
ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 1

Normalization in OODB Design

Byung S. Lee
Graduate Programs in Software

University of St. Thomas
St. Paul, Minnesota
bslee@stthomas.edu

Abstract

When we design an object-oriented
database schema, we need to normalize
object classes as we do for relations when
designing a relational database schema.
However, the normalization process for an
object class cannot be the same as that of a
relation, because of the distinct
characteristics of an object-oriented data
model such as complex attributes,
collection data types, and the usage of
object identifiers in place of relational key
attributes. We need only one kind of
dependency proposed here -- the object
functional dependency -- which specifies
the dependency of object attributes with
respect to the object identifier. We also
propose the object normal form of an
object class, for which all determinants of
object functional dependencies are object
identifiers. There is no risk of update
anomalies as long as all object classes are
in the object normal form.

1. Introduction
Do we need normalization when designing
an object-oriented database (OODB)
schema? As pointed out by Pratt and
Adamski in [1], “some proponents of the
object-oriented approach claim that there
is no need to normalize.” This claim seems
to be based on the fact that there is no
notion of a key attribute in an object class.
It is certainly not valid from a general
database design perspective. We will run

into the same problems as we see in a
relational database if object classes are not
normalized. In this regard, the following
specific questions are addressed in this
paper: (1) Are there risks of update
anomalies in an object class? (2) If so, can
they be eliminated by normalization? (3)
How is the normalization different from
that of a relation? (4) What will be the
formal normalization process? (5) How
can the normalization be performed in
practical applications?

We will first review the normalization
of relations in Section 2, and then present
the normalization of object classes in
Section 3. In an OODB design, we need
only one kind of normal form -- object
normal form -- which is the counterpart of
the relational Boyce-Codd Normal Form
(BCNF). Normalization to the object
normal form is sufficient for rendering
object classes free from the risk of update
anomalies. We also need to re-define the
functional dependency of a relational
database to an object functional
dependency. Object functional dependency
specifies the dependency of object
attributes on the object identifier.
Examples of a practical normalization
process will be shown for both a relation
and an object class.

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 2

2. Normalization of Relations:
Review

A poorly designed relation incurs the
overhead of handling redundant data and
the risk of causing update anomalies. The

Normal form Constraints
First normal form (1NF) No composite attribute and no repeated (multi-valued)

attribute are allowed. In other words, all attributes are
atomic, i.e., simple and single-valued.

Second normal form (2NF) In the 1NF and there exists no partial functional dependency
on the key attribute. In other words, all attributes are
dependent on the entire key.

Third normal form (3NF)1
or BCNF

In the 2NF and there exists no transitive functional
dependency. In other words, all determinants are key
attributes, where a determinant refers to the left hand side of
a functional dependency X → Y.

Fourth normal form (4NF) In the 3NF and there exists no multi-valued dependency.
Fifth normal form (5NF) In the 4NF and all join dependencies are ‘consequences of’

[3] key attributes. In other words, each projection in a join
dependency contains a key attribute.

1 A ‘new’ third normal form [2]

Table 1. Normal forms and their constraints

typical fix of the design is to decompose
the relation into two or more relations with
no such problems. In a formal method, we
use the notion of a dependency such as a
functional dependency (denoted by X → Y
where X and Y are the sets of attributes)
and a multi-valued dependency (denoted
by X →→ Y). Table 1 shows the
constraints each normal form should
preserve with respect to a dependency
[3,4]. A normalization is the process of
decomposing a relation into those that
satisfy the normal form constraints. A fully
normalized relation is in the BCNF when
there are functional dependencies only,
and in the fourth normal form when multi-
valued dependencies exist as well. These
two normal forms are sufficient in
practical design cases. The fifth normal
form exists in theory in consideration for
join dependencies. However, it is of little
practical usage because of the difficulty of

identifying join dependencies. In short, a
fully normalized relation is one whose
only dependencies are functional
dependencies that appear as shown in Fig.
1, that is, every non-key attribute is
determined by the entire and only the key
attribute and there is no multi-valued
dependency

Fig. 1. A fully normalized relation

In real-world applications, database
designers often rely on intuitions to
decompose a relation into fully normalized
relations. The most general case of a
decomposition can be performed in the
following three steps

i. Create a referenced relation if one
does not exist.

 K A1 A2 A3 A4

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 3

ii. Introduce a foreign key if one does
not exist.

iii. Move decomposed attributes to the
referenced relation. Rename the
attributes if necessary.

Fig. 2. Decomposition of a relation in the normalization process

Fig. 2 shows an example of decomposing a
relation Employee into a modified version
of Employee and a new relation Department.
A designer first detects update anomalies.
For instance, if a department is allocated
with a new budget, all tuples of the
employees working for the department
should be updated. Intrigued by the update
anomalies, the designer concludes that
there should be some hidden functional
dependencies that makes the relation
violate the BCNF constraints. Shortly he
figures out that the three attributes
dept_name, dept_budget, and dept_location,
are implicitly dependent on the key
attribute of another relation, and name the
relation ‘Department’. A new relation is
created with a primary key dept# and
linked to the relation Employee via the
newly introduced foreign key dept#. The
foreign key then renders the relation
Employee not in BCNF. Since dept_name,

dept_budget, and dept_location are
functionally dependent on dept# and
should belong to Department, they are
moved from Employee to Department and
renamed to name, budget, and location,
respectively.

3. Normalization of Object
Classes

Having reviewed the normalization of a
relation, we are ready to investigate into
the normalization of an object class. Our
initial concerns are the characteristics of
an object class that makes its
normalization distinct from that of a
relation and the update anomalies we can
observe for an object class. After
addressing these two issues, we will
formalize the object class normalization by
introducing the concepts of an object
functional dependency and an object

dept#
Department

ssn name salary dept# dept_name dept_budget dept_location
Employee

b. After step i and step ii

ssn name salary dept#
Employee Department

dept# name budget location

c. After step iii

ssn name salary dept_name dept_budget dept_location
Employee

a. Before decomposition

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 4

normal form. These concepts will be
illustrated with an example.

Fig. 3. An object class Employee

3.1 Characteristics of object classes
The features of an object class can be
contrasted with those of a relation as
follows.
• Object attributes can be not only

simple but also complex. The value of
a complex attribute is a reference to
the instance of another class. For
example in Fig. 3, the name and
specialties are simple attributes whereas
work_for and dependents are complex
attributes.

• Object attributes can be not only
single-valued but also multi-valued.
Usually, collection types (e.g., set, bag,
array, list) are used to denote being
multi-valued as well as other semantics
such as an ordering. For example in
Fig. 3, the attributes name and work_for
are single-valued while specialties and
dependents are multi-valued.

• Objects are uniquely identified by
object identifiers that are assigned by
the system. There is no notion of a key
attribute at all.

Due to these characteristics, there is no
equivalent of relational normal forms for
an object class. Both complex attributes
and multi-valued attributes make an object
class non-1NF. Even if all attributes are
simple and single-valued, the lack of a key
attribute makes it non-2NF.

3.2 Update anomalies in object classes
Fig. 4 shows an example object class for
demonstrating update anomaly problems.
Interestingly, unlike the case of a relation,
there is no insertion anomaly unless there
exists a constraint prohibiting a null on the
attribute ssn. For instance, we can insert
data about a department even if there is no
employee working for the department -- by
creating an Employee object and insert only
the attributes that are pertinent to the
department (dept_name, dept_budget, and
dept_locations). However, we can observe
anomalies for a deletion and modification
to the same extent as we can for a relation.
• Deletion anomalies: For a department

with more than one employee, there is
no way of removing the department
information without deleting all its
Employee objects. For a department
with only one employee, we
inadvertently lose the department data
if we delete the Employee object.

• Modification anomalies: In order to
change the data about a department, we
have to change all the objects of the
employees working for the department.

Fig. 4. An object class with update
anomalies

3.3 Object normal form
The existence of an update anomaly
problem is sufficient to justify the need for
a normalization. Let us first formalize the
normalization process of an object class in

 class Employee {
 string ssn
 string name
 integer salary
 string dept_name
 integer dept_budget
 set<string> dept_locations
}

class Employee {
 string name
 set<string> specialties
 Department work_for
 set<Child> dependents
}

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 5

analogy to that of a relation. Underlying
the relational normalization process is the
concept of dependency. Likewise, we need
one for an object class.
Definition[Object functional dependency]

Given two attributes X and Y that
belong to the same object class C, Y is
said to be object functionally
dependent on X or, equivalently, X is
said to determine the value of Y object
functionally if and only if the value of
Y is determined uniquely for each
value of X. This object functional
dependency is denoted as X •→ Y
where Y is a simple or complex
attribute that may be of a collection
type.

Note that the object functional dependency
obviates the need for a multi-valued
dependency by virtue of collection types.
What would be expressed in pair as X
→→ Y | Z for a relation is specified
separately as X •→ Y and X •→ Z, where
Y and Z are attributes of collection types.

Now, we are ready to define the object
normal form based on the notion of the
object functional dependency.
Definition[Object normal form]

An object class C is said to be in the
object normal form if and only if all
determinants of object functional
dependencies are the object identifier
(oid) of the class C.

Note that the object identifier is an
attribute generated by the system and is
invisible to users. Nonetheless, an OODB
designer may well assume the existence of
an object identifier for a normalization
purpose.

The Employee class shown in Fig. 3 is
in the object normal form. Its object
functional dependencies are shown in Fig.
5. Each attribute is object functionally
dependent on the Employee oid. In other

words, the Employee oid determines the
name, specialties, work_for, and dependents
uniquely. The object reference work_for is
materialized as the oid of a Department
object. An object identifier determines a
collection attribute in its entireties, not in
individual members. Note that an object
normal form looks similar to the BCNF of
a relation, except the different notion of a
functional dependency and the usage of an
object identifier in place of a relational
key.

Fig. 5. Object functional dependencies
in the object normal form class of Fig. 3

3.4 Normalization to an object normal
form

With the formal notion of an object normal
form in mind, an OODB designer can
perform a normalization in the same
manner as he does for a relation:
i) Create a referenced class if one does

not exist.
ii) Introduce an object reference if one

does not exist.
iii) Move decomposed attributes to the

referenced class. Rename the attributes
if necessary.

 illustrates the steps of normalizing the
non-object normal form class Employee of
Fig. 4 into two object normal form classes
Employee and Department in b. The
decomposition process is similar to that of

Employee
Employee oid •→ string name
Employee oid •→ set<string> specialties
Employee oid •→ Department work_for
Employee oid •→ set<Child> dependents

b. Attribute types

a. Diagram

 oid name specialties work_for dependents

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 6

a relation. A designer, after detecting
update anomalies, decides to create a new
class Department and introduce a complex
attribute dept in Employee as a reference to
a Department object. It is then exposed that
the modified
Employee class is not in the object normal
form because of the additional object
functional dependencies that are shown in
Fig. 7. The three attributes, dept_name,
dept_budget, and dept_locations, are hence
moved to the class Department and
renamed to name, budget, and locations,
respectively.

4. Summary
In this paper, we addressed the
normalization of an object class in
designing an OODB schema. Like in a
relational database, update anomalies were
observed in an unnormalized object class.
These update anomalies make it necessary
to devise a normalization method for an
object class. To formalize the
normalization process, we first invented
the concept of an object functional
dependency. This dependency can be
regarded as an integrated object version of
both functional dependency and multi-

valued dependency used in the
normalization of relations. Secondly, we
defined the object normal form and its
constraints based on the notion of the
object functional dependency. Lastly, we
showed an example of the decomposition
process for normalizing an object class
into object normal form classes.

Fig. 6. Decomposition of an object
class in the normalization process

Fig. 7. Object functional dependencies of the Employee class in a

References1234

[1] P. J. Pratt and J. J. Adamski, Database

Systems Management and Design (3rd
edition), Boyd & Fraser Publishing Company,
Danvers, MA, 1994, pp. 597-598.

[2] Pratt P.J. and Adamski, J.J., Database Systems

Management and Design (3rd edition), Boyd
& Fraser Publishing Company, Danvers, MA,
1994, Chapter 6.

[3] Date, C.J., An Introduction to Database
Systems (5th edition), Addison-Wesley

}
 b. After step iii

class Department {
 string name
 integer budget
 set<string> locations
}

class Department {
}

class Employee {
 string ssn
 string name
 integer salary
 Department dept
 string dept_name
 integer dept_budget
 set<string> dept_locations
}

a. After step i and step ii
class Employee {
 string ssn
 string name
 integer salary
 Department dept
}
 b. After step iii

 oid ssn name salary dept(oid) dept_name dept_budget dept_locations

ACM SIGMOD Record, Volume 24, Number 3, September 1995, pp. 23 - 27.

 7

Publishing Company, Inc., Reading, MA,
1990, Volume I, Chapter 21.

[4] Elmasri, R. and Navathe, S., Fundamentals of
Database Systems (2nd edition),
Benjamin/Cummings Publishing Company,
Inc., Redwood City, CA, 1994, Chapters 12
and 13.

