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Abstract. There have been several techniques proposed for improving the per-
formance of main-memory spatial indexes, but there has not been a comparative 
study of their performance. In this paper we compare the performance of six 
main-memory R-tree variants: R-tree, R*-tree, Hilbert R-tree, CR-tree, CR*-
tree, and Hilbert CR-tree. CR*-trees and Hilbert CR-trees are respectively a 
natural extension of R*-trees and Hilbert R-trees by incorporating CR-trees’ 
quantized relative minimum bounding rectangle (QRMBR) technique. Addi-
tionally, we apply the optimistic, latch-free index traversal (OLFIT) concur-
rency control mechanism for B-trees to the R-tree variants while using the 
GiST-link technique. We perform extensive experiments in the two categories 
of sequential accesses and concurrent accesses, and pick the following best 
trees. In sequential accesses, CR*-trees are the best for search, Hilbert R-trees 
for update, and Hilbert CR-trees for a mixture of them. In concurrent accesses, 
Hilbert CR-trees for search if data is uniformly distributed, CR*-trees for search 
if data is skewed, Hilbert R-trees for update, and Hilbert CR-trees for a mixture 
of them. We also provide detailed observations of the experimental results, and 
rationalize them based on the characteristics of the individual trees. As far as 
we know, our work is the first comprehensive performance study of main-
memory R-tree variants. The results of our study provide a useful guideline in 
selecting the most suitable index structure in various cases. 

1. Introduction 

With the emergence of ubiquitous computing devices (e.g., PDAs and mobile phones) 
and the enabling technologies for locating such devices, the problem of managing and 
querying numerous spatial objects poses a new scalability challenges [JJ+01]. Since 
such environment involves a huge number of spatial updates and search operations, 
existing disk-resident DBMS may not scale up enough to meet the high performance 
requirement. In this regard, main-memory DBMS (MMDBMS) promises a solution to 
the scalability problem as the price of memory continues to drop. 

MMDBMS aims at achieving high transaction performance by keeping the data-
base in main memory and limiting the disk access only to the sequential log writing 
and occasional checkpointing. Recent research finds that MMDBMS accomplishes up 



 

to two orders-of-magnitude performance improvements over disk-resident DBMS by 
using MMDB-specific optimization techniques. For example, the differential logging 
scheme improves the update and recovery performance of MMDBMS significantly by 
enabling fully parallel accesses to multiple logs and backup partition disks [LKC01]. 
Furthermore, with the primary database resident in memory without the complex 
mapping to disk, MMDBMS can focus on maximizing the CPU utilization. Tech-
niques have been proposed to improve the search performance of B+-trees by utiliz-
ing the L2 cache better [RR00, CGM01, BMR01]. 

For multidimensional databases, our previous work on the cache-conscious R-tree 
(CR-tree) focuses on an inexpensive compression of minimum bounding rectangles 
(MBRs) to reduce L2 cache misses during a main-memory R-tree search [KCK01]. 
Specifically, the CR-tree uses a quantized relative representation of MBR (QRMBR) 
as the key. This compression effectively makes the R-tree wider for a given index 
node size, thus improving the search performance with reduced L2 cache misses. To 
handle dimensionality curse for the high-dimensional disk-resident R-tree, a similar 
technique called A-tree has been proposed independently [SY+02]. 

To handle concurrent index updates in real-world database applications while lev-
eraging off-the-shelf multiprocessor systems, we have previously proposed the opti-
mistic latch-free index traversal (OLFIT) as a cache-conscious index concurrency 
control technique that incurs minimal cache miss overhead [CH+01]. A conventional 
index concurrency control like lock coupling ([BS77]) pessimistically latches index 
nodes on every access, and incurs many coherence cache misses on shared-memory 
multiprocessor systems. OLFIT, based on a pair of node read and update primitives, 
completely eliminates latch operations during the index traversal. It has been empiri-
cally shown that OLFIT combined with the link technique ([LY81]) scales the search 
and update performance of B+-tree almost linearly on the shared-memory multiproc-
essor system. 

To provide a useful guidance on selecting the most appropriate main memory spa-
tial index structure in different cases, this paper investigates the search and update 
performance of main-memory R-tree variants experimentally in the sequential and 
concurrent access environments. To ensure a fair comparison, some of the existing R-
tree variants need to be upgraded. For this purpose, we first apply the QRMBR tech-
nique to R*-tree and Hilbert R-tree and call the resulting trees the CR*-tree and the 
Hilbert CR-tree, respectively. Thus, the main-memory R-tree variants consist of R-
tree, R*-tree, Hilbert R-tree, CR-tree, CR*-tree, and Hilbert CR-tree. Additionally, we 
apply the OLFIT to these R-tree variants, and for this we use the GiST-link technique 
instead of the B-link technique [KMH97]. 

In the sequential access experiments, the CR*-tree shows the best search perform-
ance and the Hilbert R-tree shows the best update performance. Others (i.e., R-tree, 
R*-tree, CR-tree) are significantly below the two. The concurrent access experiments 
confirm the efficacy of the OLFIT in the scalability of search and update perform-
ance. The result shows that the Hilbert CR-tree is the best in the search performance if 
the data is uniformly distributed whereas CR*-tree is the best if the data is skewed, 
and the Hilbert R-tree is the best in the update performance. In both experiments, we 



judge that the Hilbert CR-tree is the best overall considering both the search and the 
update. 

This paper is organized as follows. Section 2 briefly introduces the QRMBR and 
the OLFIT. Section 3 describes how we implement main-memory R-tree variants with 
the QRMBR technique. Section 4 elaborates on the concurrency control of main-
memory R-trees. Section 5 presents the experimental result of index search and up-
date performance for sequential and concurrent accesses. Section 6 summarizes the 
paper and outlines further work. 

2. Background 

2.1. Quantized relative representation of an MBR for the CR-tree 

The quantized relative representation of an MBR (QRMBR) is a compressed repre-
sentation of an MBR, which allows packing more entries in an R-tree node [KCK01]. 
This leads to a wider index tree, better utilization of cache memory, and consequently 
faster search performance. The QRMBR is done in two steps: representing the coor-
dinates of an MBR relative to the coordinates of the “reference MBR” and quantizing 
the resulting relative coordinates with a fixed number of bits. The reference MBR of a 
node encloses all MBRs of its children. Relative coordinates require a smaller number 
of significant bits than absolute coordinates and, therefore, allow a higher compres-
sion in the quantization step. 

The high performance of the QRMBR technique comes from the following two 
points. First, the compression is computationally simple and doable only with the data 
already cached, that is, the reference MBR and the MBR to be compressed. Second, 
the overlap-check between a QRMBR and a query rectangle can be done by comput-
ing the QRMBR of the query rectangle and comparing it with the given QRMBR. 
This property allows the overlap-check to be done by compressing the query rectangle 
once instead of decompressing the QRMBR of every node encountered during the 
search. 

2.2. OLFIT concurrency control of main-memory B+-trees 

Concurrency control of main-memory indexes typically uses latches placed inside an 
index node. A latch operation involves a memory-write, whether the operation is for 
acquiring or releasing a latch and whether the latch is in a shared-mode or an exclu-
sive-mode. In the case of a conventional index concurrency control, a cache block 
containing a latch is invalidated even if the index is not updated. The optimistic, 
latch-free index traversal (OLFIT) concurrency control reduces this kind of cache 
misses by using two primitives for node accesses: UpdateNode and ReadNode 
[CH+01]. These primitives use a version as well as a latch in each node as shown in 
the following algorithms. 



 

Algorithm UpdateNode 
U1. Acquire the latch. 
U2. Update the content of the node. 
U3. Increment the version. 
U4. Release the latch. 

 
Algorithm ReadNode 
R1. Copy the value of the version into a register. 
R2. Read the content of the node. 
R3. If the latch is locked, go to Step R1. 
R4. If the current value of the version is different from the copied value in the reg-
ister, go to Step R1. 

 
Step R3 and Step R4 of ReadNode guarantee that transactions read a consistent 

version of a node without holding any latch. Specifically, Step R3 checks if the node 
is being updated by another transaction, and Step R4 checks if the node has been up-
dated by another transaction while the current transaction is reading the content in 
Step R2. Consequently, if the read operation in Step R2 is interfered by any other 
concurrent update, the transaction cannot pass either Step R3 or Step R4 since the 
condition of either one becomes true. 

Provided with the two primitive operations, Cha et al. combines the B-link tech-
nique with the primitives to support the concurrency control of B+-trees. The B-link 
technique places a high key and a link pointer in each node. A high key is the upper 
bound of all key values in a node, and a link pointer is a pointer to the right neighbor 
of the node [LY81]. The purpose of a link pointer is to provide an additional method 
for reaching a node, and the purpose of a high key is to determine whether to traverse 
through the link pointer or not. All splits are done from left to right, and a new node 
splitting from a node becomes its right neighbor. These link pointers make all nodes 
that split from a node reachable from the original node and make the correct child 
node reachable without lock coupling in the case of concurrent splits of nodes. 

3. Main-Memory R-tree Variants 

3.1. Overview 

The R-tree is a height-balanced tree for indexing multi-dimensional keys [Gut84]. 
Other variants considered in this section are founded on this structure. Each node is 
associated with an MBR that encompasses the MBRs of all descendents of the node. 
The search operation traverses the tree to find all leaf nodes of which the MBRs over-
lap the query rectangle. On insertion of a new entry, the R-tree finds the leaf node that 
needs the least area enlargement of its MBR in order to contain the MBR of the new 
node. 



The R*-tree is a variant of the R-tree that uses a different insertion policy and 
overflow treatment policy for better search performance [BK+90]. While traversing 
the tree for inserting a new entry, it chooses the internal node that needs the least area 
enlargement of its MBR and the leaf node that needs the least overlap enlargement of 
its MBR. However, this policy degrades the update performance because the CPU 
cost of finding such a leaf node is quadratic with the number of entries [BK+90]. 
Therefore, using the least overlap enlargement is left as an optional policy. If a node 
overflows then, before splitting it, the R*-tree first tries to reinsert part of the entries 
that are the farthest from the center of the node’s MBR. This reinsertion improves the 
search performance by dynamically reorganizing the tree structure. However, it 
makes the concurrency control difficult without latching the whole tree. Compared 
with the split algorithm of the R-tree that considers only the area, that of the R*-tree 
considers the area, the margin, and the overlap, and achieves better clustering. 

The Hilbert R-tree uses the Hilbert curve to impose a total order on the entries in 
an index tree [KF94]. Since all entries are totally ordered by their Hilbert values, the 
insertion and deletion algorithms are the same as those of the B+-tree except adjusting 
the MBRs of nodes to cover all descendent MBRs. The Hilbert R-tree was originally 
proposed to improve the search performance of disk-resident R-trees. However, here 
we use the Hilbert value-based ordering to improve the update performance of main-
memory R-trees. Specifically, in the insertion algorithm, the R-tree or the R*-tree ex-
amines the MBRs of all nodes encountered to find the node with the least area or 
overlap enlargement, but the Hilbert R-tree uses a binary search on the total ordering 
and, therefore, performs only simple value comparisons. In the case of a node over-
flow, the R-tree or the R*-tree examines all entries in the node and separates them 
into two groups, but the Hilbert R-tree simply moves half the ordered entries to a new 
node. In the deletion algorithm, the R-tree or the R*-tree first searches the tree given 
the MBR of the entry to delete and this search may visit multiple paths. However, the 
Hilbert R-tree removes an entry with its Hilbert value and does not visit multiple 
paths. The total ordering in the Hilbert R-tree has another advantage. While the R-tree 
and R*-tree are non-deterministic in allocating the entries to a node and thus different 
sequences of insertions result in different tree structures, the Hilbert R-tree does not 
suffer from such non-determinism. 

By applying the QRMBR technique of the CR-tree to R*-tree and Hilbert R-tree, 
we obtain the cache-conscious R-tree variants CR*-tree and Hilbert CR-tree, re-
spectively. Their search and update algorithms are the same as those of their non-
cache-conscious counterparts except that they use QRMBRs instead of MBRs for 
search and adjust QRMBRs instead MBRs for update. The QRMBR technique im-
proves the search performance significantly in return for a slight degradation of the 
update performance caused by the overhead of adjusting QRMBRs. 

3.2. Node structures 

Fig. 1 shows the node structures of the R-tree variants. C denotes the control informa-
tion comprising the number of entries in the node and the level of the node in the tree. 



 

R denotes the reference MBR used in the QRMBR technique. Each node of the CR-
tree, CR*-tree, and Hilbert CR-tree contains uncompressed MBRs corresponding to 
the QRMBRs to improve the concurrency and update performance. The reason for 
this is that the QRMBR technique requires re-computing all the QRMBRs in a node 
when the reference MBR of the node changes. Since the QRMBR technique is a lossy 
compression scheme, without uncompressed MBRs the recomputation of the 
QRMBRs requires visiting all children. 

The QRMBRs and the Hilbert values make the node size bigger and, therefore, in-
crease the memory consumption. This overhead, however, is not significant. For ex-
ample, we will see in Table 1 at section 5.1.2 that the largest gap is only 3.2 times be-
tween Hilbert CR-trees and R/R*-trees when the node size is 128 bytes. Moreover, 
increasing the node size does not entail increasing the memory access cost as much. 
For example, the Hilbert CR-tree, whose node size is the biggest by containing both 
the QRMBRs and the Hilbert values, reads only the control information, reference 
MBR, QRMBRs, and pointers for a search operation. Likewise, an update operation 
reads only the control information, pointers, and Hilbert values before it reaches a leaf 
node. 

4. Concurrency Control of Main-Memory R-trees 

4.1. Link technique for R-trees 

The OLFIT for main-memory B+-trees improves the performance of concurrent ac-
cesses by reducing the coherence cache misses, combined with The B-link technique 
[CH+01]. For R-trees, We use OLFIT with the GiST-link technique [KMH97]. Like 
the B-link technique, the GiST-link technique requires all the nodes at each level to be 
chained together through link pointers. The GiST-link technique uses a node sequence 
number (NSN) to determine if the right neighbor needs to be examined. The NSN is 
taken from a counter called the global NSN, which is global in the entire tree and in-
creases monotonically. During a node split, this counter is incremented and the new 
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Fig. 1. Node structures of the R-tree variants (C: control information, R: reference MBR) 



value is assigned to the original node. The new sibling node inherits the original 
node’s old NSN. A traversal can now determine whether to follow a link or not by 
memorizing the global NSN value when reading the parent and comparing it with the 
NSN of the current node. If the latter is higher, the node must have been split and, 
therefore, the operation follows the links until it encounters a node whose NSN is less 
than or equal to the one originally memorized. 

In the case of the Hilbert R-tree and the Hilbert CR-tree, we use the GiST-link 
technique only for the search. We use the B-link technique for the insertion and the 
deletion because the index entries are totally ordered by their Hilbert values. Link 
pointers are for dual use as either B-links or GiST-links. In this paper, we consider 
only the 1-to-2 split for the Hilbert R-tree and the Hilbert CR-tree because the GiST-
link technique does not allow redistribution of entries between nodes. 

4.2. Search algorithm of R-tree variants using OLFIT 

Fig. 2 shows the algorithm for performing R-tree search while using the GiST-link 
based OLFIT. First, in Lines 1 and 2, it pushes the pointer to the root node and the 

// Note that QRMBR is used instead of MBR for CR, CR*, and Hilbert CR-trees. 
procedure search(query_rectangle)  
1.  gnsn:= global_nsn; 
2.  push(stack, [root, gnsn]); 
3.  while(stack is not empty) { 
4.     [node, nsn]= pop(stack); 
5.  RETRY: 
6.     stack_savepoint = get_savepoint(stack); 
7.     result_savepoint:= get_savepoint(result); 
8.     saved_version:= node.version; 
9.     if (nsn < node.nsn) push(stack, [node.link, nsn]); 
10.    if (node is internal) { 
11.       gnsn:= global_nsn; 
12.       for (each entry [MBR, pointer] in node) { 
13.          if (overlaps(query_rectangle, MBR)) push(stack, [pointer, gnsn]); 
14.       } 
15.    } 
16.    else {   // node is a leaf 
17.       for (each entry [MBR, pointer] in node) { 
18.          if (overlaps(query_rectangle, MBR)) add(result, pointer); 
19.       } 
20.    } 
21.    if (node.latch is locked or node.version ≠ saved_version) { 
22.       rollback(stack, stack_savepoint); 
23.       rollback (result, result_savepoint); 
24.       goto RETRY; 
25.    } 
26. } 

Fig. 2. Traversal with the OLFIT for search 



 

global NSN into the stack. Then, in Line 4 it pops the pointer to a node and the asso-
ciated global NSN from the stack and reads the corresponding node. If the popped 
node is an internal node, then in Lines 11~14 it pushes into the stack all pointers to 
the child nodes whose MBRs (or QRMBRs) overlap the query rectangle. If the node 
is a leaf node, then in Lines 17~19 it adds all pointers to the data objects whose 
MBRs (or QRMBRs) overlap the query rectangle to the search result. This procedure 
is repeated until the stack is empty. 

Each time it iterates, the pointer to a node is pushed with the value of the global 
NSN When the pointer to a node in the stack is used to visit a node, in Line 9 the 
global NSN pushed together is compared with the NSN of the node. If the latter is 
higher, the node must have been split and, therefore, the link pointer of the node is 
pushed into the stack together with the original global NSN. This guarantees that the 
right siblings that split off the original node will also be examined later on. 

Lines 5~8 and Lines 21~25 are specific to the OLFIT. Line 8, which saves the ver-
sion of the node, corresponds to Step R1 of the ReadNode primitive in Section 2.2. 
Line 21, which checks the state of the latch and the version of the node, corresponds 
to Steps R3 and R4. That is, while reading the node, if the search operation is inter-
fered by other concurrent updates on the node, the condition in Line 21 becomes true 
and the search operation retries to read the node. (Refer to Line 24 and Line 5). Be-
fore the retry, in Lines 22~23 the stack and the result are rolled back to the state re-
corded in Lines 6~7 before reading the node. The repeatable-read transaction isolation 
level is achieved by locking all pointers to data objects in the result buffer. 

4.3. Update algorithm of R-tree variants using OLFIT  

For performing R-tree updates while using the OLFIT concurrency control, the Hil-
bert R-tree and the Hilbert CR-tree use the B-link technique and the other variants use 
the GiST-link technique. The insertion operation first looks for the leaf node to hold 
the new entry, and the deletion operation first looks for the leaf node holding the entry 
to delete. As in the search, the ReadNode primitive presented in Section 2.2 is used 
in the process. After finding the target leaf, the operations update the leaf node and 
propagate the update upward using the UpdateNode primitive presented in Section 
2.2. We omit the detailed algorithm due to space limit. Interested readers are referred 
to [TR02]. 

5. Experimental Evaluation 

In this section, we compare the index access performance of the main memory R-tree 
variants with respect to such attributes as data size, data distribution, query selectivity, 
index node size, the number of parallel threads, and update ratio (= the number of up-
dates / the total number of searches and updates combined). We run our experiments 
on a Sun Enterprise 5500 server with 8 CPUs (UltraSPARC II, 400MHz) running So-
laris 7. Each CPU has 8Mbyte L2 cache whose cache line size is 64 bytes. 



5.1. Setup 

5.1.1. Data and queries 
We use three data sets containing hundred thousand (100K), one million (1M), and 
ten million (10M) data rectangles each. All rectangles have the same size 4m × 4m, 
and their centers are either uniformly distributed or skewed within a 40km × 40km 
region. Skewed data are simulated with the Gaussian distribution of mean 20,000m 
and standard deviation 200m. 

We use two region queries, where the regions are specified with square windows 
whose centers are distributed uniformly within the 40km × 40km region. The window 
sizes are 126m × 126m and 400m × 400m and the resulting selectivity values are 
0.001% and 0.01%, respectively. 

Updates are performed as a sequence of random moves. Each move deletes an en-
try at the coordinates <x, y> and inserts it into a new position at <x±30r1, y±30r2> 
where r1 and r2, 0≤r1,r2≤1, are random numbers. This random move is one of the 
cases that can be generated using the GSTD software [TN00] and is typical of moving 
objects. Assuming cars are moving at 100km/hour (= 30m/second), we choose 30m 
for the variation. The variation does not affect the update performance significantly 
because the update operation consists of independent two operations, delete and in-
sert. 

5.1.2. Indexes 
We implement the R-tree and its five variants R*-tree, Hilbert R-tree, CR-tree, CR*-
tree, and Hilbert CR-tree. (In this section, we label them as R, R*, HR, CR, CR*, and 
HCR) We allow duplicate key values in these indexes and initialize them by inserting 
data rectangles and the associated pointers. We set the pointer size to 4bytes as we run 
our experiment in the 32-bit addressing mode. Additionally, we use 4-byte QRMBRs 
in the CR, CR*, and Hilbert CR-trees. In the R*-tree and the CR*-tree, we do not use 
the reinsertion because it makes the concurrency control difficult without latching the 
whole tree, nor we use the least overlap enlargement policy because it improves the 
search performance only slightly at the expense of significant update performance. 

Table 1 shows the node fanout, index height, and index size of the main-memory 

Table 1. Node fanout, Index height and Index size for different node sizes (data size=1M, 
uniform dist.) 

Fanout Height Index size (Mbytes) Node 
size 

(bytes) R R* HR CR CR* HC
R R R* HR CR CR* HC

R R R* HR CR CR* HC
R

128 5 5 3 4 4 3 11 11 34 13 13 34 50 50 149 65 65 159 
256 11 11 8 9 9 7 7 7 8 8 8 9 39 39 54 50 50 65 
384 18 18 13 15 15 11 6 6 7 6 6 7 35 34 49 42 41 57 
512 24 24 17 20 20 15 5 5 6 6 6 6 34 33 47 41 40 54 

1024 50 50 35 41 41 31 4 4 5 5 5 5 32 31 44 39 38 50 
2048 101 101 72 84 84 63 4 4 4 4 4 4 31 30 42 37 36 48 
3072 152 152 109 127 127 95 3 3 4 4 4 4 31 30 42 37 36 47 



 

R-tree variants created on the data of size 1M. The numbers are based on the index 
entry size 20 bytes for the R and R*-tree, 24 bytes for the CR and CR*-tree, 28 bytes 
for the Hilbert R-tree, and 32 bytes for the Hilbert CR-tree. 

5.1.3. Experimental outline 
We perform two kinds of experiments: the sequential access experiment and the con-
current access experiment. In each experiment, we measure the throughput of a se-
quence of search (i.e., range query) and update (i.e., random move) operations. Opera-
tion/sec refers to the number of executed operations divided by the total execution 
time. 

In the sequential access experiment, we initialize indexes by inserting data objects 
in sequence and perform searches using a sequence of region queries mentioned 
above. In the concurrent access experiment, we initialize indexes inserting data ob-
jects concurrently in eight threads and then compare the concurrent search and update 
performance between the OLFIT and the conventional latched-based link technique 
[LY81, KMH97]. The performed searches and updates are the same as those in the 
sequential access experiment and are divided evenly to each thread. We also compare 
the performance among OLFIT techniques for a mixture of searches and updates 
mixed at different ratios.  

We omit such a mixture of operations in the sequential experiment because the re-
sulting performance is a linear interpolation between the results from searches only 
and updates only and, thus, is calculated without running the actual experiment. In the 
concurrent case, the performance from the mixture is not an interpolation because 
search and update may interfere with each other. 

The way QRMBR and OLFIT techniques improve the throughput is by reducing 
the number of L2 cache misses. There are, however, other factors contributing to im-
proving the throughput as well, like the number of instructions in the code. Since 
main memory performance is particularly sensitive to code implementations, serious 
attention should be paid to removing code-specific biases among the R-tree variants. 
In this regard, we demonstrate the consistency between the performance measured as 
the throughput and the performance measured as the number of cache misses (using 
the Perfmon tool [Enb99]). 

There is no R-tree variant winning consistently in all possible cases. Therefore, it 
could be misleading to rank the variants by their search or update performance with-
out considering the complexity of the comparisons. In this regard, we have performed 
a benchmark of 288 test cases generated as a combination of the attributes mentioned 
above and selected the winners by their rates of winning the cases. The results ob-
tained are consistent with those obtained in the experiments presented in this section. 
We omit the results due to space limit. Interested readers are referred to [TR02]. 

5.2. Sequential access performance 

Fig. 3 shows the sequential access performance for different node sizes when one mil-
lion data rectangles (1M) are uniformly distributed, and Fig. 4 shows the same infor-



mation when the data rectangles have the Gaussian distribution. From Fig. 3(a)-(b) 
and Fig. 4(a)-(b), we make the following observations about the search performance 
for both data distributions alike. First, they confirm that the QRMBR technique im-
proves the search performance significantly. That is, a cache-conscious version (i.e., 
CR, CR*, HCR) is better than its non-cache-conscious counterpart (i.e., R, R*, HR). 
Second, CR*-trees show the best search performance, which is attributed to not only 
the QRMBR technique but also the well-clustered nodes generated with the R*-tree 
split algorithm. Third, the search performance fluctuates as the index node size in-
creases. This reflects the dual effect of increasing the fanout – it increases the cost of 
reading a node but decrease the overall search cost by reducing the tree height.  

From the same figures, we see that Hilbert CR-trees perform better than CR-trees 
in uniformly distributed data but worse in skewed data. That is, skewed data gives a 
disadvantage to Hilbert CR-trees. This result contradicts Kamel and Faloutsos’s con-
jecture [KF94] that skewness of data gives a favor to Hilbert R-trees. The cause is the 
difference in the experimental settings. For instance, their experiment uses 2-to-3 split 
in Hilbert R-trees and reinsertion in R*-trees whereas ours does not. 

0

10

20

30

40

50

60

70

80

90

100

0 512 1024 1536 2048 2560 3072
Node size (bytes)

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR HR
CR* R*
CR R

0

5

10

15

20

25

30

35

0 512 1024 1536 2048 2560 3072
Node size (bytes)

0

20

40

60

80

100

120

0 512 1024 1536 2048 2560 3072
Node size (bytes)  

(a) Search (selectivity=0.001%)  (b) Search (selectivity=0.01%)    (c) Update  

Fig. 3. Sequential access performance w.r.to node size (data size = 1M, uniform dist.) 
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Fig. 4. Sequential access performance w.r.to node size (data size=1M, Gaussian dist.) 



 

From Fig. 3(c) and Fig. 4(c), we make the following observations about the update 
performance for both data distributions. First, they confirm that the Hilbert value-
based ordering improves the update performance significantly. That is, Hilbert R-trees 
are better than R-trees and R*-trees, and Hilbert CR-trees are better than CR-trees and 
CR*-trees. Second, the update performance of Hilbert R-trees is better than that of 
Hilbert CR-trees. This is due to the Hilbert CR-tree’s overhead of maintaining the 
QRMBRs. Third, CR*-trees show poor update performance, unlike their excellent 
search performance. This is due to the computational overhead of R*-tree insertion 
for finding the leaf node with the minimum overlap enlargement and splitting a node. 

Fig. 5 and Fig. 6 show the search and update performance with respect to the size 
of data with each of the two distributions. First, it appears that the performance gap 
among the R-tree variants decreases as the data size increases. This is true for the ab-
solute performance, but it is the opposite for the relative performance. The reason for 
this increase is that the increase of data size causes more cache misses and consequen-
tially highlights the performance gain of the QRMBR.  
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Fig. 5. Sequential access performance w.r.to data size (node size=1024B, uniform dist.) 
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Fig. 6. Sequential access performance w.r.to data size (node size=1024B, Gaussian dist.) 



Second, with uniformly distributed data, the performance rank among the R-tree 
variants is the same for all data sizes whereas, with the skewed data, the cache-
conscious versions lose advantage in the search performance as the data size de-
creases. This happens partly due to the computation overhead of the QRMBR method 
for reducing the number of cache misses. In addition, three factors reduce the effec-
tiveness of the QRMBR. First, if the data is small enough to fit in the cache, a cache 
miss hardly occurs and, therefore, there is little gain from the QRMBR. Second, data 
skew reduces the gap between the size of a parent node’s MBR and the size of its 
child node’s MBR, and this diminishes the effectiveness of the relative representation 
of an MBR and, as a result, increases the quantization errors. Third, these quantization 
errors are higher for lower query selectivity. The aforementioned instance in Fig. 6(a) 
is the worst case caused by the accumulation of these three factors. 

From all these observations about sequential access performance, we judge that 
Hilbert CR-trees are the best considering both the search performance and the update 
performance. These trees are not the first choice in any category, but are consistently 
the second or the third choice by a small margin in most cases. In summary, we con-
clude that CR*-trees are the best choice for the search performance only, Hilbert R-
trees are the best choice for the update performance only, and Hilbert CR-trees are the 
best choice when considering both. 

5.3. Concurrent access performance 

Fig. 7 shows the search and update performance for different numbers of threads, con-
trasted between the conventional latch-based and the OLFIT-based concurrency con-
trol, given the data with size 1M and the uniform distribution. (We omit the results 
obtained with the Gaussian distribution data due to space limit. Most observations are 
same as in the uniform distribution case.) We set the node size to 512 bytes, which is 
the median of the seven different node sizes used. Besides, we consider only the CR*-
tree, Hilbert R-tree, and Hilbert CR-tree because the other three variants are poorer in 
both the search and update performance.  

From this figure, we make the following observations. First, they confirm the ad-
vantage of the OLFIT in the concurrent search and update performance. That is, as the 
number of threads increases, CR*-trees, Hilbert R-trees, and Hilbert CR-trees become 
significantly better with the OLFIT than with the Latch. Second, the relative search 
performance among the R-tree variants differs between the two data distributions. 
Specifically, the best search performer is Hilbert CR-trees for the uniform distribution 
and CR*-trees for the Gaussian distribution. The reason is that data skew is not favor-
able to Hilbert R-trees, as discussed in the sequential access case. Third, the update 
performance shows the same relative performance as in the sequential access experi-
ment.  

Fig. 8 shows the concurrent search and update performance with respect to the data 
size for the uniform distribution given the number of threads 4. (We omit the results 
from the Gaussian distribution and other number of threads for the same reason as 
above.) We make the following observations. First, like the case of sequential access 



 

performance, the absolute performance gap decreases among the R-tree variants while 
the relative performance gap increases as the data size increases. Second, the per-
formance advantage of the OLFIT over the Latch becomes more noticeable for 
smaller data and queries with lower selectivity. We draw the following reasons for 
this. First, smaller data size increases the coherence cache miss rate because evidently 
it increases the possibility of cached data being invalidated by another processor. Sec-
ond, in the case of higher query selectivity, queries access nodes near the leaves in 
addition to those near the root. This causes other types of cache misses (e.g., capacity 
cache miss) to occur as well and, as a result, reduces the relative adverse effect of the 
coherence cache misses. 

Fig. 9 and Fig. 10 show the concurrent access performance for different update ra-
tios for each of the two data distributions. The OLFIT is used for the concurrency 
control and the number of threads is fixed to eight. We make the following observa-
tions from these figures. First, the winners change places as the update ratio changes. 
The pattern is slightly different between the two data distributions. In the case of the 
uniform distribution, Hilbert CR-trees are the best in the low to middle range of the 

0

100

200

300

400

500

600

0 2 4 6 8
Number of threads

O
pe

ra
tio

ns
(x

10
00

) /
 se

c

HCR/OLFIT
HCR/Latch
HR/OLFIT
HR/Latch
CR*/OLFIT
CR*/Latch

0

50

100

150

200

250

0 2 4 6 8
Number of threads

0

100

200

300

400

500

600

0 2 4 6 8
Number of threads  

(a) Search (selectivity=0.001%)  (b) Search (selectivity=0.01%)   (c) Update 

Fig. 7. Concurrent access performance w.r.to the number of threads (data size=1M, uniform) 
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Fig. 8. Concurrent access performance w.r.to data size (4 threads, uniform dist.) 



update ratio and Hilbert R-trees are the best in the high range. Hilbert CR-trees fall 
below Hilbert R-trees as the cost of managing QRMBR increases. In the case of the 
Gaussian distribution, CR*-trees are the best or comparable to Hilbert CR-trees in the 
low range, Hilbert CR-trees are the best in the middle range, and Hilbert R-trees are 
the best in the high range. The initial lead of CR*-trees is due to the relatively poor 
search performance of Hilbert R-trees and Hilbert CR-trees against skewed data. 
CR*-trees fall below the other two as the number of updates increases due to the in-
creasing computational overhead. Second, related to the first observation, Hilbert CR-
trees have an advantage over the other two trees at the higher query selectivity.  

From all these observations about concurrent access performance, we make the 
same judgment as in the sequential access performance. Hilbert CR-trees are the best 
choice for the search performance if the data is distributed uniformly whereas CR*-
trees are the best if the data is skewed, Hilbert R-trees are the best choice for the con-
current update performance, and Hilbert CR-trees are the best choice when consider-
ing both. 
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Fig. 9. Concurrent access performance w.r.to update ratios (8 threads, data size=1M, uniform) 
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Fig. 10. Concurrent access performance w.r.to update ratios (8 threads, data size=1M,Gaussian)



 

5.4. Consistency with the number of cache misses 

Fig. 11 shows the number of cache misses in sequential accesses for different node 
sizes when one million data rectangles are uniformly distributed, and Fig. 12 shows 
the number in concurrent accesses for different numbers of threads. We do not show 
the case of skewed data because the observed results are the same. 

The numbers of cache misses of the R-tree variants in Fig. 11(a)-(b) are ranked ex-
actly in the reverse order of the throughputs in Fig. 3(a)-(b), and the numbers in Fig. 
11(c) are almost in the reverse order of those in Fig. 3(c). In Fig. 11(c), the HCR-tree 
and the HR-tree incur more cache misses than the other R-tree variants despite show-
ing the best update performance in Fig. 3(c). This is because an insertion in HCR-
trees and HR-trees needs far less computation than the other R-tree variants for choos-
ing the appropriate leaf node. Fig. 12 shows that the number of cache misses of the 
variants are ranked in the reverse order of the throughputs in Fig. 7(a)-(c), including 
the update case. We see that the numbers hardly increase with the number of threads 
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Fig. 11. The number of cache misses (Sequential access, data size=1M, uniform) 
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Fig. 12. The number of cache misses (Concurrent access, data size=1M, uniform) 



if OLFIT is used, whereas they do increase if Latch is used. This confirms the advan-
tage of OLFIT over Latch in concurrency control. 

6. Summary and Further Work 

In this paper, we compared the sequential and concurrent access (search and update) 
performance of the main-memory R-tree and its five variants – R*-tree, Hilbert R-
tree, CR-tree, CR*-tree, and Hilbert CR-tree – while applying the QRMBR technique 
for faster search performance and the OLFIT technique for better concurrency con-
trol. We used the GiST-link technique to apply the OLFIT technique to the R-tree 
variants. Naturally, the QRMBR improved the index search performance and the 
OLFIT improved the concurrency. 

We conducted experiments for evaluating the performance in terms of the through-
put. As a result, we found the following trees performing the best in each category: in 
sequential accesses, CR*-trees for search, Hilbert R-trees for update, and Hilbert CR-
trees when considering both and, in concurrent accesses, Hilbert CR-trees for search-
ing uniformly distributed data, CR*-trees for searching skewed data, Hilbert R-trees 
for update, and Hilbert CR-tree for a mixture of search and update except an update-
intensive case. We also demonstrated that the throughput results were not biased by 
the code implementations by showing the consistency between the observations based 
on the number of cache misses and those based on the throughput. 

We also demonstrated that the throughput results were not biased by the code im-
plementation by showing the consistency between the observations based on the 
number of cache misses and those based on the throughput. 

All queries considered in this paper are range search queries. We plan to pursue 
further experiments using the nearest neighbor queries. Like range search queries, 
these queries involve traversing R-trees while pushing nodes into and popping nodes 
from a stack. Therefore, they are amenable to tree structures clustered so that more 
index entries can be examined with the same block cached. Compared with range 
queries, however, nearest neighbor queries incur higher computation cost and, there-
fore, clustering is more important than compression to search performance. 

Currently our R-tree search algorithm does not prevent the phantom phenomenon. 
To our knowledge, there does not exist any algorithm addressing this problem for 
main-memory indexes. We are currently working on it.  

Other further works include using real (dynamic) geographical data sets instead of 
synthetic ones and using different process architecture like MPP instead of SMP. As 
MPP incurs higher communication cost among processors than SMP, we expect the 
advantage of the OLFIT over the latch-based concurrency control should become 
eminent. We also plan to incorporate the R-tree variants into a main memory spatial 
data management system and perform a benchmark comparison instead of simulation. 
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