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Abstract

Mesh data has been a common form of data produced and searched in scientific

simulations, and has been growing rapidly in the size thanks to the increasing com-

puting power. Today, there are visualization tools that assist scientists to explore and

examine the data, but their query capabilities are limited to a small set of fixed visu-

alization operations, which is far too short to meet the needs of most users. Thus, it is

imperative to provide ad hoc query tools for them.

In this paper, we propose an ad hoc query language MeshSQL, which has been

extended from ANSI SQL99 to support the features unique to simulation mesh data,

such as temporality, spatial regions, statistics, and similarity. After classifying Mesh-

SQL queries based on three criteria related to efficient implementations of the queries,

we present the syntax and semantics of MeshSQL, and support them with examples. We

also discuss implementing MeshSQL queries in SQL99 in an object-relational database

system that allows incorporating user-defined types and functions. To our knowledge,

MeshSQL is the first and the only query language for simulation mesh data.
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1. Introduction

Scientific simulation is a cost-effective way of conducting a test without

actually building a product, and has been used in various fields including the
military defense, financial trading, manufacturing, medical imaging, oil ex-

ploration, and weather forecasting. Most scientific simulation data are pro-

duced in a mesh data format, such as NetCDF [1], HDF [2], and SILO [3].

Scientists are producing simulation data in a large scale, but have very limited

tools available for exploring and querying the produced data. There are

visualization tools [4,5] available today, which provide a few fixed forms of

primitive query operations such as finding points, iso-surfaces, and slices.

However, scientists need more powerful query tools that enable them to in-
teractively search the data in an ad hoc manner. There has been some work

done in other contexts to develop declarative, ad hoc query languages [8,10,11].

However, there is none developed for simulation mesh data.

In this paper we present the design and specification of a query language

called MeshSQL, which is geared for querying the geometry and fields of

simulation mesh data. Specifically, we characterize mesh queries as an inte-

gration of temporal queries [16], spatial region queries [8,9], statistical queries

[12,18], and similarity queries [25,26]. We also classify MeshSQL queries based
on three orthogonal criteria linked to the design and implementation of them.

MeshSQL is extended from SQL99 [6] for pragmatic reasons. A MeshSQL

statement is written against an abstract mesh data file and is translated into an

SQL99 statement or script against SQL99 tables. Because the expressive power

of SQL99 is short of supporting full-fledged mesh queries, we make some, the

least possible, extensions to SQL99. Currently the extensions include sup-

porting a mesh region as the first class object, time_step as the simulation cycle,

and a partitioned grouping attribute (similar to that in ODMG OQL [7]) for a
grouped summary of query results. Among these extensions, the first two are

implemented using the existing SQL99, and only the partitioned grouping

requires a change of SQL99 itself.

In the background of MeshSQL design is the AQSim 2 project [20,21],

currently in progress at Lawrence Livermore National Laboratory. AQSim’s

query engine is an object-relational database management system (ORDBMS),

which is suitable to process mesh queries due to its capability of incorporating

user-defined types, indexes, and functions. Related to this, we present our
implementation ideas for MeshSQL in this paper.

The rest of this paper is organized as follows.We first present the concept and

model of simulation mesh data in Section 2, the characteristics of MeshSQL in

Section 3, and the classification of MeshSQL queries in Section 4. Then, we
2 An acronym of ‘‘Approximate queries on simulation data’’.
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present the language specification in Section 5, and follow it with examples in

Section 6 and implementation considerations in Section 7. Finally, Section 8

concludes the paper. Appendix A.3.1 outlines the grammar of MeshSQL.
2. Simulation mesh data

We present the concept, mathematical model, and basic algebraic operations

of simulation mesh data in this section.

2.1. Concept

Fig. 1 shows an example of mesh data generated by simulating a can crushed

against a wall. It shows snapshots taken at three time steps (a.k.a. cycles) in a

sequence of 44 steps. The data is defined across time steps in a temporal di-

mension and, at each time step, in a three-dimensional Cartesian space of

spatial variables x, y, and z. There are ten ‘‘field variables’’––displx, disply,

displz, velx, vely, velz, acclx, accly, acclz, and eqps, among which eqps is de-

fined at each zone, thus called ‘‘zone-centered,’’ and the rest are defined at each

node, thus called ‘‘node-centered’’. The first three denote the displacements in
x, y, and z directions, the second three denote the velocities, and the third three

denote the accelerations. The last variable eqps denotes the equivalent plastic

strain, which is the measurement of strain or stress on the can surface.

Mesh data generated with simulations exhibit characteristics summarized as

follows. (See [13] for a more comprehensive discussion.)

• Regularity––Mesh data may be regular or irregular depending on the geo-

metric pattern of the points at which the values of fields are computed.
We can distinguish between spatial regularity and temporal regularity. Spa-

tially regular mesh data have data values computed at ‘‘a regular grid or

some other geometric structure’’ [13]. Temporally regular mesh data have

data values computed at regular time intervals. Irregular mesh data require

that the coordinates of grid points––either spatial or temporal or both––

must be stored together with the computed values. In contrast, regular mesh

data allow the coordinates to be calculated and, therefore, not stored.

• Time-variation––Mesh data may be time-invariant or time-variant depend-
ing on whether the coordinates of the points change over time. Time-variant

mesh is very common in the simulations of dynamic processes like deform-

ing artifacts or changing natural phenomena. Examples are simulating a car

crash, a rod bending, or a weather change. Unlike time-invariant data, time-

variant data require the neighborhood relationships (i.e., topology) of mesh

grid points be stored together with the coordinates (i.e., geometry) of points

to allow tracing the points whose coordinates change over time.



Fig. 1. Crushing can mesh data: field¼VELZ at time steps 5, 20 and 35.
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Fig. 1 (continued)
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• Density––Mesh data may be dense to a varying degree depending on how

many grid points are empty, that is, have no associated data. For example,

a simulation of air turbulence would generate data values (e.g., velocity, ori-

entation) at every point, therefore dense, whereas a simulation of particle

collision would generate data values at only a small number of points, there-

fore sparse [13].

MeshSQL is applicable to any kind of mesh data described above.
2.2. Mathematical model

As indicated in [14], a rigorous mathematical model of simulation mesh data

is complicated, and involves topology, geometry, and set of fields. In this

section we present a simplified model that concerns only geometry and fields

and still adequately supports the designed query language.

Simulation mesh data can be modeled as a discrete representation of con-

tinuous data, sampled at grid points while spanning a sequence of multiple time

steps. Our mathematical model of the data is based on irregular, time-variant
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data, of which regular or time-invariant data is a special case. Our model also

assumes that the topological order of the points does not change over time.

Then, simulation mesh data M can be defined as a set of records as follows.
M � fht; x1; x2; . . . ; xn; v1; v2; . . . ; vmig ð1Þ
where t denotes the time step of simulation, x1; x2; . . . ; xn denote n-dimensional

spatial coordinate variables (where the coordinates may be calculated or
stored depending on the regularity of the mesh), and v1; v2; . . . ; vm denote m
field variables defined at each node located at x1; x2; . . . ; xn at time step t.
Alternatively, a field variable may be defined at each zone of a mesh. In a

regular mesh, a zone is an n-dimensional cubic bounded by the surrounding 2n

mesh nodes. A finite collection of contiguous nodes (or zones) defines a mesh

region. In the rest of the paper, we consider only mesh nodes unless doing so

diminishes generality. In most cases, we can either convert zone-centered

fields to node-centered fields or use zone numbers in place of node indices. In
case we must consider mesh zones instead of mesh nodes, we state them

explicitly.

Note that, an alternate model of simulation data is a time series, which is

suitable for simulation data partitioned by the time step.
M ¼ fht;Diig where Di ¼ fhx1; x2; . . . ; xn; v1; v2; . . . ; vmig ð2Þ
However, as argued by Davies et al. in [15], we consider time step just as an-

other coordinate variable and, therefore, use the model in Eq. (1) while taking

the time series semantics into consideration for implementing queries (in Sec-

tion 7.3). This approach provides a flexibility in the query expressions sup-

ported by the model.
2.3. Basic algebraic operations

Geometrically mesh data M are configured as an nþ mþ 1 dimensional

array each of whose elements is a mesh data record defined in Eq. (1). Let us

consider a node index that determines the topological order of all mesh nodes in

the data and a functional mapping (f ) from a set of node indices (fht; k1; k2; . . . ;
knig) to a set of mesh data records (M). Then, for each mesh record m 2 M :
m ¼ f ðt; k1; k2; . . . ; knÞ ð3Þ
We can rewrite Eq. (3) as follows. Let the vector ~X of spatiotemporal variables

be:
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~X ¼

t
x1
..
.

xn

0
BBB@

1
CCCA 2 Rnþ1 ð4Þ
where R refers to the domain of a real number. Additionally, let the vector ~V of

field variables be:
~V ¼
v1
..
.

vm

0
B@

1
CA 2 Rm ð5Þ
and let the vector ~K of node indices be:
~K ¼

k0
k1
..
.

kn

0
BBB@

1
CCCA 2 Znþ1 ð6Þ
where k0 � t and Z refers to the domain of an integer. Then, from Eq. (3) we

derive the following two functional mappings:
~X ¼ /ð~KÞ ð7Þ
~V ¼ wð~KÞ ð8Þ
where / and w are arbitrary functions of ~K, respectively. In other words, at

each time step, a node index functionally determines the values of the spatio-

temporal variables and the field variables defined at the node. Given Eqs. (7)

and (8), we define the inverse functions of / and w as:
~K ¼ /�1ð~X Þ ð9Þ

~K ¼ w�1ð~V Þ ð10Þ

and introduce two basic algebraic operations on mesh data:

• Given a query condition PX on the spatiotemporal coordinates (~X ), find the

values of the field variables (~V ).
• Given a query condition PV on the field variables (~V ), find the values of the

spatiotemporal variables (~X ).

The former operation is performed by applying the function w to the result
of /�1ð~X Þ, that is, by first identifying the nodes whose spatiotemporal variables

match the condition PX (using Eq. (9)) and then retrieving the field variables of
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Fig. 2. Fields of a one-dimensional mesh at nodes and zones. (a) Node-centered field (applicable

query conditions: 3:3 < x < 5:6, 1:2 < v < 2:9). (b) Zone-centered field (applicable query condi-

tions: x ¼ 3:3, 3:3 < x < 5:6, 1:2 < v < 2:9).
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the nodes (using Eq. (8)). In contrast, the latter operation is performed by

applying / to the result of w�1ð~V Þ, that is, by first identifying the nodes whose
field variables match the condition PV (using Eq. (10)) and then retrieving the

spatial coordinates of the nodes (using Eq. (7)). Note that, as illustrated in

Fig. 2, both PX and PV can be only range queries (i.e., ~X0 < ~X < ~X1;
~V0 < ~V < ~V1) if ~V is node-centered, whereas PX can be a random query (i.e.,
~X ¼ ~X0) as well if ~V is zone-centered.
3. Characteristics of MeshSQL

In order to design a query language, it is important to first understand what

kinds of queries are likely to be addressed to mesh data. Our investigation

characterizes MeshSQL queries as a combination of temporal queries, spatial
region queries, statistical queries, and similarity queries.

For data generated in a sequence of time steps, MeshSQL queries are

temporal queries [16]. Scientists are interested in querying mesh data during a

time interval as well as at individual time points. As a temporal query, a

MeshSQL query deals with simulation mesh data as time series data, and

supports operations like temporal aggregations and temporal groupings. The

temporal domain of simulation mesh data is the time step, which is associated

with real time scale that ranges from microseconds (e.g., in the simulation of a
car crash) to days or weeks (e.g., in the simulation of meteorological changes).
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Scientists may ask queries based on either time step or real-scale time.

Therefore, the time series should support a dual calendar. (A calendar allows

for using application-dependent semantics of time.) For simplicity, we consider

only the time step as the single calendar in this paper.
Some MeshSQL queries are spatial region queries [8,9]. Scientists are often

interested in finding mesh regions that show a certain phenomenon or behavior

of their interest. A region is basically a set of connected mesh nodes or zones,

which can be displayed on a visualization tool. For this purpose, we can treat a

mesh region as an instance of the abstract data type region with such an at-

tribute as the set of the indices of nodes in a region. Instances of the type region

can be stored persistently in the database and retrieved by subsequent queries.

The keyword ‘‘into database’’ introduced in Section 5.2 is an instruction for
it.

Most MeshSQL queries are statistical queries [12,18]. Scientists want a

summary (e.g., aggregates per group) of field variables rather than their indi-

vidual values for a given region. The summary may involve spatial and tem-

poral variables as well as field variables. An example is ‘‘the average

temperature for each group of pressure partitioned by the pressure intervals 0–

1200, 1200–1800, and 1800–2400’’. This summary is a spatial summary if the

average is taken over all selected mesh regions at each time instant, a temporal
summary if taken over a time interval at each selected mesh region, and a

spatiotemporal summary if taken over all selected mesh regions and time in-

terval together. Summary data (a.k.a. ‘‘summary table’’) has been the subject

of research in the statistical database field over a decade [12,22,24] and recently

refocused in the context of OLAP databases [19,23]. We embody the concept of

summary data by slightly modifying the conventional group-by clause of SQL

language, as described in Section 5.2.4.

Some MeshSQL queries are similarity queries (a.k.a. proximity queries)
[25,26]. Scientists sometimes want to identify regions that are ‘‘similar to’’ a

particular region based on a certain distance metric. The particular region may

be the result of a previous query. As a similarity query, a MeshSQL query

retrieves the mesh regions that are within the specified distance from a given

mesh region. The distance is calculated with a user-defined function, which

often utilizes data mining techniques. The most popularly used similarity

queries are range queries and nearest neighbor queries [25]. A range query finds

all mesh regions that are within a certain distance from a given region, whereas
a k-nearest neighbor query finds the first k nearest regions.
4. Classification of MeshSQL queries

Based on the query characteristics described in the previous section and the
implementation considerations discussed in Section 7.3, we have identified five
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alternative criteria to classifying queries on simulation mesh data. Let us list in

this section each classification criterion and discuss individual types in each

criterion.

Query target forms and query conditions

• Type SR for a query that retrieves the summaries of variables given the spec-

ification of a mesh region. A mesh region is specified with a predicate on
spatial and temporal variables only without involving field variables. Specif-

ically, a temporal variable is used to identify the time steps, and spatial vari-

ables are used to identify the spatial bounding regions.

• Type RP for a query that retrieves mesh regions given a predicate condition

on variables. The result of a query in this case is the set of selected regions.

The query predicate may involve field variables as well as spatial and tem-

poral variables.

• Type SP for a query that retrieves the summaries of variables given a pred-
icate condition on variables. Note that SP is equivalent to RP followed by

SR. That is, QSPðmesh dataÞ � QSRðQRPðmeshdataÞÞ where QSP, QSR, and

QRP denote queries of the types SP, SR, and RP, respectively.

The number of time steps in a query condition

• Type 1T for a query that searches mesh data at a particular one time step. In

this case, there cannot be any temporal dimension in the summary specified
by the query. Therefore, we do not consider a 1T query a temporal query.

• Type NT for a query that searches mesh data across multiple time steps,

which is specified as a set of time intervals. An NT query is a temporal query

and returns temporally summarized data [17] as the query result.

The number of variables in a query condition

Let M denote the number of different variables specified in a query condi-

tion. Then:

• Type NV for a query with a null query condition (i.e., M ¼ 0). An SQL se-

lect statement with no ‘‘where’’ clause is of this type.

• Type UV for a query with a univariate query condition (i.e., M ¼ 1).

• Type MV for a query with a multivariate query condition (i.e., M > 1).
5. Specification of MeshSQL

In this section we present the specifications of MeshSQL statements for
creating and querying mesh data.
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5.1. Creating mesh data

Mesh data are identified with its name and registered with the information

about the geometrical and field variables of the data as well as the owner,
format, and location of the data files. For example:

create meshdata CrushingCan as (

user ¼ lee,

format ¼ silo,

path ¼ /usr/meshsql/data/crushingcan.dat,

coordinates ¼ (x double, y double, z double),

fields ¼ (displx double, disply double, displz double, velx double, vely
double, velz double, acclz double, accly double, acclz double,

eqps double),

element_methods¼ ( ),

region_methods ¼ (some_distance(rno integer) returns double)

);

create region_method some_distance(rno integer) returns double

begin

–Calculate and return the distance between this region and the
–region whose region_no ¼ rno.

. . .
end

This statement creates abstract mesh data named ‘‘CrushingCan.’’ The data

files are owned by the user ‘‘lee’’, have the format ‘‘silo’’, and are stored as files

named ‘‘crushingcan.dat’’ in the directory ‘‘/usr/meshsql/data.’’ The meshes are

defined in Cartesian coordinates and have the ten fields associated with each
mesh element (e.g., node). There can be two kinds of methods: ele-

ment_methods applied to mesh elements and region_methods applied to mesh

regions. The statement shows one region_method ‘‘some_distance’’. (This

method is used in Section 6.3.)
5.2. Querying mesh data

Appendix A contains a summary of the grammar of MeshSQL select
statements. Examples in this section are based on the crushing can data shown

in Fig. 1.

select [number] [similar] region [into database] j select_list
from mesh_data

[where condition]
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[group by grouping_list

[having group_selection_condition]]

[order by ordering_key_list]

5.2.1. Select clause

The result from a query is specified as either ‘‘region’’ or a select list. The

keyword ‘‘region’’ denotes a set of mesh nodes or zones connected contiguously

in a closed region of mesh and returned as the result of a query. The lifetime of a

region is only during a session by default, but we can save regions in a database

(table) by using the keywords ‘‘into database’’. The keyword ‘‘similar’’ indicates

that the query performs a similarity search on the persistent regions.
A select list can contain a temporal variable (denoted by the keyword

‘‘time_step’’), spatial variables, field variables, non-aggregate functions, and

aggregate functions. As in SQL, an aggregate function can be on the list only

with its associated grouping attribute. A function, whether aggregate or not,

may be either user-defined or system-defined. We list a limited number of

system-defined functions in Appendix A.3.1, leaving room for adding more

functions.

5.2.2. From clause

MeshSQL is not intended for spatial or temporal joins between two mesh

data sets because these operations are very atypical of using simulation mesh

data. Thus, only one mesh data set is allowed in the ‘‘from’’ clause.

5.2.3. Where clause

The condition in the ‘‘where’’ clause is a Boolean predicate expression on the
spatiotemporal and field variables, and its syntax is identical to that of ANSI

SQL. Therefore, we do not elaborate on its syntax but only show some ex-

amples:

• eqps > 1.0 [Simple condition]

• eqps > any (select eqps from CrushingCan where . . .) [Group comparison

condition]

• eqps between 0.0 and 1.0; eqps not between 0.0 and 1.0 [Range condition]
• exists (select eqps from CrushingCan where . . .); not exists (. . .) [Exists con-

dition]

• eqps is null; eqps is not null [Null condition]

• displx between )2 and 0 and diply between )5 and 0 and displz between 0

and 10 and (eqps > 2.5 or eqps< 0.5) [Compound condition]

5.2.4. Group-by clause

The ‘‘group-by’’ clause is used to retrieve a summary of data. Specifically, its

grouping list defines the partitions to which aggregate functions in the select list
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are applied. The grouping attribute may be ‘‘region’’, ‘‘time_step’’, or any of the

spatial and field variables. If ‘‘region’’ is specified, each persistent region makes

one partition. If ‘‘time_step’’ is specified, each time interval makes one partition.

If a variable is specified, each partition is defined by the initial value and the
increment of the variable. In case the variable appears in both the ‘‘where’’

clause and the ‘‘group-by’’ clause, the aggregate functions are applied to an

intersection of the intervals specified in the ‘‘where’’ clause and the partitions

specified in the ‘‘group-by’’ clause. For example, for ‘‘where var between 10 and

20 or var between 30 and 40 group by var 12, 4’’, the groups considered for

aggregation are in the intervals of var¼ [12–15], [16–19], [32–35], and [36–39].

The following examples show grouping by region, time_step, and other

variables:

(G1) Select region, avg(eqps), stddev(eqps) from crushingCan where . . . group
by region; ) calculates the summary (i.e., avg(eqps) and stddev(eqps)) in

each persistent region (across all time steps).

(G2) Select region, time_step, avg(eqps), stddev(eqps) from crushingCan

where time_step between 9 and 21 . . . group by region, time_step 10, 1;

) calculate the summary in each persistent region at each time step

10–20.
(G3) Select region, time_step, displx, avg(eqps), stddev(eqps) from crushing-

Can where time_step between 9 and 21 . . . group by region, time_step

10, 1, displx )5, 1; ) calculate the summary in each partition of diplx

½�5;�4Þ, ½�4;�3Þ, etc. in each persistent region at each time step 10–20.

(G4) Select time_step, avg(eqps), stddev(eqps) from crushingCan where time_

step between 9 and 21 . . . group by time_step 10, 4; ) calculate the sum-

mary in all selected regions in each interval of time steps [10–13], [14–17],

and [18–20].

5.2.5. Having clause

Like in ANSI SQL, the ‘‘having’’ clause is always preceded by a group-by

clause and is used to select the groups to be retrieved as a query result. For

example:

(H1) Select time_step, eqps, avg(velz), avg(acclz) from crushingCan where

time_step between 9 and 21 . . . group by time_step 10, 1, eqps 0, 0.5
having min(displz) > 0; ) select a group (partitioned by eqps 2 ½0; 0:5Þ;
½0:5; 1:0Þ; ½1:0; 1:5Þ, etc. and each time step 10–20) only if min(displz), cal-

culated over all selected mesh regions in the group, >0.

(H2) Select time_step, avg(velz), avg(acclz) from crushingCan where time_step

between 9 and 21 . . . group by time_step 0, 5 having min(displz) > 0; )
select a group (partitioned by the time step to ½0; 4�; ½5; 9�; . . . ; ½40; 42�)
only if min(displz), calculated over all selected regions in the group, >0.
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6. Examples of MeshSQL queries

In this section, we give some representative examples of MeshSQL queries

based on the crushing can data shown in Fig. 1.

6.1. Combination of query types

MeshSQL can express any combination of the query types described in

Section 4:

(C1) SR.NT.MV: Select time_step, min(velx), max(velx), min(vely), max(vely),
my_aggr(eqps) from CrushingCan where time_step 6 190 and x between
200 and 300 and y > 100 and z between 50 and 80 group by time_step 0,1;

) returns the time step and spatial aggregations over the selected regions

at each time step.

(C2) RP.NT.MV: Select region from CrushingCan where time_step < 100 and

x between 200 and 300 and y > 100 and z between 50 and 80 and eqps

between 0.1 and 0.5; ) returns the regions bounded by the spatial pred-

icate condition at each time step 0–99.
(C3) SP.NT.MV: Select my_summary(square(velx-100) + square(vely-32))

from CrushingCan where x between 200 and 300 and y > 100 and z be-
tween 50 and 80 and ((eqps between 0.1 and 0.5) or (vely between 32

and 212)); ) returns the spatiotemporal summary calculated over all se-

lected regions and all time steps. (All time steps are considered if there is

no predicate condition on time_step.)

(C4) SP.1T.MV: Select avg(velx), max(velx) from CrushingCan where time_

step¼ 50 and x between 200 and 300 and y > 100 and z between 50
and 80 and eqps between 0.1 and 0.5; ) returns the spatial summary

(i.e., avg(velx) and max(velx)) in each persistent region at one time step

50.

(C5) SP.NT.MV: Select avg(velx))min(velx) from CrushingCan where time_

step between 350 and 450 and eqps between 0.1 and 0.5; ) returns the

spatiotemporal summary (i.e., avg(velx))min(velx)) calculated over all

selected regions and across all time steps.

(C6) SP.NT.1V: Select avg(velx) from CrushingCan where time_step between
350 and 400; ) returns the spatiotemporal aggregation (i.e., avg(velx))

over all mesh data in the selected time interval.

6.2. Visualization queries

As mentioned in Section 1, visualization tools support primitive query op-

erations such as finding points, iso-surfaces, and orthogonal or oblique slices.
The following examples demonstrate how MeshSQL can express those visu-
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alization queries. We specify an arbitrary single time step 10 in all examples. If

no time step is specified, each query returns the results in all time steps, dis-

played in sequence or in overlays.

(V1) Point: Select velx from CrushingCan where time_step ¼ 10 and x ¼ 200

and y ¼ 100 and z ¼ 60; ) retrieve the value of a field velx at a point de-

fined by the three spatial coordinates x, y, and z at time step 10. The result

is null if data is defined at mesh nodes (i.e., node-centered) and there is no

node at the specified coordinate.

(V2) Iso-surface: Select region from CrushingCan where time_step¼ 10 and

velx¼ 530; ) retrieve the mesh regions in which velx¼ 530 at time step

10.
(V3) Orthogonal slice: Select region from CrushingCan where time_step¼ 10

and ontheplaneðx; y; z; 1; 0; 0; 100Þ; ) retrieve the mesh region sliced by

a plane perpendicular to the x-axis at x ¼ 100 at time step 10. Here, ‘‘on-

theplane ðx; y; z; ax; ay ; az; dÞ’’ is a function that returns true if and only if

the mesh zone containing the point at hx; y; zi intersects a plane defined

by the normal vector basis hax; ay ; azi and length d of the projection line

from the origin to the perpendicular drop point on the plane. Note that

the following simpler statement
select region from CrushingCan where time step ¼ 10 and x ¼ 100;
is valid only if a mesh region is a set of zones, not nodes, because the

probability of a mesh node intersecting a plane is zero.

(V4) Oblique slice: Select region from CrushingCan where time_step¼ 10 and

ontheplaneðx; y; z; 0:5; 0:2; 0:6; 3:5Þ; ) retrieve the mesh region sliced by a
plane not perpendicular to any axis.
6.3. Similarity queries

As mentioned in Section 3, a similarity query aims at finding regions within

a certain distance from a reference region. In MeshSQL, only the persistent

regions are considered. We show here the examples of two popularly used

queries––a range query and a k-nearest neighbor query. In the following ex-
amples, some_distance is the distance function shown in Section 5.1.

(D1) Range: Select similar region from CrushingCan where time_step between

10 and 20 and x between 100 and 300 and y between 200 and 400 and

some_distance(123) < 3.0;) at each time step between 10 and 20, retrieve

all persistent regions whose some_distance from the region numbered 123

is less than 3. (The notion of a region number is introduced in Section 7.1.)

(D2) Nearest neighbor: Select five similar regions into database from Crushing-
Can where time_step between 10 and 20 and x between 100 and 300 and y
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between 200 and 400 order by some_distance(123); ) at each time step

between 10 and 20, retrieve the first five persistent regions ordered in

an increasing order of some_distance from the region numbered 123

and store them in the database. (The keywords ‘‘into database’’ is in-
cluded for use in Section 7.2.)
7. Implementation considerations for MeshSQL

In this section we discuss three implementation issues: mesh regions,

translation of MeshSQL into SQL99, and indexes for MeshSQL query pro-

cessing. As MeshSQL is for an object-relational database system, its imple-

mentation makes use of user-defined types, functions, and indexes.
7.1. Mesh regions

As mentioned in Section 3, a mesh region is defined as a set of connected

mesh elements (i.e., nodes or zones) and is considered an instance of the ab-

stract data type region. In Section 7.2.1, the type region is realized as an SQL99

type region_t, which is instantiated by the table mesh_regions. Each instance of
the type region consists of a region number and the associated set of references

to mesh elements, and is implemented as a composite primary key hregion_no,
elementi of the table mesh_regions.

Fig. 3 illustrates generating, storing, and using mesh regions. A region query

(of the type RP) applies a query condition on the columns of the table

mesh_elements and retrieves regions, each of which contains references to re-

cords of the type element_t. With the keywords ‘‘into database’’, the elements

are inserted into the table mesh_regions paired with a new region_number.
Table mesh_elements
time_step   x    y z  f1    f2   … fm

Table mesh_regions
region_no element

x,y,z : spatial variables
f1, f2,…,fm: field variables
region = {ref(element)}

Region query

{region} into database{element}

Group-by-region query
Similar-region query

{region}
into database

{region}

Fig. 3. The generation, storage, and usage of mesh regions.
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These regions are then used as the units of grouping in the group-by-region

queries or as the units of comparison in the similarity queries.

7.2. Translation from MeshSQL into SQL99

7.2.1. Creating mesh data

We show below the SQL99 types and tables created as a result of executing

the ‘‘create meshdata’’ statement in Section 5.1. Once created, the two tables

mesh_elements and mesh_regions are populated with mesh data read from the

file /usr/meshsql/data/crushingcan.dat.

create schema CrushingCan authorization lee;

//Mesh element type (either node or zone)

create type element_t as (

time_step integer,

x double, y double, z double,
displx double, disply double, displz double,

velx double, vely double, velz double,

acclx double, accly double, acclz double,
eqps double);

//Mesh element table

create table CrushingCan.mesh_elements of element_t

(ref is element_id system generated);

//Mesh region type

create type region_t as (

region_no integer,

element ref(element_t))
method some_distance(rno integer) returns double;

create method some_distance(rno integer) for region_t begin . . .end;
//Mesh region table

create sequence region_no;

create table CrushingCan.mesh_regions of region_t (

primary key (region_no, element),

scope for element_t is CrushingCan.elements)

7.2.2. Querying mesh data

As mentioned in Introduction, MeshSQL requires SQL99 to support a

partitioned grouping. Since this features is unavailable in the current SQL99,

we should simulate it by augmenting the ‘‘where’’ clause with an incremental

range condition on the partitioning variables. Note this is not applicable to

‘‘group-by region’’ because ‘‘region’’ is not a variable.

For example, the ‘‘group-by time_step 10, 1’’ of query G2 in Section 5.2.4 is
simulated as a sequence of partitioned selections on time_step as follows.
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declare

init1 integer¼ 10;

increment1 integer¼ 1

begin
while (:init1 < 21) loop

select region, time_step, avg(eqps), stddev(eqps) from CrushingCan

where time_step between :init1) 1 and :init1 + :increment1 group by re-

gion;

:init1:¼ :init1 + :increment1;

end loop;

end

We can easily extend this one partitioning-variable case to a multi-variable

case.

Suppose SQL99 were extended to support grouped partitioning by attri-

butes (e.g., ‘‘group by displx, )5, 1’’). Then, it is straightforward to translate

MeshSQL on CrushingCan into SQL99 on mesh_elements and mesh_regions.

There are three cases: select-to-select, select-to-select&insert, and select-to-

script.

Case 1 (select-to-select): If a mesh region is specified as the target of either a
qroup-by-region query or a similar-region query statement, then use

mesh_regions as the target table of the corresponding SQL99 statement. The

query type is RP in this case. Otherwise, use mesh_elements as the target table.

The query type is either SR or SP in this case. For example, the following

SQL99 statements are those translated from the corresponding MeshSQL

statements in Section 5.2.

(G3: group-by-region): Select distinct r.region_no, r.elementfi time_step,

r.elementfi displx, avg(r.elementfi eqps), stddev(r.elementfi eqps) from
CrushingCan.mesh_regions r where r.elementfi time_step between 9 and 21

. . . group by r.region_no, r.elmentfi time_step 10, 1, r.elementfi displx )5, 1;
(G4: group-by (not region)): Select e.time_step, avg(e.eqps), stddev(e.eqps)

from CrusingCan.mesh_elements e where e.time_step between 9 and 21. . .
(C1: SR.NT.MV): Select e.time_step, min(e.velx), max(e.velx), min(e.vely),

max(e.vely), my_aggr(e.eqps) from CrushingCan.mesh_elements e where

e.time_step 6 190 and e.x between 200 and 300 and e.y > 100 and e.z between

50 and 80 group by e.time_step 0,1;
(C2: RP.NT.MV): Select e.element_id from CrushingCan.mesh_elements e

where e.time_step< 100 and e.x between 200 and 300 and e.y > 100 and e.z

between 50 and 80 and e.eqps between 0.1 and 0.5;

(C3: SP.NT.MV): Select my_summary(square(e.velx-100) + square(e.vely-

32)) from CrushingCan.mesh_elements e where e.x between 200 and 300 and

e.y > 100 and e.z between 50 and 80 and ((e.eqps between 100 and 500) or

(e.vely between 32 and 212));
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(V4: oblique slice): Select e.element_id from CrushingCan.mesh_elements e

where e.time_step ¼ 10 and ontheplane(e.x, e.y, e.z, 0.5, 0.2, 0.6, 3.5);

Here, we assume the SQL99 function ontheplane has already been created:

create function ontheplane(x double, y double, z double, ax double, ay
double, az double, d double) returns Boolean begin . . . end;

(D1: range): Select distinct r.region_no from CrushingCan.mesh_regions r

where r.element) time_step between 10 and 20 and r.elementfi x ¼ 100 and

r.elementfi y between 200 and 400 and r.some_distance(123) < 3;

Case 2 (select-to-select&insert): If the keyword ‘‘into database’’ is specified

in the select clause, insert the retrieved regions (specifically, the tuples com-

prising region_no and element) into the table mesh_regions. For example, the

MeshSQL statement

select region into database from CrushingCan where. . .;
is translated into the SQL99 statement

insert into CrushingCan.mesh_regions

select region_no.nextval, e.element_id from CrushingCan.mesh_elements e

where. . .;

Case 3 (select-to-script): If a MeshSQL statement cannot be translated into a
single SQL99 statement, it is translated into a script written in SQL99 Procedural

Language Extensions. Templates are used for this purpose. For example, the

similarity query D2, which retrieves five regions into the database, is translated

into the following cursor program 3 that processes the regions one by one.

(D2: k-nearest neighbors)

declare

cursor c1 is

select distinct r.region_no, r.element from CrushingCan.mesh_regions r

where r.elementfi time_step between 10 and 20

and r.elementfi x ¼ 100 and r.elementfi y between 200 and 400
order by r.some_distance(123);

c1_rec c1%rowtype;

rno integer;

count integer;

begin

if not c1%open then open c1; end if

fetch c1 into c1_rec;

rno:¼ region_no.nextval;
3 The syntax is based on Oracle PL/SQL. (Oracle is the trade mark of Oracle Corp.)
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count :¼ 0;

while (count < 5 and c1%found) loop

insert into CrushingCan.mesh_regions values (rno, c1_rec.element);

fetch c1 into c1_rec;
count :¼ count + 1;

end loop;

close c1;

end

7.3. Index usage for different query types

We sketch here the probable usage of database indexes based on the query
classification criteria described in Section 4: {SR, RP, SP} · {1T, NT}· {NV,

UV, MV}.

Query target forms and conditions: Query condition expressions in the

‘‘where’’ clause may include any of the temporal, spatial, and field variables.

We do not need an index to implement / in Eq. (7) and w in Eq. (8) because,

given a node index, we can calculate the address of the mesh record containing

the values of the variables. In contrast, indexes on spatiotemporal or field

variables are useful for identifying nodes given predicates on those variables.
(See Eqs. (9) and (10).)

• For an SR query, since the selection condition in the ‘‘where’’ clause in-

cludes spatiotemporal variables only, we use indexes available on the col-

umns time_step, x, y, and z of the table mesh_elements, preferring

composite (i.e. multi-column) indexes to simple (i.e., single column) indexes.

The index search returns one or more sets of references to mesh_elements

records (or tuple identifiers of), and each reference is de-referenced to re-
trieve the field values of the variables specified in the ‘‘select’’ clause. The

values are then used to calculate the target summaries.

• For an RP query, since the selection condition in the ‘‘where’’ clause

includes not only spatiotemporal but also field variables, we use indexes

available on any of the columns in the table mesh_elements, again prefer-

ring composite indexes. Indexes return sets of references to mesh_elements

records, and each set makes an instance of the type region. If the query is

a group-by-region query or a similar-region query, then we may well create
nested indexes [28] on the table mesh_regions with the columns of

mesh_elements as the index keys. These indexes are currently not consid-

ered.

• For an SP query, which is equivalent to RP followed by SR, the sets of ref-

erences to mesh_elements records are found using indexes on spatiotempo-

ral and field variables (RP part), and the summaries are computed from the

data in the dereferenced mesh_elments records.
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Fig. 4. A two-tiered partitioned index on simulation mesh data.
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The number of time steps in a query condition: As far as physical storage is

concerned, the temporal variable may well be distinguished from spatial

variables. Fig. 4 shows a two-tiered index structure, where the upper level is a

one-dimensional temporal index on time step and is used to identify a multi-
dimensional spatial/field index to be searched. This two-tier index structure can

be used by 1T and NT queries as follows:

• For a 1T query, search the lower level index found from the upper level

index given the specified time step.

• For an NT query, search all lower level indexes found from the upper level

index given the specified interval of time steps.

Note that, as indicated in Section 2.2, it is subject to debate whether a

temporal variable should be treated distinct from spatial variables [15]. Thus,

we include the option of supporting one index on the composition of time_step

and the coordinate columns (i.e., x, y, z) of the table mesh_elements. Such an

index covers spatial data across a range of time steps with one index search.

The number of variables in a query condition:

• For an NV query, obviously no index is applicable. The only possibility is an

exhaustive scan of the data (at one or multiple steps depending on 1T or

NT).

• For a UV query, use an index if available on the column (of the table
mesh_elements) corresponding to the variable. Otherwise, perform an ex-

haustive scan of the data.

• For an MV query, use a composite index applicable to the largest set of col-

umns (of the table mesh_elements) corresponding to the variables specified

in the query condition. If no composite index is available, use as many

simple indexes as available. Otherwise, perform an exhaustive scan of the data.
8. Conclusion

We have presented a query language MeshSQL proposed for simulation
mesh data. Under a mathematical data model simplified to a set of records
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containing spatiotemporal and field variables, MeshSQL is founded upon two

algebraic operators: finding the values of fields given a predicate on spatio-

temporal coordinates and finding the values of spatiotemporal variables given

a predicate on field variables. Due to the nature of the data, MeshSQL exhibits
the characteristics of temporal, spatial region, statistical, and similarity queries.

In consideration for these characteristics and the implementations of queries,

we have classified MeshSQL into three categories: query target and condition

forms, the number of time steps in a query condition, and the number of

variables in a query condition.

We have provided the mesh data creation specification and the query

specification of MeshSQL with a focus on the extensions required of SQL99.

Then, we have shown examples of queries combining the classified types,
queries embodying conventional visualization operations, and queries that

incorporate similarity search techniques in the form of user-defined functions.

For implementing MeshSQL in SQL99, we have considered three cases that,

respectively, handle translating one MeshSQL select statement into one SQL99

select statement, one MeshSQL select into one SQL99 select followed by insert,

and one MeshSQL select into an SQL99 Procedural Language script. In ad-

dition, we have outlines useful indexes on mesh data and discussed how a query

processor should choose those indexes for each query type in each of the three
categories of MeshSQL.
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Appendix A. Grammar of MeshSQL select statement

In this appendix we summarize the grammar of MeshSQL select statements

described in Section 5.2. In its current shape, MeshSQL grammar is a subset of

SQL99 grammar, augmented with the features of queries characterized in
Section 3.
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A.1. Syntactic notations

In the syntactic rules described below, we use the following notations:

• Keywords are shown in bold face.

• An optional expression is enclosed within square brackets as in [expression].

• An expression repeated zero or more times is denoted as [expression]*.

• Alternative expressions are separated by a vertical bar (j) between them.
A.2. Terminal expressions

We assume the following expressions are given.

A.2.1. Constants

• integer: denotes a constant integer number.

• real: denotes a constant real number.

• string: denotes a constant character string.
A.2.2. Variables

• spatial_variable: a variable denoting a spatial coordinate (e.g., x, y, z) of

mesh.

• temporal_variable: the time step of simulation, denoted by the keyword

time_step.

• field_variable: a field variable defined at each mesh node or zone.
A.2.3. User-defined functions

• UD_nonaggr_function: a user-defined non-aggregate function.

• UD_aggr_function: a user-defined aggregate function.
A.3. Query expressions

We describe the grammar of a query expression using an abbreviated

Backus–Naur Form.

query ::¼
select [number] [similar] region [into database] j select_list
from mesh_data

[where condition]
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[group by grouping_list

[having group_selection_condition]]

[order by ordering_key_list];

A.3.1. Select clause

select_list ::¼ select_element [, select_element]*

select_element ::¼ expr_list j aggr_function(expr_list)
expr_list ::¼ expr[,expr]*

expr ::¼ variable j number j nonaggr_function(expr_list)
variable ::¼ spatial_variable j field_variable j time_step

number ::¼ integer j real
aggr_function ::¼ avg j min j max j count j sum j stddev j UD_aggr_func-

tion

nonaggr_function ::¼ +j ) j * j / j square j sqrt j UD_nonaggr_function

A.3.2. From clause

mesh_data ::¼ string

A.3.3. Where clause

The syntax of a condition expression in the ‘‘where’’ clause is identical to

that of ANSI SQL99. Therefore, we omit the specification and refer the readers

to other resources like the Ref. [27].

A.3.4. Group-by clause

grouping_list ::¼ grouping_attr [, grouping_attr]*

grouping_attr ::¼ region j variable init_value increment

init_value ::¼ number

increment ::¼ number

A.3.5. Having clause

group_selection_condition ::¼ aggr_function(expr_list) rel_op number
rel_op ::¼ >j>¼ j<j<¼ j¼ ¼ j!¼

A.3.6. Order by clause

ordering_key_list ::¼ ordering_key [, ordering_key]*

ordering_key ::¼ variable j aggr_function(expr_list) j nonaggr_function

(expr_list)
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