Object Databases for SGML Document Management

Michael R. Olson
West Publishing Company
mrolson@research.westlaw.com

Abstract

We have investigated the use of an object database as
a platform for storing and retrieving Standard
Generalized Markup Language (SGML) documents.
Qualitative studies convinced us that object databases are
a perfect fit for supporting SGML document management.
Unfortunately, quantitative benchmark results showed
that the particular object database management system
(ODBMS) product we used was not capable of supporting
large scale SGML applications due to certain defects in
its system architecture. The most critical defect was a
weak support for location-independent persistent object
identifiers. We strongly believe, however, ODBMSs in
general are perfect platforms and continue the experiment
using another ODBMS product. In this paper, we explain
why and how an ODBMS fits well with SGML document
management applications, describe how the benchmark
experiment was performed and what were the results, and
finally present a list of features as a recommendation to
those interested in developing or using an ODBMS in
support for SGML document management.

1. Introduction

Electronic document management refers to storing,
updating, and retrieving documents electronically on
computers in place of hard copy papers. This application
is critical to a business for harnessing the most important
asset -- its information. Document management has been
handled traditionally in the context of document imaging
and text retrieval. More recent trend, however, is the
management of structured documents and their work
flow.

The structured document management became popular
due to wide spread use of Standard Generalized Markup
Language (SGML) [3,4,5,6,7] within the publishing
industry, improved software technology, and the rapid
growth of the Internet. In 1986, SGML was adopted by
the International Standards Organization (ISO) [5] as a
means to separate content from display characteristics so
that documents may be reused on multiple platforms.

Byung S. Lee
University of St. Thomas
bslee@stthomas.edu

Soon thereafter, the Department of Defense mandated the
use of SGML by its suppliers, resulting in a new software
industry to support SGML. Many publishers adopted
SGML to utilize these software tools. The Internet
introduced SGML to millions of people through its use of
an SGML implementation called the Hypertext Markup
Language (HTML) [8].

The Internet is a marketplace in which each
publisher’s competitors are a mouse click away.
Publishers must be able to quickly and inexpensively add
content to electronic publications, derive new publications
from existing ones without replicating data, redesign
publications dynamically, provide multiple views of the
same documents, allow users to annotate documents
through electronic “sticky notes.” Besides, publishers
must be able to create hypertext which survives updates to
Internet and CD-ROM products. Large information
providers are faced with packaging and repackaging of
terabytes of electronic information in order to keep pace
with attractive, ever changing upstart services. Tools that
once worked well for print are quickly becoming
inadequate for electronic delivery.

The Document Style Semantics and Specification
Language (DSSSL) [12] and the Hypermedia/Time-Based
Structuring Language (HyTime) [9,10,11] are relatively
new standards which complement SGML. These
standards address the complex issues of dynamic
rendering, multiple views of the same documents,
electronic “sticky notes,” and creation of robust hypertext.
World Wide Web (WWW) developers are using DSSSL
and HyTime to extend support on the Internet to all
SGML implementations so that on-line publishers are not
limited to HTML. However, both DSSSL and HyTime
require a hierarchical tree-like model of SGML where
each node in the tree knows how to find its parents,
siblings, and children. For performance reasons,
relational systems attempt to filter hierarchy by storing
nested SGML elements as Binary Large Objects
(BLOBs). To gain the full benefits of DSSSL and
HyTime, BLOBs are not a feasible option.

An object database [1,2] is suitable for representing a
hierarchical structure of data. Some object databases also
provide persistent object identifiers (OIDs), a similar

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

concept to SGML element IDs. SGML document
management can be a perfect application of an object
database management system (ODBMS). To verify this,
we performed benchmarks on a pilot SGML application
built on an ODBMS. The results were not very
satisfactory due to architectural problems inherent in the
particular ODBMS. Our prototype was not scaleable, in
large part due to the lack of persistent OIDs. We desire to
share the lessons learned through the project with the
software community in this paper.

Our contributions in this paper lie in addressing how
an object database fits SGML document management
well, presenting representative performance benchmark
ideas, and making pertinent feature recommendations to
the ODBMS community.

Following this introduction, we first describe the
effectiveness measure and the business impact of the
technology briefly in Section 2. Then, we give an
overview of SGML in Section 3 and a qualitative
argument of why an object database fits SGML so well in
Section 4. Our quantitative benchmark experiences are
described in Section 5. Based on our experience, we
present a list of feature recommendations to ODBMS
manufacturers and users in Section 6. Summary and
further work follow in Section 7.

2. Effectiveness Measure and Business Impact

There are many commercial products [14] that support
SGML files with a DBMS. Most of them were using a
relational DBMS and as such exhibited limitations in
handling documents efficiently -- both in time and storage
space. Investigation of using an object database had
remained in the research territory [16,17,18]. However,
we recently began to see a growing number of
commercial products using an object database [14] and
believed this should be the general trend on the market.
[15] What still remains as an issue is the scalability.
When millions of documents are stored as objects in an
object database, would the system scale up well without
being "choked" or experiencing significant performance
degradation? This will be the criterion for judging how
effective object databases are as an SGML document
repository.

In our work, we deal with the scalability issue
occurring when object databases are used to load, store,
search, and assemble SGML documents. The potential
business impact will be tremendous once the technology
is proven to be scalable. The market size of document
management software has been increasing at the rate of
50% - 60% in 1995 and 1996. [13] A successful result of
this on-going research will do nothing but accelerate the

explosion of the SGML/DSSSL/HyTime document
management systems built on object databases.

3. Overview of SGML
3.1. How Does SGML Work?

There are three parts to an SGML document: (1) the
SGML declaration, (2) the document type definition
(DTD), and (3) the document instance. The SGML
declaration specifies which characters are allowed within
the document and indicates the syntax for defining
markup delimiters. A given publisher generally uses one
SGML declaration for all of its documents. The DTD
specifies the structure of a given class of documents. The
building blocks of documents are elements, attributes, and
entities. DTDs define what element names and entity
names are allowed, how often an element may appear, the
order in which element names may appear, the types of
content allowed within any given element, and the
attributes which may be associated with each type of
element.

3.1.1. SGML Declaration. “Each SGML document

transferred to another system must start with a

declaration, called the SGML declaration, which defines

the coding scheme (syntax) used in its preparation.”’[3]

Almost every syntactic aspect of SGML can be

customized within the SGML declaration, which itself is

divided into six major sections, as described below:

(1) CHARSET: Specifies the set of characters which are
valid within a document.

(2) CAPACITY: Specifies things like the upper bounds
on the length of element names.

(3) SCOPE: Specifies the scope (document or sub-
document) of the declaration.

(4) SYNTAX: Specifies the rules for defining element
names, attributes, and other markup codes. The
SYNTAX portion of the SGML declaration is
perhaps the most complex, since it has eight sub-
categories, some of which have their own sub-
categories.

(5) FEATURES: Specifies which optional SGML
features are utilized within the document.

(6) APPINFO: Specifies, mainly for human use,
application specific information.

3.1.2. Document Type Definition. A DTD is a grammar
to which document instances must conform. Each
document instance is essentially a large regular
expression which may be validated for conformance to its
DTD using a parser. An English paraphrase of a specific

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

DTD might read: ‘A book is an element which has a title
followed by one or more chapters. A chapter is an
element that contains a chapter-title followed by one or
more sections. A section is an element which has a
section-title followed by one or more paragraphs. A
paragraph contains text and may contain cross
references.” Figure 1 shows how one might write a DTD
that fits this description. An ELEMENT declaration
always follows the pattern "<!ELEMENT name S E
contents™> where S indicates whether or not the start tag
can be omitted and E indicates whether or not the end tag
can be omitted." [3] A dash (-) indicates that it is required,
while an 'O' indicates that it may be omitted. An
ATTLIST declaration is used to associate attributes with
elements. In our example, we have used two special types
of attributes: ID and IDREF. The 'targid' attribute is of
type ID. Its purpose is to uniquely identify each paragraph
element. The 'targref attribute is of type IDREF. Its
purpose is to establish a logical link to the element with
the corresponding ID value.

Note that our simple DTD declares only elements and
attributes. A key building block found in most SGML
documents is that of an 'entity’. Entities are similar in
concept to macros in programming languages. By
including a reference to an entity, SGML documents get
an in-line copy of the contents of the entity when the
document is formatted for print or on-line display.

<IDOCTYPE BOOK [<!-- Note that “<!-- “ and “ -->“ are comment

delimiters -->

<!-- Typically, the first element name matches the DOCTYPE name -->
<IELEMENT book -- (title, (chapter)*) +(xref)>

<l-- The “-O” meaus the chapter element must have a start tag, but that
the end tag is optional. We can do this because the document structure
implies the presence of the end tag, whether it is present or not. In other
words, a chapter may end when the end tag is reached, when the start of
another chapter is found, or when the end tag of the book element is
reached. >

<IELEMENT chapter -O (title, (section)+)>

<1-- The plus sign (+) means the item must occur at least one time
and perhaps many times -->

<!IELEMENT section - O (title, (paragraph)+)>
<!-- The start and end tags for a title is optional -->
<IELEMENT title O O#PCDATA)>

<IELEMENT paragraph - O (#PCDATA)>
<IATTLIST paragraph targid ID #REQUIRED>

<!-- Both the start and end tags for xref are required. -->

<IELEMENT xref -- (#PCDATA)>

<IATTLIST xref targref IDREF #REQUIRED>
1>

Figure 1. Sample DTD based on our paraphrase

3.1.3. Document Instance. We may produce as many
documents as we like based on our DTD. In our sample

document instance shown in Figure 2, we used some of
the tag minimization features provided by SGML. For
example, we left out the start and end tags for the title
elements and the end tags for most of the other elements.
Other document types have different semantics, but each
type of document may share the same software tools for
viewing, printing, editing, and verifying.

<book>This title needs no begin or end tags.
<chapter><title>Here we chose to insert a begin tag without an
end tag.

<section>This time we include only the end <xref
targref=P1>tag</xref> </title>

<paragraph targid=P1>Notice that the xref may appeat
anywhere inside the book element. This is allowed because of
the ““+(xref)” inclusion in the content model for the book
element. The “P1” targref matches the “P1” targid, thereby
establishing a logical hypertext link.

<paragraph targid=P2>Also notice that each paragraph is
required to have a unique targid. This is because of the type
specification of “ID” and the “4REQUIRED” in the content
model of the paragraph declaration.</book>

Figure 2. Sample document instance based on
our DTD

3.2. DSSSL Views Documents as Trees

The purpose of the Document Style Semantics and
Specification Language (DSSSL) is to make
specifications for the visual rendering of SGML-encoded
documents portable between delivery platforms. The
DSSSL specification defines two independent processes:
(1) the SGML Tree Transformation Process (STTP) and
(2) the SGML Tree Formatting Process (STFP). Both
STTP and STFP manipulate SGML documents as tree
structures. STTP generates new views of existing SGML
documents by moving and reconnecting nodes in a tree.
STFP generates a “pretty print”, which is a formatted
display of SGML for on-line viewing or hard copy
delivery.

[title |

[titlel rparagraphJ paragraph

Eection I

Figure 3. DSSSL takes a tree-like view of SGML
An example is shown in Figure 3. Note that both the
STTP and STFP processes would take this sort of logical
view of documents, where each element knows its parent
and its children. Powerful structural transformations can

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

be made simply by reconnecting nodes. A “title” with a
“chapter” parent can be formatted differently than a title
with a “section” parent.

3.3. HyTime Connects Tree Nodes Through
Hypertext

The purpose of HyTime is to define a formal means of
representing connections between information elements
[9]. These connections are generally called hypertext.
HyTime provides three basic location methods which may
be combined as necessary to resolve hypertext
relationships: naming, counting, and pattern matching.
Naming is the idea of referring to objects via their formal
entity name or ID attribute value. Counting has to do with
finding an object relative to some other object (e.g., the
third item in a list). Pattern matching has to do with
finding an object based on a certain set of property
values, such as element content or attribute values. It is
common to combine these three functions in the
following sequence:

1. First, use the name of an entity or the ID of an element
to start the search at a node in the tree that contains the
target location.

2.Next, use a tree traversal counting method to move
down the tree to find a specific descendant of the
starting node -- for example, find the node’s first child
and then get that child’s second child.

3.0Once you have reached the target element, you may use
pattern matching functionality to find a specific range
of text -- for example, find the word “Jesus” which is
followed by the phrase “is the Son of God”. This final
step is generally not necessary since most things worth
referencing are delimited by SGML element tags.

4. An Object Database Fits SGML Very Well

Management of SGML-encoded documents is a
perfect fit for an object database. In particular, the object
database concepts of container objects and location-
independent, persistent object IDs have potential to
decrease the cost of new products through reuse of SGML
elements, to increase the power of hypertext, and to allow
fully integrated electronic products where SGML
elements on CD-ROM know how to find their on-line
counterparts. Since both HyTime and DSSSL require a
tree-like model of SGML, where each element knows its
parent(s) and its children, it is critical that publishers find
a way to fully model SGML hierarchy on a large scale.

4.1. Hierarchy

An obvious reason for utilizing an object database to
manage SGML-encoded documents is the recursive
nature of the data -- elements contain elements which
contain elements. Relational databases can model
recursive relationships but at the expense of complex,
application-dependent code. [1]

In order to minimize the difficulties posed by the
hierarchical nature of SGML, relational-based document
management systems require SGML documents to be
filtered before loading them to the database. The filtering
process divides documents into editable binary large
objects (BLOBs) of text. Each BLOB may contain several
nested levels of SGML elements. So long as filtering
decisions are designed well, this method provides
adequate performance and allows significant portions of
text to be reused in multiple documents. Unfortunately,
publishers may find they need to share SGML elements
which are “trapped” inside “BLOBs” in the database.

S File M

- [CABOOK\CHAPDT\SECOT\SUBSECOTY""] =5

=] File Disk Trec ylcw thlnns Window Help

Ww T T
SRR o X SN s o 290 RO SN

"UUEB0 1203/95 65318am T a
@sssecuzsgm 860 12/2/95 65318am
[2) sssec03 sgm 860 12/2/95 65318am
[2) sssec04 sgm 860 12/2/95 653 18am
[2) sssec5 som 960 12/2/95

[subsectt’
- €2 subsec02
{2 subsec03
- £ subsec04
L €3 subsec05
- £ sect2

I €0 subseco1

a
3
a
a

Character Earagraph anument ﬂelp

<subsubsec>

This 1s a sub-sub-sect
F £ subsec3 <para>To reuse this paragraph in other products you must reuse
F € subsec04 the entire sub-sub-section ar make a physical copy of the
~-) subsec05 paragraph</para>
- €3 sec03 <para>This paragraph i1s subject to the same limitations.</para>
|- €2 subsect <subsubsubsec>
- €2 subsec02 heading>More sig
- €3 subsec03 imited in the same way </haadmg>
(22 subsec04 <para>Th|s sub-sub-sub-section is "trapped” inside this
L £ subsec05 "BLOB" -- you cant reuse it without rephcation </para>
- £ chap02 are contained within a single element <fpara>
F €2 chap03 § <fsubsubsubsec>
I €3 chap04 I </subsubsec>

- €2 subsec02

S paitand 7:12
Figure 4. Splitting SGML into editable BLOBs in
a relational database

For example in Figure 4, a book has been divided into
manageable units. Each type of folder on the left
corresponds to a relational table. Each relational table
contains information as to which parts are nested inside
the particular components. The book relation lists the
chapters contained in the book. Chapter relations list
sections, sections list sub-sections, etc. Note that, in our
example, sub-sub-sub-sec cannot be reused without
reusing the sub-sub-sections in which they are contained.

In contrast, an object database can define general
classes (e.g., SGMLElement, SGMLAttribute,
SGMLEntity) which can accurately model any valid
SGML document without filtering the data before loading
it to the database. Note that the object database approach
reduces human effort in deciding what to filter, and
prevents regrets caused by poor choices in what to filter.
Perhaps even more exciting is that in the object database

text, like a sub-sub-sub-section1s ¥

H'l'l"

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

approach, each and every SGML element may be shared

by multiple documents. <document cite=“10 Pub 128" 0id=id87654321>
<heading 0id=id87654322>Object IDs are our friends</heading>

4.2. Obj ect IDs <notg 0id=id12345678>This note is reused in many products and is
such amimpertagt-piece of information that many other documents
refer to it. Also, gustomers like to attach “sticky notes “ to it with their

SGML and many object databases share the concept of own insights on this key concept.</note>
logical identifiers. In SGML, these identifiers are defined <para 0id=id3>Thg fact that the note has a location-independent object
. . T~ [. ID allows us to create hypertext to the object that is valid no matter
by dedarmg an attrlbute_ of type ID” and spec1fy1ng mn where the object goas. The fact that the ID remains persistent over time
the DTD that the value is required. The values of these allows these hypertext links to last longer than the energizer bunny.
attributes are left to the processing application -- they may Persistent IDs mean that it doesn’t matter whether we’re inside the
be inserted by the parser. The IDs inserted by parsers are database or on CD, the object is identified no matter where it
unique only within the scope of a single document. M goes.</paragraph>
X 7 R « R ary <para oid=id4>This congept has the potential to produce highly

Loomis points out in [1] that “All denotable objects have integrated products. If a Yser attaches a sticky note to a heavily used

a unique immutable identity. Each object has a separate SGML element in one product, that note could easily be related to the

existence and can be distinguished from all other objects. same clement in other products.

When an object is created, the ‘system’ assigns it an <paragraph>

) ? Y g </document>

object identifier, commonly referred to as its Object_id.”
HyTirpe concepts _com.bined with objec't database Hypertext and sticky notes travel

location-independent identifiers have potential for the between a diverse set of products and

creation and delivery of sophisticated hypertext survive updates.

applications. Editors could use full text searches to find

targets of hypertext, then the system could maintain bi-

\

directional hypertext through object IDs (OIDs). Inside r— Database 5RO
the database, the OID of the target element alone would
be enough to retrace the hypertext inserted by the editor. — 5

Outside the database, the OID of the product and the OID
of the element would be used together.
Hypertext and electronic sticky notes could follow an

Figure 5. Persistent and location-independent
IDs help with product integration

. . ! itation - - >

object between updates and diverse products (CD-ROM, <IELEMENT citation (#PCDATA)
. <IATTLIST citation
database, and WWW). (See Figure 5.) CD-ROM products oid D #REQUIRED
cquld be republished without concern about how to remap 0idTargBook ENTITY #IMPLIED
sticky notes -- they would automatically reattach to the oidTargElement NAME #IMPLIED
elements with the same IDs as in the previous release. HyTime NAME “clink™>
Users could create an electronic sticky note on a CD agd Figure 6. HyTime's clink allows us to use OIDs
whenever they come across the same SGML element in outside the database
an on-line service, the CD sticky note could easily be ; Fils Manager - [CASGMLVIEWITMPPUBLICRNNOT SISAMPLEY] |
related to the on-line version. Users could establish &l Disk JIrce Miew gg;éﬁ e D :
hypertext links to an on-line database, and if they T e B = T e
purchase CD versions of the targets, the links could = Eile Edit_Find _Character _Paragraph_Document_Help
automatically be redirected to their CD-ROM IFCabn P TLIST name="chas! Qlsort” suner="Public* doc="sampte” f2v="1
i 1 [Edaa TITLE=y"F;5'er5|stsnt IDs are a good thing "

pUbhcatlons‘ :g z;;?r:mk COMMENT="Note that annotations may be s}ored as independent

Figure 6 shows how one might utilize HyTime’s clink [S anta Sl ssset on' seqenca nambr n cthe worde, e fre
concept to carry object IDs outside a database onto CD- S orvate glement inthe document might be sssigned D1, the sscond 02,
ROM and ()ther delivery platf()mls, We assume that the Dl_gb]::mls (ke those provided k;y some objact-onente§ datarbases),electrumc
delivery system maintains a catalog of books (in the EQarm Bl Cioments fom rlesee o eiaso. The annotatone oo eman

Y 5y . « L 8 sanple on the hard dnve, while the updated SGML (with persistent IDs)

world of SGML a book might be called a “document o Cusbacks mght be stored on CD-ROM ">

. . . sy <SOURGCE value="3048" type="oid" handler="sgmiview">
entity”) available to the user. The catalog (sometimes gg:n“:"‘” <TARGET value="3048" type="ord handler="sgmiview">
called an “entity map”) might indicate that the target book tripad - o - ;
is located on a particular CD-ROM. An SGML viewer Figure 7. Electronic sticky notes "stick better"
could find the oidTargBook value in the catalog, instruct with persistent IDs
the user as to which CD to insert into the CD-ROM drive, Figure 7 shows an example of an electronic sticky note
and then jump to the appropriate element on the CD (the as it is stored on a user's hard drive by a commercial
one corresponding to the oidTargElement value). SGML viewer. Let us use Figure 7 to discuss a problem

YF]',F.

Proceedings of The Thirtieth Annual Hawwaii International Conference COMPUTER
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE SOCIETY

with the design which can be easily remedied through
persistent IDs. The “LINK” element may be utilized as a
book mark, or as an annotation (i.e., electronic sticky
note), or even as a hypertext link between “SOURCE”
and “TARGET” elements. The problem with a
commercial design is that the “value” attribute is based on
temporary IDs that are assigned to each and every SGML
element as the electronic book is indexed. The next time
the book is published, the electronic annotations will be
invalid because the IDs will be different in the new
release. Persistent IDs assigned to each and every SGML
element eliminates the problem. Generating persistent
IDs, however, is a problem in itself. Implementing
distributed database systems which can retrieve
information based on IDs is another problem. Retrieving
the nested parts of a publication from a database for
publication on CD-ROM is a third problem, particularly
for relational systems. (See Section 4.1.) Some object
databases solve these problems automatically.

4.3. Semantics

Rendering or constructing new products are facilitated
by knowing the structure of the document. Parents must
know their children, children must know their parents.
References must know their targets, targets must know
who references them. The semantics of SGML allows for
“nested fields” so that one should be able to find a large

object by first finding an object it contains.
Insted - [sysadm FULLTEXT.V]]@;%
o

ﬁfile Edit View Style Entites Options Windew Help
+ TOCPG
- BODY

- CHAPTER - I8 - o N,
- RN . "

RACK

these components - e

1. Introduction - B m—
A, F) T CHAPTY §

Overview : [#] Jiealonumiancestar).i1"0 | Morg3-
Introdution %‘e E} SH
This chapter provides an overview of ';fﬁ %&?
the s Tet distibubion package. Neane [0 Myt
syster requrements, and methods Newe ‘“st A .
for communicating with Electranic o sifé«‘ﬁ-& %
Book Technologees, Inc ff-) N
o Pgtons st S
Requiremenis
- o s 1 6119 [,

Figure 8. The semantics of parent-child
relationships facilitates rendering

Figure 8 shows an example from a commercial style
sheet editor. It illustrates the power of parent-child
relationships in rendering SGML documents for display.
Each element’s context (its parent-child relationships) is
used by the editor in defining rendering characteristics for
the element. The style sheet editor allows text to be
propagated from one or more ancestors or from child

elements. Chapter numbers can be assigned dynamically
depending on the relative location of the chapter
elements. The same techniques used for dynamic
rendering on CD-ROM could be used in an authoring
environment. It could appear to users that section
headings are propagated to their respective sub-sections,
without actually replicating data.

An SGML document management system could be
designed to support the API's necessary to cooperate with
a style sheet editor and an SGML viewer. As DSSSL
evolves, object databases could be designed to respond
directly to the SGML Tree Transformation Process
(STTP) and (2) the SGML Tree Formatting Process
(STFP) functions. Doing so would allow multiple
vendors to develop SGML viewers and editors that can
operate on any “DSSSL-compliant” database. Document
management standards have not yet reached this level,
however it seems a natural extension to DSSSL, and
many document management vendors are talking about
ways to standardize their API's.

An SGML structure editor could benefit from an
object database approach to SGML storage. Mary Loomis
points out that “A text editor must encode a document’s
structural information explicitly in the document. Reading
or modifying the document requires the application to
decode the document’s structure. By contrast, an object
database could store the document as a container object,
and the object DBMS could understand the structure of
that container. A document is an object composed of
other objects. An application can request access to a
particular component object, say the list of references or a
specified chapter, without having to decode markers in
the bits stored as a document BLOB.”[1]

4.4. Distribution

In a relational system, distribution of data is done
through one of three methods: (1) certain relations are
partitioned horizontally based on ranges of values in one
or more attributes; (2) relations are partitioned vertically
so that some columns reside on one server and some on
another; or (3) a combination of (1) and (2). These
methods are useful in many cases since they keep pockets
of data relatively small for backup, recovery, and
performance reasons while giving end users the illusion
of a centralized database. For example, one might have a
class of reusable SGML components called “pages”. Each
page might correspond to a specific publication, and the
relational table which holds the pages might be split
horizontally based on “publication number” as illustrated
in Figure 9.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

User Query:
SELECT pagetext
FROM pages
WHERE pagenum=30 AND pubnumber=523

The DBMS analyzes the query and searches the appropriate
table based on “pubnumber” value.

SERVER 1: (PUBNUMBER 1 through 499)
PUBNUMBER PAGENUM PAGETEXT
001 0001 Text
001 0002 Text
499 0001 Text
499 0002 Text
SERVER 2: (PUBNUMBER 500 through 999)
PUBNUMBER PAGENUM PAGETEXT
500 0001 Text
500 0002 Text
999 0001 Text
999 0002 Text

Figure 9. Example of horizontal partition
method of a relational database

In an object database, distribution can be made on a
much more ad hoc basis. Objects might be composed of
other objects, each residing on different servers, and
retrieval of objects and their parts can be done
transparently to the application. Note that distributed
databases are not merely a buzz word. They are a
necessity for the usual terabyte needs of publishing
industry. Even mainframe systems are unable to store all
documents in a single relational table. (The maximum
relational table size in some large scale mainframe
systems is 64 gigabytes.) It seems reasonable to assume
that object databases face similar limitations, but object
databases with location-independent object IDs have the
potential to succeed by using the divide-and-conquer
approach.

5. Benchmark Experience

While the object database paradigm offers a very
elegant means for modeling SGML, it is a relatively new
technology and there may be difficulties in finding an
ODBMS that can scale to our needs. In our opinion, the
ODBMS used in the project (which we will call
"ODBMS-X" for the rest of this paper), was not well
suited to our needs. While performance when retrieving
heavily nested SGML is quite good, the system is unable
to manage databases larger than the maximum file size
supported by the client machine’s operating system. In
general, this means that 32 bit client machines are limited
to accessing 4 gigabyte databases. Since ODBMS-X

reserves some addressing bytes for its own use, even on a
32 bit machine it is a non-trivial matter to create a
database larger than 200 megabytes.

ODBMS-X used in the project provides a feature
called an “object reference”, which we thought was a
location-independent ID that remained static throughout
the life of the object no matter where it is moved. We
planned on using object references heavily in order to
create a scaleable prototype. However, the ODBMS-X’s
references are not persistent. If you move an object, the
reference changes. ODBMS-X attempts to automatically
remap relationships defined by object references
whenever related objects are moved. This may maintain
data integrity inside the DBMS, but it precludes our use
of object references outside the database (say, for
example, as SGML element ID values).

5.1. The benchmark prototype

The prototype is composed of five modules -- a Load
Utility, Archive Utility, Query Engine, Product
Generator, and Hypertext Engine. The Load Utility is
used to load the content of an SGML-encoded ASCII
stream into a database by creating objects. The Load
Utility recognizes the basic building blocks of SGML
(elements, attributes, and entities). The Archive Utility is
used to dump the content of persistent database objects to
an SGML-encoded ASCII stream. The Archive Utility
relies on each object to "print itself" so that the utility can
merely act as a driver.

The Query Engine forms the basis for searching the
database and finding objects to be collected into a new
product. The Query Engine could potentially be used in
either interactive or batch mode to establish hypertext
relationships between elements. See Figure 10 below for
an overview of the syntax and an example of the use of
our query language.

/ELMT(vall val2 ... valn) [vals are OR'd]
/ ATTR(vall val2 ... valn) [vals are OR'd]

AND'd <
\ WORD(vall val2 ... valn) [vals are OR'd]
\ENTY(vall val2 ... valn) [vals are OR'd]

Example:
“ELMT(TITLE) WORD(INSURANCE) WORD(AUTO CAR)”

Figure 10. Query language syntax and
example
The Product Generator was implemented utilizing the
Query Engine. The lack of persistent OIDs prevented us
from implementing the Hypertext Engine.

5.2. The benchmark results

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

Scale: ODBMS-X works well for databases under 200
megabytes. If developers are willing to learn special
techniques for larger databases, it may even be possible to
create a database as large as 4 gigabytes on a 32 bit
operating system. However, even the ODBMS-X
manufacturer admits that larger volumes of information
must be split across databases. SGML is purely
hierarchical in nature and finding ways to ensure that
document instances never exceed the 200 megabyte limit
prohibits our use of a recursive object model. When one
considers that word indexes can be equal in size to the
source data, the 200 megabyte limit makes the product
virtually unusable.

Load Speed: One goal was to load and fully index 500
megabytes of source SGML in 48 hours. The fastest load
rate we achieved was 1,435 bytes per second when
loading 22 megabytes. At this rate it would take
approximately 100 hours to load 500 megabytes. As we
made modifications to improve the expansion ratio
explained later, load performance dropped further to 507
bytes per second. These results were not promising,
although the problem is probably in our implementation
rather than in the ODBMS. The main flaw in our
implementation has to do with how a "locator dictionary"
was implemented. We had some difficulty in utilizing
ODBMS-X’s indexes and query language and hence
created our own linear search algorithm. The larger the
number of entries in a locator dictionary, the slower the
lookup on words. Had ODBMS-X shown more promise
with regard to scalability, we would have spent more time
attempting to resolve the indexing issues.

Expansion Ratio: The expansion ratio (the size of the
fully indexed database compared to the size of the source
data) was also an issue for the prototype. The original
configuration expanded at a rate of 9 to 1. Most of the
object classes in the prototype have at least one
"container" (a data structure that holds pointers to other
objects). By being stingy on the initial size of these
containers, a considerable amount of space was saved. By
reducing the expected number of owners of an element
from 2 down to 1, the expansion ratio dropped to 6.7 to 1.
The best expansion ratio number was 3.8 to 1 for the most
recent configuration. (In order to achieve this value, the
initjal size of the number of expected locator pointers was
reduced from 1000 to 10. Besides, the percentage of
unique words and SGML attributes was increased by a
factor of three so as to reduce the average number of
elements pointed to by any given locator. As stated in the
"Load Speed" section, these changes hurt Iload
performance.) Once again, had we used ODBMS-X's
index capabilities and its query language, load
performance would not have been an issue.

Querying (Cold and Warm): Query performance was
within the bounds of original project goals. For small
databases consisting of a few megabytes of source, two to
three term queries completed in 20 seconds on average
for “warm” queries and 30 seconds for “cold” queries.
Larger databases of 20 or more megabytes required 48
seconds on average for “warm” multiword queries and 98
seconds for “cold” ones.

Note that had we used ODBMS-X’s indexing
capabilities and its query language, performance would
have been better. However, full text indexing would
likely be carried out utilizing third party software and
without the aid of the ODBMS -- third party full text
indexing and search packages offer superior functionality
and performance. Note that because ODBMS-X does not
include the concept of persistent, location-independent
logical object IDs, incorporating third party full text
indexing would be difficult with this ODBMS.

Export Speed: The export speed (the rate at which
SGML can be copied from the database to a flat file) is
the brightest spot in the benchmark. When relational
systems attempt to model the full SGML hierarchy, for
example by modeling each SGML element as a tuple in a
relational table and each level in the hierarchy as a
separate table, the retrieval performance becomes
unacceptable.

It was the goal of this project to model the full
hierarchy of SGML and still allow 500 megabytes of
source SGML to be extracted in a 24 hour period. The
fastest export rate for a large database was 21,657 bytes
per second; the slowest export rate was 12,807 bytes per
second. If these rates hold constant without regard to the
size of source, then 500 megabytes of SGML can be
exported in 6.4 to 10.8 hours. The project was carried out
on a relatively low scale UNIX workstation. One might
expect even better performance on a more powerful
UNIX server.

The wide range in export performance should not
come as a surprise. The slowest export rate was for
heavily nested, small SGML elements (as high as 10
levels of nesting). The fastest rate was achieved for rather
large SGML documents (each around 32 kilobytes) with
relatively little nesting of elements (three levels of nesting
on average). The surprising aspect of the variance in
performance is that it is so small. Our hope is that a more
scaleable ODBMS can be found which provides similar
levels of export performance.

6. Recommendation to ODBMS
Manufacturers and Users

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

6.1. Location-independent persistent object ID is
the key to scalability

ODBMS-X, the ODBMS used in this project, does not
seem well suited to our needs. Performance when
retrieving heavily nested SGML is quite good without
having to artificially segment the data into “BLOBs”.
However, the product is not suitable for large
applications. It is difficult to estimate how many SGML
elements 500 gigabytes of source might translate into, but
it is clear that an object database that is limited to 4
gigabytes per database would pose difficulties for data
management. It is not merely the fact that 4 gigabytes is a
small storage capacity. The problem also involves the
inherent ~ weakness in maintaining inter-object
relationships without persistent keys (i.e., IDs).

Large volumes of data require periodic reorganization.
As long as inter-object relationships are maintained
independent of the physical location of objects,
reorganization of data does no harm. However, without
persistent keys to objects, any change or movement of
data can destroy the inter-object relationships, or at least
force the use of expensive remapping of the relationships.

If a paragraph holds an average of 500 bytes, and each
paragraph holds an average of four sentences, then one
might say that a paragraph averages five SGML elements.
Assume for a moment that large publishing companies
average 500 gigabytes of SGML data. Let’s do a quick
calculation based on our assumption: (500,000,000,000
bytes / 1000 bytes per paragraph) = 500 million
paragraphs, which translates into 2.5 billion SGML
elements. If we were to use any database that uses direct
pointers to the physical location of objects, it is clear that
we risk a situation in which moving a single object forces
the remapping of 2.5 billion inter-object relationships.
True, the chance that any one element might be
referenced by all the other elements is small, but the
scenario drives home an important weakness of this
approach.

6.2. Additional recommended features

Once the lack of persistent, location-independent
object identifiers presented itself as an issue, we started
investigating other ODBMS products. Our main criteria
in evaluating ODBMS technical documents were whether
or not the DBMS provides object IDs that remain
persistent over time, are unique across a network of
databases, and may be used to find an object anywhere in
the network in a manner that is essentially transparent to
the application program. We have found a couple of
products that have the greatest potential for scale and ease

of use. Based on our study, we list here some of the

features as a recommendation for ODBMS manufacturers

and users.

I.An ODBMS should allow users to create an index on
an arbitrary collection of objects so that you can
organize products by collecting pointers to objects. To
improve search performance, it would be nice to be
able to index the attributes of objects that are stored in a
particular collection only. Unfortunately, most
commercial ODBMSs currently force users to create an
index on all objects of a class, no matter which
collection they reside in.

2. Versioned objects should be movable from their birth
database to another database residing on the same or
different site. In addition, configuration management of
versioned objects should be available to keep track of
which version was delivered with which release of a
product.

3. An ODBMS should support group reads and writes for
distributed objects without specifying individual
databases. Performance may be an issue if the
document management system client must invoke
individual reads in order to retrieve a set of objects. If
possible, most reads should be done as group reads
followed by sequential reads to get the more distributed
parts.

4.An ODBMS should use an efficient object search
algorithm whose speed is insensitive to the increase in
the number of networked servers. Once an object is not
found on the connected server, it would be a poor
approach to do an exhaustive search on all the other
servers. You would want to set up search hierarchies
based on criteria such as machines, users, or processes
in an attempt to tune the search to the specific situation.
The search algorithm should ensure that each node in a
network can operate independently of other nodes.

5.Users should be able to add database volumes
incrementally and randomly at will. Volumes may
consist of raw disk partitions. A single database should
potentially accommodate unlimited volumes.

6.Multiple, concurrent, parallel subprocesses are a
definite advantage. This creates the potential for
executing many behind-the-scene lookups, etc., that can
take advantage of a multiple CPU server and/or multi-
server environment.

7.An ODBMS should manage objects replicated on
different network nodes transparently to users --
synchronously by default and asynchronously as an
option.

8.An ODBMS should provide resiliency to a network
failure. That is, nodes in a network of database servers
can operate even with all network communications are
down and without the risk of duplicating object IDs.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

9. Dynamic reclustering of objects would be an attractive
feature because in the publishing industry it is difficult
to pre-determine the clustering strategy that maximizes
file I/O performance. Data access patterns change over
time, and data become fragmented as new products are
constructed from existing products. If an ODBMS
maintains a statistical trace of data access patterns, then
it can utilize the information to recluster objects on a
regular basis or triggered by the "event" of reaching a
statistical threshold.

10.1t will be nice to have an event notification mechanism
that will allow users to monitor specific objects and/or
all objects of a class and receive a message when an
object is created, modified, or deleted. You can
optionally specify a predicate to filter events based
upon object attribute values. You can also define your
own events and receive a message when it occurs.

7. Summary and Further Work

An object database suites SGML very well, at least on
a small scale. It remains to be seen how well it manages
terabyte needs. With Internet users clamoring for more
information, higher quality, and lower costs, and with
governments and publishers adopting SGML (and the
powerful software tools that come with it) at a rapid pace,
it now seems SGML is a requirement rather than an
option for the publishing industry. Since HyTime and
DSSSL are expected to be the predominant means by
which to specify hypertext relationships and the display
characteristics of SGML, it seems in a publisher's best
interest to find a way to model full SGML hierarchy on a
large scale.

The results of our benchmark were not gratifying,
particularly in terms of the limited database size and the
lack of persistent, location-independent unique object
IDs. If ODBMS vendors follow the recommendations in
Section 6, their products will be better able to meet the
needs of the publishing industry. Most importantly, the
effectiveness of using object databases for SGML
document management relies on the scalability. Once the
current or future ODBMSs meet the scalability need, they
will bring a significant impact on the document
management market.

We are continuing our study using other ODBMS
products while improving and extending the initial
benchmark prototype. At the same time, we are
investigating relevant technical issues, such as developing
a more efficient object search algorithm in a distributed
network environment, as a by-product of the study.

References

[1] Mary E. S. Loomis, Object Databases: The Essentials,
Addison Wesley Publishing Company, 1996.

[2] Won Kim, Introduction to Object-Oriented Databases, The
MIT Press, 1990.

[3] Martin Bryan, SGML: An Author's Guide to the Standard
Generalized Markup Language, Addison-Wesley Publishing
Company, 1995.

[4] Charles F. Goldfarb, The SGML Handbook, Clarendon
Press, Oxfird, 1990.

[5] ISO 8879: 1986. Information Processing -- Text and Office
System -- Standard Generalized Markup Language (SGML),
October 15, 1986.

[6] Eric van Herwijinen, Practical SGML (2nd ed.), The
Netherlands: Kluwer Academic Publishing, 1994.

[7] Steven R. Newcomb, "SGML Architectures: Implications
and Opportunities for Industry” in TAG, pp. 1 - 5, August 1995.

[8] Ian S. Graham, The HTML Sourcebook: A Complete Guide
to HTML 3.0, Wiley Computer Publishing, New York, 1996.

[9] Steven J. DeRose and David G. Durand, Making
Hypermedia Work, The Netherlands: Kluwer Academic
Publishers, 1994.

[10] Ralph Ferris, and Victoria T. Newcomb (ed.), HyTime
Application Development Guide,
ftp://ftp.techno.com/pub/HyTime/Application_Development G

uide/, February 1996.

[11] Charles F. Goldfarb, Catalog of HyTime Architectural
Forms and HyTime SGML Specification Version 2.0,
http://www.sgmlopen.org/sgml/docs/library/archform.htm, June
28, 1993.

[12] James Clark, ISO/IEC 10179:1996 Document Style
Semantics and Specification ~ Language (DSSSL),
http://www.jclark.com/dsssl/.

[13] PR Newswire, Delphi Market Research Finds Document
Management Market Shifi, June 3, 1996.

[14] Bob DuCharme, DBMS Support of SGML Files,
http://cs.nyu.edu/cs_alumni/duchar96/sgmldbms.html, July 12,
1996.

[15] Jim Donahue, Document Objects, presented at the Database
Seminar, Department of Computer Science, Stanford University,
May 10, 1996.

[16] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl,
"From structured documents to novel query facilities” in
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 313 - 314, Minneapolis, MN, May
1994.

[17] T. Yan and J. Annevelink, "Integrating a structured-text
retrieval system with an object-oriented database system" in
Proceedings of the Twentieth International Conference on Very
Large Data Bases, Santiago, Chile, September 1994.

[18] M. Yoshikawa, O. Ichikawa, and S. Uemura,
"Amalgamating SGML Documents and Databases" in
Proceedings of the International Conference on Extending
Database Technology, Avignon, France, March 1996.

YF]',F.

COMPUTER
SOCIETY

Proceedings of The Thirtieth Annual Hawwaii International Conference
on System Sciences ISBN 0-8186-7862-3/97 $17.00 © 1997 IEEE

