
The Scalability of an Object Descriptor Architecture OODBMS

Kwok K. Yu, Byung S. Lee, Michael R. Olson
University of St. Thomas, St. Paul, Minnesota, U.S.A.

kkyu@gps.stthomas.edu, bslee@stthomas.edu, michael.olson@westgroup.com

Abstract
An object database management system (OODBMS) has
been often criticized for its alleged insufficient scalability
for a large-scale production system. We investigated the
scalability issue on a commercial OODBMS with a focus
on the scalability with respect to the number of objects.
Our approach was a benchmark experiment using the
loading and indexing of SGML text documents as an
application. The application was characterized by its
small granularity of objects, which resulted in a huge
number of objects in order to make a large database
volume. The OODBMS we used was built in a so-called
"object descriptor architecture (ODA)" as opposed to a
"virtual memory mapping architecture (VMMA)". The
results showed that the OODBMS scaled better than we
had anticipated. It required, however, algorithmic
resolutions to overcome the shortage of object cache
space. Three key resolutions were made. First, we created
indexes in fragments by committing a loading transaction
before the object cache space became full, and
subsequently merged the fragments into one master index.
Secondly, we had the application release cached object
descriptors (CODs) as soon as they became unnecessary.
Thirdly, we utilized a query cursor mechanism to fetch the
objects returned from a query piece by piece without
overflowing the object cache space. Currently we are
attempting to push the scalability up to filling up the
maximum available hard disk space.

1. Introduction

In a production world, an object-oriented database
management system (OODBMS) has been subject to a
criticism for its alleged lack of scalability, especially with
respect to data volume. We wanted to see it for ourselves
by actually experimenting it on a commercial OODBMS.
Our goal was to understand if there was any generic
reason for an OODBMS not being scalable. Knowing that
there are two existing representative architectures of an
OODBMS — one called a virtual memory mapping
architecture (VMMA) and the other object descriptor
architecture (ODA) [2] — we deliberately picked one
commercial product for each of the two architectures. The

VMMA OODBMS has proven to be not scalable and a
report was made in [1]. We continued with an ODA
OODBMS and reaped interesting results, which we report
in this paper.

Our method of the experiment was to conduct a
benchmark testing on a commercial OODBMS. For a
typical OODB application a large data volume means a
large number of objects because objects are usually small
in size (i.e., 10s to 100s of bytes). Therefore we needed an
application that handled a large number of small objects
than a small number of large objects. To this end, a
Standard Generalized Mark-up Language (SGML) [6]
document loading utility, which was used in [1], was
reused as our application. Besides, our SGML application
has its own practical significance in the sense that a
simplified subset of SGML called XML [4, 5] is likely to
be the predominant data format for web-enabled content
applications.

We would like to claim the following points as our
contributions to the research community:
• We verified that an ODA OODBMS scales far better

than a VMMA OODBMS, at least as far as we are
concerned with the scalability with respect to the
number of objects (hence data volume).

• We confirmed that the number of objects was a more
critical barrier to the scalability than the sheer data
volume on an ODA OODBMS.

• We found that it was crucial to the scalability of an
ODA OODBMS that an application is capable of
cleaning up "in time" unnecessary cached object
descriptors (CODs) from an object cache space.
The rest of this paper is organized as follows. In

Section 2, we provide background information about
ODA OODBMS and SGML documents. In Section 3, we
describe the benchmark application including its object
schema, how the loading utility works, and more specifics
of index creation algorithms. The benchmark results are
presented in Section 4, and finally conclusion follows in
Section 5.

2. Background

In this section, we provide some background knowledge
that is necessary to understand the rest of the paper.

2.1. Object Descriptor Architecture

As mentioned in the introduction, there are two different
representative architectures of an OODBMS. [2] One is
called a virtual memory mapping architecture (VMMA)
and the other object descriptor architecture (ODA).
VMMA and ODA employ distinct schemes of managing
an object cache space during the execution of an
application. More specifically, in a VMMA database
address space is an extension of virtual memory space just
as virtual memory space is an extension of real memory
(RAM) space (See Figure 1), whereas in an ODA the
system addresses cached objects indirectly via an object
descriptor. Figure 3 and Figure 4 illustrate the mechanism
of fetching and caching objects in an ODA for a sample
application code shown in Figure 2. (The sample code is
written in ODMG C++ [3].)

The ODA is characterized as follows.

• The object cache space of ODA is configured in two
tiers -- object buffer and page buffer. (This is called a
"dual buffering.")

• When an object is fetched into an object buffer, a
cached object descriptor (COD) is allocated in the
cache space for each reference that comes out of the
object and the COD is entered in a COD table. (Note
that the referenced object is not fetched until it is
actually needed by the application. This is called a
"deferred pointer swizzling.")

CreateCOD2 and enter it in the COD table.
Swizzle “d_Ref b” to the address of COD2.

Create COD1 and
enter it in the COD
table

COD table

COD1

COD2

a1 = Fetch
page1

Extract
obj1 &
translate

page buffer

obj1

object buffer

obj1

database

obj1 page1

obj2 page2

obj3 page3

CreateCOD3 and enter it in the COD table.
Swizzle “d_Ref<C> c” to the address of COD3

COD table

COD1

COD2

a1 =

Fetch
page2

Extract
obj2 &
translate

page buffer

obj 1

object buffer

obj1

database

obj1 page1

obj2 page2

obj3 page3

obj2obj2

COD3

b1 =

Here comes a brief description of the object caching
algorithm in ODA:
1. Locate the page containing a target object in the

database and retrieve it into a page buffer.
2. Extract the target object from the page, translate it

from a disk format to a main memory format, and
place it in an object buffer.

3. Create a COD for the fetched object and enter it in a
COD table.

4. For each external object reference in the fetched
object, create a new COD and enter it in the COD
table.
Object caching is the bottleneck of the scalability we

are investigating because an object cache space is

Figure 2. A sample code of fetching objects

Figure 1. Address mapping in VMMA

Figure 3. After d_oql_execute(query, a1);

Figure 4. After d_Ref b1 = a1->b;

database
virtual
memory

real
memory

class A: public d_Object {
public:
 d_Ref b;
}

class B: public d_Object {
public:
 d_Ref<C> c;
}

main() {
 ...
 d_Ref<A> a1;

// Get a1 from the database.
 d_oql_execute(query, a1);

// Navigate to b and get b1.
 d_Ref b1 = a1->b;

// Navigate to c and get c1.
 d_Ref<C> c1 = b1->c;
 ...
}

allocated in a virtual memory and its size is limited. The
system is "choked" if the virtual memory becomes full
and no memory can be released from it.

2.2. SGML

Standard Generalized Markup Language (SGML) [7] is
an international standard of a mark-up language for
describing a document and is supported by the
International Standardization Organization (ISO) and
Department of Defense (DoD). The key idea is to separate
document form (e.g., document structure, character font
and size) and content (i.e., actual text). This separation
facilitates the interchange of documents among
heterogeneous platforms. An SGML document involves
the following three components: an SGML declaration, a
document type definition (DTD), and a document
instance.
s The SGML declaration defines the coding scheme

(e.g., characters and delimiters) of a document.
s The document type definition (DTD) defines the

rules for marking up a class of documents. There are
different DTDs for different document types such as
letter, memo, and article.

s The document instance is a marked-up text document
itself.
Figure 5 and Figure 6 show the examples of an

SGML DTD and a document instance that complies with
the DTD, respectively. Note the nested element tags (e.g.,
book, chapter, section, title, paragraph, xref), attributes
(e.g., targref = P1, targid = P1), and an entity (e.g.,
SGML). The grammar specified in the exemplary DTD
can be shown using an informal BNF notation as shown
below. ({symbol} denotes a sequence of zero or more
symbols. PCDATA is a parsed character data string.)

• book ::= title chapter {chapter}
• chapter ::= title section {section}
• section ::= title paragraph {paragraph}
• title ::= PCDATA
• paragraph ::= PCDATA
• xref ::= PCDATA (can appear anywhere)

As we see in the example, an SGML element can contain
other elements nested in it, thus a perfect fit for a
composite object. When SGML elements are stored as
OODB objects, each element is assigned with its own
object identity (OID), which can be used to implement
references between elements without introducing artificial
key values. What was particularly interesting about
SGML for our benchmark experiment was the small size
of elements. This forced us to create millions of SGML
elements in order to make a large data volume.

Figure 5. An example of SGML DTD

Figure 6. An example of SGML document
instance compliant with the DTD in Figure 5.

<!DOCTYPE BOOK [<!-- Note that “<!-- “ and “ -->“ are
comment delimiters -->

<!-- Defines a text that will replace &SGML in a document
instance. -->

<!ENTITY SGML "Standard Generalized Markup
Language">

<!-- Typically, the first element name matches the DOCTYPE
name -->

<!ELEMENT book - - (title, (chapter)+) +(xref)>

<!-- The “- O” means the chapter element must have a start tag,
but that the end tag is optional. We can do this because the
document structure implies the presence of the end tag, whether
it is present or not. In other words, a chapter may end when the
end tag is reached, when the start of another chapter is found, or
when the end tag of the book element is reached. -->

<!ELEMENT chapter - O (title, (section)+)>

<!-- The plus sign (+) means the item must occur at least
one time and perhaps many times -->

<!ELEMENT section - O (title, (paragraph)+)>

<!-- The start and end tags for a title are optional -->
<!ELEMENT title O O (#PCDATA)>

<!ELEMENT paragraph - O (#PCDATA)>
<!ATTLIST paragraph targid ID #REQUIRED>

<!-- Both the start and end tags for xref are required. -->
<!ELEMENT xref - - (#PCDATA)>
<!ATTLIST xref targref IDREF #REQUIRED>

]>

<book>This title needs no begin or end tags.
<chapter><title>Here we chose to insert a begin tag without an
end tag.
<section>This time we include only the end tag of a title.</title>
<paragraph targid=P1>Notice that the xref may appear
anywhere inside the book element. This is allowed because of
the “+(xref)” inclusion in the content model for the book
element. The “P1” targref matches the “P1” targid, thereby
establishing a logical hypertext link. For example, <xref
targref=P2> link </xref>.
<paragraph targid=P2>Also notice that each paragraph is
required to have a unique targid. This is because of the type
specification of “ID” and the “#REQUIRED” in the content
model of the paragraph declaration.
<paragraph targid=P3> This was an example of an SGML
document instance. SGML stands for &SGML.</paragraph>
</book>

Table 1. Classes used by the benchmark application.
Class Description
DocComponent An abstract class that SGMLElement, SGMLEntity, and PCDATA inherit from.
Document Represents a document, which may contain an SGMLElement that is the outermost element.
PCDATA Represents a character string data (i.e., content word) in an SGML document. Derived from

DocComponent.
Publication Represents a publication, which may contain Documents.
PubSeries Represents a publication series, which may contain Publications.
SGMLAttribute Represents an attribute in SGML.
SGMLEntity Represents an entity in SGML. Derived from DocComponent.
SGMLElement Represents an element in SGML. Derived from DocComponent. May contain parts such as

SGMLEntitys, PCDATAs, SGMLAttributes, and other SGMLElements.
WordDictionary An index class that contains a dictionary with string as the key and WordLocator as the value.
WordLocator Contains a key string and a set of links to all SGMLElements that contain the key.

Figure 7. Benchmark Application Object Schema Diagram.

SGMLEntity
owner
printSelf()
printSelf(ofstream&)
insertOwner(SGMLElement*)
loadSelf(ifstream&, char*,
 char&, int&)
indexSelf(Publication*,
 AssociativeArray*,
 SGMLElement*,char*)

PubSeries
name
<parts>
printSelf()
printSelf(ofstream&)
insertPart(Publication*)

Publication
name
<parts>
<owners>
wordDic
attributeDic
entityDic
elementDic
printSelf()
printSelf(ofstream&)
insertPart(Document*)
insertOwner(PubSeries*)
loadSelf(ifstream&,
 AssociativeArray*,
 char*, char&, int&)
indexSelf(AssociativeArray*,
 char*)
static Find_Publication(char*)
static Find_all()

Document
<owners>
beginElement
printSelf()
printSelf(ofstream&)
insertOwner(Publication*)
loadSelf(ifstream&,
 char*, char&, int&)
indexSelf(Publication*,
 AssociativeArray*,
 char*)
Find_all()

DocComponent
value
virtual printSelf()
virtual printSelf(ofstream&)
virtual insertOwner(SGMLElement*)
virtual indexSelf(Publication*,
 AssociativeArray*, SGMLElement*,
 char*)

SGMLAttribute
value
element
printSelf()
printSelf(ofstream&)
insertElement(SGMLElement*)
loadSelf(ifstream&, char*,
 char&, int&)
indexSelf(Publication*,
 AssociativeArray*,
 SGMLElement*,char*)

WordDictionary
type
[[wordLocators]]
printSelf()
printSelf(ofstream&)
addEntry(WordLocator*)
addEntry(char*,
 SGMLElement*)
find(char*)
multiTermQuery(char*, int,
 VISet<SGMLElement>*)
MergeFragment(LinkVstr<
WordDictionary>& wdlist)

WordLocator
word
{locators}
printSelf()
printSelf(ofstream&)
addEntry(SGMLElement*)
compare(PVirtual&)
setWord(char*)
findWord(char*)

PCDATA
owner
printSelf()
printSelf(ofstream&)
insertOwner(SGMLElement*)
loadSelf(ifstream&, char*,
 char&, int&)
indexSelf(Publication*,
 AssociativeArray*,
 SGMLElement*,char*)

SGMLElement
isDocument
<parts>
<owners>
<ownerDocs>
<targs>
<invTargs>
<attributes>
printSelf()
printSelf(ofstream&)
insertPart(DocComponent*)
insertOwner(SGMLElement*)
addOwnerDocument(Document*)
insertAttribute(SGMLAttribute*)
//insertTarget(SGMLElement*)
//insertInverseTarget(SGMLElement*)
validBeginTag(ifstream&, char*,
 char&, int&)
loadSelf(ifstream&, char*, char&,
 int&, Document*)
indexSelf(Publication*,
 AssociativeArray*,
 SGMLElement*, char*)

3. Benchmark Application

The benchmark application is basically a loading utility
that creates SGML objects (e.g., elements, attributes,
entities, and PCDATAs) and indexing SGML
documents by those SGML objects. The application
program simulates loading a large SGML text file by
repeatedly loading a small SGML text file. It prompts
users for an input file name and the number of times to
repeat loading the file. It dumps status information to a
file during and after the loading. If a crash occurs, the
output file will contain an error message. Otherwise the
output file will contain information such as the number
of created SGML objects (i.e., elements, entities,
attributes, and PCDATA’s) and the time it took to create
and index them. For the rest of this section, we give a
brief overview of the object schema of the benchmark
application in Section 3.1, explain how the loading
utility works using an example in Section 3.2, and
describe an index fragmentation and merging algorithm
of the loading utility in Section 3.3.

3.1. Object Schema

Table 1 describes all the classes used by the benchmark
application. Figure 7 is the object schema diagram that
shows the relationships between these classes.

3.2. Overview of the loading utility

The loading utility is used to load the content of an
SGML encoded ASCII stream to a user specified
publication. It recognizes the basic building blocks of
SGML (e.g. elements, attributes, entities, and
PCDATA’s) and creates them as objects in a database.
More specifically, when a new SGML element is
encountered, the loading utility allocates persistent
storage space in the database for the element, its
attributes, and component elements and their attributes.
Once the creation of objects is finished, the element
objects are indexed by an element index, an entity index,
an attribute index, and a PCDATA index.

3.2.1. Creating SGML object
Let us look at an example to see how it works. Suppose
we load the following SGML document:

<doc>
<body id=123>
Merry &XMAS
</body>
</doc>

Figure 8 shows the SGML objects and their linkage after
the loading is completed. When the first line (<doc>) is
loaded, the loading utility creates an element object in
the object cache, identified by a value ‘doc’. When the
second line (<body id=123>) is loaded, the loading
utility creates one more element object identified by a

value ‘body’ and also creates an attribute object
identified by a value ‘id=123’. Since <body> is a sub-
element of <doc>, the <body> element object is
referenced in the ‘parts’ list of the <doc> element
object. In addition, ‘id=123’ is an attribute of element
<body>, so the attribute object is referenced in the
‘attributes’ list of the <body> element object. When line
3 (Merry &XMAS) is loaded, the loading utility creates
a PCDATA object identified by a value ‘Merry’ and an
entity object identified by a value ‘XMAS.’ Since the
PCDATA ‘Merry’ and the entity ‘XMAS’ are parts of
the <body> element, they are both referenced in the
parts list of the <body> element. Line 4 (</body>) and
line 5 (</doc>) signify the end of the element tags, and
the creation of SGML objects are done.

3.2.2. Indexing SGML objects.

id=123
value

Attribute object

body
value

parts

Element object

attributes

doc
value

parts

Element object

attributes

Merry
value

PCDATA object

XMAS
value

Entity object

id=123

key locator

Attribute index

doc

key locator

Element index

Merry

key locator

PCDATA index

XMAS

key locator

Entity index

body

dictionary

dictionary

dictionary

dictionary

Figure 8. After the loading is done.

Figure 8 also shows how it looks when the indexes are
created. Since the attribute object ‘id=123’, PCDATA
object ‘Merry’, and entity object ‘XMAS’ are parts of
the element <body>, their corresponding indexes all
reference the <body> element object.

Each index has a dictionary data structure. A
dictionary is a collection object in which each entry has
a key field and a value field. The key field of our index
object is a string object. The value of the string depends
on the type of an index. For instance, the PCDATA
index of our example has an entry with a key of ‘Merry’
string object. The value field contains a locator object.
A locator object has a set data structure that holds all the
links to those element objects that contain the key.

3.3. Index fragmentation and merging

The loading algorithm can be summarized to the
following three steps.

1. Parse the input file and create SGML objects.
2. Create fragmented indexes and index the

SGML objects.
3. Merge the index fragments into a master index.

The rationale behind the index fragmentation and
merging is that SGML objects are created in the object
cache of a limited size. The cache will run out of space
if there are too many objects created within the same
transaction. The resolution to this problem is to commit
the transaction more often to flush out SGML objects
and indexes to disk. In our benchmark, we committed a
transaction every time a fixed threshold number of
objects were created. (We thought about determining
the threshold number dynamically by monitoring the use
of cache space but did not implement it.) Note that the
index is fragmented as the result of committing the
loading transaction in intermediate stages. The index
fragments are merged into one master index in the
subsequent step.

Figure 9 shows the state of the PCDATA index
prior to merging after our exemplary input file has been
loaded three times with a commit after each loading.
Figure 10 shows the state of the PCDATA index after
the fragments are merged into one master index.

Here comes a summary of the index merge
algorithm:
Create an empty master index.
For each index fragment begin

While the current index fragment is not
empty begin

PCDATA index fragment

Merry

key locator

Merry

value

PCDATA object

Merry

value

PCDATA object

Merry

value

PCDATA object

body

value

parts

Element object

attributes

body

value

parts

Element object

attributes

body

value

parts

Element object

attributes

Merry

key locator

Merry

key locator

PCDATA index fragment

PCDATA index fragment

dictionary

dictionary

dictionary

Figure 9. PCDATA index fragments before
merging

Merry
value

PCDATA object

Merry
value

PCDATA object

Merry
value

PCDATA object

body
value

parts

Element object

attributes

body
value

parts

Element object

attributes

body
value

parts

Element object

attributes

Merry

key locator

PCDATA index

dictionary

Figure 10. PCDATA master index after
merging

Get the key of the first entry from the
current index.

Find entries with the same key from all
index fragments.

Retrieve all WordLocator objects from
the found entries.

Consolidate the retrieved WordLocator
objects by merging their links to
SGMLElement objects.

Insert the key and the consolidated
WordLocator object into the master
index.

Remove the entries with the same key
from all index fragments.

End While
Delete the current index fragment from the

database.
End For

4. Benchmark Result

4.1. Benchmark environment

The benchmark application, including the load utility
program, was written in C++ and compiled on a Sun
workstation. We initially used SunSparc10 running
Solaris 2.5.1 with 224 Mbytes of RAM and 520 Mbytes
of swap space. Later we migrated to another machine
Ultra-1 Sparc running Sun Solaris 2.5.1, which was of a
lesser capacity but was available entirely for the
benchmark experiment. The new machine had 128
Mbytes of RAM with 550 Mbytes of swap space and 2
Gbytes of disk space. Eventually we increased the swap
space to 832 Mbytes and added more disk space toward
a total of 7.25 Gbytes.

Due to a difficulty in obtaining a large volume of
real SGML document files, we loaded a small SGML
file (25,320 bytes) repeatedly to simulate a large data
volume. Since each SGML element in the file is created
as one SGML element in the database even though its
content is a duplicate of another, we are indeed
simulating a large number of SGML objects. However,
the repetition of the same file skews the distribution of
indexed entries, hence generating the worst case
scenario of indexing.

4.2. Problems and resolutions

We performed the experiment while increasing the size
of input SGML files from 50M to 100 Mbytes, 250
Mbytes, 500 Mbytes, and 1 Gbytes. We ran into an "out
of heap memory" error almost every time we increased
the size. The error was caused by the object cache space
overflowing with too many SGML objects (e.g.,
elements, attributes, entities, PCDATA’s) and index
objects (e.g., WordLocator), and cached object
descriptors (CODs). Here comes a summary of what we
have done in order to resolve the "out of heap memory"
problem.

s Commit the loading transaction before the object
cache becomes full. A commit releases objects from
the cache space. (As mentioned earlier, this renders
the indexes to be fragmented and thus necessitates
merging them into one master index.)

s Release unused CODs from the cache space by
calling a system function. This COD release
operation should be used with care to avoid leaving
invalid links in the object cache space. (The
OODBMS we used does not do it automatically at
commit. It would be far better if the OODBMS
traced the reference count of each COD and purged
out the COD at commit time if its reference count is
zero.)

s Utilize a query cursor mechanism to deal with a too
large query result. The cursor mechanism allows
the application to control how many objects to
return from a query at a time. Therefore if a huge
number of objects are returned, a cursor can be used
to control the number of objects brought into an
object cache so that they can fit in without filling up
the cache space.
Another error we ran into frequently was "out of

database volume" error. This error occurred when the
allocated database volume was filled up. We added
more volumes manually every time the error occurred.
This was not a generic problem but rather a deficient
feature of the OODBMS we used. We wished the
product supported an automatic expansion of database
volume.

Details of all the problems encountered throughout
the benchmark testing and their resolutions are
described in [8].

4.3. Most recent performance data

After overcoming many system troubles, we were able
to load a total of 500 Mbytes of SGML text file into a
2.4 Gbyte database successfully so far. In contrast, the
maximum database size on a VMMA OODBMS was
250 Mbytes (on a 32-bit machine). [1] Note that the
expansion ratio (i.e., loaded database size / raw data file
size) is less than 5. This ratio is much better than what
we observed on the VMMA OODBMS in [1]. It was
more than 10 there.

We are in the process of loading 1Gbyte SGML
file. Our first attempt failed because a query retrieved
too many objects in the beginning of merging index
fragments. When the loading utility merges index
fragments, it issues a query to retrieve all WordLocator
objects that contain the links to SGMLElements that
contain the current key string. Since we are simulating
large sized files by repeatedly loading the same SGML
document, the query returns too many matching
WordLocator objects to fit in the object cache. The
situation would be alleviated if we were to use real data,

where the frequency of repeated words would not be so
high.

The query cursor mechanism was utilized in order
to resolve the problem of too large query result. The
implementation of the cursor mechanism has been
completed. The four different kinds of indexes are
merged in the order of entity, attribute, element, and
PCDATA, in an increasing order of the number of
indexed objects. At this time of writing, the index merge
fails with the "out of heap memory" error in the middle
of merging element index fragments after successfully
merging the first two. We suspect the resolution is to
locate safe points of releasing CODs in the benchmark
program. (By a "safe COD release point", we mean a
point in the program where we can find objects whose
CODs can be released from the object cache space
without leaving dangling links from the objects.) We are
still working on it.

 What we desire is to reach the physical limit of our
benchmark experiment by getting an "out of disk space"
error after filling up all the available hard disk space.
We will be able to reach this physical limit if we
succeed in finding the safe point of releasing CODs.

4.4. Summary of our benchmark result

Here comes the summary of benchmark testing result
obtained so far, as already briefed in the introduction of
this paper.
• The "lack of scalability" labeled on an OODBMS is

not always valid for the scalability of an ODA
OODBMS with respect to the number of objects
(hence data volume as well).

• The number of objects is a more critical barrier to
the scalability than the data volume itself. Most
problems that occurred were caused by insufficient
object cache space that overflowed when an
excessive number of objects and CODs were
created.

• It is crucial to the scalability when millions of
objects are dealt with that the application program
is capable of releasing unused CODs before they
overflow the object cache. The ultimate scalability
depends on the feasibility of finding safe COD
release points in the application program.

5. Conclusion

We conducted a benchmark experiment using a
commercial object-oriented database management

system built in object descriptor architecture. The goal
of the benchmark was to see how scalable it was with
respect to the number of objects that are loaded into a
database. The application chosen for the experiment was
an SGML document loading program, which was
characterized by a huge number of small objects. The
benchmark results showed that it scaled far better than
the same benchmark performed on virtual memory
mapping architecture previously. We found it most
important that the application should be capable of
releasing unused cached object descriptors (CODs) from
the object cache before the cache space is filled up.

As to further work, we will first finish the on-going
benchmark experiment by continuing our efforts of
locating safe COD release points in our SGML loading
program. Whether we be successful or not, the next step
will be to try with one large (> 1 Gbytes) SGML text
file, not a small file repeatedly loaded. Lastly, our
experiment to date has been confined within a
centralized OODBMS platform. We will extend the
benchmark to a distributed OODBMS platform.

References
[1] M.R. Olson and B.S. Lee, "Object Databases for SGML
Document Management", Proceedings of the 30th Hawaiian
International Conference on Systems Sciences (HICSS),
Volume III, Maui, Hawaii, U.S.A., January 7-11, 1997, pp. 39-
48.
[2] M.E. S. Loomis, Object Databases: The Essentials,
Addison-Wesley Publishing Company, 1995, pp. 117 - 129.
[3] R.G.G. Cattell, et al. (ed.), The Object Database Standard:
ODMG2.0, The Mogan Kaufmann Publishers, Inc., 1997.
[4] J. Bosak, "XML, Java, and the future of the Web," Sun
Microsystems, 1997, http://mealab.unc.edu/pub/sun-
info/standards/xml/why/xmlapps.htm
[5] "The XML Revolution" Web Matters, October 1998,
http://helix.nature.com/webmatters/xml.html
[6] "What is SGML?" Graphic Communication Association,
1998, http://www.gca.org/stanpub/sgml.htm
[7] E. Herwijnen, Practical SGML (2nd ed.), Kluwer Academic
Publishers, 1994.
[8] K.K. Yu, Loading scalability of an object-oriented
database management system in the object descriptor
architecture, Thesis Project Technical Report, Graduate
Programs in Software, University of St. Thomas, St Paul,
Minnesota, U.S.A., November 1998.

