Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

OODB Design with EER

Byung S. Lee
Graduate Programsin Software
Univergty of St. Thomas

ABSTRACT

In contrast to the conventiona methodology of object-oriented program design focused on the
interaction of objects, object-oriented database design should be based on the representation
of objects. We put more emphasis in the gpplication semantics pertinent to the structures of,
relationships between, and constraints on objects than operations on the objects. Enhanced
Entity-Relationship (EER) modd is a convenient tool for representing these semantics. In this
paper, | address the concept and methodology of using the EER modd to design an object-
oriented database schema. The EER modd facilitates the desgn of alogical schemathat can be
mapped to an object-oriented schema sraightforward. An EER schemadiagram isaso auseful
document that describes the logicd database schemato other designers and users.

INTRODUCTION

Desgning an object-oriented database (OODB) should be portrayed as a process distinct from
designing an object-oriented program. Most popular object-oriented design methods are based
on how objects ‘interact’, that is, how methods are invoked among objects. From a database
viewpoint, however, the primary concern for a design is to represent the structures and
relationships of data items that are to be stored in a database. Interactions among objects are to
be cared when we write gpplication queries on the desgned database. In this aticle, 1 will
address using the Enhanced Entity-Rdationship (EER) modd to design an OODB schema,
based on the experience of teaching OODB design to graduate students.

EER modd is an gppropriate tool for designing a logical database schema which can be
mapped to a system data moded of your choice. Provided with the congtructs for representing
entities, rdationships, and condraints explicitly, EER mode is dso a convenient tool for
documenting the design and facilitating communications among human users. When designing an
OODB schema, it is eeder and more accurate to desgn an EER diagram first and then
implement it in an OODB. Badcdly, entity types are mapped to OODB classes and
relationships are mapped to object references in the OODB classes. Congtraints that cannot be
gpecified declaratively in the schema are hard-coded in methods. Additional methods are
identified and included in the OODB classes a the time of designing queries and gpplication
programs.

DATA MODEL AND DATABASE DESIGN

Designing a database is to creste a schema by defining the structures of data entities and their
relationships. A schema can dso include condraints on entities and relationships. Different data
models provide different notions of data Sructures, relationships, and condraints. In the
relational data model, a data Structure is defined as a table. The attributes of a table are
specified by atomic, system-defined data types. A relationships is represented by a foreign key

1

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

in one relation that refers to the primary key of the same or another relation. Because each entity
isidentified uniquely by the value of the primary key of atable, rdaiona data mode requiresto
preserve the entity integrity on the primary key and referentid integrity on each foreign key of a
table. On the other hand, in an object-oriented data model, a data Structure is defined as a
class. The attributes of a class are dlowed to be of nonatomic (collection) or user-defined
types (complex atributes). Reationships are represented by complex atributes, which are
materiaized to be the references to the linked objects. Unlike rlationa, entities are identified
uniquely by their own identities, and hence G-O data mode has no need for the primary or
foreign key condraints.

Once you buy a DBMS, whether relationa or object-oriented, you have to understand the
data modd -- how to represent structures, relationships, and congtraints -- supported by the
system and learn how to design a database using its data definition language (DDL). If you have
experiences in ether one, you will agree that there are lots of semantics you wish to represent in
your schema but cannot because the system data mode lacks the necessary features. Further,
once you create your schemain your system’s DDL, you find it difficult to transfer the design to
someone else without gpending numerous hours to explain what are represented in your design.
We need a data model which is semantically more expressive than relaiond or object-oriented.
EER was chosen as the one that can satisfy these needs.

THE EER MODEL

EER modd is an enhanced version of the Entity-Relationship (ER) modd -- one of the most
popularly used semantic data models. A semantic data modd refers to a data mode that
supports a richer set of modding congtructs for representing the semantics of entities, their
relationships, and condraints. EER modd is used conveniently as a tool for logicd data
modeling and design documentation. A database schema designed in EER is independent of the
specific data model supported by your DBMS -- whether it is relaiond, object-oriented,
network, or hierarchica. Being a higher-level data modd, it can be implemented into your
system’s data modd with little difficulty (Figure 1). You will find that the system data modd is
not powerful enough to represent al the semantics you were able to in the EER, and hence give
up some of the higher levd semantics. EER in turn will be a good reference to retrieve these
missng semantics from.

EER

Reationd O-O Network Hierarchicd

Figure 1. Mapping EER to system data models

EER SCHEMA DESIGN

Figure 2 shows the diagram of an example EER schema. Entity types are shown in boxes,
atributes in ovas, and relaionship types in diamonds. The numbers within parentheses on each
sde of a rdationship type denote the minimum and maximum numbers of entities linked by the

2

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

relaionship. For the Work_for reationship, for example, an employee can work for one and
only one department and a department can hire minimum 2 and maximum 30 employees. A
dependency congraint on a relationship is shown by an arrow. For example, a Child entity can
exig only if they exigs an Employee entity linked through the Raise rdaionship. An attribute
may be composte (e.g., name of Employee) or multi-vaued (eg., locations of Department).
Multi-valued attributes are shown in double-lined ovas. Underlined attributes are key attributes,
whose vaues are digtinct over dl entities of a given type. If an entity type does not have a
complete key attribute, like the Child in Figure 2 (because two children raised by two different
employees may have an identicad name), the entity type is cadled awesk entity type and shown
in adouble-lined box. The attribute ‘name’ of Child isonly a partial key, as denoted by a dotted
underline

Entity types can be related by the IS A rdationship resulting from a specidization or
generdization. These entity types, connected by the dense lines dencting the IS-A relaionship,
configure a hierarchy (or lattice). SaesEngineer is particularly caled a shared subclass entity
type. Subclass entities may be overlgpping (the letter o in acircle) or digoint (d in acircle). If
managers, saes representatives, and engineers are the only types of employees, we would have
used a double line from Employee to the circle to indicate such a congraint. All the attributes,
relationships, and congtraints on an entity type are inherited to its subclass entity types.

@ e
Department (1) (2’30) Erplores 102 e S0 Gia
' 0

T e

Figure 2. An example EER schema

EER VERSUS OO

There are a couple of digtinctions to be highlighted here between EER and OO before we
discuss the mapping between them.

EER rdationships

Reationships are represented explicitly in EER but only implicitly through object references in
OO. An EER rdationship enables us to express the semantics, cardindities, and dependencies
of how two or more entity types are relaed. This is the primary source of the eaborate
expressve power of EER. Besides, we can represent more sophisticated congtraints or

w

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

comments in the form of text on the EER diagram. Note that EER is alogicd data modd and
used for a human interpretation.

EER key attributes

Key attributes that are used to distinguish entities uniquely in EER are not used for the same
purpose in an O-O data mode because objects are distinguished by object identifiers that are
assigned by the system. However, these key attributes can still be useful criteria for searching
objects, particularly with indexes crested on them.

0O-O methods

EER does not have a notion of methods. Does this mean that EER lacks modding power
compared to an OODB? No, it does not. To a database designer, methods are not an essential
component of a database schema but a new programming technique for encgpsulating the data
structure. When there are congtraints that cannot be specified declaratively in an O-O class, we
are forced to verify the congraints procedurdly in our application programs. It is by virtue of the
O-0 programming technique that the condraint verificaions can be implemented in methods
and included as part of the O-O classes. Of course, we do not have to bother to write these
methods if we have any declardtive congtraint specifications available from the OODB system.
Later on, when queries are written on the designed OODB, additionad methods are defined as
necessary and included as part of the O-O classes as well. There is even a negetive consensus
among OODB desgners againgt the support for a ‘strong’ encapsulation in an OODB design.
To them, it is rather a nuisance to encagpsulate every attribute accessed by an application query
by defining a corresponding ‘get’ method (e.g., ‘get X() { return X; }’). Besdes, how can we
create an index on an encapsulated attribute? Indexes are created on attribute values, not on the
functions that return attribute values.

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

MAPPING EER TO OO

class Employee { class Child { class SalesRep
string ssn no_null unique; string name; subclass of Employee {
string firstname; string birthdate; set<diring> regions;
string midinit; set<Employee> raised_by; bonus() { 0.6 * salary; }
string lastname; };
integer salary;
Department work_f class Department { class Engineer
set<Child> raise; string name no_null unique; subclass of Employee {
bonus() { 0.5 * salary; } set<string> locations; set<string> specialties;

}; set<Employee> hire; set<Project> work_on;

Manager managed_by; };

class Manager set<Project> contral;
subclass of Empl oye‘e//};' class SalesEngineer
Deparment manage; subclass of SalesRep,
bonus() { 0.8 * salary; } class Project { Engineer {

1 : string name no_null unique; bonus() {

Methods that implement string startdate; SalesRep::bonus(); }

constraints are not shown here. Department controlled_by; 1

<« inversereferences set<Engineer> worked _by;
3

Figure 3. O-O classes mapped from the EER schema of Figure 2

We can implement an EER schemato an OODB schema in three steps:

1) Mep EER entity types and relaion types to O-O classes. Implement in methods the
condraints that cannot be specified declaratively.

2) Add additional methods to each O-O class. The necessary methods are identified as the
result of andyzing application queries.

3) Extend the O-O classes to turn them into database classes, that is, add the system-provided
gatements for handling persstent objects.

Figure 3 shows the result of mapping the EER schema of Figure 2 to an OODB schema after

seps 1 and 2. It was assumed that there is an gpplication query which calculates the bonus

differently for Employee and its subclasses.

Rules of thumb

Shown below are the rules of thumb that can comein handy for carrying out the step 1.

- Entity types. Each entity type, primary or wesk, is mapped one-to-oneto an O-O class. A
week entity type does not make any difference from a primary entity type because key
attributes are not used to identity objects in an OODB. An entity type hierarchy is mapped
to an O-O cdlass hierarchy. Shared subclass entity type is mapped to a subclass with
multiple inheritance. A compaosite attribute is mapped to its component attributes. A multi-
valued attribute is mapped to a collection (e.g., s&t, bag, or list) attribute.

Rdationship types. Each binary relationship type is mapped to an object reference in an O-
O class. Use a hi-directiond reference to facilitate a bi-directiona navigation if the system

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

supports the implementation of inverse references. If the cardindity of a relaionship is
greater than one, use a collection of object references (eg., set<Project>). If a binary

relationship type has one or more attributes of its own, then introduce a third O-O classfor
storing those attributes and make object references to the two entity types. An example is
shown in Figure 4 for the case in which the Work_on relaionship type of Figure 2 has an
attribute “hours. An N-ary (N>2) relationship type is mapped to an O-O cdassin the same
manner as the binary relaionship with attributes.

class Engineer:Employee { class Work_on { class Project {
set<string> specidlties; Engineer engr; string name;
set<Wor k_0n> WkS, Pr Oj ect proj : stri ng Stal’tdate,
H integer hours; \%t<W0r k_on> wks;
}: Department controlled_by;
¥

Figure 4. Mapping a many-to-many relationship with attributesto O-O classes

Congraints: If the system provides a facility for specifying a condraint declaratively, use it.

Otherwise, we have to implement the congtraint procedurally in a method.

- Condraints on entity types: If available in your system, specify the keywords such as
‘no_null” and ‘unique on an attribute mapped from the key of an entity type. There is
hardly a smple way of enforcing the congraint of overlapping or digoint entities in an
entity type hierarcchy. In the case of a multiple inheritance, like SaesEngineer,
overlapping objects are created naturdly adong the hierarchy on condructing a
SalesEngineer object. In amore generd case such as an overlap between Manager and
SdesRep, congtructing a Manager object does not necessarily create a SalesRep object
as wdl. We need to implement separate congtructors for an overlgpping case and
digoint case, and use them accordingly in each case.

- Condraints on relationship types Cardindity congtraints on a relationship type should
be implemented in the methods for congtructing or destroying objects and the methods
for insarting/del eting members into/from a collection of object references. An exampleis
shown in Figure 5 for the ‘(2, 30)' condraint on the cardindity of the Work for
relationship type that is mapped to the attribute ‘hire of the Department class. If there
exids a dependency condraint on a reationship type, this condraint should be
implemented in the methods for constructing and destroying objects as well.

Department(set<Employee> emps) {

if (cardindity(emps) <2 or
cardinality(emps) > 30) {
error (“Congtraint violation™);
exit;
}
/I Construct the Department object.
}

a. In a constructor

add_employee(Employee emp) {
if (cardinality(hire) >= 30) {
error (“Constraint violation.”):
exit;
}

/I Insert emp into hire.
}

b. In a set insertion method

Figure 5. Implementation of a cardinality constraint checking in a method

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

Special case: multi-dimensional subclasses

It is worthwhile to give a specid congderation to the case of a multi-dimensiond subclasses,
such as the one shown in Figure 6. The Employee entity type is specidized into subclass entity
types dong two orthogond dimensions -- one into Engineer and SalesRep based on their job
titles, and the other into Staff and Manager based on their ranks. The SdesManager isin turn a
shared subclass entity type of SdesRep and Manager, and Technica Staff is that of Engineer
and Staff. Note that the two superclass entity types of SdesManager and Technica Staff,

respectively, are those that belong to separate hierarchies under Employee. If we map the four
subclass entity types to O-O classes one to one (Figure 7a) by following the rules of thumb, we
lose the semantics of two orthogond dimensons. Consequently, it complicates the
implementation of OODB classes. For one thing, whenever an Engineer object is created, its
rank must be checked to seeif it isaManager or Staff object aswell. If it turns out to be a Staff

object, it should be created as a Staff object and also a Technica Staff object. Besides, since
both Engineer and Staff objects are created, it may create duplicate Employee objects along the
two hierarchies. (Some systems may be able to handle this problem, others may not.) My

recommendation is to use a ‘relationa’ gpproach in the Employee O-O class (Figure 7b), that
is, to use attributes to distinguish between multi-dimensonad subclass entities. It will diminate
the need for al subclasses, which isless object-oriented but easier to implement.

Employee

Engiﬁeer SaleéRep Staff Manager

~N_—_—

Technical Staff SalesM anager

Figure 6. Multidimensional subclass entity typesin EER

Employee
Employee {
rank;
Engineer | |SalesRep | |staff Manager job title;

= }

Technical Staff | |SalesManager

a. Subclasses b. Attributes

Figure 7. Subclasses ver sus attributes for mapping from Figure 6 to O-O classes

Journal of Object-Oriented Programming, March 1996, pp. 61 - 64.

SUMMARY

In this article, | presented the ideas of using the EER modd for designing an OODB schema.
EER is a semantic data modd for designing alogicad database schema and can be implemented
to a system-specific database schema, such as relational or object-oriented. Using the EER
fecilitated the OODB design by dichotomizing the design process in two steps -- firgt focusng
on the structurd design a a semantic level and focusing on the behavioral design at the time of
desgning gpplication queries. With its rich expressveness, an EER diagram is used as an
important document that describes the logica database schemafor human interpretations. | was
very pleasad with the process of designing an OODB darting with the EER modd.

References

1

2.

3.

Elmasri, R. and Navathe, S. Fundamentals of Database Systems (2nd ed.), Benjamin
Cummings Publishing Company, Inc., 1994.

Chen, P. The Entity Relationship Modd -- Toward Unified View of Data, ACM Transactions
on Database Systems, Vol. 1, No. 1, March 1976.

Specid Report SR-OPT-001826: Information Modedling Concepts and Guiddines (Issue 1),
Information Exchange Management, Bellcore, Morristown, New Jersey, January 1991.
Kemper, A. and Moerkotte, G. Object-Oriented Database Management, Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

