
Journal Pre-proofs

Research papers

Multivariate Event Time Series Analysis using Hydrological and Suspended
Sediment Data

Ali Javed, Scott D. Hamshaw, Donna M. Rizzo, Byung Suk Lee

PII: S0022-1694(20)31263-4
DOI: https://doi.org/10.1016/j.jhydrol.2020.125802
Reference: HYDROL 125802

To appear in: Journal of Hydrology

Received Date: 2 July 2020
Revised Date: 22 November 2020
Accepted Date: 23 November 2020

Please cite this article as: Javed, A., Hamshaw, S.D., Rizzo, D.M., Lee, B.S., Multivariate Event Time Series
Analysis using Hydrological and Suspended Sediment Data, Journal of Hydrology (2020), doi: https://doi.org/
10.1016/j.jhydrol.2020.125802

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.jhydrol.2020.125802
https://doi.org/10.1016/j.jhydrol.2020.125802
https://doi.org/10.1016/j.jhydrol.2020.125802


Multivariate Event Time Series Analysis using Hydrological and1 1

Suspended Sediment Data2 2

3 3

Ali Javed*,1, Scott D. Hamshaw2, Donna M. Rizzo2, and Byung Suk Lee14 4

1Department of Computer Science, University of Vermont, Burlington, VT, USA5 5

2Department of Civil & Environmental Engineering, University of Vermont, Burlington, VT, USA6 6

*Corresponding author email: ali.javed@uvm.edu7 7

*Mailing Address: 82 University Place, Innovation STEM Building, Burlington, VT 05405, United States8 8

Highlights9 9
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• Synthetically generated C-Q data provide effective environmental model validation13 13

Abstract14 14

Hydrological storm events are a primary driver for transporting water quality constituents such as15 15

suspended sediments and nutrients. Analyzing the concentration (C) of these water quality constituents16 16

in response to river discharge (Q), particularly when monitored at high temporal resolution during a17 17

hydrological event, helps to characterize the dynamics and flux of such constituents. A conventional18 18

approach to storm event analysis is to reduce C-Q time series to two-dimensional (2-D) hysteresis19 19

loops and analyze these 2-D patterns. While informative, this hysteresis loop approach has limitations20 20

because projecting the C-Q time series onto a 2-D plane obscures detail (e.g., temporal variation)21 21

associated with the C-Q relationships. In this paper, we address this limitation using a multivariate22 22

event time series (METS) clustering approach that is validated using synthetically generated event23 23

times series. The METS clustering is then applied to river discharge and suspended sediment data24 24

1



(acquired through turbidity-based monitoring) from six watersheds in the Lake Champlain Basin located25 25

in the northeastern United States, and results in identifying four common types of hydrological water26 26

quality events. Statistical analysis on the events partitioned by both methods (METS clustering and 2-D27 27

hysteresis classification) helped identify hydrometeorlogical features of common event types. In addition,28 28

the METS and hysteresis analysis were simultaneously applied to a regional Vermont dataset to highlight29 29

the complimentary nature of using them in tandem for hydrological event analysis.30 30

Keywords: event analysis, streamflow, suspended sediment, clustering, multivariate time series, water31 31

quality sensors32 32

1 Introduction33 33

Characterizing the processes associated with rainfall-runoff events is an essential part of watershed research;34 34

and studying the dynamics that drive these processes (e.g., the timing and location of water quality35 35

constituent fluxes through the landscape) has many applications in the hydrological sciences. These include36 36

identifying sources of erosion present in a watershed (Sherriff et al., 2016), monitoring for shifts in37 37

watershed function (Burt et al., 2015), improving hydrological model forecasts (Ehret and Zehe, 2011),38 38

and informing watershed conservation and management efforts (Bende-Michl et al., 2013; Chen et al.,39 39

2017). Environmental managers and scientists often analyze hydrological data (e.g., suspended sediment40 40

concentration and streamflow) at an event scale — in this work, the period of storm-runoff resulting from41 41

a rainfall event – because this period is the primary mechanism for transporting many constituents of42 42

concern (Dupas et al., 2015; Sherriff et al., 2016). The timing of constituent delivery relative to stream43 43

discharge is complex and often exhibits a high degree of variability, especially when the monitoring frequency44 44

is high (Minaudo et al., 2017); and unsurprisingly, the relationship between multiple responses during a45 45

single event (e.g., discharge and water quality constituents) is often not linear (Onderka et al., 2012).46 46

However, despite the inherent complexity and dynamic behavior, the analysis of concentration-discharge47 47

(C-Q) relationships to infer mechanistic watershed processes at the event scale has a long tradition in48 48

hydrology, geomorphology and ecology (Aguilera and Melack, 2018; Burns et al., 2019; Williams et al., 2018;49 49
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Malutta et al., 2020).50 50

A fundamental feature of suspended sediment and solute transport in rivers is that the concentration of51 51

such constituents is often not in phase with the associated stream discharge, resulting in hysteresis being52 52

observed in the C-Q relationship. Williams (1989) was one of the first to use hysteresis patterns to study53 53

hydrological storm events, identifying six classes of hydrological events and offering linkages between the54 54

hysteresis classes and watershed processes. While the study focused on suspended sediment concentration55 55

(SSC) data, these event classifications have been widely adopted in studies of both sediment and solutes, and56 56

continue to be used today to group storm events (e.g., Aguilera and Melack, 2018; Rose et al., 2018; Keesstra57 57

et al., 2019). An alternate to using 2D hysteresis patterns for categorization is to simplify the C-Q relationship58 58

into a scalar hysteresis index (Lloyd et al., 2016b). While both approaches are effective for inferring certain59 59

physical processes, each loses some information associated with the raw time series data, because both60 60

approaches “collapse” the time dimension, either by projecting the C-Q data onto a two-dimensional plane,61 61

or reducing the information into a scalar value (an index). Thus, temporal information associated with the62 62

original times series, such as the rate of change of a variable as well as aspects of its shape (e.g., linear,63 63

convex, concave), may be lost. With the increasing availability of high frequency sensors and associated64 64

data processing tools, it is now possible to leverage the temporal information embedded in multiple time65 65

series and fuse the data with complementary event analysis schemes such as hysteresis loop classification66 66

(Williams, 1989).67 67

A few hydrological studies have used univariate time series (e.g., discharge) to quantify the similarity68 68

between storm events for forecasting purposes. Ehret and Zehe (2011) used manual feature extraction to69 69

propose a similarity measure for discharge time series that leverages hydrograph attributes such as the rising70 70

limb, peak and receding limb. Such manual feature extraction works well for hydrographs, but may not71 71

generalize to multivariate water quality time series. Ewen (2011) modified the minimal variance matching72 72

algorithm (Latecki et al., 2005) to quantify the similarity between two hydrographs. Presented with a73 73

hydrograph defined by a sequence of discharge measurements (called a “query sequence”), the method finds74 74

a target hydrograph that contains a sub-sequence most similar to the query sequence. Because only a portion75 75
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of the target sequence is matched (Latecki et al., 2005), similarity is not symmetric in both directions (i.e.,76 76

d(x, y)! = d(y, x)) and, hence, may not be appropriate for use in clustering hydrological event data. Wendi77 77

et al. (2019) used recurrence quantification analysis and cross-recurrence plots to measure similarity between78 78

recurring hydrograph patterns. Recurrence quantification analysis is useful for large flood events (particularly79 79

those with multiple peaks); however, when the events are delineated, as is done in our work, the approach80 80

may not be appropriate. Regardless, none of the above classification methods were designed for analyzing81 81

events with multivariate time series.82 82

Several studies have clustered storm events using event metrics and/or coefficients of best fit models.83 83

Dupas et al. (2015) used dynamic time warping (DTW) and K-means clustering to cluster re-scaled time84 84

series of phosphorus concentration. They manually select an ideal hydrograph and use the DTW algorithm to85 85

align each hydrograph in the dataset to the ideal hydrograph. Using these aligned hydrographs, the respective86 86

event phosphorus concentration graphs are then clustered to find dominant response patterns associated with87 87

physical processes occurring in the watershed. Bende-Michl et al. (2013) used high frequency data to build a88 88

database of events summarized by metrics such as precipitation, discharge, runoff coefficient and maximum89 89

discharge. These metrics were then used in cluster analysis to study nutrient dynamics in the Duck River,90 90

in north-western Tasmania, Australia. Minaudo et al. (2017) applied the non-linear empirical modeling91 91

method of Mather and Johnson (2014) using continuous records of turbidity and discharge to estimate92 92

high frequency phosphorus concentration values from low frequency (e.g., weekly) sampling. They then93 93

clustered storm events using sets of model coefficients that were fit to each storm event. The coefficients94 94

were re-calibrated for each cluster to obtain one set of coefficients representative of all storm events in95 95

the cluster. Mather and Johnson (2015) modeled event turbidity as a function of event discharge using a96 96

power-law model, and performed cluster analysis on the model parameters to select the number of hysteresis97 97

loop categories, thereby avoiding a priori selection of the number of classes. While all of these works extract98 98

event information from two monitored variables (e.g., C and Q), none directly use the full time series (i.e.,99 99

without transformation or feature extraction) associated with both variables to cluster storm events.100 100

In this paper, we present a data-driven approach for clustering multivariate water quality time series at101 101
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the event scale. We refer to this method as METS (multivariate event time series) clustering throughout102 102

the remainder of the manuscript; and show proof-of-concept using two variables: concentration (C) and103 103

discharge (Q). These time series may be visualized as trajectories in a 3-D space, namely a C-Q-T plot. Our104 104

concentration data comprise three years of high-resolution riverine suspended-sediment concentration (SSC)105 105

time series – for generalizability, referred to simply as C – collected from six watershed sites in Vermont.106 106

The efficacy of the approach is demonstrated both qualitatively, using multi-dimensional visualizations (i.e.,107 107

C-Q-T plots), and quantitatively using metrics that summarize event characteristics. We also highlight108 108

the complementary nature of using METS in tandem with other analysis schemes, in this work – the C-Q109 109

hysteresis patterns of Williams (1989).110 110

2 Study Area and Data111 111

Figure 1: The Mad River watershed and study sub-watersheds within the Lake Champlain Basin of Vermont.

Our study area, located in the Mad River watershed (Figure 1) in the Lake Champlain Basin and central112 112

Green Mountains of Vermont, is the site of several ongoing geomorphic and sediment dynamics studies at113 113

the University of Vermont (Stryker et al., 2017; Wemple et al., 2017; Hamshaw et al., 2018). Continuous114 114

streamflow and suspended sediment monitoring data (SSC) were collected for more than 600 storm events115 115
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in this watershed (and its five sub-watersehds) between October 19th, 2012 to August 21th, 2016 (Table 1).116 116

Hamshaw et al. (2018) used this dataset to automate and demonstrate possible refinements to the 2D (C-Q)117 117

hysteresis classifications of Williams (1989). Turbidity data were collected every 15 minutes using turbidity118 118

sensors and SSC-turbidity regression models were used to calculate SSC (see Hamshaw et al. (2018) for119 119

details). Discharge data were obtained from the United States Geological Survey (USGS) stream gauges120 120

or calculated using stage-discharge rating curves. The individual storm events were extracted from the121 121

continuous sensor records using a semi-automated approach based on thresholds to detect events and manual122 122

identification of storm end points. Meteorological data (rainfall and soil moisture) were also collected over123 123

the monitoring period and summarized into 24 storm event metrics (see Table 2); for full details on data124 124

collection and event delineation methodology, readers are referred to Hamshaw et al. (2018).125 125

Table 1: Number of storm events and monitoring start and end dates for each watershed study site.

Site
Number of

events
monitored

Monitoring
start date

Monitoring
end date

Freeman Brook 54 Jun 2nd, 2013 Nov 17th, 2013
Folsom Brook 96 Jul 17th, 2013 Sept 13th, 2015
Mill Brook 158 Oct 19th, 2012 Dec 23rd, 2015

High Bridge Brook 41 Jun 6th, 2013 Nov 17th, 2013
Shepard Brook 106 Jul 18th, 2013 Dec 23rd, 2015

Mad River (main stem) 148 Oct 29th, 2012 Aug 21th, 2016

All Sites 603 Oct 19th
, 2012 Aug 21th

, 2016

The Mad River watershed ranges in elevation from 132m to 1,245m above sea level and is predominantly126 126

forested except for the valley bottom, which features agriculture, village centers, and other developed127 127

lands (Supporting Information Table S1). The watershed has a mean annual precipitation ranging from128 128

approximately 1,100 mm along the valley floor to 1,500mm along the upper watershed slopes (PRISM, 2019).129 129

Soils range from fine sandy loams derived from glacial till deposits in the uplands to silty loams from glacial130 130

lacustrine deposits in the lowlands. Erosional watershed processes include bank erosion, agricultural runoff,131 131

unpaved road erosion, urban storm water, and hillslope erosion. Similar to many watersheds in Vermont,132 132

reducing excessive erosion and sediment transport in the Mad River is a focus of several management efforts133 133

including stormwater management practices, streambank stabilization and river conservation.134 134

6



Table 2: Description of the 24 storm event metrics used in this work.

Metric Description
Hydrograph/ Sedigraph characteristics

TQ Time to peak discharge (hr)
TSSC Time to peak TSS (hr)
TQSSC Time between peak SSC and peak flow (hr)
QRecess Difference in discharge value at the beginning and end of event

SSCRecess Difference in concentration value at the beginning and end of event
DQ Duration of stormflow (hr)
FI Flood intensity

SSCPeak Peak SSC (mg/L)
HI Hysteresis index

Antecedent conditions
TLASTP Time since last event (hr)
A3P 3-Day antecedent precipitation (mm)
A14P 14-Day antecedent precipitation (mm)

SMSHALLOW Antecedent soil moisture at 10 cm depth (%)
SMDEEP Antecedent soil moisture at 50 cm depth (%)
BFNORM Drainage area normalized pre-storm baseline flow(m3/s/km2)

Rainfall characteristics
P Total event precipitation (mm)

Pmax Maximum rainfall intensity (mm)
DP Duration of precipitation (hr)

TPSSC Time between peak SSC and rainfall center of mass (hr)
Streamflow and sediment characteristics

BL Basin lag
QNORM Drainage area normalized stormflow (m3/s/km2)

Log(QNORM ) Log-normal stormflow quantile (%)
SSLNORM Drainage area normalized total sediment (kg/m2)

FLUXNORM Drainage area and flow normalized sediment flux (kg/m3/km2)
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In addition to the Mad River watershed sites, we created an expanded regional dataset by adding 190135 135

events from three additional watersheds (Hungerford Brook, Allen Brook, and Wade Brook) in the Lake136 136

Champlain Basin to the existing (n = 603) Mad River events, and another 21 events from within the Mad137 137

River watershed during the period from April 3rd, 2007 to November 25th, 2016. This results in a total of138 138

814 storm events from nine watersheds, hereafter referred to as the “regional Vermont dataset”. Hungerford139 139

Brook, Allen Brook, and Wade Brook are watersheds with ongoing monitoring efforts (Vaughan et al.,140 140

2017) that represent a spectrum of land uses (e.g., agricultural, forested, and developed, respectively) and141 141

feature varied topographic characteristics (Supporting Information Table S1). Data from these sites, and142 142

supplemental events from the Mad River do not have the corresponding hydrometeorological data metrics143 143

associated with the Mad River dataset and thus were not the focus of our primary analyses.144 144

3 Methods145 145

3.1 Event Time Series Processing146 146

The sensor data collected during individual storm events are conceptualized as trajectories and may147 147

comprise multivariate time series of two or more variables. For example, two (univariate) time series,148 148

TS1 = 〈V 11, V 12, V 13, ..., V 1n〉 and TS2 = 〈V 21, V 22, V 23..., V 2n〉, when combined, make a bivariate time149 149

series TS = 〈(V 11, V 21), (V 12, V 22), ..., (V 1n, V 2n)〉. This approach can be generalized to the multivariate150 150

case of a matrix of m variables and n time steps (Supporting Information Figure S1).151 151

The time series in this work (discharge and SSC) were collected in situ using multiple environmental152 152

sensors. These data typically contain noise, have missing values, and often require pre-processing (i.e.,153 153

filtering) to extract general trends in the C-Q relationship. In addition, because of our interest in comparing154 154

C-Q relationships across hydrological events, we normalized both the length of the time series as well as the155 155

magnitude of each variable individually over each event (Figure 2), as is commonly done in C-Q analyses.156 156

Pre-processing steps were performed as follows:157 157

Smoothing: To reduce noise, the discharge and concentration time series were smoothed using the158 158
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(a) (b) (c) (d)

Figure 2: Pre-processing of (a) raw C and Q time series, (b) smoothed and normalized C and Q time series,

and the resulting (c) C-Q plot, and (d) C-Q-T plot for an individual (delineated) storm event.

Savitsky-Golay Filter (Savitzky and Golay, 1964). We selected a third-order, 21-step filter for the159 159

Mad River (main stem) and a fourth-order, 13-step filter for each of the five sub-watersheds. To160 160

preserve the peaks and overall shape of the event data, the filter order and step size were selected161 161

based on visual inspection of the resulting event time series in a manner similar to Hamshaw et al.162 162

(2018).163 163

Standardization of event length: Discharge and concentration time series were re-scaled to a uniform164 164

length of 50 time steps for all events using univariate spline fitting (Dierckx, 1993). The number 50 was165 165

selected empirically as the minimum number of data points that preserves the shape and characteristics166 166

of the event time series. Standardizing all events to have the same length ensured that clustering was167 167

not affected by the duration of the event but by the relative rate of change of C-Q variables. We note168 168

that this re-sampling was performed separately from the calculation involving event metrics (Table 2)169 169

based on the original data.170 170

Normalization of magnitude: The discharge and concentration time series were scaled individually to171 171

values between 0 and 1. This ensured that the clustering is not affected by the magnitude of the172 172

individual time series but by the orientation of change (e.g., clockwise and counter-clockwise), and173 173

the shape (e.g., linear, convex and concave). Normalizing the magnitude of variables is common for a174 174

meaningful comparison between time series (Rakthanmanon et al., 2012).175 175
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3.2 Concentration-discharge (C-Q) Hysteresis Classification176 176

Figure 3: Six class scheme for concentration-discharge hysteresis loops (top panels) and corresponding

hydrographs and sedigraphs (lower panels, solid and dot-dashed lines, respectivly).

Each hydrological event in our dataset was categorized visually (by two or more domain experts) into177 177

one of the six hysteresis classes (Figure 3) of Williams (1989). Class I represents linear C-Q relationships178 178

that show little hysteretic behavior, whereas Class II and Class III represent clockwise and counter-clockwise179 179

hysteretic behaviors, respectively. A C-Q plot exhibiting a linear relationship followed by a clockwise loop180 180

is indicative of Class IV behavior. These patterns could reasonably be considered a special case of Class II181 181

(clockwise hysteresis); and rarely are studied as a separate hysteresis category (Malutta et al., 2020). The182 182

figure-eight loops are represented as Class V. Events that do not fall into any of these five classes are placed183 183

into a class labeled “Complex”.184 184
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3.3 Multivariate Time Series Clustering185 185

Clustering of the multivariate time series data at the storm event scale was a first step in exploring186 186

linkages between storm event responses (i.e., C-Q dynamics) and watershed processes. To this end, a187 187

number of clustering methods were investigated. Paparrizos and Gravano (2017) conducted extensive188 188

benchmark tests using four clustering algorithms (partitional, hierarchical, spectral, and density-based)189 189

and three distance measures – Euclidean distance, dynamic time warping of Sakoe and Chiba (1978), and190 190

shape-based (Paparrizos and Gravano, 2016). All of the datasets (85 in total) available in the University191 191

of California at Riverside (UCR) time series archive (Dau et al., 2018) at the time of their publication192 192

were used in the benchmark; they identified K-medoids with dynamic time warping (DTW) (discussed in193 193

Section 3.3.1 and Section 3.3.2, respectively) as having achieved the highest adjusted Rand index across the194 194

greatest number of datasets. Leveraging their work, we conducted additional benchmark tests using the four195 195

algorithms on their short list — TADPole (Begum et al., 2015), K-shape (Paparrizos and Gravano, 2016),196 196

K-medoids with DTW, and K-medoids with Euclidean. Using all datasets (currently 128 in total) available197 197

in the UCR time series archive (Dau et al., 2018), we also found that K-medoids with DTW achieved the198 198

highest adjusted Rand index across the greatest number of datasets. All of the event time series data in199 199

UCR archive were pre-processed as outlined in Section 3.1 to avoid unexpected consequences that might200 200

result from treating benchmark data differently from our hydrological event dataset.201 201

3.3.1 K-medoids Clustering Algorithm202 202

K-medoids is a variant of the popular K-means (Wu et al., 2007), in which the cluster centroids are203 203

observation points (called “medoids”) as opposed to coordinates as in K-means. These medoids are mapped204 204

from a multivariate time series of length n (i.e., t1, t2, ..., tn) to vectors of the multiple variables (i.e.,205 205

V 1, V 2, ..., V m) at each time step ti. Like K-means, the K-medoids algorithm is iterative (Supporting206 206

Information Algorithm S1) where the initial K medoids are selected randomly. The algorithm has two207 207

phases: Phase 1 assigns observation points to clusters (Line 3); and Phase 2 calculates new medoids for208 208

each cluster (Line 4). In Phase 1, the distance between all observation points and each of the medoids209 209
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is calculated, and each observation point is assigned to the closest medoid. In Phase 2, a new medoid is210 210

selected from each cluster by finding the observation point that minimizes the sum of squared distances (i.e.,211 211

sum of squared errors) to all other observation points in that cluster. These two phases are repeated for a212 212

given number of iterations or until there is no change in the medoid selection. Algorithm S1 in Supporting213 213

Information was implemented in Python (version 3.6.1); the source codes may be found at GitHub (Javed,214 214

2019b).215 215

For a given dataset, the optimal number of clusters may vary depending on the research216 216

question/objective. In this study, the elbow method guided the selection of the “optimal” number of clusters.217 217

This method consists of plotting the sum of squared errors (SSEs) against an increasing number ofK clusters.218 218

An optimal value forK is selected (visually) as the value for which further increases inK result in diminishing219 219

reduction in SSE, thus creating the onset of the plateau.220 220

3.3.2 Dynamic Time Warping221 221

The K-medoids clustering algorithm used a variant of dynamic time warping (DTW) to calculate the distance222 222

between two multivariate times series. Originally introduced for speech recognition (Sakoe and Chiba, 1978),223 223

DTW is arguably the most popular distance measure for time series clustering, and is particularly appealing224 224

for sensor data generated during hydrological events because of (i) the challenges associated with defining the225 225

beginning and end of an event (i.e., the ambiguity inherent in event delineation), and (ii) the noise present226 226

in the sensor data (e.g., variability in readings due to sensor interference from debris, maintenance activities,227 227

and temporary fouling.)228 228

Figures 4a and 4b illustrate how distance between two time series (T1 in red and T2 in blue) is calculated229 229

using the more common Euclidean distance compared with DTW. While Euclidean distance uses a one-to-one230 230

alignment, DTW employs a one-to-many alignment that enables a warping of the time dimension to minimize231 231

the distance between the two time series. As such, DTW can optimize alignment, both global alignment232 232

(by shifting the entire time series left or right) and local alignment (by stretching or squeezing parts of time233 233

series). Paparrizos and Gravano (2016) showed that the best accuracy (as measured by the Rand index) is234 234
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obtained when DTW is constrained to a limited window size. Multiple window size constraints ranging from235 235

0% to 100% were tested to cluster our Mad River dataset. Based on a preliminary qualitative analysis of236 236

event visualizations, a window size constraint of 10% was selected for our analysis. Constraining the window237 237

size to 10% of the observation data is usually considered adequate for real applications (Ratanamahatana238 238

and Keogh, 2004); and it accommodates minor differences in timing between similar hydrological events, as239 239

is often the case when delineating the end of an event proves challenging.240 240

Figure 4: The top row illustrates the alignment between two times series for calculating distance in (a)

Euclidean (one-to-one) and (b) dynamic time warping (one-to-many); Bottom row illustrates an optimal (c)

alignment of each point in time series T1 and time series T2 (shown with black lines) and (d) warping path,

i.e., optimal alignment of time series T1 (red) and T2 (blue), where each matrix cell (i, j) is the distance

between ith element of T1 and jth element of T2; the DTW distance is the sum of the distances along the

optimal path shown in orange.

Aligning two time series, T1 of length a and T2 of length b, using DTW involves creating an a×b matrix,241 241
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D, where the element D[i, j] is the square of the Euclidean distance, d(t1i, t2j)
2, d(·, ·) is the Euclidean242 242

distance, t1i is the ith point of T1, and t2j is the jth point of T2. A warping path P is defined as the243 243

sequence of matrix elements that are mapped between T1 and T2 (see Figures 4c and 4d). This warping244 244

path must satisfy the following three conditions:245 245

1. Every point from T1 must be aligned with one or more points from T2, and vice versa.246 246

2. The first and last points of T1 and T2 must align, meaning the warping path must start and finish at247 247

diagonally opposite corner cells of the optimal warping matrix.248 248

3. No cross-alignment is allowed, that is, the path must increase monotonically within the matrix.249 249

For all paths that satisfy the three conditions above, DTW finds a path that minimizes the distance250 250

calculated as in Equation 1 (Shokoohi-Yekta and Keogh, 2015):251 251

DTW(T1, T2) = min
P mapping between T1 and T2

√

∑

(i,j)∈P

D[i, j], (1)

Algorithm S2 in Supporting Information outlines the procedure for calculating this minimum distance using252 252

dynamic programming method (Bellman, 1957).253 253

The environmental sensor data in this proof-of-concept are bivariate, representing water quality254 254

concentration and stream discharge time series. There are two DTW variants – DTW-independent (DTW-I)255 255

and DTW-dependent (DTW-D). In DTW-I, the distance between T1 and T2 is the sum of distances256 256

calculated separately for each variable (by invoking the DTW algorithm for each variable). Whereas in257 257

DTW-D, T1 and T2 are handled as multivariate time series; and the DTW algorithm is invoked only once.258 258

Because of the strong dependency between discharge and concentration in this work, DTW-D is used. The259 259

source code, implemented in Python (version 3.6.1), may be found at GitHub (Javed, 2019a).260 260

3.4 Generating Synthetic Hydrograph and Concentration-graph Data261 261

Synthetic multivariate times series “event data” were generated using eight conceptual hydrographs and two262 262

conceptual concentration graphs (Figure 5), and then combined to produce a set of heterogenous, albeit263 263
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 5: Example synthetic hydrographs and concentration graphs generated from eight conceptual

hydrograph types: (a) flashy, early peak – return to baseline flow, (b) early peak – slow return to baseline

flow, (c) mid-peak – return to baseline flow, (d) delayed rise to peak – return to baseline flow, (e) flashy,

early peak – incomplete return to baseline flow, (f) early peak – slower incomplete return to baseline flow, (g)

mid-peak – incomplete return to baseline flow, and (h) delayed rise to peak – incomplete return to baseline

flow, and two conceptual concentration graphs: (i) early peak and (j) late peak.

simplified, hydrographs and sedigraphs (concentration graphs). A stochastic generator was designed to264 264

produce synthetic data with sensor noise. Random samples were drawn from a normal (Gaussian) distribution265 265

with a mean of 0.00 and standard deviation of 0.05 and added to the discharge and concentration values266 266

at each time step in order to simulate noise. When combining each of the eight synthetic hydrograps with267 267

the two concentration-graphs, sixteen synthetic storm event types can be produced. These combined event268 268
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types can be labeled and used as “ground truth” events to help assess and validate the methodology.269 269

Five control parameters, ranging from 0 to 1, were used to generate the synthetic graphs: time-to-peak,270 270

duration-of-peak, delay, recess, and initial baseline conditions. Time-to-peak controls the timing for the271 271

concentration/discharge values to reach the peak (normalized value of 1); duration-of-peak controls the272 272

duration of flow above baseline conditions; delay controls the time at which the value (either discharge273 273

or concentration) begins to rise in magnitude above the baseline conditions; recess controls the degree to274 274

which event concentration/discharge values return to the baseline conditions; and initial baseline controls275 275

the minimum value of the flow over an event. Parameter values for generating each type of synthetic graph276 276

(hydrograph and concentration-graph) were determined qualitatively based on re-production of simplified yet277 277

realistic approximation of typical hydrographs and sedigraphs observed in our study watershed (Supporting278 278

Information Table S2).279 279

3.5 Measures for Assessing Clustering Performance280 280

We used the Hopkins Statistic to measure the clustering tendency of our three datasets (i.e., the synthetic281 281

dataset, the Mad River dataset and the expanded regional Vermont dataset). The statistic value ranges from282 282

0 to 1, where 1 indicates a high tendency to cluster and 0 indicates uniformly distributed data (Banerjee283 283

and Dave, 2004). Additionally, transformed variables (those representing the 24 storm event metrics of284 284

Table 2) were examined post-clustering to see whether these event metrics had 1) any association with285 285

clusters or 2) statistical power to differentiate between clusters using One-way Analysis of Variance (ANOVA)286 286

followed by Tukey Honest Significant Differences (HSD) tests between individual group means. For those287 287

variables (or their transformations) that were not normally distributed, nonparametric methods were applied288 288

(Kruskal-Wallis). Lastly, Z-score values were calculated for each of the 24 storm event metrics of Table 2289 289

to identify feature importance associated with cluster differences. The Z-score represents the distance of an290 290

individual storm metric from the population mean (measured in terms of standard-deviation).291 291
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(a) (b)

Figure 6: Sum of squared errors (SSE) for different number of clusters from (a) the synthetic storm event

dataset (elbow point at K=16) and (b) the Mad River storm event dataset (elbow point at K=4).

4 Results292 292

4.1 Using Synthetic Data to Validate Methodologies293 293

To help validate the METS clustering approach, we generated 800 synthetic storm events, equally distributed294 294

among the sixteen possible combinations (see Section 3.4). As one might expect, the synthetic data had295 295

a high clustering tendency (Hopkins statistic of 1.00); and the optimal number of clusters, determined296 296

using elbow method as K = 16 (see Figure 6a), matched the intended synthetic design (16 event types).297 297

Examples of synthetic events from each of the 16 event classes are shown in Figure 7. Despite the presence298 298

of stochastically generated noise, the synthetic dataset clustered with 100% accuracy using K-medoids with299 299

DTW (i.e., clusters were identical to the ground truth).300 300

4.2 Application of METS to the Mad River Dataset301 301

In applying the METS clustering to the 603 Mad River storm events, we identified K = 4 event clusters302 302

with distinct SSC and Q responses (see the plateau in the elbow plot of Figure 6b). Approximately one303 303

third of the events (n = 234) fell into cluster 1, with each of the three remaining clusters having between304 304

116 and 128 events (see Figure 8). Unlike the synthetic dataset, the optimal number of clusters for the Mad305 305

17



Figure 7: Example events in each of the 16 event classes in the synthetic dataset.

Cluster Class I Class II Class III Class IV Class V Complex Total
1 11 167 16 12 20 8 234
2 12 58 16 15 15 9 125
3 1 80 6 18 2 9 116
4 6 80 13 14 10 5 128

Total 30 385 51 59 47 31 603

Figure 8: Distribution of hysteresis loop classes over METS clusters.

River dataset, any real dataset for that matter, will never be known with any degree of certainty. However,306 306

these data have a Hopkins test statistic of 0.96 indicating they are highly clusterable. We first explored307 307
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whether a relationship existed between the four METS clusters and the six-class hysteresis scheme presented308 308

in Section 3.2. We found little association between the two as the confusion matrix and cluster distribution309 309

of Figure 8 show the six classes to be fairly evenly distributed across the four METS clusters.310 310

4.2.1 Qualitative interpretation of METS clusters using event visualizations311 311

(a) Cluster 1. n = 234 (b) Cluster 2. n = 125

(c) Cluster 3. n = 116 (d) Cluster 4. n = 128

Figure 9: Mad River storm events closest to the centroid of each of the K = 4 clusters, superimposed on
a single graph with the mean value plotted as a solid line — (a) cluster 1 events have a broad clockwise
hysteresis pattern featuring an early and relatively brief duration of high SSC, (b) cluster 2 events have a
narrow clockwise hysteresis loop and broad sedigraphs and hydrographs with streamflows that do not fully
return to baseline levels, (c) cluster 3 events have flashier and sometimes multi-peaked sedigraphs that are
shorter in duration, and (d) cluster 4 have a delayed rise of hydrograph and sedigraph, and typically more
aligned.

Finding little relationship between the METS clustering and the hysteresis classification, we further312 312

investigated the characteristics associated with combined hydrograph and sedigraph trajectories of the METS313 313

clusters using multiple visualization approaches. To visualize overall trends, we superimposed 20 storm events314 314

closest to the centroid of each of the four METS clusters onto single plots (Figure 9); mean values are plotted315 315

as solid lines. Additionally, examples of the event times series, C-Q hysteresis plots, and 3-dimensional316 316

C-Q-T plots for each cluster are provided in Figure 10. In general, the METS cluster 1 events (Figure 9a317 317

and Figure 10a) have broad clockwise hysteresis patterns with an early, and relatively brief duration of high318 318

SSC. The hydrographs are flashy, rise quickly and return nearly to baseline flows. Cluster 2 events typically319 319

have a more narrow hysteresis loop compared to cluster 1 and broad (less flashy) sedigraphs and hydrographs320 320
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with streamflows that do not fully return to the baseline levels (Figure 9b and Figure 10b). Cluster 3 events321 321

are similar to cluster 2, but exhibit flashier and sometimes multi-peaked sedigraphs that are shorter in322 322

duration (Figure 9c and Figure 10c). Multi-peaked events sometimes exhibit compound behavior including,323 323

for example, portions of clockwise hysteresis loops and no hysteretic behavior (linear relationships). Cluster324 324

4 events typically have a delay in the rise of the hydrograph and sedigraph, and typically more aligned325 325

(Figure 9d and Figure 10d). In contrast to cluster 2 and 3 events, the hydrographs of cluster 4 also tend to326 326

return to near baseline levels.327 327

4.2.2 Statistical Analysis of METS clusters328 328

Table 3: Result of post-hoc Tukey HSD test (α = 0.05) for all pairwise comparisons of hydrograph/sedigraph
related storm event metrics. Within each metric, if two classes/clusters do not share the same letter,
the metric means are significantly different.Shaded columns are highlighted to show examples of metrics
distinguished well by METS, but not by hysteresis classes (light shading) and metrics discriminated well by
hysteresis classes (dark shading).

Hydrograph/Sedigraph Characteristics
Metric TQ TSSC TQSSC QRecess SSCRecess DQ FI SSCPeak HI

METS clusters
cluster 1 a a a a a a a a a
cluster 2 b b a b b a b b b b
cluster 3 b c b c a a b b c b
cluster 4 c b a d c b b a c b

Hysteresis classes
Class I a b a b a a b a b a b a b a a
Class II a a b a a a a b a b
Class III a a c a b a b a b a c
Class IV a b a b a b b a a b a a d
Class V a a a a a a b b a a
Complex b b a b a b a b a b a a

Of the 24 storm event metrics in Table 2, 19 metrics had significantly different mean values for at least329 329

one of the METS clusters. The reader should bear in mind that these event metrics were not used as input330 330

to either the METS clustering algorithm or the hysteresis classification scheme. Both the METS clusters and331 331

hysteresis classes have event metrics with good discriminatory power; but there was little overlap for a given332 332

metric. For instance, two of the metrics shaded in Table 3 (e.g., SSCPeak and the difference in discharge333 333

values at the beginning and end of an event (QRecess)) show an ability to discriminate between the clusters334 334

generated by METS, but little statistical power to discriminate between the six classes of the hysteresis335 335

classification method. In contrast, both the hysteresis index (HI) and time between peak SSC and peak flow336 336
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(a) Cluster 1. n = 234

(b) Cluster 2. n = 125

(c) Cluster 3. n = 116

(d) Cluster 4. n = 128

Figure 10: Six storm events closest to the centroid of the four Mad River dataset METS clusters (K = 4,
N = 603) — (a) cluster 1 events have a broad clockwise hysteresis pattern featuring an early and relatively
brief duration of high SSC, (b) cluster 2 events have a narrow clockwise hysteresis loop and broad sedigraphs
and hydrographs with streamflows that do not fully return to baseline levels, (c) cluster 3 events have flashier
and sometimes multi-peaked sedigraphs that are shorter in duration, and (d) cluster 4 have a delayed rise
of hydrograph and sedigraph, and typically more aligned.
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(TQSSC) show power to discriminate between the hysteresis classes, but not the MET clusters (Table 3).337 337

Similar differences in discriminatory power were observed in metrics related to antecedent conditions, rainfall338 338

characteristics, and streamflow/sediment characteristics (Supporting Information Table S3 to Table S5).339 339

Figure 11: Typical hydrometeorological characteristics of METS clusters as represented by storm event

Z-score metrics for each of the four clusters.

Next, we explored the hydrometeorotological factors associated with the four METS clusters using event340 340

metric Z-score values. Again, these event metrics were not used as input to the clustering algorithm, but341 341

as a means to study linkages between these characteristics and the resulting clusters. The storm events of342 342

cluster 1 have greater amounts of precipitation (positive Z-score for P and PMax) and wetter antecedent343 343

conditions exhibited by higher mean BFNorm, SMDeep,SMShallow, A3P and A14P . In general, these factors344 344

are associated with higher stream discharge as confirmed by the positive Z-score for Log (QNorm), QNorm,345 345
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and FI (flood intensity) as well as higher peak SSC values. Other notable characteristics include hydrographs346 346

that return to baseline flow (negative Z-score for QRecess), and a rapid rise in the sedigraph and hydrograph347 347

(negative Z-score for TSSC and TQ) and positive Z-score for HI, which translate to a 2D hysteresis that is348 348

dominated by a broad clockwise pattern (observed in Figure 9a and Figure 10a).349 349

Cluster 2 is associated with smaller precipitation events (negative Z-score for P and PMax) and drier350 350

antecedent conditions (negative BFNorm, SMDeep, A3P and A14P Z-scores), both resulting in lower stream351 351

discharge (negative Log (QNorm), QNorm, and FI Z-scores). These events also have positive QRecess and352 352

SSCRecess Z-score values. These two metrics were designed to capture whether streamflow and SSC return353 353

to baseline levels; positive scores are associated with events that do not return to base levels (Figure 9b and354 354

Figure 10b). Additional characteristics include lower peak SSC concentrations and negative Z-scores for BL355 355

(indicative of watersheds that respond more slowly to a rainfall event), and a longer duration between the356 356

peak SSC and center of mass for rainfall (positive Z-score for TPSSC). The latter translates to hysteresis357 357

patterns with more narrow loop, which is confirmed visually (Figure 9b and Figure 10b), and by the negative358 358

Z-score for hysteresis index.359 359

Cluster 3 events have a rapid rise in both streamflow and SSC (Figure 9c and Figure 10c) and are360 360

associated with a positive Z-scores for QRecess and negative for SSCRecess, which is indicative of sedigraphs361 361

that return to base levels and hydrographs that do not. The sedigraph is also often characterized by multiple362 362

peaks; and in general, there is a short duration between the peak SSC and the center of mass for rainfall363 363

(negative Z-score for TPSSC) as well as between the peak SSC and peak discharge (negative TQSSC). In364 364

addition, these events have lower precipitation (negative Z-scores for P and PMax) and stream discharge365 365

(negative Log (QNorm), QNorm, and FI), as well as Z-scores that approach zero for BFNorm, SMDeep,366 366

SMShallow, A3P and A14P , which indicate average antecedent conditions.367 367

Lastly, cluster 4 events are associated with higher precipitation (positive Z-score for P ) that are longer368 368

in duration (positive Z-score for DP ); however, these events have less intense rainfall (near zero Z-score for369 369

PMax), and are associated with average to fairly dry antecedent conditions (i.e., slightly negative Z-score370 370

values for BFNorm, SMDeep, SMShallow, A3P and A14P ), all of which results in near average streamflows371 371
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(near zero Z-score for Log (QNorm), QNorm, and FI). Other event characteristics include a long time to372 372

peak SSC and Q (positive Z-score for TSSC and TQ) and larger amounts of sediment transport during events373 373

(positive SSLNorm).374 374

4.3 Effects of Additional Watersheds on METS Clustering375 375

The number and type of event clusters/classes are dependent on geographic range of study. In re-running376 376

the METS analysis on the expanded regional Vermont dataset, the number of clusters increased from K = 4377 377

to K = 9 (Supporting Information Figure S2). This is not surprising given the differences, particularly378 378

in topography and land use, associated with the added watersheds. Hungerford Brook, for instance, is a379 379

low gradient agricultural basin, while Allen Brook drains a highly developed suburban area (Supporting380 380

Information Table S1). The METS results show the expanded dataset cluster 5 to have a substantially large381 381

number (54%) of counter-clockwise hysteresis loops, which correspond to events where the sedigraph peaks382 382

after the hydrograph (hysteresis Class III), and no events that are clockwise (hysteresis Class II or Class IV)383 383

(Supporting Information Figure 12 and Table S6).384 384
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(a) (b)

(c)

Figure 12: Storm events closest to the centroid of the cluster 5 dominated by counter clockwise hysteresis type

events (when K = 9) in the expanded regional Vermont dataset, discovered by including more watersheds:

(a) all 56 events in cluster 5 superimposed, with the mean plotted as a solid line, (b) distribution of cluster

by hysteresis loop classification, and (c) six events closest to the centroid of the cluster (n = 56).

5 Discussion385 385

We present a new clustering approach within the broader discipline of event-based studies — one that386 386

leverages the temporal information in two or more time series for the purpose of grouping or identifying387 387

similar events — in this manuscript, a hydrological event comprising hydrograph and sedigraph data modeled388 388

as three-dimensional C-Q-T trajectories. This contrasts with current hydrological event approaches that389 389

either collapse the time dimension (e.g., 2D hysteresis pattern analysis of Lloyd et al. (2016b)) or focus on390 390

the response of a single variable such as the DTW clustering approach of Dupas et al. (2015); the latter391 391

re-scales events using a single (ideal) hydrograph and then clusters the concentration response. While these392 392

approaches are important to a variety of research applications, these 2-D hysteresis methodologies lose the393 393

temporal information, while the latter requires a rescaling of the C-Q variables. The multivariate version394 394
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of DTW-D used in the METS clustering of this manuscript is designed to extract relationships between the395 395

time series of two or more variables, resulting in a dataset partitioning that is dissimilar and complementary396 396

to existing hysteresis methods.397 397

5.1 Effects of Regional Scale on METS Clustering.398 398

Our motivations for limiting the primary analysis to the Mad River watershed were two-fold. First,399 399

meteorological data were not available for the additional watersheds; and secondly, we wanted, at least400 400

initially, to control for certain watershed characteristics such as topography and land use (e.g., the Mad401 401

River has primarily two land use types - forest and agriculture). In this single watershed study, we identified402 402

four predominant clusters for hydrological events occurring between the period from 2013 and 2016, with403 403

one cluster type occurring most frequently (38%), and 64% of the events categorized as clockwise patterns.404 404

This relatively small number of event types (i.e., four clusters) might be expected, given the uniformity of405 405

watershed characteristics across the six Mad River monitoring sites; as this is similar in number to other406 406

event analyses from single study areas. Bende-Michl et al. (2013) identified 3-4 cluster in a study on nutrient407 407

dynamics; Mather and Johnson (2015) identified 5-7 clusters when analyzing C-Q loops; and 3 nutrient-event408 408

response types were identified in the work of Dupas et al. (2015). In general, there is a great deal of interest409 409

and merit in tracking the change in both the number and type of event responses within a single study area,410 410

particularly for example, when monitoring in-stream changes prior to and after restoration efforts. However,411 411

other monitoring applications may require tracking changes across watersheds at larger geographical scale;412 412

and one might expect the number of clusters (event types) to increase with the geographic range of study413 413

as demonstrated in Section 4.3.414 414

Regardless of regional scale, we found the METS clustering to be heavily influenced by the degree to415 415

which both of the time series (SSC and Q) return (or not) to base levels at the end of the event. This was416 416

evidenced both visually (Figure 10) and by the significance of the SSCRecess and QRecess metrics (Table 3417 417

and Figure 11). From a hydrological perspective, the rate and degree of recession (return to baseline flow418 418

and background concentration levels) are important indicators of soil moisture, groundwater elevations, and419 419
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the resulting hydrological flowpaths. Classification schemes based on the shape and direction of hysteresis420 420

do not necessarily capture this “return to baseline conditions” behavior because the overall C-Q patterns are421 421

primarily driven by the middle portion of the hydrograph-sedigraph (i.e. largest offset between C-Q) rather422 422

than differences between the times series at the start or end of the event. The ability of the METS clustering423 423

to capture this return-to-baseline conditions phenomena, in addition to other metrics, holds promise for424 424

many applications (e.g., model validation) used in forecasting floods, water quality monitoring, watershed425 425

similarity studies, and detecting change in watershed functions.426 426

5.2 Leveraging Methodological Strengths to Group Events427 427

The post-cluster analysis performed on event metrics (hydrological and meteorological metrics in Table 2)428 428

was an attempt to explore which factors (i.e., characteristics associated with the event time series) might429 429

be driving the METS clustering, bearing in mind that these metrics were not used as inputs to the430 430

clustering analysis itself. Prior event-based hydro-meteorological studies have successfully used this type of431 431

post-statistical analysis to tease out factors important in discriminating between (or correlated with) event432 432

groupings. Examples include the classifying of event hysteresis patterns to study erosional processes (Seeger433 433

et al., 2004; Nadal-Romero et al., 2008; Sherriff et al., 2016; Hamshaw et al., 2018).434 434

Here, we highlight some key results from our post-cluster statistical analysis, particularly the event metric435 435

with statistically significant differences across the METS clustering and/or hysteresis classification. First,436 436

while the event hysteresis index (HI) was identified, not surprisingly, as important for differentiating between437 437

the hysteresis class types (see Table 3 in Supporting Information), the temporal hydrograph and sedigraph438 438

metrics (e.g., time to peaks – TQ, and TSSC), as well as the degree to which both time series return to439 439

baseline conditions (QRecess and SSCRecess) were not identified as important drivers. In contrast, these440 440

four metrics as well as the Peak SSC (SSCPeak), duration of stormflow (DQ) and antecedent precipitation441 441

metrics (Section 4.2.2) were identified as important for differentiating between the METS-based clusters442 442

(Table 3 and Supporting Information Table S3).443 443
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5.3 Using Methods in Tandem to Leverage Strengths444 444

(a) (b)

Figure 13: Application of METS after pre-classifying events based on hysteresis directions of (a) clockwise

hysteresis and (b) counter clockwise hysteresis that can correspond to general proximity and timing of erosion

source activation. METS clustering further partitions these hysteresis classes into sub-clusters (visualized

as two example events) distinguishable by different hydrograph and sedigraph characteristics. Photos from

observed, active erosion sources within the Mad River watershed.

Each of the clustering and classification approaches have unique strengths and weaknesses; and the445 445

post-statistical analyses (e.g., Tukey HSD test and Z-scores of Section 4.2.2) provide some guidance on446 446
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method selection that best aligns with manager or stakeholder goals. However, using more than one method447 447

in tandem may help to leverage methodological strengths. For example, in event-based suspended sediment448 448

studies — those aimed at identifying the proximity of riverine erosion sources, a two-phased approach449 449

may add value. Let’s consider our expanded dataset in which more than two thirds of the events have450 450

clockwise hysteresis patterns. A first phase might use hysteresis classification to prioritize the clockwise451 451

versus counter-clockwise nature of the hysteresis patterns, as the direction embeds key process information.452 452

This Phase I classification could then be further partitioned into subgroups (via METS methodology) to453 453

help refine the understanding of watershed processes.454 454

To highlight the potential of such an approach, we applied the 2-D hysteresis analysis and METS455 455

clustering in tandem using the expanded dataset of Section 4.3. In Phase I, hydrological events were456 456

classified (e.g., into clockwise and counter-clockwise groups) based on their hysteresis patterns; and in457 457

Phase II, the METS clustering was applied to each of the Phase I classes, respectively (Figure 13 and458 458

Supporting Information Figure S3 and Figure S4). Clockwise hysteresis patterns are typically indicative459 459

of erosion sources (e.g., gullies or rills) that are located very close to the monitoring site. Whereas the460 460

events in the counter-clockwise group are characterized by hydrographs that occur (and peak) prior to461 461

the accompanying sedigraphs. These are often indicative of more distal sediment sources (e.g., upstream462 462

streambank collapse). The METS sub-clusters shown in the lower half of Figure 13 (sub-clusters B), were463 463

differentiated by temporal information that was not fully captured by the Phase I hysteresis classification.464 464

Both sub-clusters are characterized by hydrographs and sedigraphs that return more completely (relative to465 465

sub-clusters A) to baseline levels. Whether used on its own or on a dataset that has been pre-classified or466 466

grouped by some other means, METS offers hydrological researchers a flexible and powerful approach for467 467

data-driven analysis of high-frequency water quality data; and the methodology may be easily adapted to468 468

different analysis objectives.469 469
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5.4 Challenges and Opportunities470 470

The sparsity of hydrological events is an inherent data challenge that relies on data-driven or machine learning471 471

methods of analysis. Our study area, a typical humid and temperate watershed, experiences on average about472 472

30 rainfall-runoff (i.e., storm) events a year. Other recent, prominent event-based studies (Wymore et al.,473 473

2019; Sherriff et al., 2016; Vaughan et al., 2017) are similarly constrained by event sizes ranging between474 474

8 and 90 events per monitoring site. Albeit large from an environmental monitoring perspective, these475 475

relatively small sample sizes cause significant challenges for machine learning methods. The challenges are476 476

compounded when analyzing multivariate time series generated from in-situ sensors that must be kept online477 477

during extreme events and operating simultaneously. Currently, the hydrological informatics community is478 478

investing significantly in the integration and maintenance of data hubs that comprise multiple researchers479 479

across multiple organizations such as those of the Consortium of Universities for the Advancement of480 480

Hydrological Sciences, Inc. (CUAHSI, 2019). Despite the development of new machine learning methods481 481

to address data sparsity issues, another promising approach is to generate synthetic hydrological storm482 482

events as demonstrated in this work.483 483

METS clustering operates on delineated events and is influenced by the degree to which both time series484 484

(SSC and Q) return (or not) to base levels at the end of the event. This highlights the importance of precise485 485

event delineation in METS clustering. In hydrology, many event-based studies rely on semi-automated and486 486

somewhat subjective methods to identify the start and end of an event, particularly when handling multipeak487 487

(consecutive) events (Wymore et al., 2019; Vaughan et al., 2017; Hamshaw et al., 2018; Sherriff et al., 2016;488 488

Gellis, 2013). Automation of event delineation is another area that can benefit from advances in machine489 489

learning methods, new data hubs, and access to synthetic, pre-delineated event data.490 490

A key challenge with any clustering method is determining the optimal number, K, of categories (e.g., the491 491

correct number of storm event types). In this work, we selectK based on the inflection point of an elbow plot.492 492

However, identifying the inflection point is often subjective. This is further complicated in hydrogeological493 493

applications, where the optimal number of categories is dependent on both the research objectives as well494 494

as the geographic location. In this proof-of-concept, we made no assumptions or preconceptions about the495 495
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desired number of outcome categories. However, domain experts familiar with a particular region of study496 496

may have intuitive knowledge regarding the desired number of outcomes. Varying the number of clusters in497 497

METS is relatively straightforward and not computationally intensive; thus, researchers can easily evaluate498 498

the effect of cluster number – particularly when methods for evaluating “optimal” (e.g., the elbow method)499 499

are not definitive. Alternatively, one could replace the METS clustering algorithm with an alternative500 500

algorithm such as the density-based clustering algorithm of Ester et al. (1996), which does not require the501 501

number of clusters as an input.502 502

The METS clustering approach is applicable to any water quality constituent or solute (e.g., nitrate,503 503

phosphorous and conductivity), which would be expected to demonstrate very different C-Q-T trajectories504 504

and resulting clusters compared to suspended sediment concentration response (Lloyd et al., 2016a; Zuecco505 505

et al., 2016). Additionally, the approach may be extended beyond a single parameter (e.g., SSC) to506 506

multiple parameters (e.g., SSC and nitrate) to explore/reveal any unknown interactions during storm events.507 507

Expansion to multiple parameters will bring interesting visualization and analysis challenges. One approach508 508

may be to visualize events as 3-D signal trajectories such as those we presented in this work.509 509

6 Conclusion510 510

The rapidly increasing volume and availability of high-frequency time series data offer considerable511 511

opportunity to analyze watershed systems at the storm event scale. In this work, we introduce the512 512

multivariate event time series (METS) approach for categorizing hydrological storm events into a limited513 513

number of clusters given data from multiple sensors deployed in the Mad River watershed in Vermont,514 514

USA. In order to validate the approach, we showed that stochastic generation of synthetic hydrographs and515 515

concentration graphs provided a simple and effective solution to over-coming the data sparsity challenge in516 516

training machine learning algorithms on environmental data. The approach is flexible enough to be used517 517

with any water quality constituents (e.g., nitrate, phosphorous and conductivity) alone or in combination.518 518

We highlight areas for further research to expand the application of event-based analysis. Additionally,519 519
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we discuss how the METS clustering can be used in tandem with a traditional hysteresis based event520 520

classification scheme. Whether used on its own or in tandem with other partitioning methods, this method521 521

offers hydrological researchers a flexible and powerful approach for analyzing high-frequency water quality522 522

data; and opens up new possibilities for interpreting emergent event behavior in watersheds.523 523
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8 Supporting Information657 657

This supporting information contains tables and figures to provide additional information on the following658 658
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1. Table S1: Study watershed characteristics.660 660

2. Figure S1: Matrix representation of multivariate time series.661 661

3. Algorithm S1: K-medoids algorithm for hydrological event clustering.662 662

4. Algorithm S2: Dynamic time warping algorithm for calculating the distance between two time series.663 663

5. Table S2: Default parameter settings for synthetic hydrograph and concentration-graph generator.664 664

6. Table S3: Result of post-hoc Tukey HSD test for all pairwise comparisons of antecedent conditions665 665

metrics.666 666

7. Table S4: Result of post-hoc Tukey HSD test for all pairwise comparisons of rainfall characteristics667 667

metrics.668 668

8. Table S5: Result of post-hoc Tukey HSD test for all pairwise comparisons of streamflow and sediment669 669

characteristics metrics.670 670

9. Figure S2: SSE for varying number of clusters for Mad River dataset and Expanded dataset.671 671
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dataset(n= 56).673 673
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Table S1: Study watershed characteristics.

Characteristic
Freeman

Brook

Folsom

Brook

Mill

Brook

High

Bridge

Brook

Shepard

Brook

Mad

River

Allen

Brook

Hungerford

Brook

Wade

Brook

Area (km2)
17.0 18.2 49.2 8.6 44.6 344.0 25.5 16.7 48.1

Minimum
elevation (m)

266 229 216 225 195 140 61 320 33

Maximum
elevation (m)

860 886 1114 796 1117 1245 351 981 354

Elevation range
(m)

594 657 898 571 923 1105 290 661 321

Stream order
4th 4th 4th 3rd 4th 5th 3rd 3rd 5th

Drainage density
(km/km2)

1.95 1.77 2.16 2.45 2.38 0.97 1.81 1.57 2.28

% Forested land
76.2 77.6 89.2 66.7 92.2 85.5 39.3 95.1 40.5

% Developed
land

8.3 12.7 1.5 16.6 1.0 4.7 26.5 0.8 7.9

% Agricultural
land

14.6 8.8 7.0 15.5 5.6 8.0 28.6 0.6 44.8

% Other land
1.7 0.7 0.8 2.1 1.1 1.1 5.6 3.5 6.8

Figure S1: A matrix representation of multivariate time series (m variables, n time steps); a column for each

variable and a row for variable value at each time step.
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Algorithm K-medoids

Input: storm events (i.e., their multivariate time series representations); number k of clusters to be

generated.

Output: k clusters generated from the events.

Procedure

Randomly select k events as medoids from the input events.

1 while termination criteria are not met do

2 // Termination condition can be convergence of medoids or maximum allowed iterations.

3 Phase 1: Assign each event to its closest medoid.

4 Phase 2: From each cluster consisting of the medoid and events assigned to it, select an event that

gives the smallest sum of distances to all the other events in the cluster and make the selected

event a new medoid.

5 end

6 Return each cluster, consisting of a medoid and all events assigned to it.

Algorithm S1: K-medoids algorithm for hydrological event clustering.
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Algorithm DTW

Input: T1, T2: time series, W: warping window size

Output: distance between T1 and T2

Procedure

1 Let a and b be the lengths of T1 and T2, respectively.

2 Let m be the number of variables in T1 and T2, respectively.

3 Create a distance matrix D of size a× b and initialize all matrix elements to ∞.

4 D[0, 0] := 0. // Initialize the first entry in D.

5 i := 1. j = 1. // Initialize the index of a warping path between T1 and T2.

6 while i ≤ a and j ≤ b do

7 Calculate the squared Euclidean distance,
∑m

c=1(t1
c
i − t2cj)

2, between the ith item in T1 and each

of the jth item in T2 within the range of j = [i−W, i+W ].

8 Update D[i, j] to
∑m

c=1(t1
c
i − t2cj)

2 + min{D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]}.

9 increase i by 1.

10 end

11 return
√

D[a, b].

Algorithm S2: Dynamic time warping algorithm for calculating the distance between two time series.

Figure S2: SSE for varying number of clusters for Mad River dataset and Expanded dataset.
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Table S2: Default parameter settings for synthetic hydrograph and concentration-graph generator.

Hydrograph

Type Duration-of-peak Time-to-peak Delay Recess Initial Baseflow

Flashy - early peak

return to baseflow
0.4 0.5 0 0.1 0

Flashy - early peak

incomplete return to baseflow
0.4 0.5 0 0.4 0

Early peak

slow return to baseflow
0.8 0.2 0 0.1 0

Early peak

incomplete return to baseflow
0.8 0.2 0 0.4 0

Mid-peak

return to baseflow
0.8 0.5 0 0.1 0

Mid-peak

incomplete return to baseflow
0.8 0.5 0 0.4 0

Delayed rise to mid-peak

return to baseflow
0.8 0.5 0.2 0.1 0.1

Delayed rise to mid-peak

incomplete return to baseflow
0.8 0.5 0.2 0.4 0.1

Concentration-graph

Type Duration Time-to-peak Onset Recess Storm-flow

Early peak 0.5 0.5 0 0 0

Late peak 0.5 0.5 0.5 0 0

Table S3: Result of post-hoc Tukey HSD test for all pairwise comparisons of antecedent conditions metrics.
Within each classification scheme if two classes/clusters do not share a letter the mean metric value is
significantly different (alpha = 0.05).

Antecedent conditions
Metric TLASTP A3P A14P SMSHALLOW SMDEEP BFNORM

METS clusters
cluster 1 a a a a a a
cluster 2 a b b a a b
cluster 3 a b c b a a a b
cluster 4 a c b a a b

Hysteresis classes
Class I a a b a a a a
Class II a a a a a a
Class III a b a a a a
Class IV a a b a a a a
Class V a a b a a a a
Complex a a b a a a a
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Table S4: Result of post-hoc Tukey HSD test for all pairwise comparisons of rainfall characteristics metrics.
Within each classification scheme if two classes/clusters do not share a letter the mean metric value is
significantly different (alpha = 0.05).

Rainfall characteristics
Metric P PMAX DP TPSSC

METS clusters
cluster 1 a a a a
cluster 2 b b a b
cluster 3 b b a a
cluster 4 a c b b

Hysteresis classes
Class I a b a a b a b
Class II a a a c
Class III b a a d
Class IV a b a a b a
Class V a b a a b a b
Complex a b a b b d

Table S5: Result of post-hoc Tukey HSD test for all pairwise comparisons of streamflow and sediment
characteristics metrics. Within each classification scheme if two classes/clusters do not share a letter the
event metric value is significantly different (alpha = 0.05).

Streamflow and sediment characteristics
Metric BL QNORM Log(QNORM ) SSLNORM FLUXNORM

METS clusters
cluster 1 a a a a a
cluster 2 b b b a a
cluster 3 a c a b b a a
cluster 4 b c a b a a a

Hysteresis classes
Class I a b a a b a a
Class II c a a a a
Class III a b a b a b
Class IV a c a a b a a
Class V a b a a b a a
Complex b a a b a a
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Hysteresis class Count

I - Linear (Counter-clockwise) 7

II - Clockwise 0

III - Counter-clockwise 30

IV - Linear then clockwise 0

V - Figure eight 9

Complex (Counter-clockwise) 10

Total 56

Table S6: Distribution of hysteresis loop classes over METS cluster 5 (when K = 9) in the expanded dataset

(n = 56).
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(a) Sub-cluster A. n = 70

(b) Sub-cluster B. n = 140

(c) Sub-cluster C. n = 92

(d) Sub-Cluster D. n = 167

Figure S3: Three storm events closest to the centroid of the four extended dataset tandem clockwise hysteresis
sub-clusters (K = 4, N = 496) — (a) cluster 1 events have sedigraph peaks that occur well before the
hydrographs resulting in an “L” shaped loop, (b) cluster 2 have quickly rising hydrographs and sedigraphs,
(c) cluster 3 have slow rising hydrographs and sedigraphs, and (d) cluster 4 have sedigraphs that peak before
the hydrographs resulting in broad clockwise loops.
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(a) Sub-cluster A. n = 46

(b) Sub-cluster B. n =44

Figure S4: Three storm events closest to the centroid of the four extended dataset tandem counter clockwise
hysteresis sub-clusters (K = 2, N = 90) — (a) cluster 1 events have sedigraph peaks that occur well after
the hydrographs resulting in an approximate mirror image of “L” shaped loop and (b) cluster 2 events have
sedigraph peaks that occur slightly after the hydrograph peaks.
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