
Preventing Cache Overflows in an Object-Oriented Database
Management System with the Object-Descriptor Architecture

Byung S. Lee
Department of Computer Science, University of Vermont, Burlington, VT 05405

E-mails: bslee@cs.uvm.edu

Abstract

In an object-oriented database management system built in
the object-descriptor architecture, there is a concern about
cached object-descriptors (CODs) filling up the client ob-
ject cache space and, consequently, failing a database
transaction. This phenomenon occurs especially during
the data loading which keeps creating new objects in the
object cache space. In this paper, we reexamine the struc-
ture and use of CODs, discuss the pros and cons of re-
taining CODs in an object cache, and propose a resolution
to the problem of cache overflow. Our solution requires
only a slight modification of the transaction termination
protocol.

1 Introduction
Most object-oriented database management systems
(OODBMSs) are built in the object-descriptor architecture
(ODA)[1, 2]. The ODA is characterized with using a sur-
rogate record as an object identifier (OID). We call the sur-
rogate record a "cached object descriptor" (COD) after the
commercial OODBMS used in our previous works[4, 5].

An OODBMS has often been criticized for its appar-
ent lack of scalability, especially with respect to the data
volume. This triggered our benchmark experiment in [5]
with a focus on the algorithmic scalability of the ODA
OODBMS for database loading. The result showed a limit
of the OODBMS when a large number (e.g., several mil-
lions) of objects were handled. Specifically, the object
cache space became full, entailing a fatal system error.
(We did not consider overcoming the limit by increasing
the cache space because our objective was in assessing the
algorithmic scalability.)

Why does the object cache overflow happen? It is be-
cause CODs, once created, are retained in the object cache
as long as the application program1 is running and, thus,
keep accumulating even if the objects are removed from the
object cache. They are retained to facilitate re-fetching ob-
jects from the database, as will be explained in Section 4.

1We assume a strongly-typed language, like C++, as the application
programming language.

This poses a trade-off between the object retrieval time
and the available object cache space, and warrants a strat-
egy for retaining or removing CODs toward balancing the
trade-off. We proposed our approach to determining the
COD release time in this paper.

After describing the COD and the object caching mech-
anism in Section 2 and Section 3, respectively, we explain
the reason for retaining CODs in the object cache space in
Section 4, discuss the problem caused by it in Section 5,
propose our resolution to the problem in Section 6, and
conclude the paper in Section 7.

2 Cached Object Descriptors
In the ODA, cached objects are addressed indirectly
through CODs. Figure 1 shows the fields in the COD
used in our benchmark OODBMS [5]. A COD maintains
the mapping between an OID and an object in the ob-
ject cache. For this mapping, one field contains the main
memory address of the cached object. The state field is
a bitmap of 32 bits. It includes bits describing the lock
level (e.g., shared, update, exclusive), the pinning status
(where ’pinned’ means "held in an object cache space"),
and the markers (i.e., new, update, delete). These markers
are set when a cached object is newly created, updated,
and deleted, respectively.

object identifier (8 bytes)

main memory address of an object (4 bytes)

state (4 bytes)

Figure 1: COD record fields.

A COD is allocated in the object cache when a new ob-
ject is created or a persistent object is fetched from the
database. A COD is also allocated for every object refer-
ence embedded within each cached object, in which case
the main memory address fields are set to null.

For example, consider the example class schema in Fig-
ure 2. Figure 3a shows the memory allocation of objects
and CODs after the instance Oa of the class A is allocated.
The DBMS creates CODa and have it point to Oa . It also
creates CODb and CODc and covert the object references

1

Oa .b and Oa .c to the pointers to CODb and CODc, respec-
tively. (This process of converting a reference field to a
main memory pointer is called the "pointer swizzling.")

Figure 3b shows the memory allocation after the in-
stance Ob of the class B is allocated as a result of navi-
gating from Oa following the reference Oa .b. Assuming
Ob.c is set equal to Oa .c (i.e., Ob.c := Oa .c), the reference
Ob.c is converted to a pointer to CODc. In addition, a
new CODd is created to swizzle the reference Ob.d. These
CODs, once created during the execution of a program,
remain in the object cache until the application program
terminates.

class A { class B {
ref b; ref<C> c;
ref<C> c; ref<D> d;

}; };

Figure 2: An example class schema.

COD table

CODa

CODb

CODc

Oa

COD table

CODa

CODb

CODc

Oa

CODd

Ob

a) After creating/fetching an instance of the class A.

b) After creating/fetching an instance of the class B.

Figure 3: Memory allocation for objects and CODs.

3 Object Caching Mechanism
The object cache space is configured in two tiers – the
object buffer (i.e., cache) and the page buffer. (This is
called "dual buffering.") There exists one page buffer per
server database and one object buffer per client application
program.

In this dual buffering architecture, the object caching
works as follows: (1) Locate the page containing a target
object in the database and fetch it into the page buffer; (2)
Extract the target object from the page in the page buffer,
restructure it from the disk format to the main memory
format, and place it in the object buffer; (3) Create the
COD for the object in the object buffer and enter it into
the COD table, and have the COD point to the object; (4)
For each external object reference in the fetched object,
create a new COD, enter it into the COD table, and have
the object point to the COD.

Figure 5 illustrates it given the example code in Figure 4

1: class A: public d_Object {
2: public:
3: d_Ref b;
4: }

5: class B: public d_Object {
6: public:
7: d_Ref<C> c;
8: }

9: main() {
...

10: d_Ref<A> a1;
// Get a1 from the database.

11: d_oql_execute(query, a1);
// Navigate to b and get b1.

12: d_Ref b1 = a1->b;
// Navigate to c and get c1.

13: d_Ref<C> c1 = b1->c;
...

14: }

Figure 4: An example code for fetching objects.

b) After d_Ref b1 = a1->b;

Create COD 3 and enter it into the COD table.
Convert “ d_Ref<C> c” to the address of COD 3

COD table

COD 1
COD 2

a1 =
Fetch
page2

Extract
obj2 &
restructure

page buffer

obj 1

object buffer

obj 1

database

obj 1 page 1
obj 2 page 2

obj 3 page 3

obj2 obj2
COD3

b1 =

a) After d_oql_execute(query, a1);

Create COD 2 and enter it into the COD table.
Convert “ d_Ref b” to the address of COD 2 .

Create COD 1 and
enter it into the COD
table

COD table

COD 1
COD 2

a1 = Fetch
page 1 Extract

obj 1 &
restructure

page buffer

obj 1

object buffer

obj 1

database

obj 1 page 1
obj 2 page 2
obj 3 page 3

Figure 5: An example of caching objects.

2

(written in ODMG C++ [3]). In Figure 5a, the query in
Line 11 fetches the object obj1 from the database into the
object buffer through the page buffer. Then, COD1 is cre-
ated, entered into the COD table, set to point to obj1, and
assigned to the program variable a1 (declared in Line 10).
In addition, COD2 is created for the reference field in obj1
(in Line 3) and entered into the COD table, and the refer-
ence field is converted to a pointer to COD2. Besides, a
new OID is created and stored in the OID field of COD2.

In Figure 5b, the navigation in Line 12 finds COD1 in
the COD table given the program variable a1, follows the
pointer to obj1 in the object buffer and then to COD2 in
the COD table. Then, it retrieves the OID field in COD2,
fetches obj2 (with the OID) from the database into the
object buffer through the page buffer, and set COD2 to
point to obj2. In addition, COD3 is created for the reference
field in obj2 (in Line 7) and entered into the COD table,
and the reference field is converted to a pointer to COD3.

This object caching causes a bottleneck to the scalability
because an object cache is allocated in the virtual memory
whose size is limited. The system is "choked" if the virtual
memory becomes full and no memory can be released from
it.

4 Rationale behind Retaining CODs
As illustrated in Figure 6, object de-referencing is done
indirectly through the COD of the referenced object. This
indirect addressing is an important feature for rendering
object identity immune to the change of object location.

O1

O3

O4

O5O2

O3

O4

O5

COD3

COD4

COD5

O1COD1

O2COD2

a) Object references.

b) Pointer linkage of objects and CODs.

Figure 6: Implementation of object references.

Given the COD of an object, the object with the OID
(stored in the COD) can be fetched from the database.
Later on, if the COD is released along with the cached ob-
ject it is pointing to, two problems may occur. First, it may
leave dangling pointers from other objects to the released
COD, thus invalidating references to the removed object.
Second, since the OID of the removed object is no longer
available, a query must be executed to retrieve the object
from the database if the object is needed again. Unfortu-
nately, this querying is not so transparent, nor convenient,
as de-referencing an object reference by looking up the

object’s COD. Moreover, a query is much more expensive
than fetching the object with the particular OID. The ODA
retains CODs for these reasons.

It is possible to release a COD manually using a special
system function (called "zapcods" in the OODBMS we
used). But, it may inadvertently leave dangling pointers
to the removed COD. Hence, users would want to do this
only if the object cache space is severely short and are sure
it is safe, that is, does not leave any dangling pointers.

5 Problem of Retaining CODs
As already mentioned, a COD is never released once cre-
ated in the object cache. This imposes an upper bound on
the number of objects that can be allocated in the object
cache, and the upper bound is no more than the ratio of ob-
ject cache size to the COD size. For example, a 128 Mbyte
object cache can accommodate a maximum of 8.2 million
CODs even in such an unrealistic case as there are only
CODs and no object in the object cache. Worse, the num-
ber of CODs tends to be far larger than the number of ob-
jects given the ODA’s pointer swizzling mechanism. (That
is, one COD is created for each object reference within a
cached object.)

There may be a locality of reference manifested in an
application’s data accesses and, in this case, the number
of CODs may stay low enough to avoid cache overflow.
Unfortunately, however, this has not been the case in our
benchmark experiments[4, 5]. In this case, objects are
loaded into the database while an index is constructed on
the loaded objects. The entire loading process must belong
to one (long) transaction in order to avoid fragmenting the
index. Thus, more and more new objects are created as the
application session continues and, eventually, the object
cache becomes full without the possibility of releasing any
existing COD.

6 Resolution
One idea naturally stemming from the above observations
is that we should release some CODs early enough in order
to prevent an object cache flow. When is "early enough"?
How do we select the CODs to be discarded?

We consider three different approaches – optimistic,
pessimistic, and hybrid. In the optimistic approach, we
assume an object cache overflow will not occur and, there-
fore, retain all CODs. Naturally, the benefit of this ap-
proach is the efficiency of re-fetching objects, and the cost
is the risk of an object cache overflow, which leads to the
failure of an application program.

If an object cache flow does occur, then the DBMS
catches the system error signal and starts garbage collec-
tion in the cache to free all CODs that are not pointed from
any object. There have been significant research works
about garbage collection in OODBMS [6, 7, 8], but all
of them dealt with releasing objects from the database
in disk. Our problem is about CODs, which are main

3

memory-resident structures. Therefore, we rely on tradi-
tional garbage collection algorithms designed for a main
memory heap [9, 10, 11].

In the pessimistic approach, we release CODs at the
earliest possible time. There are three phases of releasing
CODs. In the first phase, a COD is released immediately
after the associated object is deleted from the cache space
as long as it is safe. In order to support this immediate COD
release, we maintain the reference count as an additional
field in a COD. (The reference count refers to the number of
objects that are pointing to the COD.) Every time an object
is removed from the object cache, the DBMS checks the
reference count of its COD and, if zero, removes the COD
as well.

The second phase occurs when all objects are removed
from the object cache at the end of the application pro-
gram (i.e., transaction commit or rollback). All CODs of
the removed objects can be released safely at this point.
This allows for de-allocating the COD table as one atomic
operation instead of the individual CODs in it, thus more
efficient. If an object cache overflow still occurs despite all
the efforts, then, in the last phase, the garbage collection
is performed. The pros and cons of this approach are the
opposite of the optimistic approach.

The hybrid approach decides when to release CODs
while monitoring the use of object cache space. It ini-
tially takes the optimistic approach and switches to the pes-
simistic if the available cache space falls below a threshold
and switches back to the optimistic mode if it rises above a
threshold. Thus, this approach adapts to the actual object
cache usage of the application program. The cost of this
approach is the monitoring overhead each time an object
or COD is allocated or de-allocated. This is an unneces-
sary effort if the application is small enough to ensure no
overflow of the object cache space.

The relative effectiveness of these three approaches de-
pends upon the actual object cache usage pattern of the
application program. A system administrator can adjust
the rate of releasing CODs by designating one of the three
approaches and, for the hybrid approach, additionally set-
ting the lower and upper thresholds of the available object
cache space.

7 Conclusion
We have addressed the object cache overflow problem in-
herent in the ODA OODBMS. In the ODA, CODs are
retained in the cache space for the efficiency of re-fetching
objects during the execution of an application program.
Ironically, this causes object cache to overflow in case too
many objects (and their CODs) are allocated in it.

We have proposed three alternative resolutions - opti-
mistic, pessimistic, and hybrid. The optimistic approach
releases CODs as late as possible for the re-fetch efficiency.
The pessimistic approach releases CODs as early as possi-
ble for reserving enough cache space. The hybrid approach

enables the DBMS to switch between the two approaches
depending on the size of the remaining object cache space.

References
[1] W. Kim, Introduction to Object-Oriented Databases,

The MIT Press, 1992, Chapter 13, pp. 176-179.

[2] M.E.S. Loomis, Object Database: The Essentials,
Addison-Wesley Publishing Company, 1995, Chap-
ter 7, pp. 128-129.

[3] D. Jordan, C++ Object Databases: Programming
with the ODMG Standard, Addison-Wesley Publish-
ing Company, 1998.

[4] M.R. Olson and B.S. Lee, "Object Databases for
SGML Document Management," Proceedings of the
30th Hawaiian International Conference on Systems
Sciences (HICSS), Volume III, pp. 39-48, January
1997.

[5] K.Y. Yu, B.S.Lee, and M.R. Olson, "The Scalabil-
ity of an Object Descriptor Architecture OODBMS,"
Proceedings of the IDEAS99 International Database
Engineering and Application Symposium, pp. 370-
377, August 1999.

[6] L.Amsalog, M. Franklin, and O. Grber, "Efficient In-
cremental Garbage Collection for Client-server Ob-
ject Database Systems," Proceedings of the 21st
VLDB International Conference on Very Large Data
Bases, September 1995.

[7] J.E. Cook, A.W. Klauser, A.L. Wolf, and B.G. Zorn,
"Semi-automatic, Self-adaptive Control of Garbage
Collection Rates in Object Databases," Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pp. 377-388, June 1996.

[8] J.E. Cook, A.L. Wolf, and B.G. Zorn, "Partition Se-
lection Policies in Object Database Garbage Collec-
tion," Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 371-
382, May 1994.

[9] L.P. Deutsch and D.G. Bobrow, "An Efficient, In-
cremental, Automatic Garbage Collector," Commu-
nications of the ACM, Vol. 19, No. 9, pp. 522-526,
September 1976.

[10] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S.
Scholten, and E.F.M. Steffens, "On-the-fly Garbage
Collection: An Exercise in Cooperation," Commu-
nications of the ACM, Vol. 21, No. 11, pp. 966-975,
November 1978.

[11] P.R.Wilson, and B. Hayes, "Garbage collection in ob-
ject oriented systems," ACM SIGPLAN OOPS Mes-
senger, Vol. 3, No. 4, pp. 63-71, October 1992.

4

