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SUMMARY

With the proliferation of various geographic databases on the Internet, we have seen increasing needs for
accessing them concurrently and remotely via the Web for high-level decision making. In this paper, we
present Middleware for Efficient Access to Databases through OpenGIS Wrappers (MEADOW), an object-
oriented middleware system we have developed to meet these needs. Current OpenGIS standard addresses
many interoperability issues involved in such a global utilization of geographic databases. However,
existing Simple Feature specification for CORBA (SFCORBA) implementations of OpenGIS proved to be
insufficient for MEADOW. The main problems are the complexity of system development and maintenance,
and the inefficiency of accessing remote data servers for processing region queries. We resolved the
complexity problem by automatically generating a major portion of the application code, specifically
wrappers on database servers and client library modules called transparent access providers. A MEADOW
view definition language was developed as a high-level specification language for this purpose. The efficiency
problem was resolved by using a region-based group prefetching of spatial objects from a geographic region.
In addition, we implemented an OID-based semijoin for efficient global query processing, and a region-level
locking to enhance the level of concurrency among region queries. Copyright  2002 John Wiley & Sons,
Ltd.
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INTRODUCTION

In this paper, we describe our practical experience of building Middleware for Efficient Access to
Databases through OpenGIS Wrappers (MEADOW), a middleware that provides Web-based access to
multiple, heterogeneous, autonomous geographic databases over the Internet. Specifically, we present
the tools developed to aid software construction and maintenance, and the techniques for coping with
the demands for efficient access to data sources on a large scale.

With the Internet technology facilitating information dissemination, we have seen an increasing
number of geographic database servers publicly accessible over the Internet for geographic information
system (GIS) applications such as Internet marketplaces [1] and spatial data mining [2]. As an example,
consider a salesperson that plans to visit prospective buyers using a public transportation system.
His or her decision on the best travel path depends on various factors including traffic status and
desired travel time. In order to support this type of decision making, he or she needs to access all
bus-line databases, subway databases, and road-and-traffic databases. It is highly likely that these
databases reside on different hardware and software platforms, especially when different authorities are
in charge of maintaining them. In other words, the salesperson needs to access multiple, heterogeneous
geographical databases that are created and maintained by independent organizations.

To make such a global utilization of geographic databases possible, the OpenGIS standard addresses
several interoperability issues. First, it defines a hierarchy of standard geometry types that represent
geospatial object shapes [3]. A ‘simple feature model’ that enables the manipulation of geospatial
objects complements this geometry model. Second, it defines standard implementation specifications
of simple features in the following three computing environments: CORBA, COM, and SQL [4].
We adopted Simple Features for CORBA (SFCORBA) for the MEADOW project to leverage CORBA
capabilities to resolve platform and communication heterogeneities.

Despite the apparent convenience of using a standard, OpenGIS still leaves serious engineering
problems. This paper is based on two problems we have resolved—complexity of system development
and maintenance, and inefficiency of information retrieval. First, the heterogeneity and autonomy of
data sources complicate the development of database servers as well as the middleware linking them
to client applications. It also makes subsequent maintenance difficult as the underlying databases
and applications evolve. Although SFCORBA enables us to build an interface for accessing remote
objects, it requires us to manually code OpenGIS wrappers as CORBA objects on a database system.
In addition, it requires a client’s binding to a server to be coded manually as well. We handled these
problems by automatically generating wrappers on the server side and corresponding transparent access
providers (TAPs) on the client side and by providing OpenGIS interfaces through both wrappers and
TAPs. For this purpose, we designed high-level languages called view definition language (VDL), text
definition language (TDL), and text manipulation language (TML).

The second problem stems from CORBA’s inherent coarse granularity of accesses to remote objects.
Although often preferred as the basis of implementing a middleware, CORBA object request broker
(ORB) [5] is geared for macroscopic integration of software components. Therefore, its blind use
in a data-intensive application incurs significant performance degradation [6,7]. We dealt with this
problem by introducing three new techniques for efficient query processing: region-based group
fetch for improving the caching effect on region queries (i.e. queries accessing a region of objects),
OID-based semijoin for efficient processing of global queries, and region-level locking for enhancing
the server concurrency level.
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Based on these approaches, we designed an architecture that provides transparent, efficient accesses
to multiple geographic databases, and evaluated the implemented system using two object-oriented
geographic database systems. The results verified the effectiveness of our approaches.

This paper presents the system design and implementation of MEADOW, focusing on its
architecture, system components, and techniques for improving performance. Following this
introduction, we first present a brief overview of the relevant OpenGIS standard. Then, we describe the
run-time system architecture, and follow it with the details of implementations such as VDL, automatic
generation of wrappers and TAPs, and TDL/TML, as well as the techniques used to improve the query
performance. We then evaluate the results of implementation and discuss related work. Finally, we
provide a conclusion and outline future work.

OpenGIS FEATURE MODEL

In this section, we give an overview of OpenGIS feature interface and feature view that are necessary
to understand the rest of the paper.

Feature interface

In OpenGIS, a feature denotes any real-world entity, including geographic entities such as a
road segment or a lake. A feature has two associated interfaces—a Feature interface and a
QueryEvaluator interface. OpenGIS extends the type system of CORBA interface definition
language (IDL) by adding geometry types, such as Point, LineString, and Polygon, for
representing spatial attributes.

The following code shows the specification of the Feature interface, which is used to read and
modify the attributes of a feature.

interface Feature {
readonly attribute FeatureType feature_type;
any get_property(in Istring name);
void set_property(in Istring name, in any value);
...

};

The read-only attribute feature type keeps meta-information such as the names and types
of attributes. Access to an attribute is done using two operations: get property() and
set property(). For example, if a reference variable roadSeg is bound to a road segment
object, then roadSeg.get property (‘‘centerline’’) retrieves the centerline attribute of
the object.

The QueryEvaluator interface allows expressing queries in either one of the standard query
languages SQL-92 and OQL-93. In addition, it allows including geometric constraint, expressed using
spatial operators such as overlaps and contains, in a query statement. For example, consider the
following schema of a road database, which models roads as a network of intersections connected by
road segments.
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// Database schema in ODMG C++ ODL [26]
class Intersection : public d_Object { ... };
class RoadSegment : public d_Object {

d_String name;
d_Float width;
d_Float length;
d_String category;
d_Float speed_limit;
d_Float current_speed;
LineString centerline; // spatial extension to ODMG ODL
d_Varray<d_Ref<Intersection> > intersections; // 2 intersections

}

The query in Example 1 is for finding all road segments that are longer than 200 m, wider than 12 m,
and overlap queryPolygon. The database is mapped to QueryableContainerFeature-
Collection interface, which implements the QueryEvaluator interface.

// Assume the variable database is bound to the road database
OGIS::QueryableContainerFeatureCollectionRef database;

// Type of query language
OGIS::QueryEvaluator::QLType qlType = OGIS::QueryEvaluator::OQL_93;

char* query_string = "
select r
from RoadSegment r
where r.width >= 12 and r.centerline.length() >= 200 and

r.centerline.overlaps($1)";

// A query parameter is a pair of type name and value
// Suppose that queryPolygon has been assigned by a user
OGIS::NVPairSeq param; param.length(1);
param[0].name = ‘‘Polygon’’;
param[0].value = queryPolygon;

// Query evaluation
OGIS::QueryResultSetIterator result_itr;
try {

result_itr = database->evaluate(query_string, qlType, param);
} catch (...) {...}

Example 1. QueryEvaluator interface to formulate and evaluate a query.
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Feature view

Suppose that an application needs a simplified view of the road database as a collection of roads instead
of a network consisting of road segments and intersections. By grouping a sequence of connected road
segments into a road, we can define a view that facilitates the manipulation of data at the road level,
such as displaying the name of a road on the screen. The following code shows the corresponding
OpenGIS feature view definition.

// Desired OpenGIS Feature View in CORBA IDL
module OGIS { ... };
module RoadDB {

interface Road : OGIS::Feature {
readonly attribute string name;
readonly attribute string category;
readonly attribute float length;
readonly attribute sequence<LineString> shape;

};
};

Accessing the information through this feature view requires further information for the following
mappings between the view and its component feature types.

• Mapping extents. For example, a Road object is composed of RoadSegment objects with the
same name.

• Mapping attribute values. For example, the length attribute of a Road object is the sum of
the length attributes of its component RoadSegment objects, and its shape attribute is a
sequence of the centerline attributes of its component RoadSegment objects.

• Mapping attribute accesses. For example, suppose that a variable road is bound to a Road
object. Then, an application using this feature view will retrieve the name attribute of the
Road object with the code road.get property(‘‘name’’). This code is mapped to a
DBMS-specific code that retrieves the name attribute of an arbitrary RoadSegment object
that belongs to the Road object bound to the variable road.

In MEADOW, the first two types of information are specified in MEADOW VDL. The third type is
a mapping between the DBMS interface and OpenGIS standard interface, and varies depending on the
DBMS. To facilitate the description of this DBMS-dependent mapping, MEADOW provides a pair of
languages, TDL and TML. We will discuss the VDL and TDL/TML further in the next section.

SYSTEM DESCRIPTION

This section details the MEADOW architecture and implementation.

Architecture

Figure 1 shows the high-level run-time architecture of MEADOW, where wrappers on the server side
and TAPs on the client side interoperate via the object request broker (ORB). Since MEADOW is based
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Figure 1. Run-time MEADOW architecture.

on OpenGIS SFCORBA, the wrappers are CORBA objects that support the OpenGIS geometry data
types and feature model. The TAPs are modules that hide the ORB from clients.

MEADOW generates wrapper and TAP as a pair, automatically, from a feature view definition,
underlying database schema, and the rules for mapping between them. The wrapper provides a uniform
OpenGIS interface for clients while hiding the specifics of individual databases. The TAPs also provide
the same interface for applications, redundantly to the wrapper interfaces. In contrast, other existing
SFCORBA systems implement OpenGIS interface on the wrapper side only. Although this is sufficient
to allow clients to access server objects, the redundant implementation shields application programmers
from dealing with CORBA-specific details. This improves the development productivity and quality
substantially, and insulates applications from changes of object prefetching and caching mechanisms
(to be elaborated later) used by the TAPs. Note that we still provide an alternate direct path to wrappers
for clients without built-in TAPs.

TAPs automatically cache remote server objects in the clients’ memory space. The TAPs may reside
in either Java applets or application servers. In the former case, a Java applet caches server objects in
its own memory and executes an application. This two-tier architecture is suitable for interactive and
navigational applications such as map editing or browsing. In the latter case, an application server does
the caching, and executes an application sharable by multiple clients. This three-tier architecture is
suitable for analytical applications such as finding the shortest driving path, where multiple clients can
share the graphs of paths.

MEADOW uses either Java applets or XML document browsers for data presentation on the client
side. An application server generates XML documents as query results. We use vector markup language
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(VML) tags for representing geometry data [8]. (VML is an early version of geography markup
language (GML) [9] that became part of OpenGIS standard after the completion of MEADOW.)

To facilitate the development and maintenance of Web-based GIS applications, MEADOW
maintains a global dictionary for bookkeeping the generated wrapper–TAP pairs and their dependency
chain all the way down to specific databases. In order to eliminate the overhead of looking up a remote
dictionary at run time, all wrappers and TAPs are compiled with the underlying database schema and a
feature view. This dictionary is especially useful for maintenance purposes, namely for identifying the
wrappers and TAP affected by changes in the server databases and client applications.

MEADOW VDL

In MEADOW VDL, an OpenGIS feature view is defined as a set of feature types (also known as
‘view-defined types’). A feature type is defined by its population, properties, and the position in a type
hierarchy:

interface type name : inheritance specification
( population specification )
{ property specification };

The population of a feature type can be specified in four alternative ways: one-to-one mapping,
generalization, specialization, or composition.

• In one-to-one mapping, the population is the same as the extent of a matching database-resident
type.

• In generalization, the population is the result of merging the extents of several database-resident
types. For example, we can generalize various topologies of road segments such as intersections,
branches, and ramps to RoadNode type. This generalization can facilitate the construction of a
graph for finding the shortest path.

• In specialization, the population is a partition of the extent of a database-resident type. For
example, road segments can be specialized into highways, national roads, and regional roads.

• In composition, the population is a combination of the extents of two or more database-resident
types. Typical compositions include combining small objects into a larger aggregate object,
creating an object-oriented view of a relational database, and restructuring a set of values into an
object [10,11].

The properties may be specified in two ways.

• Hiding attributes. We can use import statement to render a set of attributes public, thereby
hiding the others. If want to specify the attributes to be hidden, we use import * except
statement instead.

• Adding attributes. We can add a derived attribute as a new one.

In Example 2, the RoadLink type specifies one-to-one mapping. It has the same extent as the
RoadDB::RoadSegment type. It hides four attributes current speed, speed limit, width,
and category. In addition, it adds a new attribute driving time derived from two attributes
length and current speed, where the read as clause specifies how to calculate its value and

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:377–402



384 S. K. CHA ET AL.

// One-to-one
interface RoadLink : OGIS::Feature

(RoadDB::RoadSegment)
{

import * except current_speed, speed_limit, width, category;
attribute float driving_time

read as length / current_speed
write as current_speed = length * driving_time;

}

// Generalization
interface RoadNode : OGIS::Feature

(RoadDB::Intersection, RoadDB::Ramp, RoadDB::Branch)
{import *;}

// Parameterized specialization
interface RoadSeg(X) : OGIS::Feature

(RoadDB::RoadSegment where category = X)
{import *;}

// Composition
interface Road : OGIS::Feature

(RoadDB::RoadSegment group by name)
{

attribute string name read as distinct(name);
attribute string category read as distinct(category);
attribute float length read as sum(length);
attribute sequence<LineString> shape
read as to_sequence(centerline);

}

Example 2. OpenGIS feature view defined for a database RoadDB.

the write as clause specifies how to reflect the change of value in the underlying database. If the
write as clause were omitted, driving time would be for read-only.

The RoadNode type specifies a generalization. Its population is defined as the union of the extents
of three database-resident types Intersection, Ramp, and Branch.

The RoadSeg(X) type specifies a specialization. Its population is defined as a partition of
the RoadSegment extent. In particular, it shows a parameterized specialization based on the
value of the attribute category. In effect, this single type is equivalent to several types such as
RoadSeg Highway, RoadSeg NationalRoad, and RoadSeg RegionalRoad.
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The Road type specifies a composition. Its population is defined as a collection of groups of
RoadSegment objects with the same value of the attribute name. In MEADOW, the result of a
group by operation has the type ‘a set of bag of objects’. Therefore, the attributes of a Road object
need to be derived from those of a bag of RoadSegment objects. Example 2 shows three aggregation
functions used for this purpose: distinct(), sum(), and to sequence(), each of which is
mapped to a method of RoadWrapper class. For instance, sum(length) is mapped to a method length()
as:

float length()
{

d_Iterator<d_Ref<RoadSegment> > itr = dbObjs.create_iterator();
d_Ref<RoadSegment> obj;
float length_sum = 0;
while ( itr.next(obj) )
length_sum += obj->length;

return length_sum;
}

Automatic generation of wrappers and TAPs

Overview

Figure 2 shows the overall process of generating a wrapper and a matching TAP, assuming that the
underlying database schema already exists and DBMS-specific mapping rules need to be defined only
when using a new DBMS.

1. Define a desired feature view of the database, which consists of a set of feature types, in
MEADOW VDL.

2. Generate a CORBA IDL interface declaration for each feature type in the feature view using a
MEADOW preprocessor.

3. Compile the generated IDL interfaces into classes in a target programming language (e.g. Java,
C++) using an appropriate IDL compiler. Client stubs and the server skeletons are generated as
a result.

4. Generate a schema-dependent wrapper code on the server side using the MEADOW
preprocessor.

5. Generate a wrapper by compiling the schema-dependent wrapper code and linking the output
code with a schema-neutral wrapper library and a DBMS library.

6. Generate a schema-dependent TAP code on the client side using the MEADOW preprocessor.
7. Generate a TAP library by compiling the schema-dependent TAP code and linking the output

code with a schema-neutral TAP library. The TAP library is to be linked with an application
program.

Automatically generated classes

MEADOW generates one type of classes called feature proxies in the schema-dependent TAP code,
and two types of classes called feature wrappers and feature shippers in the schema-dependent wrapper
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Figure 2. Process of generating a wrapper and a TAP.

code. A feature proxy class implements an OpenGIS simple feature interface specified in a TAP.
MEADOW creates one feature proxy object for every remote feature object fetched into the client’s
memory, and has the proxy object encapsulate the fetched object. A feature wrapper class implements
an OpenGIS simple interface specified in a wrapper. Each feature wrapper object encapsulates one
remote feature object, and MEADOW creates one when the encapsulated object is accessed directly
without the TAP. Note that, if the encapsulated object is accessed through a TAP, no feature wrapper
object is created as long as no server method is invoked. A feature shipper class inherits from a feature
wrapper class. Only one feature shipper object is created for each feature type, and it interacts with the
prefetch manager of a TAP to ship objects to the client.
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Example

Figure 3 illustrates the relationship among the client and server classes generated from the RoadLink
feature shown in Example 2. An IDL compiler generates the classes inside the dashed boxes, whereas
those outside the dashed boxes are generated by the MEADOW preprocessor. The server uses an
IDL-to-C++ compiler, and the client uses an IDL-to-Java compiler. We omit name scopes such as
CORBA:: and OGIS:: whenever unambiguous.

The classes inside the dashed boxes form the stubs on the client and the skeletons on the server,
and provide the basic code for client–server communication. The RoadDB::RoadLinkBOAImpl
class, called the basic object adapter (BOA) implementation of the RoadLink interface, implements
CORBA-defined methods like bind() that are used to communicate with a client. The
RoadLinkHelper class in the client implements the matching CORBA methods.

The classes outside the dashed boxes are the proxy, wrapper, and shipper classes described above.
Each class has a pair of methods generated for each attribute, one for reading and one for writing.
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Examples are driving time(void) method for reading the attribute driving time of the
RoadLink interface, and driving time(float) for writing it. The RoadLinkStub class in
the client, generated by the IDL compiler, provides default implementation of these methods, which
in turn invoke the corresponding server methods remotely. However, the RoadLinkProxy class
overrides this default implementation, and provides access to the cached objects of the ss RoadLink
type.

The RoadLinkProxy class is similar to the RoadLinkWrapper class in terms of its method
implementation. The difference is that the former wraps the cached objects while the latter wraps the
database-resident objects.

Example 3 shows the RoadLinkWrapper class generated by the MEADOW pre-
processor. This feature wrapper implements two categories of methods: member-access
methods like driving time(), and OpenGIS feature methods like get property() and
set property(). While the first category can be implemented easily with a simple translation,
the second one necessitates a table that maps an attribute name to an associated code. For ex-
ample, get property(‘‘driving time’’) needs to be mapped to the code that retrieves
the attribute driving time. The mapping table is looked up using lookupGetFunc() and
lookupSetFunc() functions.

Example 4 shows the ss RoadLink struct and the RoadLinkShipper class generated by the
MEADOW preprocessor. The ss RoadLink struct is used for shipping the OID and the data part of
a RoadLink object from a server and to a client. This struct has the same attributes as the RoadLink
interface defined in Example 2. The difference is that a struct is instantiated as a data stream, which a
client can fetch via the ORB, whereas the interface is instantiated as a CORBA object, which a client
can bind to but cannot fetch. The RoadLinkShipper class implements object import and export
methods that are invoked by the prefetch manager of a TAP. The import method flushes all modified
objects from the client cache to the server at transaction commit time to update a shared database. The
export method returns a sequence of ss RoadLink structures corresponding to the input sequence of
OIDs.

There are three parts in a global object ID: a wrapper ID, a feature type ID, and a database-resident
OID. First, a unique number is assigned to a wrapper as its ID when a TAP binds to it. Second, each
feature type is given a sequential number as its ID when its view definition is processed. Third, each
database-resident object is assigned an OID when created. Within each wrapper, the combination of
a feature type ID and a database-resident OID suffices to identify an object uniquely, provided that
every database-resident object appears only once in the extent of the feature type. The MEADOW VDL
satisfies this condition. For example, the combined ID is used as an OID in the feature shipper interface
of Example 4 because the identity of a wrapper can be determined implicitly. A full combination of the
three IDs is used only within a TAP.

Text definition language and text manipulation language

As mentioned, MEADOW needs DBMS-specific rules in order to generate the wrapper and TAP codes
automatically. These mapping rules are specified in TDL and TML. TDL is a parsing tool used to
describe a server-database schema and to resolve DBMS-specific syntactic inconsistencies encountered
while parsing the database schema and a feature view definition. Given a description in TDL, the
MEADOW preprocessor generates, for each type, meta-information such as the pairs of a feature type
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class RoadLinkWrapper :
public RoadLinkBOAImpl, public FeatureWrapper

{
public:
// Methods defined in RoadLink interface
float driving_time()

{ return dbObj->length / dbObj->current_speed; }
void driving_time(float t)

{ dbObj->current_speed = dbObj->length / t; }
...
// Methods derived from Feature interface
CORBA::any* get_property(const char* name)

{ return lookupGetFunc(name)(); }
void set_property(const char* name, CORBA::any* value)

{ lookupSetFunc(name)(value); }
...

private:
// helping functions for set_/get_property()
static GetFuncPtr lookupGetFunc(const char* name);
static SetFuncPtr lookupSetFunc(const char* name);
...
CORBA::any* _get_driving_time()

{ CORBA::any* a = new CORBA::any;
*a <<= driving_time(); return a; }

void _set_driving_time(CORBA::any* a)
{ char* tmp; *a >>= tmp; driving_time(tmp); }

...
d_Ref<RoadSegment> dbObj;

};

Example 3. Generated feature wrapper.

name and a matching database-resident type name, the names of supertypes, and the specification of
attributes.

TML is used to specify how to implement the mapping between a schema and a view in
a manner similar to Java server pages (JSPs). Example 5 shows a TML template code for an
ODMG-compliant DBMS. Two main features of TML are iteration and substitution. For example,
%foreach(type, one to one types) specifies the iteration over a set one to one types
using an iteration variable type, and <%type.name.view%> specifies the substitution for
a variable type.name.view. Here we assume that one to one types contains the meta-
information of all feature types whose populations are specified with one-to-one mapping.
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// Definitions in IDL
// typedef sequence<octet> OID;
// typedef sequence<OID> OIDSeq;
// struct ss_RoadLink { ... };
// typedef sequence<ss_RoadLink> RoadLinkSeq;
// interface RoadLinkShipper {
// sequence<ss_RoadLink> object_export (in sequence<OID> ids);
// void object_import (in sequence<ss_RoadLink> data);
// };

// Generated C++ Definitions
struct ss_RoadLink {

OID id;
CORBA::String_mgr name;
CORBA::Float length;
CORBA::Float driving_time;
ss_LineString centerline;
OIDSeq intersections;
...

};

class RoadLinkShipper : public RoadLinkWrapper {
RoadLinkSeq* object_export(const OIDSeq& ids) {

RoadLinkSeq* roadlinks = new RoadLinkSeq(ids.length());
for (int i = 0; i < ids.length(); i++) {
// operator=(), name, length() are defined in RoadLinkWrapper
*this = ids[i]; // set this to indicate the feature of ids[i]
(*roadlinks)[i].id = ids[i];
(*roadlinks)[i].name = name();
(*roadlinks)[i].length = length();
...

}
return roadlinks;

}
void object_import(const RoadLinkSeq& data){ ... }

};

Example 4. Generated feature shipper.
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%foreach(type, one_to_one_types)
class <%type.name.view%>Wrapper:

public <%type.name.view%>BOAImpl
%foreach(super, type.super_types)
, public <%super.name%>Wrapper
%end

{
public:

...
%foreach(member, type.members)
<%member.type%> <%member.name%>()

{ <%member.read_as%> }
void <%member.name%>(<%member.type%> <%member.varname%>)

{ <%member.write_as%> }
%end

private
...
%foreach(member, type.members)
CORBA::any* _get_<%member.name%>()

{ CORBA::any* a = new CORBA::any;
*a <<= <%member.name%>(); return a; }

...
%end
d_Ref<<%type.name.db%>> <%type.varname%>;

}
%end

Example 5. TML template code for wrapper generation.

In addition, there are DBMS-specific mapping rules specified in TDL and TML.

• Query language. Different DBMS products may support different query features and syntaxes.
For example, an overlap relationship between two polygons A and B may be expressed in three
different ways depending on the DBMS, e.g. A.overlaps(B), A overlaps B, or overlap(A, B).

• Data type. Type names and data representations may vary depending on the DBMS. For example,
Polyline or Line has been widely used by DBMS products as the type name of piecewise linear
representation of curves, instead of the OpenGIS standard name LineString.

• Operation. Different operations may be used to define the same derived attribute. Besides, the
same or equivalent operations may be named differently on different DBMSs. It is also possible
that an operation is defined as a composition of several other operations.
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EFFICIENT RETRIEVAL OF INFORMATION

In this section, we present three ideas we implemented to improve the efficiency of clients’ retrieval of
data from remote servers: region-based group fetch, OID-based semijoin, and region-level locking.

Region-based group fetch

CORBA uses a method-shipping (MS) mechanism for fetching objects from a server to a client via
ORB. This mechanism allows a client to retrieve only references to objects and therefore incurs the
overhead of accessing a remote server every time an object is to be fetched. This overhead is prohibitive
in MEADOW, whose client applications typically require the access of a large number of objects on
the server.

Therefore, prefetching and caching is crucial to the efficiency of accessing remote server objects.
Recent CORBA revision addresses this issue by introducing an object-by-value (OBV) scheme [2],
with which a client retrieves objects themselves instead of references to them. However, this scheme
ships only a single object at a time, therefore still lacking the feature of a group prefetching that is
widely used in the database field.

In MEADOW, we investigated three alternative prefetching mechanisms: single object fetch (SOF),
blind group fetch (BGF), and region-based group fetch (RGF). We will describe these mechanisms in
the rest of this subsection, after outlining the general steps taken by a TAP for retrieving each object in
the result of a query.

Algorithm 1. Object fetch.

1. A feature proxy object is created and initialized with the OID of an object.
2. The proxy checks whether the object is already in the client cache by looking up an OID table

of cached objects.
3. If the object is not in the cache,

(i) the TAP requests its prefetch manager to fetch the object from a wrapper to its cache space,
and register the object in its OID table, and

(ii) the prefetch manager examines the content of the cached object, and adds references to
other objects to be fetched to an object-to-fetch list, which is used as a hint for subsequent
prefetches.

4. The proxy binds itself to the cached object.

When a TAP retrieves objects, the three alternative prefetching mechanisms differ in their object-
to-fetch lists. In the SOF mechanism, it fetches only one object on demand, and does not prefetch any
other object, thus not need an object-to-fetch list. In the BGF mechanism, all references in the cached
object are added to the object-to-fetch list, under the blind assumption that they may also be fetched
soon. In the RGF mechanism, the object-to-fetch list includes only the references to objects spatially
adjacent to the cached object. Each object has an associated minimum bounding rectangle (MBR),
and is considered spatially adjacent to other objects in the same MBR. We maintain such adjacency
information using an index that returns an object-to-fetch list given an MBR. This mechanism is
particularly useful for GIS applications, where a region-oriented data access is very common.
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In general, a sophisticated prefetching mechanism incurs some performance overhead for individual
object fetches. However, it is easily amortized by significant performance gain obtained while accessing
a large number of objects in several GIS applications. Later, in the Evaluation section, we will compare
the performance of the three prefetching mechanisms.

OID-based semijoin

MEADOW supports the processing of global queries that contain join predicates among tables or
collections in different databases. For example, suppose there are two databases—a bus line database
(BusLineDB) and a road database (RoadDB)—maintained at different sites, and we want to execute
a query for finding the bus lines that pass through any congested area, under the following two
assumptions: (1) a road link is regarded congested when the average driving speed is lower than
8.3 m s−1 (= 30 km h−1); (2) the geometry of a bus line is extended by five meters in all
directions (using a buffer() function) to tolerate marginal mapping errors between the geometric
representations of a bus line and a road link. Then, the global query, involving the two databases, can
be written as follows:

select bl
from BusLineDB::BusLine bl, RoadDB::RoadLink rl
where rl.length / rl.driving_time < 8.3 and

rl.centerline.overlaps(bl.geometry.buffer(5))

The join between RoadLink objects and BusLine objects is a ‘buffered spatial join’ conditioned on
the relationship overlaps. MEADOW processes a global join query of this kind using a modified
semijoin technique utilizing OIDs (we call it an ‘OID-based semijoin’). In contrast with a conventional
semijoin technique that requires two join operations, once at each of the two participating sites, the
OID-based semijoin requires only one join as long as at least one of the two sites allows accessing
its objects by OID. The following algorithm outlines the steps of a global join using the OID-based
semijoin.

Algorithm 2. Global join using OID-based semijoin.
Let R and S be the collection of objects to be joined, residing at different sites A and B, respectively.
Then, a global join R join(X) S, where X is a join attribute, is processed in the following steps.

1. Choose the collection with the smaller number of objects. Without loss of generality, assume
that R (at site A) is smaller.

2. At site A, project the join attribute X of R, and augment the resulting one-column table with the
OID field. Then, send the resultant table of two columns (i.e. OID and X) to site B.

3. At site B, process the join on X, and generate a result table of two OID columns—one OID of
an object in R, the other of an object in S.

Figure 4 illustrates processing a global query using the OID-base semijoin, coordinated by a TAP.
First, after parsing and decomposing the query into two subqueries Q1 and Q2, the TAP sends the
subquery string Q1 to the wrapper for RoadDB. Then, the wrapper processes Q1 and returns the table
tbl of two columns: the OID and the attribute centerline of RoadLink objects. Second, the
TAP sends the intermediate table tbl and the subquery string Q2 to the wrapper for BusLineDB.
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TAP

select bl
from BusLineDB::BusLine bl, RoadDB::RoadLink rl
where rl.length/rl.driving_time < 8.3 and

rl.centerline.overlaps(bl.geometry.buffer(5))

Q1

select  rl, rl.centerline
from RoadLink rl
where rl.length/rl.dirving_time < 8.3

Q2

BusLine
(OID)

1

2

3

4Wrapper for
Road DB

Wrapper for
Bus Line DB

centerline
RoadLink

(OID)

tbl result

select  bl
from BusLine bl, tbl t
where t.centerline.overlaps(

bl.geometry.buffer(5))

Figure 4. Global query processing.

The wrapper processes Q2 and returns the table result of one column, the OID of BusLine objects.
Finally, upon receiving the table result, the TAP fetches the BusLine objects using the OIDs in the
table.

Region-level locking

MEADOW’s concurrency control isolation level is determined using a global lock manager and a
global transaction manager. Region-oriented data access, commonly executed in GIS applications,
usually requires long transactions, which are not well supported by strict concurrency control schemes
used by traditional DBMSs. Therefore, MEADOW loosens the control by allowing transactions to
perform dirty reads, and uses a proprietary mechanism for notifying updates on a region. That is,
a transaction is allowed to read a dirty data item, and is notified of subsequent updates at times
determined by a notification mechanism that will be explained below.

To support such a loose concurrency control, a wrapper uses two region-based notification lock
modes, read with update-notification request (RNR) and write with update-notification request (WNR),
in addition to the traditional read and write lock modes. A transaction holding an RNR lock on a region
is allowed to read dirty data, and is notified of subsequent updates on objects in the region. A transaction
holding a WNR lock on a region allows its data to be overwritten by other transactions holding the same
WNR lock, and is notified of the updates on objects in the region.

MEADOW uses three alternative notification types—immediate, threshold, and no—to control
the timing of notification. The immediate notification type requires every update to be notified
immediately, whereas the no notification type defers it until the transaction commits. The threshold
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Table I. Lock compatibility matrix.

Requested mode

Current mode R W RNR WNR

R Y N Y N
W N N Y N
RNR Y Y Y Y
WNR N N Y Y

R: read lock; W: write lock; RNR: read with
update notification request; WNR: write with
update notification request.

R-tree

Lock Tree

Region Lock Item

transaction_id 11
lock_mode RNR
notification NO
region R2
number_of_objects 524
locked_objects
next_region_lock_item

Region Lock Item

transaction_id 10
lock_mode WNR
notification THR, 50
region R1
number_of_objects 243
locked_objects
next_region_lock_item

OID OID OID...

OID OID OID...

...

...

transaction_id = 10

transaction_id = 11

...

Hash Table

To another item of the transaction 10

To another item of the transaction 11

Figure 5. Internal logic of region lock manager.

notification is a compromise between the two, that is, notification is made when the number of objects
updated in a region exceeds a given threshold value.

Table I shows the lock compatibility matrix. Read-only applications such as browsing or monitoring
a region can benefit from using the RNR lock. The RNR lock allows other transactions to modify
the data, thus potentially causing non-repeatable reads. However, this is rather desirable in a long-
running GIS transaction because the transaction can always read data up to date. Similarly, an update
transaction holding a WNR lock does not conflict with another transaction requesting the same WNR
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lock, thus keeping the data current for all transactions. This is especially useful when the updated data
is stateless, such as shared traffic data that resides outside the database and is therefore independent
of the internal database state. The WNR lock is also useful for design transactions in the geospatial
domain, where a designer edits a region of a map and merges the edited result with the results edited
by other designers.

Figure 5 illustrates the internal logic of our region lock manager. The hash table represents a region
lock management table. It shows that a transaction with ID 10 (T10) holds a WNR lock on region R1,
and another transaction with ID 11 (T11) holds an RNR lock on region R2. An R-tree [7,12] is used
to keep track of the transactions holding locks on each region. The lock management table and the
R tree are used in the following manner. Suppose a notification of T10’s updates is to be sent to the
other transactions. The region lock manager searches the lock management table to find the first region
lock held by T10, and chases the next-region-lock-item field to find all the other region locks held by
T10. Then, given the ‘region’ field in each Region Lock Item record, it searches the R-tree to find the
transactions to be notified of the updates by T10.

EVALUATION

In this section, we present the status of MEADOW implementation, and discuss how well the
implementation accomplished our two goals: (1) facilitating system development and maintenance
with automatic code generation, and (2) expediting information retrieval from multiple remote data
servers, for which we concentrate on evaluating the prefetching mechanism. In addition, we discuss
the limitations of the current MEADOW implementations.

Implementation status

A prototype MEADOW middleware was written in about 70 000 lines of C++ and Java code
implementing the MEADOW preprocessor and the schema-independent wrapper libraries and TAP
libraries. When applied to a transportation information system, MEADOW automatically generated
about two thirds of the 36 000 lines of code needed for running a Web-based application. The remaining
one third was almost equally divided between the application logic and GUI, and was coded manually.

The middleware was tested on Solaris and Windows NT with OrbixMT [13] and OrbixWeb [14] for
CORBA. The data servers utilized two object-oriented DBMSs, Objectivity/DB [15] and OMEGA
[16]. Objectivity/DB had no direct support for spatial data and therefore we added a thin spatial
extension layer to support the OpenGIS geometry model [17]. OMEGA is a research prototype
supporting a spatial data model and a spatial query language on top of the SHORE storage system [18].

Ease of development and maintenance

The generation of wrappers and TAPs are fully automatic in MEADOW, and manual efforts are limited
to developing the application logic and GUI. To demonstrate the effectiveness of our approach, we
constructed a geographic database from a 1:5000 digital map of the Seoul metropolitan area and
implemented several applications. The database contained data about road segments, bus lines, subway
lines, contours, and so on. Its schema consisted of 14 classes and about 100 attributes. We partitioned
the database into two servers running Objectivity/DB and OMEGA.
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(a) (b)

Figure 6. Implemented Web clients: (a) 3D view of contour data in Java; (b) map in XML.

We developed several applications including three map browsers, one map editor, and one 3D
contour browser. For this development, we wrote the definitions of feature views in just 235 lines of
MEADOW VDL code, from which MEADOW generated TAP and wrapper libraries in 23 400 lines of
C++ and Java codes. Since the generated TAPs handle client-side caching and prefetching, application
developers could focus on implementing the application logic. As a result, a complicated Window-
based map editing/browsing program was implemented in only 6700 lines of application logic code
and 6100 lines of GUI code.

Figure 6 shows two examples of Web-based applications we implemented. The first example is the
picture of a mountain area in Seoul, displayed with a Java applet. This applet retrieves the contour data
in a given rectangular area from a database server, generates 3D Triangular Irregular Network (TIN)
data from the contour LineString data, and renders them. This applet allows a user to rotate and zoom
the view using a mouse or a keyboard. The second example shows a map displayed with an XML
document generated by an application server. The following code shows a part of the XML document.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="block.xsl"?>
<v:polyline points = ‘‘1344 2054 1348 2048 ... 1292 2043 ‘‘

href="..." fillcolor="#FFFFFF"
strokecolor="#000000" strokeweight="1px">

</v:polyline>
<v:polyline ...> </v:polyline>
...
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In this code, the v:polyline tag is defined in the MEADOW VML. Each polyline element can
have a predefined set of attributes. The points attribute stores a list of point pairs that defines a
sequence of line segments. The href attribute stores a URL link to another document.

MEADOW is as scalable and extensible as the underlying CORBA (we do not have control over
the CORBA implementation). In addition, MEADOW can readily incorporate new services available
from other data sources through wrappers. For example, current object-relational DBMSs facilitate
providing GIS-related services through their extension modules (e.g. Oracle Data Cartridges, DB2
Extenders). With the help of automatic wrapper generator, MEADOW absorbs these services into
its suite of wrapped services. Last but not the least, CORBA is interoperable with other middleware
technologies such as Java Enterprise Beans and COM+ Components, thus furthering the horizon of
MEADOW.

Retrieval efficiency with prefetching and caching

To demonstrate the efficiency of the RGF, we performed an experiment for comparing the RGF with
three alternative object fetch methods (MS, SOF, and BGF) introduced previously. The test query
was a ‘refining query’, which incrementally asks for detailed information about a cluster of objects.
A possible scenario is that a user selects a geographic region on screen and then requests details about
the menus and prices at restaurants in the region. In our experiment, region queries retrieved the MBRs
and OIDs of all spatial objects intersecting a given query window, and then refining queries retrieved
objects in ten random sub-regions, each of which is bounded by one tenth the first query window size.

The test data set was from the database of road networks in Seoul metropolitan area. It contained
106 533 road segment objects, 71 213 intersection objects, and thousands of landmark objects.
We performed the experiment on two SUN UltraSPARC stations and one Pentium II PC connected
through 10 Mbps LAN. We used the SUN workstations as database servers, and the PC for running
client applications written in Java with OrbixWeb.

Figure 7(a) shows the elapsed transfer time for shipping objects from a server to a client. The speed-
up from MS to SOF is about 6 times, from SOS to BGF is 46 times, and from BGF to RGF is 1.4 times.
Figure 7(b) shows the number of interactions that occurred between the client and the server during the
query processing. The number was reduced by a factor of six from MS to SOS, 387 from SOS to BGF,
and 1.7 from BGF to RGF. As we expected, RGF outperformed all the others for a refining query that
visits a cluster of objects in the same region.

Limitations

MEADOW has a number of limiting factors. First, it provides no implementation of OpenMap
standards, which is just out of the project scope although easy to implement. Second, it lacks a versatile
global schema design language like SchemaSQL [19]. The project focus is not on designing or using
such a language. Third, it compromises some of the idiosyncratic features of local data sources in order
to make a global access possible for users, which happens commonly to federated databases.

RELATED WORK

At the core of MEADOW is building an interoperable GIS framework that integrates heterogeneous
data sources into a virtual database. This defines the following two areas related to MEADOW.
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Figure 7. Comparison of prefetching schemes: (a) object transfer time; (b) number of interactions.

Implementing interoperable GIS

Until recently, most efforts for building an interoperable GIS considered OpenMap only, primarily due
to the lag of OpenGIS Simple Features specifications. (OpenMap specifies an interface between user
interfaces and applications, whereas OpenGIS Simple Features specifies an interface between applica-
tions and data sources.) Let us briefly describe two cases that use OpenMap only and two cases that
use both OpenMap and OpenGIS Simple Features, and state where MEADOW stands in that context.

Nebert and Doyle’s implementation [20], sponsored by US Federal Geographic Data Committee
(FGDC), was based on OpenMap alone because no Simple-Features-compliant product was available
at that time. The key architectural component enabling interoperability in OpenMap is a ‘specialist’
object, which implements methods inherited from the Specialist class so that an OpenMap client
(e.g. browser) can communicate with it. Cranston et al. built a ‘SAND specialist’ [21] that connects an
OpenMap client to their SAND spatial database system via CORBA middleware. Because their goal
was to demonstrate an OpenMap browser showing multiple maps from multiple sources overlaid on
screen, no effort was made to implement OpenGIS Simple Features. An OpenMap specialist is similar
to a MEADOW wrapper in its functionality.

Doyle et al. has made another demonstration [22] at GEObit trade show, this time including
OpenGIS Simple Features. The GEObit demo extended the FGDC demo with more data sources
and associated specialists for OpenMap clients, and used OpenGIS Simple Features for SQL instead
of SFCORBA. The EXC3ITE project [23] at Defence Science and Technology Organization is
implementing SFCORBA. With the goal of providing large-scale access to diverse geospatial data
sources, this project implements not only OpenGIS Simple Features but also simple Java clients for
plugging into an OpenMap product.

MEADOW also implements OpenGIS Simple Features specifications. However, it is not particularly
concerned with OpenMap, although its Java applets or XML document browsers can be readily
incorporated into OpenMap clients. Besides, MEADOW OpenGIS Simple Features is not for SQL
but for CORBA because the data sources do not necessarily understand SQL. (It is not for COM,
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either, because the data servers are not Microsoft platforms.) In particular, MEADOW is characterized
by it use of TAPs which, redundantly to wrappers, present encapsulated services of data sources to
client applications. To our knowledge, MEADOW is the only system that offers such a configuration.

Integrating heterogeneous data sources

When viewed as a data integration system, MEADOW relates to TSIMMIS [24] and Garlic [25],
the two recent developments in this area. TSIMMIS aims at providing an integrated access to
heterogeneous data sources via middleware. It uses a self-describing object model—called Object
Exchange Model (OEM)—as the global model to facilitate integrating unstructured as well as
structured data. The architectural focus is on mediators and translators (equivalent to wrappers).
Mediators invoke one or more wrappers and integrate returned results on behalf of the application,
and wrappers translate queries into source-specific commands and the results into application-specific
formats. Wrappers are generated based on templates prepared for commonly used queries. Then, a
wrapper accepts queries matching a template, performs actions specified in the template, and returns the
resulting objects. In addition, a wrapper can post-process intermediate results from a data source with
limited query processing capability, thus extending the capability of the source. Wrapper generation is
semi-automatic, facilitated by a library of commonly used functions.

Garlic aims at providing an integrated view of heterogeneous data sources via middleware. It uses a
global data model and programming interface based on the Object Data Management Group standard
[26] to facilitate integrating diverse legacy data sources. One of Garlic’s foci is on flexible query
processing against data sources with different requirements of processing time and complexity. For
this purpose, wrappers translate queries and results between the global model and the local models
of individual data sources. Each wrapper is capable of generating its own local query execution plan
for incorporation into a global plan as well as executing the local plan as part of the global execution.
Wrapper generation is manual, or its automation is not a concern to Garlic.

While MEADOW is similar to TSIMMIS and Garlic in providing an integrated access to heteroge-
neous data sources via a middleware and using wrappers to encapsulate heterogeneous data sources, it
is different in its specific objective, data model, and wrapper generation. First, MEADOW aims at pro-
viding a computing environment for facilitating the development and maintenance of systems imple-
menting SFCORBA, not just providing integrated access or view to data sources. Second, MEADOW
uses an object model defined by OpenGIS Simple Features specifications as its global data model and
uses OpenGIS feature view as the basis of automatically generating wrappers. Third, when MEADOW
generates a wrapper, it also generates the associated TAP and the mapping rules between them.
Furthermore, it uses the TAP to prefetch and cache data from the wrapper to answer queries quickly.

CONCLUSION AND FUTURE WORK

In this paper we presented our experience of building an OpenGIS SFCORBA-based middleware
system for efficient Web-based accesses to multiple, heterogeneous geographic databases, of which the
primary focus was to provide additional facilities to solve problems occurring when using CORBA as is
to build a GIS platform. Named MEADOW, it provides a VDL for automatically generating OpenGIS
server wrappers on existing databases, and corresponding client TAPs. Desired OpenGIS feature views
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(written in VDL), database schema, and DBMS-specific mapping rules guide the automatic generation
of wrappers and TAPs. The significant benefit of such an automatic code generation was ascertained
through application to a government transportation information system.

A TAP, in cooperation with a wrapper, processes global queries on multiple databases, and makes it
efficient by using region-based prefetching and caching. Our experiment showed an order of magnitude
speed-up of interactive Web-based applications compared with naı̈ve implementations of SFCORBA.
We also described two additional methods of improving the performance—OID-based semijoin and
region-level locking.

Our immediate future work includes utilizing high-level, domain-specific semantics for improving
the efficiency even further. For instance, we can extend the current region-based prefetching scheme to
make use of the relationships among geographic objects. Another on-going direction is to include other
kinds of DBMSs in the MEADOW system environment. We are currently working on incorporating
commercial object-relational DBMSs (Informix and UniSQL) and our own highly parallel main-
memory DBMS [27–29].

Global utilization of multiple geographic databases requires the resolution of several semantic
heterogeneity issues such as different levels of abstraction and different criteria to application
completeness and correctness [30]. For example, the geometry of a bus line stored in one database
may not exactly coincide with that of matching road segments in another database. Wiederhold
[31] suggested mediator architecture for dealing with such semantic heterogeneity issues. We are
investigating the feasibility of using MEADOW as a tool for building mediators.

ACKNOWLEDGEMENTS

This work was supported in part by the Brain Korea 21 Program for Information Technology at the Seoul National
University and the Korean GIS database tool development project carried out through ASRI. Many other people
contributed to implementing the MEADOW system, naming some of them, Seungwon Yoo, Keunjoo Kwon,
Hyunmin Kang and Seunghyun Kim. We owe special thanks to the anonymous referees, whose comments were
very helpful to improve the paper to the current shape.

REFERENCES

1. Abel DJ. Spatial Internet marketplaces. Proceedings of the International Symposium on Spatial Databases, Berlin,
Germany, July 1997; 3–8.

2. Koperski K, Adhikary J, Han J. Spatial data mining: Progress and challenges. Proceedings of the Workshop on Research
Issues on Data Mining and Knowledge Discovery, Montreal, QC, May 1996.

3. Buehler K et al. The OpenGIS guide: Introduction to interoperable geoprocessing. Technical Report, Open GIS
Consortium, Inc., 1996.

4. Open GIS Consortium, Inc. OpenGIS Simple Features Specification for CORBA, revision 1.0. 1998.
5. Siegel J. CORBA: Fundamentals and Programming. Wiley: New York, 1996.
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