
Performance Evaluation of Main-Memory R-tree
Variants

Sangyong Hwang1, Keunjoo Kwon1, Sang K. Cha1, Byung S. Lee2

1. Seoul National University
{syhwang, icdi, chask}@kdb.snu.ac.kr

2. University of Vermont
bslee@cs.uvm.edu

Abstract. There have been several techniques proposed for improving the per-
formance of main-memory spatial indexes, but there has not been a comparative
study of their performance. In this paper we compare the performance of six
main-memory R-tree variants: R-tree, R*-tree, Hilbert R-tree, CR-tree, CR*-
tree, and Hilbert CR-tree. CR*-trees and Hilbert CR-trees are respectively a
natural extension of R*-trees and Hilbert R-trees by incorporating CR-trees’
quantized relative minimum bounding rectangle (QRMBR) technique. Addi-
tionally, we apply the optimistic, latch-free index traversal (OLFIT) concur-
rency control mechanism for B-trees to the R-tree variants while using the
GiST-link technique. We perform extensive experiments in the two categories
of sequential accesses and concurrent accesses, and pick the following best
trees. In sequential accesses, CR*-trees are the best for search, Hilbert R-trees
for update, and Hilbert CR-trees for a mixture of them. In concurrent accesses,
Hilbert CR-trees for search if data is uniformly distributed, CR*-trees for search
if data is skewed, Hilbert R-trees for update, and Hilbert CR-trees for a mixture
of them. We also provide detailed observations of the experimental results, and
rationalize them based on the characteristics of the individual trees. As far as
we know, our work is the first comprehensive performance study of main-
memory R-tree variants. The results of our study provide a useful guideline in
selecting the most suitable index structure in various cases.

1. Introduction

With the emergence of ubiquitous computing devices (e.g., PDAs and mobile phones)
and the enabling technologies for locating such devices, the problem of managing and
querying numerous spatial objects poses a new scalability challenges [JJ+01]. Since
such environment involves a huge number of spatial updates and search operations,
existing disk-resident DBMS may not scale up enough to meet the high performance
requirement. In this regard, main-memory DBMS (MMDBMS) promises a solution to
the scalability problem as the price of memory continues to drop.

MMDBMS aims at achieving high transaction performance by keeping the data-
base in main memory and limiting the disk access only to the sequential log writing
and occasional checkpointing. Recent research finds that MMDBMS accomplishes up

to two orders-of-magnitude performance improvements over disk-resident DBMS by
using MMDB-specific optimization techniques. For example, the differential logging
scheme improves the update and recovery performance of MMDBMS significantly by
enabling fully parallel accesses to multiple logs and backup partition disks [LKC01].
Furthermore, with the primary database resident in memory without the complex
mapping to disk, MMDBMS can focus on maximizing the CPU utilization. Tech-
niques have been proposed to improve the search performance of B+-trees by utiliz-
ing the L2 cache better [RR00, CGM01, BMR01].

For multidimensional databases, our previous work on the cache-conscious R-tree
(CR-tree) focuses on an inexpensive compression of minimum bounding rectangles
(MBRs) to reduce L2 cache misses during a main-memory R-tree search [KCK01].
Specifically, the CR-tree uses a quantized relative representation of MBR (QRMBR)
as the key. This compression effectively makes the R-tree wider for a given index
node size, thus improving the search performance with reduced L2 cache misses. To
handle dimensionality curse for the high-dimensional disk-resident R-tree, a similar
technique called A-tree has been proposed independently [SY+02].

To handle concurrent index updates in real-world database applications while lev-
eraging off-the-shelf multiprocessor systems, we have previously proposed the opti-
mistic latch-free index traversal (OLFIT) as a cache-conscious index concurrency
control technique that incurs minimal cache miss overhead [CH+01]. A conventional
index concurrency control like lock coupling ([BS77]) pessimistically latches index
nodes on every access, and incurs many coherence cache misses on shared-memory
multiprocessor systems. OLFIT, based on a pair of node read and update primitives,
completely eliminates latch operations during the index traversal. It has been empiri-
cally shown that OLFIT combined with the link technique ([LY81]) scales the search
and update performance of B+-tree almost linearly on the shared-memory multiproc-
essor system.

To provide a useful guidance on selecting the most appropriate main memory spa-
tial index structure in different cases, this paper investigates the search and update
performance of main-memory R-tree variants experimentally in the sequential and
concurrent access environments. To ensure a fair comparison, some of the existing R-
tree variants need to be upgraded. For this purpose, we first apply the QRMBR tech-
nique to R*-tree and Hilbert R-tree and call the resulting trees the CR*-tree and the
Hilbert CR-tree, respectively. Thus, the main-memory R-tree variants consist of R-
tree, R*-tree, Hilbert R-tree, CR-tree, CR*-tree, and Hilbert CR-tree. Additionally, we
apply the OLFIT to these R-tree variants, and for this we use the GiST-link technique
instead of the B-link technique [KMH97].

In the sequential access experiments, the CR*-tree shows the best search perform-
ance and the Hilbert R-tree shows the best update performance. Others (i.e., R-tree,
R*-tree, CR-tree) are significantly below the two. The concurrent access experiments
confirm the efficacy of the OLFIT in the scalability of search and update perform-
ance. The result shows that the Hilbert CR-tree is the best in the search performance if
the data is uniformly distributed whereas CR*-tree is the best if the data is skewed,
and the Hilbert R-tree is the best in the update performance. In both experiments, we

judge that the Hilbert CR-tree is the best overall considering both the search and the
update.

This paper is organized as follows. Section 2 briefly introduces the QRMBR and
the OLFIT. Section 3 describes how we implement main-memory R-tree variants with
the QRMBR technique. Section 4 elaborates on the concurrency control of main-
memory R-trees. Section 5 presents the experimental result of index search and up-
date performance for sequential and concurrent accesses. Section 6 summarizes the
paper and outlines further work.

2. Background

2.1. Quantized relative representation of an MBR for the CR-tree

The quantized relative representation of an MBR (QRMBR) is a compressed repre-
sentation of an MBR, which allows packing more entries in an R-tree node [KCK01].
This leads to a wider index tree, better utilization of cache memory, and consequently
faster search performance. The QRMBR is done in two steps: representing the coor-
dinates of an MBR relative to the coordinates of the “reference MBR” and quantizing
the resulting relative coordinates with a fixed number of bits. The reference MBR of a
node encloses all MBRs of its children. Relative coordinates require a smaller number
of significant bits than absolute coordinates and, therefore, allow a higher compres-
sion in the quantization step.

The high performance of the QRMBR technique comes from the following two
points. First, the compression is computationally simple and doable only with the data
already cached, that is, the reference MBR and the MBR to be compressed. Second,
the overlap-check between a QRMBR and a query rectangle can be done by comput-
ing the QRMBR of the query rectangle and comparing it with the given QRMBR.
This property allows the overlap-check to be done by compressing the query rectangle
once instead of decompressing the QRMBR of every node encountered during the
search.

2.2. OLFIT concurrency control of main-memory B+-trees

Concurrency control of main-memory indexes typically uses latches placed inside an
index node. A latch operation involves a memory-write, whether the operation is for
acquiring or releasing a latch and whether the latch is in a shared-mode or an exclu-
sive-mode. In the case of a conventional index concurrency control, a cache block
containing a latch is invalidated even if the index is not updated. The optimistic,
latch-free index traversal (OLFIT) concurrency control reduces this kind of cache
misses by using two primitives for node accesses: UpdateNode and ReadNode
[CH+01]. These primitives use a version as well as a latch in each node as shown in
the following algorithms.

Algorithm UpdateNode
U1. Acquire the latch.
U2. Update the content of the node.
U3. Increment the version.
U4. Release the latch.

Algorithm ReadNode
R1. Copy the value of the version into a register.
R2. Read the content of the node.
R3. If the latch is locked, go to Step R1.
R4. If the current value of the version is different from the copied value in the reg-
ister, go to Step R1.

Step R3 and Step R4 of ReadNode guarantee that transactions read a consistent

version of a node without holding any latch. Specifically, Step R3 checks if the node
is being updated by another transaction, and Step R4 checks if the node has been up-
dated by another transaction while the current transaction is reading the content in
Step R2. Consequently, if the read operation in Step R2 is interfered by any other
concurrent update, the transaction cannot pass either Step R3 or Step R4 since the
condition of either one becomes true.

Provided with the two primitive operations, Cha et al. combines the B-link tech-
nique with the primitives to support the concurrency control of B+-trees. The B-link
technique places a high key and a link pointer in each node. A high key is the upper
bound of all key values in a node, and a link pointer is a pointer to the right neighbor
of the node [LY81]. The purpose of a link pointer is to provide an additional method
for reaching a node, and the purpose of a high key is to determine whether to traverse
through the link pointer or not. All splits are done from left to right, and a new node
splitting from a node becomes its right neighbor. These link pointers make all nodes
that split from a node reachable from the original node and make the correct child
node reachable without lock coupling in the case of concurrent splits of nodes.

3. Main-Memory R-tree Variants

3.1. Overview

The R-tree is a height-balanced tree for indexing multi-dimensional keys [Gut84].
Other variants considered in this section are founded on this structure. Each node is
associated with an MBR that encompasses the MBRs of all descendents of the node.
The search operation traverses the tree to find all leaf nodes of which the MBRs over-
lap the query rectangle. On insertion of a new entry, the R-tree finds the leaf node that
needs the least area enlargement of its MBR in order to contain the MBR of the new
node.

The R*-tree is a variant of the R-tree that uses a different insertion policy and
overflow treatment policy for better search performance [BK+90]. While traversing
the tree for inserting a new entry, it chooses the internal node that needs the least area
enlargement of its MBR and the leaf node that needs the least overlap enlargement of
its MBR. However, this policy degrades the update performance because the CPU
cost of finding such a leaf node is quadratic with the number of entries [BK+90].
Therefore, using the least overlap enlargement is left as an optional policy. If a node
overflows then, before splitting it, the R*-tree first tries to reinsert part of the entries
that are the farthest from the center of the node’s MBR. This reinsertion improves the
search performance by dynamically reorganizing the tree structure. However, it
makes the concurrency control difficult without latching the whole tree. Compared
with the split algorithm of the R-tree that considers only the area, that of the R*-tree
considers the area, the margin, and the overlap, and achieves better clustering.

The Hilbert R-tree uses the Hilbert curve to impose a total order on the entries in
an index tree [KF94]. Since all entries are totally ordered by their Hilbert values, the
insertion and deletion algorithms are the same as those of the B+-tree except adjusting
the MBRs of nodes to cover all descendent MBRs. The Hilbert R-tree was originally
proposed to improve the search performance of disk-resident R-trees. However, here
we use the Hilbert value-based ordering to improve the update performance of main-
memory R-trees. Specifically, in the insertion algorithm, the R-tree or the R*-tree ex-
amines the MBRs of all nodes encountered to find the node with the least area or
overlap enlargement, but the Hilbert R-tree uses a binary search on the total ordering
and, therefore, performs only simple value comparisons. In the case of a node over-
flow, the R-tree or the R*-tree examines all entries in the node and separates them
into two groups, but the Hilbert R-tree simply moves half the ordered entries to a new
node. In the deletion algorithm, the R-tree or the R*-tree first searches the tree given
the MBR of the entry to delete and this search may visit multiple paths. However, the
Hilbert R-tree removes an entry with its Hilbert value and does not visit multiple
paths. The total ordering in the Hilbert R-tree has another advantage. While the R-tree
and R*-tree are non-deterministic in allocating the entries to a node and thus different
sequences of insertions result in different tree structures, the Hilbert R-tree does not
suffer from such non-determinism.

By applying the QRMBR technique of the CR-tree to R*-tree and Hilbert R-tree,
we obtain the cache-conscious R-tree variants CR*-tree and Hilbert CR-tree, re-
spectively. Their search and update algorithms are the same as those of their non-
cache-conscious counterparts except that they use QRMBRs instead of MBRs for
search and adjust QRMBRs instead MBRs for update. The QRMBR technique im-
proves the search performance significantly in return for a slight degradation of the
update performance caused by the overhead of adjusting QRMBRs.

3.2. Node structures

Fig. 1 shows the node structures of the R-tree variants. C denotes the control informa-
tion comprising the number of entries in the node and the level of the node in the tree.

R denotes the reference MBR used in the QRMBR technique. Each node of the CR-
tree, CR*-tree, and Hilbert CR-tree contains uncompressed MBRs corresponding to
the QRMBRs to improve the concurrency and update performance. The reason for
this is that the QRMBR technique requires re-computing all the QRMBRs in a node
when the reference MBR of the node changes. Since the QRMBR technique is a lossy
compression scheme, without uncompressed MBRs the recomputation of the
QRMBRs requires visiting all children.

The QRMBRs and the Hilbert values make the node size bigger and, therefore, in-
crease the memory consumption. This overhead, however, is not significant. For ex-
ample, we will see in Table 1 at section 5.1.2 that the largest gap is only 3.2 times be-
tween Hilbert CR-trees and R/R*-trees when the node size is 128 bytes. Moreover,
increasing the node size does not entail increasing the memory access cost as much.
For example, the Hilbert CR-tree, whose node size is the biggest by containing both
the QRMBRs and the Hilbert values, reads only the control information, reference
MBR, QRMBRs, and pointers for a search operation. Likewise, an update operation
reads only the control information, pointers, and Hilbert values before it reaches a leaf
node.

4. Concurrency Control of Main-Memory R-trees

4.1. Link technique for R-trees

The OLFIT for main-memory B+-trees improves the performance of concurrent ac-
cesses by reducing the coherence cache misses, combined with The B-link technique
[CH+01]. For R-trees, We use OLFIT with the GiST-link technique [KMH97]. Like
the B-link technique, the GiST-link technique requires all the nodes at each level to be
chained together through link pointers. The GiST-link technique uses a node sequence
number (NSN) to determine if the right neighbor needs to be examined. The NSN is
taken from a counter called the global NSN, which is global in the entire tree and in-
creases monotonically. During a node split, this counter is incremented and the new

MBRsC pointers

R-tree and R*-tree

MBRsC pointers Hilbert values

Hilbert R-tree

MBRsC pointersQRMBRs

CR-tree and CR*-tree

MBRsC pointers Hilbert valuesQRMBRs

Hilbert CR-tree

R

R

Fig. 1. Node structures of the R-tree variants (C: control information, R: reference MBR)

value is assigned to the original node. The new sibling node inherits the original
node’s old NSN. A traversal can now determine whether to follow a link or not by
memorizing the global NSN value when reading the parent and comparing it with the
NSN of the current node. If the latter is higher, the node must have been split and,
therefore, the operation follows the links until it encounters a node whose NSN is less
than or equal to the one originally memorized.

In the case of the Hilbert R-tree and the Hilbert CR-tree, we use the GiST-link
technique only for the search. We use the B-link technique for the insertion and the
deletion because the index entries are totally ordered by their Hilbert values. Link
pointers are for dual use as either B-links or GiST-links. In this paper, we consider
only the 1-to-2 split for the Hilbert R-tree and the Hilbert CR-tree because the GiST-
link technique does not allow redistribution of entries between nodes.

4.2. Search algorithm of R-tree variants using OLFIT

Fig. 2 shows the algorithm for performing R-tree search while using the GiST-link
based OLFIT. First, in Lines 1 and 2, it pushes the pointer to the root node and the

// Note that QRMBR is used instead of MBR for CR, CR*, and Hilbert CR-trees.
procedure search(query_rectangle)
1. gnsn:= global_nsn;
2. push(stack, [root, gnsn]);
3. while(stack is not empty) {
4. [node, nsn]= pop(stack);
5. RETRY:
6. stack_savepoint = get_savepoint(stack);
7. result_savepoint:= get_savepoint(result);
8. saved_version:= node.version;
9. if (nsn < node.nsn) push(stack, [node.link, nsn]);
10. if (node is internal) {
11. gnsn:= global_nsn;
12. for (each entry [MBR, pointer] in node) {
13. if (overlaps(query_rectangle, MBR)) push(stack, [pointer, gnsn]);
14. }
15. }
16. else { // node is a leaf
17. for (each entry [MBR, pointer] in node) {
18. if (overlaps(query_rectangle, MBR)) add(result, pointer);
19. }
20. }
21. if (node.latch is locked or node.version ≠ saved_version) {
22. rollback(stack, stack_savepoint);
23. rollback (result, result_savepoint);
24. goto RETRY;
25. }
26. }

Fig. 2. Traversal with the OLFIT for search

global NSN into the stack. Then, in Line 4 it pops the pointer to a node and the asso-
ciated global NSN from the stack and reads the corresponding node. If the popped
node is an internal node, then in Lines 11~14 it pushes into the stack all pointers to
the child nodes whose MBRs (or QRMBRs) overlap the query rectangle. If the node
is a leaf node, then in Lines 17~19 it adds all pointers to the data objects whose
MBRs (or QRMBRs) overlap the query rectangle to the search result. This procedure
is repeated until the stack is empty.

Each time it iterates, the pointer to a node is pushed with the value of the global
NSN When the pointer to a node in the stack is used to visit a node, in Line 9 the
global NSN pushed together is compared with the NSN of the node. If the latter is
higher, the node must have been split and, therefore, the link pointer of the node is
pushed into the stack together with the original global NSN. This guarantees that the
right siblings that split off the original node will also be examined later on.

Lines 5~8 and Lines 21~25 are specific to the OLFIT. Line 8, which saves the ver-
sion of the node, corresponds to Step R1 of the ReadNode primitive in Section 2.2.
Line 21, which checks the state of the latch and the version of the node, corresponds
to Steps R3 and R4. That is, while reading the node, if the search operation is inter-
fered by other concurrent updates on the node, the condition in Line 21 becomes true
and the search operation retries to read the node. (Refer to Line 24 and Line 5). Be-
fore the retry, in Lines 22~23 the stack and the result are rolled back to the state re-
corded in Lines 6~7 before reading the node. The repeatable-read transaction isolation
level is achieved by locking all pointers to data objects in the result buffer.

4.3. Update algorithm of R-tree variants using OLFIT

For performing R-tree updates while using the OLFIT concurrency control, the Hil-
bert R-tree and the Hilbert CR-tree use the B-link technique and the other variants use
the GiST-link technique. The insertion operation first looks for the leaf node to hold
the new entry, and the deletion operation first looks for the leaf node holding the entry
to delete. As in the search, the ReadNode primitive presented in Section 2.2 is used
in the process. After finding the target leaf, the operations update the leaf node and
propagate the update upward using the UpdateNode primitive presented in Section
2.2. We omit the detailed algorithm due to space limit. Interested readers are referred
to [TR02].

5. Experimental Evaluation

In this section, we compare the index access performance of the main memory R-tree
variants with respect to such attributes as data size, data distribution, query selectivity,
index node size, the number of parallel threads, and update ratio (= the number of up-
dates / the total number of searches and updates combined). We run our experiments
on a Sun Enterprise 5500 server with 8 CPUs (UltraSPARC II, 400MHz) running So-
laris 7. Each CPU has 8Mbyte L2 cache whose cache line size is 64 bytes.

5.1. Setup

5.1.1. Data and queries
We use three data sets containing hundred thousand (100K), one million (1M), and
ten million (10M) data rectangles each. All rectangles have the same size 4m × 4m,
and their centers are either uniformly distributed or skewed within a 40km × 40km
region. Skewed data are simulated with the Gaussian distribution of mean 20,000m
and standard deviation 200m.

We use two region queries, where the regions are specified with square windows
whose centers are distributed uniformly within the 40km × 40km region. The window
sizes are 126m × 126m and 400m × 400m and the resulting selectivity values are
0.001% and 0.01%, respectively.

Updates are performed as a sequence of random moves. Each move deletes an en-
try at the coordinates <x, y> and inserts it into a new position at <x±30r1, y±30r2>
where r1 and r2, 0≤r1,r2≤1, are random numbers. This random move is one of the
cases that can be generated using the GSTD software [TN00] and is typical of moving
objects. Assuming cars are moving at 100km/hour (= 30m/second), we choose 30m
for the variation. The variation does not affect the update performance significantly
because the update operation consists of independent two operations, delete and in-
sert.

5.1.2. Indexes
We implement the R-tree and its five variants R*-tree, Hilbert R-tree, CR-tree, CR*-
tree, and Hilbert CR-tree. (In this section, we label them as R, R*, HR, CR, CR*, and
HCR) We allow duplicate key values in these indexes and initialize them by inserting
data rectangles and the associated pointers. We set the pointer size to 4bytes as we run
our experiment in the 32-bit addressing mode. Additionally, we use 4-byte QRMBRs
in the CR, CR*, and Hilbert CR-trees. In the R*-tree and the CR*-tree, we do not use
the reinsertion because it makes the concurrency control difficult without latching the
whole tree, nor we use the least overlap enlargement policy because it improves the
search performance only slightly at the expense of significant update performance.

Table 1 shows the node fanout, index height, and index size of the main-memory

Table 1. Node fanout, Index height and Index size for different node sizes (data size=1M,
uniform dist.)

Fanout Height Index size (Mbytes) Node
size

(bytes) R R* HR CR CR* HC
R R R* HR CR CR* HC

R R R* HR CR CR* HC
R

128 5 5 3 4 4 3 11 11 34 13 13 34 50 50 149 65 65 159
256 11 11 8 9 9 7 7 7 8 8 8 9 39 39 54 50 50 65
384 18 18 13 15 15 11 6 6 7 6 6 7 35 34 49 42 41 57
512 24 24 17 20 20 15 5 5 6 6 6 6 34 33 47 41 40 54

1024 50 50 35 41 41 31 4 4 5 5 5 5 32 31 44 39 38 50
2048 101 101 72 84 84 63 4 4 4 4 4 4 31 30 42 37 36 48
3072 152 152 109 127 127 95 3 3 4 4 4 4 31 30 42 37 36 47

R-tree variants created on the data of size 1M. The numbers are based on the index
entry size 20 bytes for the R and R*-tree, 24 bytes for the CR and CR*-tree, 28 bytes
for the Hilbert R-tree, and 32 bytes for the Hilbert CR-tree.

5.1.3. Experimental outline
We perform two kinds of experiments: the sequential access experiment and the con-
current access experiment. In each experiment, we measure the throughput of a se-
quence of search (i.e., range query) and update (i.e., random move) operations. Opera-
tion/sec refers to the number of executed operations divided by the total execution
time.

In the sequential access experiment, we initialize indexes by inserting data objects
in sequence and perform searches using a sequence of region queries mentioned
above. In the concurrent access experiment, we initialize indexes inserting data ob-
jects concurrently in eight threads and then compare the concurrent search and update
performance between the OLFIT and the conventional latched-based link technique
[LY81, KMH97]. The performed searches and updates are the same as those in the
sequential access experiment and are divided evenly to each thread. We also compare
the performance among OLFIT techniques for a mixture of searches and updates
mixed at different ratios.

We omit such a mixture of operations in the sequential experiment because the re-
sulting performance is a linear interpolation between the results from searches only
and updates only and, thus, is calculated without running the actual experiment. In the
concurrent case, the performance from the mixture is not an interpolation because
search and update may interfere with each other.

The way QRMBR and OLFIT techniques improve the throughput is by reducing
the number of L2 cache misses. There are, however, other factors contributing to im-
proving the throughput as well, like the number of instructions in the code. Since
main memory performance is particularly sensitive to code implementations, serious
attention should be paid to removing code-specific biases among the R-tree variants.
In this regard, we demonstrate the consistency between the performance measured as
the throughput and the performance measured as the number of cache misses (using
the Perfmon tool [Enb99]).

There is no R-tree variant winning consistently in all possible cases. Therefore, it
could be misleading to rank the variants by their search or update performance with-
out considering the complexity of the comparisons. In this regard, we have performed
a benchmark of 288 test cases generated as a combination of the attributes mentioned
above and selected the winners by their rates of winning the cases. The results ob-
tained are consistent with those obtained in the experiments presented in this section.
We omit the results due to space limit. Interested readers are referred to [TR02].

5.2. Sequential access performance

Fig. 3 shows the sequential access performance for different node sizes when one mil-
lion data rectangles (1M) are uniformly distributed, and Fig. 4 shows the same infor-

mation when the data rectangles have the Gaussian distribution. From Fig. 3(a)-(b)
and Fig. 4(a)-(b), we make the following observations about the search performance
for both data distributions alike. First, they confirm that the QRMBR technique im-
proves the search performance significantly. That is, a cache-conscious version (i.e.,
CR, CR*, HCR) is better than its non-cache-conscious counterpart (i.e., R, R*, HR).
Second, CR*-trees show the best search performance, which is attributed to not only
the QRMBR technique but also the well-clustered nodes generated with the R*-tree
split algorithm. Third, the search performance fluctuates as the index node size in-
creases. This reflects the dual effect of increasing the fanout – it increases the cost of
reading a node but decrease the overall search cost by reducing the tree height.

From the same figures, we see that Hilbert CR-trees perform better than CR-trees
in uniformly distributed data but worse in skewed data. That is, skewed data gives a
disadvantage to Hilbert CR-trees. This result contradicts Kamel and Faloutsos’s con-
jecture [KF94] that skewness of data gives a favor to Hilbert R-trees. The cause is the
difference in the experimental settings. For instance, their experiment uses 2-to-3 split
in Hilbert R-trees and reinsertion in R*-trees whereas ours does not.

0

10

20

30

40

50

60

70

80

90

100

0 512 1024 1536 2048 2560 3072
Node size (bytes)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR HR
CR* R*
CR R

0

5

10

15

20

25

30

35

0 512 1024 1536 2048 2560 3072
Node size (bytes)

0

20

40

60

80

100

120

0 512 1024 1536 2048 2560 3072
Node size (bytes)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 3. Sequential access performance w.r.to node size (data size = 1M, uniform dist.)

0

100

200

300

400

500

600

0 512 1024 1536 2048 2560 3072
Node size (bytes)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR HR
CR* R*
CR R

0

20

40

60

80

100

120

0 512 1024 1536 2048 2560 3072
Node size (bytes)

0

10

20

30

40

50

60

70

0 512 1024 1536 2048 2560 3072
Node size (bytes)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 4. Sequential access performance w.r.to node size (data size=1M, Gaussian dist.)

From Fig. 3(c) and Fig. 4(c), we make the following observations about the update
performance for both data distributions. First, they confirm that the Hilbert value-
based ordering improves the update performance significantly. That is, Hilbert R-trees
are better than R-trees and R*-trees, and Hilbert CR-trees are better than CR-trees and
CR*-trees. Second, the update performance of Hilbert R-trees is better than that of
Hilbert CR-trees. This is due to the Hilbert CR-tree’s overhead of maintaining the
QRMBRs. Third, CR*-trees show poor update performance, unlike their excellent
search performance. This is due to the computational overhead of R*-tree insertion
for finding the leaf node with the minimum overlap enlargement and splitting a node.

Fig. 5 and Fig. 6 show the search and update performance with respect to the size
of data with each of the two distributions. First, it appears that the performance gap
among the R-tree variants decreases as the data size increases. This is true for the ab-
solute performance, but it is the opposite for the relative performance. The reason for
this increase is that the increase of data size causes more cache misses and consequen-
tially highlights the performance gain of the QRMBR.

0

20

40

60

80

100

120

140

160

180

200

0.1 1 10
Data size (x1,000,000)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR HR
CR* R*
CR R

0

20

40

60

80

100

120

140

0.1 1 10
Data size (x1,000,000)

0

20

40

60

80

100

120

140

160

0.1 1 10
Data size (x1,000,000)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 5. Sequential access performance w.r.to data size (node size=1024B, uniform dist.)

0

500

1,000

1,500

2,000

2,500

0.1 1 10
Data size (x1,000,000)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR HR
CR* R*
CR R

0

100

200

300

400

500

600

700

800

0.1 1 10
Data size (x1,000,000)

0

20

40

60

80

100

120

140

0.1 1 10
Data size (x1,000,000)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 6. Sequential access performance w.r.to data size (node size=1024B, Gaussian dist.)

Second, with uniformly distributed data, the performance rank among the R-tree
variants is the same for all data sizes whereas, with the skewed data, the cache-
conscious versions lose advantage in the search performance as the data size de-
creases. This happens partly due to the computation overhead of the QRMBR method
for reducing the number of cache misses. In addition, three factors reduce the effec-
tiveness of the QRMBR. First, if the data is small enough to fit in the cache, a cache
miss hardly occurs and, therefore, there is little gain from the QRMBR. Second, data
skew reduces the gap between the size of a parent node’s MBR and the size of its
child node’s MBR, and this diminishes the effectiveness of the relative representation
of an MBR and, as a result, increases the quantization errors. Third, these quantization
errors are higher for lower query selectivity. The aforementioned instance in Fig. 6(a)
is the worst case caused by the accumulation of these three factors.

From all these observations about sequential access performance, we judge that
Hilbert CR-trees are the best considering both the search performance and the update
performance. These trees are not the first choice in any category, but are consistently
the second or the third choice by a small margin in most cases. In summary, we con-
clude that CR*-trees are the best choice for the search performance only, Hilbert R-
trees are the best choice for the update performance only, and Hilbert CR-trees are the
best choice when considering both.

5.3. Concurrent access performance

Fig. 7 shows the search and update performance for different numbers of threads, con-
trasted between the conventional latch-based and the OLFIT-based concurrency con-
trol, given the data with size 1M and the uniform distribution. (We omit the results
obtained with the Gaussian distribution data due to space limit. Most observations are
same as in the uniform distribution case.) We set the node size to 512 bytes, which is
the median of the seven different node sizes used. Besides, we consider only the CR*-
tree, Hilbert R-tree, and Hilbert CR-tree because the other three variants are poorer in
both the search and update performance.

From this figure, we make the following observations. First, they confirm the ad-
vantage of the OLFIT in the concurrent search and update performance. That is, as the
number of threads increases, CR*-trees, Hilbert R-trees, and Hilbert CR-trees become
significantly better with the OLFIT than with the Latch. Second, the relative search
performance among the R-tree variants differs between the two data distributions.
Specifically, the best search performer is Hilbert CR-trees for the uniform distribution
and CR*-trees for the Gaussian distribution. The reason is that data skew is not favor-
able to Hilbert R-trees, as discussed in the sequential access case. Third, the update
performance shows the same relative performance as in the sequential access experi-
ment.

Fig. 8 shows the concurrent search and update performance with respect to the data
size for the uniform distribution given the number of threads 4. (We omit the results
from the Gaussian distribution and other number of threads for the same reason as
above.) We make the following observations. First, like the case of sequential access

performance, the absolute performance gap decreases among the R-tree variants while
the relative performance gap increases as the data size increases. Second, the per-
formance advantage of the OLFIT over the Latch becomes more noticeable for
smaller data and queries with lower selectivity. We draw the following reasons for
this. First, smaller data size increases the coherence cache miss rate because evidently
it increases the possibility of cached data being invalidated by another processor. Sec-
ond, in the case of higher query selectivity, queries access nodes near the leaves in
addition to those near the root. This causes other types of cache misses (e.g., capacity
cache miss) to occur as well and, as a result, reduces the relative adverse effect of the
coherence cache misses.

Fig. 9 and Fig. 10 show the concurrent access performance for different update ra-
tios for each of the two data distributions. The OLFIT is used for the concurrency
control and the number of threads is fixed to eight. We make the following observa-
tions from these figures. First, the winners change places as the update ratio changes.
The pattern is slightly different between the two data distributions. In the case of the
uniform distribution, Hilbert CR-trees are the best in the low to middle range of the

0

100

200

300

400

500

600

0 2 4 6 8
Number of threads

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR/OLFIT
HCR/Latch
HR/OLFIT
HR/Latch
CR*/OLFIT
CR*/Latch

0

50

100

150

200

250

0 2 4 6 8
Number of threads

0

100

200

300

400

500

600

0 2 4 6 8
Number of threads

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 7. Concurrent access performance w.r.to the number of threads (data size=1M, uniform)

0

20

40

60

80

100

120

140

160

180

200

0.1 1 10
Data size (x1,000,000)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR/OLFIT
HCR/Latch
HR/OLFIT
HR/Latch
CR*/OLFIT
CR*/Latch

0

50

100

150

200

250

300

350

400

450

500

0.1 1 10
Data size (x1,000,000)

0

50

100

150

200

250

0.1 1 10
Data size (x1,000,000)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 8. Concurrent access performance w.r.to data size (4 threads, uniform dist.)

update ratio and Hilbert R-trees are the best in the high range. Hilbert CR-trees fall
below Hilbert R-trees as the cost of managing QRMBR increases. In the case of the
Gaussian distribution, CR*-trees are the best or comparable to Hilbert CR-trees in the
low range, Hilbert CR-trees are the best in the middle range, and Hilbert R-trees are
the best in the high range. The initial lead of CR*-trees is due to the relatively poor
search performance of Hilbert R-trees and Hilbert CR-trees against skewed data.
CR*-trees fall below the other two as the number of updates increases due to the in-
creasing computational overhead. Second, related to the first observation, Hilbert CR-
trees have an advantage over the other two trees at the higher query selectivity.

From all these observations about concurrent access performance, we make the
same judgment as in the sequential access performance. Hilbert CR-trees are the best
choice for the search performance if the data is distributed uniformly whereas CR*-
trees are the best if the data is skewed, Hilbert R-trees are the best choice for the con-
current update performance, and Hilbert CR-trees are the best choice when consider-
ing both.

0

100

200

300

400

500

600

0 20 40 60 80 100
Update ratio (%)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

0

100

200

300

400

500

600

0 20 40 60 80 100
Update ratio (%)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR/OLFIT

HR/OLFIT

CR*/OLFIT

(a) Search selectivity = 0.001% (b) Search selectivity = 0.01%

Fig. 9. Concurrent access performance w.r.to update ratios (8 threads, data size=1M, uniform)

0

500

1,000

1,500

2,000

2,500

3,000

0 20 40 60 80 100
Update ratio (%)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

0

50
100

150
200

250

300
350

400
450

500

0 20 40 60 80 100
Update ratio (%)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR/OLFIT

HR/OLFIT

CR*/OLFIT

(a) Search selectivity = 0.001% (b) Search selectivity = 0.01%

Fig. 10. Concurrent access performance w.r.to update ratios (8 threads, data size=1M,Gaussian)

5.4. Consistency with the number of cache misses

Fig. 11 shows the number of cache misses in sequential accesses for different node
sizes when one million data rectangles are uniformly distributed, and Fig. 12 shows
the number in concurrent accesses for different numbers of threads. We do not show
the case of skewed data because the observed results are the same.

The numbers of cache misses of the R-tree variants in Fig. 11(a)-(b) are ranked ex-
actly in the reverse order of the throughputs in Fig. 3(a)-(b), and the numbers in Fig.
11(c) are almost in the reverse order of those in Fig. 3(c). In Fig. 11(c), the HCR-tree
and the HR-tree incur more cache misses than the other R-tree variants despite show-
ing the best update performance in Fig. 3(c). This is because an insertion in HCR-
trees and HR-trees needs far less computation than the other R-tree variants for choos-
ing the appropriate leaf node. Fig. 12 shows that the number of cache misses of the
variants are ranked in the reverse order of the throughputs in Fig. 7(a)-(c), including
the update case. We see that the numbers hardly increase with the number of threads

0

10

20

30

40

50

60

70

80

0 512 102
4

153
6

204
8

256
0

307
2

Node size (bytes)

C
ac

he
m

is
se

s p
er

 o
pe

ra
tio

n
(b

lo
ck

)

HCR HR

CR* R*

CR R

0

50

100

150

200

250

300

350

0 512 1024 1536 2048 2560 3072
Node size (bytes)

0

5

10

15

20

25

30

0 512 1024 1536 2048 2560 3072
Node size (bytes)

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 11. The number of cache misses (Sequential access, data size=1M, uniform)

0

10

20

30

40

50

60

0 2 4 6 8
Number of threads

C
ac

he
 m

is
se

s p
er

 o
pe

ra
tio

n
(b

lo
ck

)

0

20

40

60

80

100

120

140

0 2 4 6 8
Number of threads

0

10

20

30

40

50

60

0 2 4 6 8
Number of threads

HCR/OLFIT
HCR/Latch
HR/OLFIT
HR/Latch
CR*/OLFIT
CR*/Latch

(a) Search (selectivity=0.001%) (b) Search (selectivity=0.01%) (c) Update

Fig. 12. The number of cache misses (Concurrent access, data size=1M, uniform)

if OLFIT is used, whereas they do increase if Latch is used. This confirms the advan-
tage of OLFIT over Latch in concurrency control.

6. Summary and Further Work

In this paper, we compared the sequential and concurrent access (search and update)
performance of the main-memory R-tree and its five variants – R*-tree, Hilbert R-
tree, CR-tree, CR*-tree, and Hilbert CR-tree – while applying the QRMBR technique
for faster search performance and the OLFIT technique for better concurrency con-
trol. We used the GiST-link technique to apply the OLFIT technique to the R-tree
variants. Naturally, the QRMBR improved the index search performance and the
OLFIT improved the concurrency.

We conducted experiments for evaluating the performance in terms of the through-
put. As a result, we found the following trees performing the best in each category: in
sequential accesses, CR*-trees for search, Hilbert R-trees for update, and Hilbert CR-
trees when considering both and, in concurrent accesses, Hilbert CR-trees for search-
ing uniformly distributed data, CR*-trees for searching skewed data, Hilbert R-trees
for update, and Hilbert CR-tree for a mixture of search and update except an update-
intensive case. We also demonstrated that the throughput results were not biased by
the code implementations by showing the consistency between the observations based
on the number of cache misses and those based on the throughput.

We also demonstrated that the throughput results were not biased by the code im-
plementation by showing the consistency between the observations based on the
number of cache misses and those based on the throughput.

All queries considered in this paper are range search queries. We plan to pursue
further experiments using the nearest neighbor queries. Like range search queries,
these queries involve traversing R-trees while pushing nodes into and popping nodes
from a stack. Therefore, they are amenable to tree structures clustered so that more
index entries can be examined with the same block cached. Compared with range
queries, however, nearest neighbor queries incur higher computation cost and, there-
fore, clustering is more important than compression to search performance.

Currently our R-tree search algorithm does not prevent the phantom phenomenon.
To our knowledge, there does not exist any algorithm addressing this problem for
main-memory indexes. We are currently working on it.

Other further works include using real (dynamic) geographical data sets instead of
synthetic ones and using different process architecture like MPP instead of SMP. As
MPP incurs higher communication cost among processors than SMP, we expect the
advantage of the OLFIT over the latch-based concurrency control should become
eminent. We also plan to incorporate the R-tree variants into a main memory spatial
data management system and perform a benchmark comparison instead of simulation.

7. References

[BMR01] Philip Bohannon, Peter McIlroy, and Rajeev Rastogi, “Improving Main-Memory In-
dex Performance with Partial Key Information”, In Proc. of ACM SIGMOD Conf., 2001,
pages 163-174.

[BS77] Rudolf Bayer and Mario Schkolnick, “Concurrency of Operations on B-Trees”, Acta
Informatica 9, 1977, pages 1-21.

[BK+90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger, “The
R*-tree: An Efficient and Robust Access Method for Points and Rectangles”, In Proc. of
ACM SIGMOD Conf., 1990, pages 322-331.

[CGM01] Shimin Chen, Philip B. Gibbons, and Todd C. Mowry, “Improving Index Perform-
ance through Prefetching”, In Proc. of ACM SIGMOD Conf., 2001, pages 235-246.

[CH+01] Sang K. Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon, “Cache-
Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory Multiproces-
sor Systems”, In Proc. of VLDB Conf., 2001

[Enb99] R. Enbody, Perfmon Performance Monitoring Tool, 1999, available from
http://www.cps.msu.edu/~enbody/perfmon.html.

[Gut84] Antonin Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching”, In
Proc. of ACM SIGMOD Conf., 1984, pages 125-135.

[JJ+01] Ravi Jain, Christian S. Jensen, Ralf-Hartmut Güting, Andreas Reuter, Evaggelia Pi-
toura, Ouri Wolfson, George Samaras, and Rainer Malaka, “Managing location information
for billions of gizmos on the move—what's in it for the database folks?”, IEEE ICDE 2001
Panel.

[KCK01] Kihong Kim, Sang K. Cha, and Keunjoo Kwon, “Optimizing Multidimensional Index
Trees for Main Memory Access”, In Proc. of ACM SIGMOD Conf., 2001, pages 139-150.

[KF94] Ibrahim Kamel and Christos Faloutsos, “Hilbert R-tree: An Improved R-tree using
Fractals”, In Proc. of VLDB Conf., 1994, pages 500-509.

[KMH97]Marcel Kornacker, C. Mohan, and Joseph M. Hellerstein, “Concurrency and Recov-
ery in Generalized Search Trees”, In Proc. of ACM SIGMOD Conf., 1997, pages 62-72.

[LKC01] Juchang Lee, Kihong Kim, and Sang K. Cha, “Differential Logging: A Commutative
and Associative Logging Scheme for Highly Parallel Main Memory Database”, In Proc. of
IEEE ICDE Conf., 2001, pages 173-182.

[LY81] Philip L. Lehman and S. Bing Yao, “Efficient Locking for Concurrent Operations on
B-Trees”, ACM TODS, Vol. 6, No. 4, 1981, pages 650-670.

[RR00] Jun Rao and Kenneth Ross, “Making B+-trees Cache Conscious in Main Memory”,
In Proc. of ACM SIGMOD Conf., 2000, pages 475-486.

[SY+02] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, Haruhiko Kojima, “Spa-
tial Index of High-dimensional Data Based on Relative Approximation”, VLDB Journal
11(2), 2002, pages 93-108

[TN00] Y. Theodoridis and M.A. Nascimento, “Generating Spatio temporal Datasets on the
WWW”, ACM SIGMOD Record, September 2000.

[TR02] Sangyong Hwang, Keunjoo Kwon, Sang K. Cha, Byung S. Lee, “Performance
Evaluation of Main-Memory R-tree Variants”, Technical Report, 2002, available at
http://kdb.snu.ac.kr/papers/SSTD03_TR.pdf

	Introduction
	Background
	Quantized relative representation of an MBR for the CR-tree
	OLFIT concurrency control of main-memory B+-trees

	Main-Memory R-tree Variants
	Overview
	Node structures

	Concurrency Control of Main-Memory R-trees
	Link technique for R-trees
	Search algorithm of R-tree variants using OLFIT
	Update algorithm of R-tree variants using OLFIT

	Experimental Evaluation
	Setup
	Data and queries
	Indexes
	Experimental outline

	Sequential access performance
	Concurrent access performance
	Consistency with the number of cache misses

	Summary and Further Work
	References

