast

partition, which provides the basis of the proposed
clustering method, and define a cluster based on the

partition.
3.1. Terminology

Fig. 1 illustrates the structure of a multidimensional

file and the names of its elements. The elements are

categorized into index pages, which make the nodes of
the index, and data pages, which store the data objects.

An index page is either a leaf page or an internal page

depending on its position in the hierarchy. A leaf page

contains leaf entries made of < key, object identifier >
Fig. 1. Multidimension
pairs, and an internal page contains internal entries made

of < key, child pointer > pairs. The root page is a special

case of an internal page.

We call a region specified by an entry in the index

page an index region or simply a region. Specifically, we

call a region specified by a leaf entry a leaf region and a
region specified by an internal entry an internal region.

We define the density of a region as the ratio of the

number of objects in the region over the size of the re-

gion. Note that in this paper we consider only rectan-

gular regions, consistently with the references Kumar

(1994), Seeger and Kriegel (1990) and Whang and

Krishnamurthy (1985). Additionally, we consider only

the indexes built using the region-oriented splitting

strategy (Lee et al., 1997). This strategy always bisects a

region so that two arbitrary regions do not overlap

unless they are inclusive.

We now define notions of adjacency in a multi-

dimensional index.

Definition 1. Consider two regions RA and RB in a k-
dimensional space such that RA ¼ ½ax1 ; ay1 � � � � � � ½axk ; ayk �
and RB ¼ ½bx1 ; by1 � � � � � � ½bxk ; byk �, where ½axi ; ayi � and

½bxi ; byi � for i ¼ 1; . . . ; k each denotes the interval on the

ith dimensional axis. If only one dimension satisfies the

following Condition 1 and the other (k � 1) dimensions

satisfy the following Condition 2, then we say that the

two regions RA and RB are adjacent and denote it as

RA � RB.

Condition 1 ðaxi ¼ byiÞ _ ðbxi ¼ ayiÞ, 16 i6 k
Condition 2 ðaxj 6bxj < ayjÞ _ ðbxj 6axj < byjÞ, 16 j6 k;

j 6¼ i

Definition 2. Given two regions RA and RB, if either

RA � RB or there exists at least one sequence fRA;R1;
R2; . . . ;Rk;RBg such that RA � R1, R1 � R2; . . . ;Rk � RB,

then we say that RA and RB are transitively adjacent and
denote it as RA � RB.

Example 1. Fig. 2 illustrates a two-dimensional index

structure constructed using the region-oriented splitting

strategy. The region A and the region B are adjacent (i.e.,
al file structure.



Fig. 2. Example of adjacency and transitive adjacency between regions

in a two-dimensional index.

172 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
A� B) by Definition 1. Specifically, the first dimensions
of A and B satisfy Condition 1 and their second di-

mensions satisfy Condition 2. Likewise, the regions B
and C and the regions C and D are adjacent as well. The

regions B and D, A and C, and A and D respectively do

not satisfy Condition 1, and therefore, are not adjacent.

But, they are transitively adjacent. For example, there

exists a sequence fA;B;C;Dg cascaded by the adjacent

regions A� B, B� C, C � D between the regions A and
D. Note that the region A and the region E are not

transitively adjacent because no such sequence exists

between them.

We define a clustering factor as the criterion for

partitioning the entire index region into high object-

density regions and low object-density regions.
Definition 3. A clustering factor, denoted by q, is defined
as the ratio of the number of all objects in high object-

density regions over the total number of objects stored

in the database.

The clustering factor may be used to specify the

minimum number of objects that must be included in

high object-density regions relative to the total number
of objects in the database. Additionally, it allows a

certain number of noise objects to exist by excluding low

object-density regions from the cluster. Those noise

objects are called removable objects, and their number is

denoted by NRO.

Table 1 summarizes the notations used in this paper.
Table 1

Summary of notations

Symbol Definition/meaning

N Total number of objects stored in database

k Number of dimensions of a multidimensional index

(cluster)

sðRÞ Size of region R
nðRÞ Number of objects included in region R
dðRÞ Density of region Rð¼ nðRÞ=sðRÞÞ
Ri � Rj Means that regions Ri and Rj are adjacent

Ri � Rj Means that regions Ri and Rj are transitively adjacent

q Clustering factor provided by a user (0 < q < 1)

NRO Number of removable objects (¼ ð1� qÞ 	 N )

e Cluster qualifier (see Condition 3 in Definition 5)
3.2. Region contrast partition and cluster definition

In this section we propose a method for partitioning a

region using the density information and the clustering

factor, and give a formal definition of a cluster based on

the partition.

Definition 4. Given a region R consisting of a set of

disjoint smaller regions fR1;R2; . . . ;Rmg and NRO re-

movable objects, the region contrast partition of R is

defined as the pair of two sets, fRD and RSg, that satisfy
the following three conditions.

Condition 1 8i; jððRi 2RSÞ ^ ðRj 2RDÞ ) dðRiÞ6dðRjÞÞ
Condition 2

P
Ri2RS

nðRiÞ6NRO

Condition 3
P

Ri2RS
nðRiÞ þ nðRpÞ > NRO, where Rp is

the region with the lowest density in RD

We call the regions included in RD and RS the dense
regions and the sparse regions, respectively. If R consists

of leaf regions, we call those included in RD the dense
leaf regions and those included in RS the sparse leaf
regions. In addition, we call Rp in Condition 3 the par-
tition boundary region. From Definition 4, it is always

possible to find a region contrast partition in a multi-

dimensional index that uses the region-oriented splitting

strategy.

Now we define the concepts of a cluster and cluster-

ing as used in the proposed method. The definitions are

based on the set RD of dense regions obtained as a result
of the region contrast partition.

Definition 5. Given a set of dense leaf regions

RD ¼ fR1;R2; . . . ;Rpg, we define a cluster as the set C

that satisfies the following three conditions.

Condition 1 C � RD

Condition 2 ðRi 2 CÞ ^ ðRi � RjÞ ) Rj 2 C

Condition 3
P

Ri2C nðRiÞ > e; ðe � NÞ

In this definition, Condition 2 requires that all dense

leaf regions that are transitively adjacent should form a

single cluster. Condition 3 requires that a single cluster

should include at least e objects. We call e the cluster
qualifier.

Definition 6. Clustering is the process of creating a region
contrast partition for leaf regions to obtain a set RD of

dense leaf regions and finding all clusters as defined in

Definition 5 included in the set.

Now we can consider a basic density-based clustering

algorithm based on the region contrast partition. We

presented the basic algorithm and addressed that the
algorithm is a direct realization of Definitions 1–6 in

Hwang et al. (2003).



J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180 173
4. A top-down approach for density-based clustering

In this section we propose a top-down approach for

density-based clustering that uses a multidimensional

index. In Section 4.1, we introduce the concept of den-

sity-based pruning using internal entry information. In
Section 4.2, we present an efficient top-down clustering

algorithm using a branch-and-bound pruning mecha-

nism.

4.1. Concept of density-based pruning

We now introduce the concept of density-based

pruning for improving the clustering efficiency. The
process of creating a region contrast partition for leaf

regions requires all index pages of a multidimensional

index be accessed to find the set of dense regions. This

overhead can be alleviated using density-based pruning,

which determines whether the leaf regions included in an

internal region are all dense or all sparse using only the

information stored in the internal entry (i.e., without

accessing all leaf entries of the index) and prunes the
search space accordingly. If all leaf regions within an

internal region are dense, the internal region is called a

dense internal region. In contrast, if all the leaf regions

are sparse, the internal region is called a sparse internal
region.

Example 2. Fig. 3 shows the leaf pages representing leaf

regions and the corresponding internal pages. D denotes
dense, and S denotes sparse. The leaf regions D1, D2, D3,

and D4 of the internal entry D0 are all dense, and S1, S2,
S3, and S4 of S0 are all sparse. Hence, D0 is a dense in-

ternal region, and S0 is a sparse internal region.
4.2. Density-pruning clustering algorithm

We now present an efficient clustering algorithm us-
ing density-based pruning. The algorithm employs a

branch-and-bound mechanism for efficient pruning. It

uses two kinds of density information––the highest

density (d_highest) and the lowest density (d_lowest)––
maintained in an internal entry of the multidimensional
Fig. 3. Dense internal region an
index. The value d_highest is the density of the leaf re-

gion with the highest density and the value d_lowest that
of the leaf region with the lowest density among all the

leaf regions included in the region represented by the

internal entry. The algorithm creates a region contrast

partition while searching the index in the breadth-first
order deciding whether or not to search the lower level

using the bounds. In this way, we can find dense (leaf or

internal) regions of various sizes without accessing all

leaf pages of the index. Finally, we find clusters from the

set of these dense regions.

Fig. 4 shows the density_pruning_clustering algo-

rithm. First, in line 2, it calculates the number of re-

movable objects NRO using the clustering factor q and
the number of objects in the database N . Second, in line

5, it accesses all internal pages at the current level of the

multidimensional index md_index and constructs a list L
of internal regions. Third, in lines 6 through 11, it sorts

the list L in the ascending order of d_highest once and of

d_lowest once to create the lists Lhigh and Llow respec-

tively. Then, given LhighðLlowÞ, it finds the partition

boundary region Rhigh
p ðRlow

p Þ and sets BhighðBlowÞ to the

d_highest (d_lowest) of the region Rhigh
p ðRlow

p Þ. These

Bhigh and Blow are the upper bound and the lower bound

used to determine whether to prune or not in the next

step. Fourth, in lines 12 through 19, it performs density-

based pruning in the following two steps: (1) for each

entry in Llow that satisfies d lowest > Bhigh, insert the

corresponding region Rlow
i into the set of dense regions

R_dense and prune the subtree whose root node repre-

sents Rlow
i , and (2) for each entry in Lhigh that satisfies

d highest < Blow, decrease NRO by the number of ob-

jects included in the corresponding region Rhigh
i and

prune the subtree whose root node represents Rhigh
i . If all

removable objects have not been completely removed

yet (i.e., NRO > 0 in line 4) as a result of searching the

current level, it updates the current level to the next

lower level (in line 20) and repeats the steps in lines 5
through 19. This iteration continues until either no

removable object is left (i.e., NRO ¼ 0) or the current

level reaches the leaf region. If NRO > 0 even after the

iteration is terminated, in lines 23 through 26, it con-

structs a list of the remaining leaf regions and creates a
d sparse internal region.



Fig. 4. The clustering algorithm based on density-based pruning.

174 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
region contrast partition to find the partition boundary

region Rp using the current value of NRO. Then it adds

the set of leaf regions with higher density than Rp to

R_dense. Last, in lines 28 through 29, it performs clus-

tering on those regions.

Theorem 1. In density_pruning_clustering, a region whose
d_lowest is greater than Bhigh is a dense internal region,
and a region whose d_highest is smaller than Blow is a
sparse internal region.

Proof. It suffices to prove only the first part (regarding a

dense internal region) because the second part is sym-
metrical. We prove it by proof-by-contradiction. Let

RI ¼ fRI
1; . . . ;R

I
xg be the set of internal regions with lower

densities than Bhigh among the internal regions in the list

Lhigh, and RL ¼ fRL
1 ; . . . ;R

L
y g be all leaf regions included

in RI. If we let RS be the set of sparse leaf regions and RD

the set of dense leaf regions, then there always exists RL
i in

RD ði ¼ 1; � � � ; yÞ such that RL
i 2 RL � RS because

nðRIÞ ¼ nðRLÞ > NROby the definition of Bhigh. Next, let
SI be an arbitrary internal region where d lowest > Bhigh

in the list Llow, and let SI ¼ fSL
1 ; . . . ; S

L
z g be the set of all

leaf regions included in SI.

Assumption part: Let us assume that an ar-

bitrary region SLj in SI is a sparse leaf region



J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180 175
(i.e., SLj 2 RS). Then dðRL
i Þ > dðSLj Þ follows from

SLj 2 RS and RL
i 2 RD.

Contradiction part: From the definitions of Bhigh and

d lowest, dðRL
i Þ6Bhigh holds true for the region RL

i inRL,

and dðSLj ÞP d lowest holds for the region SLj inSI. Then,

because d lowest > Bhigh for region SI (by definition),

dðRL
i Þ < dðSLj Þ also holds. However, this contradicts the

assumption dðRL
i Þ > dðSLj Þ. Therefore, we conclude that

SLj is a dense leaf region and SI is a dense internal region,

which consists of only dense leaf regions. h

Example 3. Fig. 5 illustrates the steps of executing the

density-based pruning algorithm. Suppose the internal

regions of an index at the current level are as shown in

Fig. 5(a), and each region has the information shown in
Fig. 5(b). Fig. 5(d) is a list of the regions sorted by

d_highest and shows how the upper bound Bhigh is de-

termined if q ¼ 0:9. Fig. 5(e) shows a list of the regions

sorted by d_lowest and shows how the lower bound Blow

is determined. We see from Fig. 5(d) and 5(e) that

d_highest is smaller than Blow for the region R1. This

shows that all leaf regions included in the region R1 are

sparse leaf regions. Therefore, the subtree with the re-
gion R1 as the root may be pruned. On the other hand,

the regions R4 and R8 have d_lowest higher than Bhigh.

That is, all leaf regions included in the two regions are

dense leaf regions. Therefore, the subtrees with the two

regions as their roots may be pruned. Fig. 5(c) shows the

regions after the pruning.

Corollary 1. Clusters obtained by density_pruning_clus-
tering are identical to the clusters defined in Definition 5.

Proof. It is straightforward from the fact that density-

based pruning is a branch-and-bound algorithm and

the correctness of its bounds has been proven in

Theorem 1. h
Fig. 5. An example of executing the density-based pruning algorithm. (a) Inte

of pruning, (d) determination of upper bound, (e) determination of lower bo
5. Performance evaluation

In this section we present the results of comparing

our proposed algorithm density_pruning_clustering with

BIRCH (Zhang et al., 1996), a widely-known clustering

algorithm. First, we describe the experimental data and
environment in Section 5.1. Then, we evaluate the effi-

ciency of obtaining clusters in Section 5.2, the accuracy

of clusters in Section 5.3, and the sensitivity of cluster

accuracy to the clustering factor in Section 5.4.

5.1. Experimental data and environment

We perform experiments using three types of syn-
thetic data sets depicted in Fig. 6. Each data set consists

of two-dimensional point objects, and each dimension is

an integer in the domain [)220, 220)1]. We generate

clusters using the normal distribution and generate noise

objects using the uniform distribution. Here, we adjust

the sizes and shapes of clusters by changing the standard

deviation (r) of the normal distribution and the corre-

lation coefficient (n) between the two dimensions. We
use a standard deviation ranging between 214 and 216.

We generate each data set shown in Fig. 6 with the

following specifications.

• DS1: This set consists of five clusters of various

shapes. For the three clusters of spherical and ellipti-

cal shapes, we use r ¼ 215 and n ¼ 0, 0.5, and )0.5.
For the cluster consisting of two connected ellipses,
we use r ¼ 216 and n ¼ 0:8 and )0.8. For the do-

nut-shaped cluster, we first generate a spherical clus-

ter with r ¼ 216 and n ¼ 0, and then remove the

objects that are the nearest 30% and the farthest

15% from the center of the cluster.

• DS2: This set consists of 25 spherical clusters, and

each cluster contains the same number of objects.
rnal regions of index, (b) index entry informations of regions, (c) result

und.



Fig. 6. Test data sets. (a) DS1, (b) DS2 and (c) DS3.

176 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
We generate each cluster with r ¼ 214 and n ¼ 0. We

arrange these 25 clusters as a regular grid in the two-
dimensional space.

• DS3: This set consists of four elliptical clusters form-

ing the shape of a cross. To generate each cluster, we

use r ¼ 216 and n ¼ 0:8 and )0.8.

DS1 is characterized by the variety of the shapes and

sizes of the clusters, and DS2 by its similarity to the data

set used in BIRCH. We use DS1 and DS2 to evaluate
the cluster accuracy and the clustering efficiency, and

DS3 to analyze the sensitivity of clustering to the clus-

tering factor. Further details of the data sets, such as the

number of objects in each data set, the noise ratio in

each data set, and the number of objects in each cluster,

are also varied in each experiment.

All the experiments are conducted on a SUN Ultra 60

workstation with 512MB of main memory. We use a
multilevel grid file (MLGF) (Lee et al., 1997; Whang

and Krishnamurthy, 1985) as the multidimensional file

structure for storing data, and set the data page size and

the index page size equally to 1024 bytes. 1

The MLGF is a dynamic hierarchical balanced mul-

tidimensional file structure for point data. It consists of

a multilevel index and data pages, and employs the re-

gion-oriented splitting strategy.

5.2. Evaluation of clustering efficiency

In this subsection we show the results of comparing

the efficiency of the two algorithms: density_prun-
ing_clustering (DP) and BIRCH. We use the elapsed

time as the metric of efficiency.

Here, we compare our method with BIRCH, which is
a representative clustering algorithm. The comparison

with other existing algorithms (CURE, WaveCluster)

can be done through relative comparison of these al-

gorithms with BIRCH that have been presented in the

literature (Guha et al., 1998; Sheikholeslami et al.,
1 The reason for using such a relatively small page size is to make

the multidimensional index high enough to check the pruning

efficiency. Similar results would be obtained with the page size of 4096.
1998). It has been reported that CURE (Guha et al.,

1998) is two to five times better than BIRCH and
WaveCluster (Sheikholeslami et al., 1998) is eight to ten

times better than BIRCH with data sets each consisting

of some 100,000 objects.

We generate three data sets of different sizes for DS1

and DS2, respectively. These data sets contain one

hundred thousand, one million, and ten million objects,

respectively. We set the noise ratio to 8% of the total

number of objects, which is equivalent to setting the
clustering factor q to 0.92. In addition, we set the cluster

qualifier e to 0.1% of the total number of objects. In

executing BIRCH, we use the default values recom-

mended by Zhang et al. (1996) as the input parameters.

Fig. 7 compares the elapsed time between DP and

BIRCH for the data set DS1. BIRCH constructs the

memory-based CF-tree as the first step (Phase 1) of the

clustering process. To compare the performance on a fair
basis when the multidimensional index (MLGF) already

exists, we also present the elapsed time for BIRCH

without phase 1. The result shows that DP reduces the

time by 21 to 96 times compared with BIRCH (without

Phase 1). This is due to the effect of density-based pruning.

Note that DP’s performance gain increases as the number

of objects increases. The reason is that having more ob-

jects (and accordingly more pages) leads to a finer parti-
tioning of the space and increases the number of dense or

sparse internal regions, thus pruning more search space.

Table 2 shows the quantitative results of the density-

based pruning performed on DS1 by DP. We see that

DP prunes 44.2% to 91.4% of all index pages and 55.7%

to 93.6% of all objects.

Fig. 8 shows the elapsed time with respect to the size

of DS2. The results are similar to those in Fig. 7. DP
reduces the time by 15–87 times compared with BIRCH

(without Phase 1). The percentages of pruned pages and

pruned objects are in the ranges of 25.6–89.3% and 49.3–

92.3%, respectively.

If there is no existing multidimensional index avail-

able for clustering, the clustering cost may well include

the cost of creating an index. In addition, the cost should

include the cost of maintaining the index for updates.
Table 3 shows the resulting elapsed time of DP in com-



0.10

1.00

10.00

100.00

1000.00

10000.00

Total number of objects

E
la

ps
ed

 T
im

e 
(s

ec
.)

BIRCH

BIRCH (w/o Phase1)

DP

100,000 1,000,000 10,000,000

2292.20

1248.12

123.60

210.91

13.10

20.26

0.60

2.97

13.01

Fig. 7. Elapsed time with respect to the size of DS1 for each algorithm.

Table 2

The results of density-based pruning by DP for three sizes of DS1

Total number of objects Total number of index pages Number of index pages pruned (%) Number of objects pruned (%)

100,000 276 122 (44.2) 55,695 (55.7)

1,000,000 2544 1865 (73.3) 803,305 (80.3)

10,000,000 24,834 22,698 (91.4) 9,361,793 (93.6)

0.10

1.00

10.00

100.00

1000.00

10000.00

Total number of objects

E
la

ps
ed

 T
im

e 
(s

ec
.)

BIRCH

BIRCH (w/o Phase1)

DP

100,000 1,000,000 10,000,000

2544.51

1276.61

127.91

235.21

12.58

21.11

0.83

3.96

14.58

Fig. 8. Elapsed time with respect to the size of DS2 for each algorithm.

Table 3

Elapsed time in seconds of BIRCH and DP considering the index creation and maintenance overheads

Methods Data set DS1 (million objects) Data set DS2 (million objects)

0.1 1 10 0.1 1 10

BIRCH 20.26 210.91 2292.20 21.11 235.21 2544.51

BIRCH (w/o Phase 1) 13.10 123.60 1248.12 12.58 127.91 1276.61

BIRCH index creation (CF-tree) 7.16 87.31 1044.08 8.53 107.30 1267.90

DP(100) 0.92 8.26 174.81 1.17 9.13 169.26

DP(1000) 0.66 3.78 33.23 0.89 4.76 33.92

DP(1) 0.63 3.28 17.50 0.86 4.28 18.89

DP 0.60 2.97 13.01 0.83 3.96 14.58

Index creation (MLGF) 29.65 498.43 15,731.71 30.71 485.56 15,037.35

Index maintenance (MLGF) 0.02 0.31 4.48 0.03 0.32 4.30

J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180 177
parison with that of BIRCH. Index creation time has

been amortized by diving it by the number of repeated
clustering until the time the index (if at all) needs to be

recreated, and the index maintenance time reflects in-



1.00

10.00

100.00

1000.00

number of clustering requests

el
ap

se
d 

tim
e 

(s
ec

)

BIRCH

BIRCH (w/o Phase1)

DP (amortized)

DP

1 10 100 1000 10000

501.71

210.91

123.60

53.12

8.26

3.78 3.33

2.97

Fig. 9. Elapsed time of DP and BIRCH with respect to the number of clustering requests processed with DS1 (1 million objects), where DP

(amortized) indicates DP including the amortized index creation time and the maintenance time.

Fig. 10. Clustering results for DS1 by each algorithm. (a) DP, (b)

BIRCH.

178 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
serting or deleting 0.1% 2 of all the objects in the dat-

abase between two consecutive clustering operations.

In Table 3, DP(n) denotes the cost of DP when the

index creation cost is amortized over n clustering oper-

ations. We have used 100, 1000 and 1 as the value of n.
DP(1) denotes the cost amortized over the number of

clustering operations large enough to erase the upfront

index creation cost, thus considering only the mainte-
nance cost. The table shows that DP is significantly

more efficient than BIRCH even after considering the

overhead of index creation and maintenance.

Fig. 9 shows the resulting amortized elapsed time of

DP with DS1 (1 million objects) in comparison with

BIRCH. It shows how fast the cost is amortized over

repeated executions of clustering, and also shows that

DP is significantly (by at least an order of magnitude
accuracy of cluster C ¼ the number of objects composing the main ðnormalÞ distribution in cluster C ðMainÞ
the total number of objects in cluster C ðTotalÞ
when the number of clustering requestsP100) more

efficient than BIRCH even after considering the over-

head of index creation and maintenance.

5.3. Evaluation of cluster accuracy

In this subsection we compare the accuracy of the

clusters found by DP and BIRCH. We generate one
data set for both DS1 and DS2 so that each data set

contains one million objects. As in Section 5.2, we set

the noise ratio to 8% of the total number of objects,

equivalently, setting the clustering factor q to 0.92; set

the cluster qualifier e to 0.1%; and use the default values

recommended by Zhang et al. (1996) as the input pa-

rameters to execute BIRCH.
2 This would be an upper bound of the update rate in most practical

applications except for the case of unusually heavy updates.
We define the following metric to measure the accu-

racy of clusters. 3
Fig. 10 shows the clusters found from DS1 with the

two algorithms. As shown in Fig. 10(a), the clusters

found by DP are very similar in shape to those in the

original data set shown in Fig. 6(a). This similarity

strongly indicates that DP is an accurate method. We

can see in the figure that the insides of clusters consist of

many small or big rectangles. This is because that the

density-based pruning occurs at many internal regions
and these regions are larger than the leaf regions. The

result of BIRCH in Fig. 10(b) shows that all the clusters

found have spherical shapes. The reason is that BIRCH

constructs a tree with clustering features (CFs) each

consisting of the center value and radius, naturally

representing a cluster of a spherical shape.
3 The total number of objects in cluster C includes noise objects

created by using the uniform distribution.



Table 4

Accuracy of the clusters found from DS1 by each algorithm

Clusters Number of objects Cluster accuracy (%)

DP BIRCH DP BIRCH

Totala Mainb Total Main

Cluster 1 398,638 390,935 404,076 388,644 98.1 96.2

Cluster 2 99,459 97,842 98,112 96,344 98.4 98.2

Cluster 3 99,517 97,862 97,608 95,913 98.3 98.3

Cluster 4 222,800 219,631 227,364 220,000 98.6 96.8

Cluster 5 99,402 97,556 97,457 95,904 98.1 98.4

a Total: The number of total objects included in cluster C.
bMain: The number of objects composing the main distribution in cluster C.

Fig. 11. Clustering results for DS2 by each algorithm. (a) DP, (b)

BIRCH.

J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180 179
Table 4 shows the accuracy of the clusters found from
DS1. As we see in the table, the proposed algorithms

show uniformly high accuracy ranging 98.1–98.6% for

all clusters. The accuracy of BIRCH is also high in the

range of 96.2–98.4% because a majority of dense regions

are included in the spherical clusters found. In particu-

lar, we see that the accuracy of BIRCH is even slightly

higher than DP when the shape of a cluster is exactly

spherical. This effect is seen because BIRCH is particu-
larly tuned for finding spherical clusters.

Fig. 11(a) through Fig. 11(b) shows the clusters found

from DS2 when q ¼ 0:92 and e ¼ 0:001. As we can see in

Fig. 11(a), the clusters found by DP are very similar in

shape to those of the original data set in Fig. 6(b).

This indicates that DP finds clusters accurately even

when there are a large number of clusters. It also shows

that density-based pruning occurs significantly as it does
with DS1. As we can see in the spherical clusters of Fig.

11(b), BIRCH also find clusters accurately. The accu-

racy of clusters from DS2 is in the range of 98.5–98.7%

for DP and 98.6–99.0% for BIRCH. BIRCH appears

slightly better here because the clusters are exactly

spherical. We note that BIRCH always finds spherical-

shaped clusters while DP finds arbitrary ones.

5.4. Sensitivity of cluster accuracy to the clustering factor

In this subsection we analyze the clustering results

while changing the clustering factor q or, equivalently,

by changing the noise level of the data set. (Note that
Fig. 12. Result of sensitivity analysis for different clustering facto
the noise level equals ð1� qÞ � 100%.) We generate one

data set of DS3 that contains 100,000 objects, of which
20% are noise objects, and sets the cluster qualifier e to
0.1% of the total number of objects.

Fig. 12 shows the clustering results for three different

values of q. Fig. 12(a) shows the clusters found when q is

0.7, that is, when 30% of data objects are noise objects.

We see that total four clusters are found as a result of

eliminating sparse regions. Fig. 12(b) shows the clusters

found when q is 0.8. Among the regions eliminated in Fig.
12(a), some regions of relatively high density are labeled

dense regions and become transitively adjacent. As a re-

sult, only two clusters are found. Fig. 12(c) shows the

clustering result when q is 0.85. More regions are labeled

dense regions, and all dense regions become transitively

adjacent. As a result, we find only one cluster.
rs (or noise levels). (a) q ¼ 0:70, (b) q ¼ 0:80, (c) q ¼ 0:85:



180 J.-J. Hwang et al. / The Journal of Systems and Software 73 (2004) 169–180
6. Conclusions

In this paper, we have proposed a novel top-down

clustering method based on region density using a

multidimensional index. Generally, multidimensional

indexes have inherent clustering property of storing
similar (i.e., close to each other) objects in the same or

adjacent data pages. By taking advantage of this prop-

erty, our method finds similar objects using only the

region density information without incurring the high

cost of accessing the objects themselves and calculating

distances among them.

First, we have provided a formal definition of the

cluster based on the concept of region contrast partition.
A cluster that we define is a set of dense regions that are

adjacent to one another. The dense regions are identified

by creating a region contrast partition.

Next, we have proposed the density_pruning_cluster-
ing (DP) algorithm. DP employs a branch-and-bound

mechanism that improves efficiency by pruning unnec-

essary search in finding the set of dense regions. For this

algorithm, we have presented the method for deter-
mining the bounds, Bhigh and Blow, and have formally

proved the correctness of the bounds in Theorem 1.

To evaluate the performance of the proposed algo-

rithm, we have conducted extensive experiments. Ex-

perimental results show that the accuracy of the

proposed algorithm is similar or superior to that of

BIRCH except for exactly spherical clusters. The results

also show that the efficiency of the proposed algorithm
is far superior to that of BIRCH due to density-based

pruning. Experimental results for large data sets con-

sisting of 10 million objects show that DP reduces the

elapsed time by up to 96 times compared with that of

BIRCH. Even with the cost of index creation and

maintenance considered, the proposed algorithm is sig-

nificantly (by an order of magnitude) more efficient than

BIRCH. Further, we note that the improvement in
performance becomes more marked as the size of the

database increases, making this method more suitable

for larger databases.

The top-down clustering approach proposed in this

paper greatly improves the clustering performance for

large databases without sacrificing accuracy. We believe

that the proposed methods will be practically usable in

many large database applications.
Acknowledgement

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the Ad-

vanced Information Technology Research Center (AI-

Trc).
References

Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J., 1999. OPTICS:

Ordering points to identify the clustering structure. In: Proc. Int’l

Conf. on Management of Data, ACM SIGMOD, pp. 49–60.

Breunig, M., Kriegel, H.P., Kroger, P., Sander, J., 2001. Data bubbles:

quality preserving performance boosting for hierarchical clustering.

In: Proc. Int’l Conf. on Management of Data, ACM SIGMOD, pp.

79–90.

Chen, M.S., Han, J., Yu, P.S., 1996. Data mining: an overview from a

database perspective. IEEE Trans. Knowledge Data Eng. 8 (6),

866–883.

Ester, M., Kriegel, H.P., Xu, X., 1995. Knowledge discovery in large

spatial databases: focusing techniques for efficient class identifica-

tion. In: Proc. the Fourth Int’l Symp. on Large Spatial Databases

(SSD), pp. 67–82.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., 1996. A density-based

algorithm for discovering clusters in large spatial databases with

noise. In: Proc. the Second Int’l Conf. on Knowledge Discovery

and Data Mining (KDD), pp. 226–231.

Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A., French, J., 1999.

Clustering large datasets in arbitrary metric spaces. In: Proc. the

15th Int’l Conf. on Data Engineering (ICDE), pp. 502–511.

Guha, S., Rastogi, R., Shim, K.S., 1998. CURE: an efficient clustering

algorithm for large databases. In: Proc. Int’l Conf. on Management

of Data, ACM SIGMOD, pp. 73–84.

Hwang, J.J., Whang, K.Y., Moon, Y.S., Lee, B.S., 2003. Top-down

clustering using multidimensional indexes, KAIST Technical Re-

port CS-TR-2003-189. Available from <http://cs.kaist.ac.kr/new/

english/rnd/public/tech2003.html>.

Karypis, G., Han, E.H., Kumar, V., 1999. Chameleon: hierarchical

clustering using dynamic modeling. IEEE Comp. 32 (8), 68–75.

Kaufman, L., Rousseeuw, P.J., 1990. Finding Groups in Data: An

Introduction to Cluster Analysis. John Wiley & Sons.

Kumar, A., 1994. G-tree: a new data structure for organizing

multidimensional data. IEEE Trans. Knowledge Data Eng. 6 (2),

341–347.

Lee, J.H., Lee, Y.K., Whang, K.Y., Song, I.Y., 1997. A region splitting

strategy for physical database design of multidimensional file

organizations. In: Proc. the 23rd Int’l Conf. on Very Large Data

Bases, pp. 416–425.

Ng, R.T., Han, J., 1994. Efficient and effective clustering methods for

spatial data mining. In: Proc. the 20th Int’l Conf. on Very Large

Data Bases, pp. 144–155.

Palmer, C.R., Faloutsos, C., 2000. Density biased sampling: an

improved method for data mining and clustering. In: Proc. Int’l

Conf. on Management of Data, ACM SIGMOD, pp. 82–92.

Schikuta, E., 1996. Grid-clustering: an efficient hierarchical clustering

method for very large data sets. In: Proc. the 13th Int. Conf. on

Pattern Recognition, vol. 2, pp. 101–105.

Sheikholeslami, G., Chatterjee, S., Zhang, A., 1998. WaveCluster: a

multi-resolution clustering approach for very large spatial data-

bases. In: Proc. the 24th Int’l Conf. on Very Large Data Bases, pp.

428–439.

Seeger, B., Kriegel, H.P., 1990. The buddy-tree: an efficient and robust

access method for spatial data base systems. In: Proc. the 16th Int’l

Conf. on Very Large Data Bases, pp. 590–601.

Whang, K.Y., Krishnamurthy, R., 1985. Multilevel Grid Files, IBM

Research Report RC11516.

Whang, K.Y., Zanden, B.T.V., Taylor, H.M., 1990. A linear-time

probabilistic counting algorithm for database applications. ACM

Trans. Database Systems 15 (2), 208–229.

Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an efficient

data clustering method for very large databases. In: Proc. Int’l

Conf. on Management of Data, ACM SIGMOD, pp. 103–114.

http://cs.kaist.ac.kr/new/english/rnd/public/tech2003.html
http://cs.kaist.ac.kr/new/english/rnd/public/tech2003.html

	A top-down approach for density-based clustering using multidimensional indexes
	Introduction
	Related work
	Definition of the cluster
	Terminology
	Region contrast partition and cluster definition

	A top-down approach for density-based clustering
	Concept of density-based pruning
	Density-pruning clustering algorithm

	Performance evaluation
	Experimental data and environment
	Evaluation of clustering efficiency
	Evaluation of cluster accuracy
	Sensitivity of cluster accuracy to the clustering factor

	Conclusions
	Acknowledgements
	References


