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Abstract Recently, periodic pattern mining from time series data has been stud-
ied extensively. However, an interesting type of periodic pattern, called partial
periodic (PP) correlation in this paper, has not been investigated. An example
of PP correlation is that power consumption is high either on Monday or Tues-
day but not on both days. In general, a PP correlation is a set of offsets within
a particular period such that the data at these offsets are correlated with a cer-
tain user-desired strength. In the above example, the period is a week (7 days),
and each day of the week is an offset of the period. PP correlations can provide
insightful knowledge about the time series and can be used for predicting future
values. This paper introduces an algorithm to mine time series for PP correlations
based on the principal component analysis (PCA) method. Specifically, given a
period, the algorithm maps the time series data to data points in a multidimen-
sional space, where the dimensions correspond to the offsets within the period. A
PP correlation is then equivalent to correlation of data when projected to a sub-
set of the dimensions. The algorithm discovers, with one sequential scan of data,
all those PP correlations (called minimum PP correlations) that are not unions of
some other PP correlations. Experiments using both real and synthetic data sets
show that the PCA-based algorithm is highly efficient and effective in finding the
minimum PP correlations.
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1 Introduction

Finding periodicity in time series data is both a challenging and an important
problem in many real world applications. Examples of time series that contain
periodic patterns are numerous, including the time series of stock price, power
consumption, sales data, meteorological data (e.g., temperature, humidity), etc.
Many techniques have been developed for searching for periodic patterns in large
time series data sets [1, 2, 8, 12, 13, 16, 18, 21–24].

Recently, several works have concentrated on finding partial periodic patterns
[1, 8, 12, 13], which specify the periodic behavior of the time series at some,
but not all, points in time within a certain period. This type of patterns appears
frequently in real world applications. For example, within a period of 1 week
in a stock price time series, the price of a particular stock may be high every
Wednesday and low every Friday but not show any regularity on the other days.
The usefulness of this type of patterns has been explained in the literature [1, 8,
12, 13].

The existing work on partial period patterns does not include an interest-
ing type we call partial periodic (PP) correlations. Given a period (e.g., week)
spanning a fixed number of offsets (e.g., 7 days), a PP correlation is a subset of
these offsets such that the correlation of data at these offsets exceeds a user-given
strength threshold. This type of pattern is what we study in this paper.

The following three examples illustrate how PP correlations may be used in
practice. The first two examples assume the period of 1 week and the offset of one
day.

Example 1 (Stock market analysis) Suppose a PP correlation has been found in
the ticker price time series of a particular stock and it shows that the price is either
high on Monday and low on Friday or the converse is true. Then, a stock market
analyst may investigate the underlying cause of the PP correlation and find out
that a major share holder regularly sells a large quantity of shares on Friday (thus
causing the price to fall) and buys them all back on Monday (causing the price to
rise) or does the reverse. The analyst can then take advantage of the information
to his or her own profit.

Example 2 (Business logistics) Suppose a PP correlation has been found in the
time series of the daily number of customers served at a certain restaurant and it
shows that the sum of the numbers on Friday, Saturday and Sunday is roughly a
constant. This information may be useful for the restaurant manager to budget the
number of waiters accordingly for Saturday and Sunday after knowing the number
of customers on Friday. After knowing the numbers on Friday and Saturday, it can
be used for budgeting Sunday.

The third example assumes the period of 24 h and the offset of 1 h, with data
collected only during weekdays.

Example 3 (Intelligent web caching) Consider a time series of the hourly number
of visits to a particular web page by the client (web browser) of the user named
John. Suppose a PP correlation has been found in the time series and it shows that
the number of visits is high during either 10 a.m.–11 a.m. or 5 p.m.–6 p.m., but
not both, on every weekday. This information may be used by the web client to
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prefetch the page just before 5 p.m. if the number of visits has been low during 10
a.m.–11 a.m.

Our experiments show that PP correlations occur frequently in real data (as
will be shown in Sect. 5.2.3). However, no techniques capable of finding such
patterns have appeared in the literature. This paper is the first attempt to introduce
such a technique.

In our proposed technique, numerical time series data are mapped to a set of
data points in a multidimensional space, where the dimensionality is the period
size, and each dimension corresponds to one offset within the period.1 A PP cor-
relation is then defined as a subset of the dimensions such that the data at these
offsets are correlated with a certain user-desired strength. For each PP correlation
found, we can use a linear constraint to express the condition satisfied (within
an error threshold) by the data appearing at the corresponding offsets within the
period. Below we show two simple but useful cases.

Example 4 We illustrate PP correlations by using two cases that involve two off-
sets within a period: (1) PP negative correlation and (2) PP positive correlation.
Consider stock price time series data mapped to data points in a seven-dimensional
space d1 × d2 × · · · × d7, where d1, d2, . . . , d7 are mapped from Monday, Tues-
day, . . . , Sunday, respectively. An example of PP negative correlation is the one
in Example 1, where either the stock price is high on Monday and low on Friday
or the converse is true, within a period of 7 days. The linear constraint for the PP
correlation can then be expressed as a1d1 + b1d5 + c1 = 0, where a1 and b1 are
positive numbers. Note that d1 corresponds to Monday and d5 to Friday. Figure 1
illustrates this case using data points in ten periods. Consider only the data points
mapped to the two-dimensional space d1 × d5 (bottom of Fig. 1a) out of the time
series given in the top of Fig. 1a. As shown in Fig. 1b, a PP negative correlation
is found in the seemingly random time series. An example of PP positive corre-
lation is that the stock price is either high on both Tuesday and Thursday or low
on both days. The linear constraint for this PP correlation can be expressed as
a2d2 − b2d4 + c2 = 0, where a2 and b2 are positive numbers. Figure 2 illustrates
this case using the same time series.

The number of PP correlations found in a time series may be very large, and
in the worst case is exponential to the size of the period. In most cases, the user
would not want to find all possible PP correlations. We believe that only a small
fraction of the existing PP correlations are of interest to the user. This belief is
based on two observations. First, PP correlations with a smaller number of corre-
lated dimensions are more useful than those with a larger number. For instance,
a PP correlation between the two dimensions d4 and d5 is more useful than one
among the five dimensions d1, d2, d3, d4, and d5. Indeed, in order to predict the
value for d5, the user needs to know only d4 when using the former correlation but
needs to know all of d1, d2, d3, and d4 when using the latter.

The second observation is that a PP correlation with a larger number of dimen-
sions may not be so informative—hence not so useful—as those with a smaller
number especially if the larger one can be inferred from the smaller ones. For
instance, assume we have the PP correlation between d1 and d2 (with the linear

1 We use the terms “offset” and “dimension” interchangeably in the sequel.
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Fig. 1 An example of PP negative correlation

constraint a1d1 + a2d2 = a3 where a1, a2, and a3 are constants), and another be-
tween d3 and d4 (with the linear constraint b1d3 + b2d4 = b3 where b1, b2, and b3
are constants). Then we are likely to find a PP correlation among d1, d2, d3, and d4,
with the likely linear constraint a1d1+a2d2+b1d3+b2d4 = a3+b3, although it is
possible that the inferred PP correlation does not satisfy the user-desired strength
even if the given two do.

Based on the above observations, we introduce the notion of minimum PP
correlations in this paper. A PP correlation is said to be minimum if it is not the
union of two or more other PP correlations. For example, a PP correlation with
the dimensions {d1, d2, d3} is minimum if we do not have PP correlations among
the subsets of {d1, d2, d3} such that the union of these subsets is {d1, d2, d3}. On
the contrary, the PP correlation is not minimum if we have PP correlations in the
subsets {d1, d2} and {d2, d3}
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Fig. 2 An example of PP positive correlation

Mining for PP correlations involves two key issues: first, finding PP correla-
tions for a given period size, and second, doing it in only one pass of a (large) time
series. We address the first issue by exploiting a property of the principal compo-
nent analysis (PCA). More specifically, PCA can be used to find a vector (called
minimum variance PCA vector) in a multidimensional space such that when the
multidimensional points (the data) are projected onto the vector, the variance of
the projections is minimized among all possible vectors in the space. Using this
property, we can find the correlation with the minimum variance, in other words
the correlation with the maximum strength2; If the variance of this correlation is
below the variance threshold (hence, above the correlation strength threshold),

2 We use the term “variance” in a technical discussion and “strength” in an intuitive discus-
sion.
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then a PP correlation is found with all the dimensions on which we have applied
the PCA. The linear constraint for the found PP correlation is a hyperplane per-
pendicular to the minimum variance PCA vector.

The second issue is important due to the often prohibitive disk I/O cost of
scanning a large time series multiple times. A naive application of PCA to mine
PP correlations would require re-scanning the data for each subset of dimensions
considered to apply the PCA. We address this issue by optimizing the PCA compu-
tation so that it takes only one pass through the time series to build a small amount
of statistics (specifically, the covariance matrix) and use the statistics repeatedly
to find all the minimum PP correlations without re-scanning the time series.

We have conducted experiments using both real and synthetic data sets. The
results show that our one-pass approach leads to reduction of several orders of
magnitude in the time to find all PP correlations, where the order increases with the
increase of such parameters as the period size, data set size, and the maximum size
of the PP correlations considered. We have also found that mining for minimum
PP correlations produces significantly fewer PP correlations than mining for all
PP correlations.

We make three contributions with this paper. First, we introduce the notion
of PP correlations in time series. Second, we develop a PCA-based approach to
finding all minimum PP correlations in one-pass scan of the time series. Third,
we demonstrate the efficiency and efficacy of the PCA-based approach through
experiments with both real and synthetic data sets.

We structure the rest of the paper as follows. Following this introduction, we
discuss related work in Sect. 2, give an overview of the PCA and introduce key
terms and concepts of PP correlations in Sect. 3, present our PCA-based approach
to finding PP correlations in Sect. 4, and present the experiments in Sect. 5. Then,
we present a simple extension of our PCA-based approach to consider multiple
periods in Sect. 6, and conclude the paper with Sect. 7.

2 Related work

Two areas of related work are periodic pattern mining [1, 2, 8, 12, 13, 16, 18, 21,
22, 24] and forecasting [3, 4, 6, 9–11, 19]in time series.

As mentioned in the introduction, there has been significant work done in the
area of mining periodic patterns in time series [1, 2, 8, 12, 13, 16, 18, 21–24]. Han
et al. [12, 13] first introduced the notion of partial periodic patterns and presented
two algorithms (in [12] and [13], respectively) for mining this type of patterns.
Yang et al. [24] proposed mining asynchronous periodic patterns, which are pat-
terns that may be present only within a subsequence and whose occurrences may
be shifted due to “disturbance”. A number of papers [2, 8, 16, 18] center on dis-
covering potential periods of time series data with high computational efficiency.
Aref et al. [1] propose an incremental algorithm for mining partial periodic pat-
terns. Yang et al. [22] mine “surprising periodic patterns” by using the concept of
information gain to measure the overall degree of surprise within a data sequence.
Wang et al. [21] propose an approach for mining patterns that are hierarchical
in nature, where a higher level pattern consists of repeating lower level patterns.
Jiong Yang et al. [23] propose efficient algorithms for mining high level patterns
which would not be properly recognized by any existing method.
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All existing works on finding periodic patterns (whether partial or total) as-
sume discrete symbols in time series, not continuous numerical values as assumed
in our work. Since symbols are not values that can be compared numerically, the
methods of the existing works cannot find PP correlations as can be done with the
technique of this paper.

There are several existing time series forecasting techniques, including general
exponential smoothing [4], Holt’s linear trends model [11], Holt–Winters seasonal
model [6, 19], parametric regression [9, 10], Box–Jenkins [3], and linear mod-
els [3]. We focus our discussion on linear models here since they also use lin-
ear equations for characterizing the time series. There are many different linear
models that are used for forecasting time series. They include autoregression [3],
moving average [3], autoregression and moving average (ARMA) [3], integrated
ARMA [3], and fractional integrated ARMA [3]. The basic ideas are illustrated
by the ARMA(M,N) model, where the equation for value at time t , xt , is given by

xt =
M∑

m=1

am xt−m +
N∑

n=0

bnet−n (1)

where M is the order of the autoregressive process, N is the order of the moving
average process, a1, a2, . . . , aM and b1, b2, . . . , bN s are constants used to fit the
model, and et , et−1, . . . , et−N are the observable random shocks. In the ARMA
and subsequent models, the linear models are designed solely for predicting the
value at xt based on a prior window of observations. In contrast, our work mines
potentially useful knowledge from the time series by finding correlations that in-
volve partial data (i.e., subsets of the offsets within a period) from the time series.
The linear modeling techniques attempt to fit a single model (e.g., Eq. (1)) for
forecasting all future values, whereas we mine a set of PP correlations that can be
used for forecasting some future values at predictable points in time.

3 Preliminaries

In this section, we first give an overview of principal component analysis (PCA)
techniques and then introduce important terms and concepts pertinent to PP cor-
relations.

3.1 An overview of PCA

“Principal component analysis has been called one of the most valuable results
from linear algebra” [20]. It is a simple non-parametric technique for extracting
relevant information from a set of apparently random data. It is widely used for
dimensionality reduction [5, 7, 15] and for finding correlations among attributes
of data [17]. However, to our knowledge, PCA has never been used to look for PP
correlations in time series data.

Given a set of k-dimensional data points, PCA finds a ranked set of orthogo-
nal k-dimensional eigenvectors v1, v2, . . . vi, . . . , vk (which we call PCA vectors)
such that
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• Each PCA vector is a unit vector, i.e.,
√

βi
2
1 + βi

2
2 + . . . + βi

2
j + . . . + βi

2
k =

1, where βi j (i, j = 1, 2, . . . , k) is the jth component of the PCA vector vi.
• The variance along vi is larger than or equal to the variance along vj if i < j,

where variance along a vector v is the variance of data points projected onto
the vector v.

The PCA vectors v1, v2, . . . , vk can be computed by finding the linear trans-
formation from the coordinates of the data points to new coordinates such that the
covariance matrix of the new coordinates is diagonalized.

The linear transformation is given by the following equation:

VX = Y (2)

where V is a matrix whose rows are the PCA vectors:

V =

⎡

⎢⎢⎣

v1
v2
...

vk

⎤

⎥⎥⎦ (3)

and X is a matrix whose columns are vectors of the coordinates of data points in
the original k-dimensional space:

X =

⎡

⎢⎢⎢⎣

X11 − X̄1 · · · X1m − X̄1

X21 − X̄2 · · · X2m − X̄2
...

. . .
...

Xk1 − X̄k · · · Xkm − X̄k

⎤

⎥⎥⎥⎦ (4)

where Xi j (i = 1, 2, . . . , k; j = 1, 2, . . . , m) is the ith dimensional coordinate of
the jth data point, X̄i is the average ith dimensional coordinate (in order to give
data points zero mean), and Y is a matrix whose columns are vectors of the new
coordinates of the data points in the transformed k-dimensional space:

Y =

⎡

⎢⎢⎣

Y11 · · · Y1m
Y21 · · · Y2m
...

. . .
...

Yk1 · · · Ykm

⎤

⎥⎥⎦ (5)

where Yi j (i = 1, 2, . . . , k; j = 1, 2, . . . , m) is the new ith dimensional coordi-
nate of the jth data point.

The covariance matrix of X, COV(X), is defined as

COV(X) = 1

m − 1
XXT (6)

Then, the covariance matrix of Y, COV(Y), is computed as

COV(Y) = 1

m − 1
YYT (7)

= V COV(X) VT (see [17]) (8)
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Fig. 3 An example of PCA vectors

This COV(Y) is diagonalized when the vectors v1, v2, . . . , vk in Eq. (3) are
the eigenvectors of COV(X); the variance along each vector corresponds to its
eigenvalue. These eigenvectors are the PCA vectors.

As mentioned in the introduction, the last PCA vector vk has the following
minimum variance property.

Property 1 (Minimum variance) The last PCA vector vk of the ranked set of PCA
vectors V ≡ 〈v1, v2, . . . , vk〉 has the minimum variance along its direction among
all the vectors in a k-dimensional space.

Proof The proof of thisproperty is based on the fact that the orthonormal transfor-
mation coming from the eigenvectors minimizes the trace of the matrix COV(Y).
For details, we refer the reader to Property A2 on page 11 of Jolliffe [17]. ��
Example 5 Figure 3 shows an example of the PCA vectors v1 (first) and v2 (sec-
ond) found for the data points in a two-dimensional space d1 × d2. Note that the
data points have the higher variance along v1 (i.e., 〈1, 1〉) and the lower variance
along v2 (i.e., 〈−1, 1〉). Hence, v2 comes after v1 in the PCA result.

We call the last PCA vector the minimum variance PCA vector in the sequel.

3.2 Terms and concepts of PP correlations

A time series S is a finite sequence of numerical values, a1, a2, . . . , an , denoted as
〈a1, a2, . . . , an〉. We assume each ai (i = 1, 2, . . . , n) is associate with the same
time interval (e.g., day) and there is a period p (p < n) (e.g., week) inherent in the
time series. Then, S can be divided into disjoint subsequences of equal length p.
That is, S ≡ 〈S0, S1, . . . , Si , . . . , S�n/p�−1〉 where, for each i = 0, 1, . . . , �n/p�−
1, Si ≡ 〈aip+1, . . . , aip+ j , . . . , aip+p〉. Here, each j ∈ [1, p] is called an offset
within the period p. We can map each Si to a data point in a p-dimensional space,
where each dimension corresponds to one of the p offsets. In other words, each
of the p dimension variables represents each of the p offsets. We use a set of
dimension variables (or a dimensional set), denoted as Dp ≡ {d1, d2, . . . , dp}, to
represent a p-dimensional space.

Example 6 Figure 4 illustrates a time series (S) of length 9 divided into 3 sub-
sequences (S0, S1, S2) of length 3 each, given a period of 3. Each of S0, S1, and
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Fig. 4 A time series sequence and its subsequences

S2 is mapped to a point in a three-dimensional space with the dimensional set
D3 ≡ {d1, d2, d3}.

We are now ready to formally define PP correlations.

Definition 1 (PP correlation) Given a period p and a variance threshold Vrmth , a
set Dk ≡ {d1, d2, . . . , dk} of offsets (or dimensions) within the period p (k ≤ p)
is a PP correlation if there exists a linear constraint of the form

−β0 +
k∑

i=1

βi di = 0 (9)

where β0, β1, . . . , βk are constants satisfying the following three conditions. First,
〈β1, β2, . . . , βk〉 is a PCA vector (v), hence

√
β1

2 + β2
2 + · · · + βk

2 = 1 (10)

Second, β0 is the mean of data points projected onto the vector v, which is
computed as

β0 = [
β1 β2 · · · βk

]

⎡

⎢⎢⎢⎣

X̄1

X̄2
...

X̄k

⎤

⎥⎥⎥⎦ (11)

Third, the variance of data points projected onto v, varv, is lower than Vrmth :

varv ≡ 1

(m − 1)

m∑

j=1

(
[
β1 β2 · · · βk

]

⎡

⎢⎢⎣

X1 j
X2 j
...

Xkj

⎤

⎥⎥⎦ − β0)
2 < Vth (12)

where m is the number of data points mapped from the time series of length n
within each period p i.e., m = �n/p�), Xi j (i = 1, 2, . . . , k, j = 1, 2, . . . , m)
is the ith dimensional coordinate value of the j th data point, X̄i is the average
value of the ith dimensional coordinate, and varv is the variance along the vector
v ≡ 〈β1, β2, . . . , βk〉.
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Fig. 5 A PP correlation with the two-dimensional set d1, d2 from the time series shown in Fig. 4

In this definition, the first condition (Eq. (10)) prevents the trivial solution
β0 = β1 = · · · = βk = 0; the third condition (Eq. (12)) prevents weak correla-
tions from being PP correlations. Geometrically, varv is a measure of how closely
Eq. (9) fits the data points. Note that, when using Eq. (9) (for predicting future
values), we do not need to subtract the mean (X̄i ) from the ith coordinate value of
a data point for each dimension variable di (i = 1, 2, . . . , k). It is compensated by
subtracting the term β0.

Example 7 Figure 5 illustrates a PP correlation with the dimensional set D2 ≡
{d1, d2}, which is a subset of D3 ≡ {d1, d2, d3} for the time series shown in Fig. 4.
The three points at the coordinates (d1, d2) ≡ (1,9), (2,7), and (4,1) are mapped
from the first two offsets ( j = 1, 2) of the subsequences S1, S2, and S3 (of pe-
riod 3), respectively. The linear constraint for the PP correlation is expressed as
−4.47+0.89d1 +0.45d2 = 0. The vector v = 〈0.89, 0.45〉 is the one perpendicu-
lar to the line given by the linear constraint, and varv corresponds to the variance
of the three points projected to v.

It is now easy to define minimum PP correlations as follows.

Definition 2 (Minimum PP correlation) A PP correlation is called minimum if
it is not the union of two or more PP correlations.

4 Mining PP correlations using PCA

The problem addressed in this paper can be stated as follows: given a period p
and a variance threshold Vth, find the set of all minimum PP correlations whose
variances are smaller than Vth in all dimensional sets of size up to p (or some
lower value for computational efficiency). In this section, we provide and analyze
an algorithm that addresses this problem.
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Fig. 6 An algorithm for finding minimum PP correlations

4.1 Algorithm

The algorithm find minimum, shown in Fig. 6,mines for the minimum PP corre-
lations for a given period p. As mentioned in the introduction, we speed up the
mining process by mining all the PP correlations in one pass. This is done by pre-
computing the covariance matrix (see Eq. (6)) (and a “coordinate mean vector”
to be described below) in a single pass and, then, extracting parts of it to find PP
correlations without revisiting the time series data. In the remainder of this sub-
section, we first describe the algorithm—an overview and the details—and explain
the correctness of the algorithm.

4.1.1 Overview

Once the pre-computations are done, the algorithm first finds all minimum PP
correlations of size one. Then, it looks for minimum PP correlations with an in-
crementally larger dimensional set. For each dimensional set thus considered, the
algorithm uses an appropriate part (to be detailed below) of the pre-computed
covariance matrix and find the vector along which the data have the lowest vari-
ance. This is done using the PCA technique explained in Sect. 3.1. The key idea
is to exploit the minimum variance property (Property 1) to find the PCA vector
of minimum variance, vmin. If the minimum variance is below the threshold Vth,
then we have found a PP correlation, with its linear constraint being the hyper-
plane that uses vmin as its normal vector. The output of the algorithm is a set of
linear constraints of the PP correlations. As mentioned in the introduction, such
linear constraints are useful in many applications (see Examples 1, 2, and 3).

4.1.2 Details

The algorithm needs the time series data (S) to be mined, a known period (p) and
also two user-provided parameters: the variance threshold (Vth) and the maximum
PP correlation size (Max dsize) considered by the algorithm. It is straightforward
to the user to determine an appropriate value of Max dsi ze, but it may not be so
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for Vth. In this case, the user may run a small-scale test of the algorithm with the
maximum possible value of Vth and rank the PP correlations found from the one
with the smallest variance first. This will give the user a clue to an appropriate
value.

As the first step, the algorithm pre-computes two kinds of data from S and p:
a covariance matrix (A) and a coordinate mean vector (D) of the p-dimensional
data points mapped from S. A is computed as in Eq. (6) ( with k equal to p); this
results in a p × p matrix:

A =

⎡

⎢⎢⎣

A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App

⎤

⎥⎥⎦ (13)

where Ai j is the covariance between the ith and the jth dimensions. D is computed
as 〈X̄1, X̄2, . . . , X̄ p〉 where X̄i , i = 1, 2, . . . , p, is the ith coordinate mean, i.e.,
mean of the ith coordinate values of data points, in the p-dimensional space. These
two data are used to find, for each dimensional set searched, the equation of the
hyperplane with minimum variance.

Then, given the inputs Vth and Max dsi ze as well as the pre-computed A
and D, the algorithm searches through all the minimum correlated dimensional
sets using a bottom-up strategy. That is, it starts from the dimensional sets of
size one and increases the size by one at each iteration (Line 3). This bottom-
up strategy allows for pruning the search space by not searching PP correlations
that are not minimum, that is, equal to the union of some smaller PP correlations
(Line 4). At each iteration, the algorithm finds the minimum PP correlation in
the current dimensional set (DSet). For this purpose, it first extracts from the
covariance matrix A a smaller covariance matrix (CDSet ) for the dimensional set
DSet (Line 5). Given DSet of size k, i.e., {d ′

1, d ′
2, . . . , d ′

k} ⊆ {d1, d2, . . . , dp},
CDSet is given as

CDSet =
⎡

⎢⎣

Ad ′
1d ′

1
Ad ′

1d ′
2

· · · Ad ′
1d ′

k
...

...
. . .

...
Ad ′

k d ′
1

Ad ′
k d ′

2
· · · Ad ′

k d ′
k

⎤

⎥⎦ (14)

where each element Ad ′
i d

′
j

(i, j ∈ {1, 2, . . . , k}) is extracted from A shown in
Eq. (13).

Then, given the CDSet , the algorithm finds PCA vectors v1, v2, . . . , vk by
computing the eigenvectors of CDSet , as mentioned in Sect. 3.1 (Line 6). Then, it
takes the last PCA vector vk, and checks if the variance along its direction is below
the threshold Vth to determine whether a PP correlation exists in DSet (Line 7).
As mentioned in Sect. 3.1, the variance along vk is its eigenvalue. This is the same
variance as varv defined in Eq. (12).

If a PP correlation exists in DSet , then the algorithm derives the equation
of the hyperplane, EDSet , representing the PP correlation. The equation involves
DSet , i.e., {d ′

1, d ′
2, . . . , d ′

k}, and the minimum variance PCA vector vk (denoted
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as 〈β1, β2, . . . , βk〉) as its normal vector, and can be written as follows:

−
k∑

i=1

βi X̄ ′
i +

k∑

i=1

βi d ′
i = 0 (15)

where βi is the ith component of vk and X̄ ′
i is the ith coordinate mean in the k-

dimensional space d ′
1 × d ′

2 × . . . × d ′
k . Note that this equation is of the same form

as Eq. (9). The first term is the same as Eq. (11).

4.1.3 Correctness

The following proposition states that the algorithm find minimum is correct.

Proposition 1 Given a dimensional set of size Max si ze, the algorithm
find minimum finds all possible minimum PP correlations in the dimensional set.

This proposition is true for the following reason. By definition, a PP correla-
tion is said to exist in a dimensional set if the variance along the last PCA vector
(vk) is smaller than Vth. Since this is the condition checked by the algorithm to
find a PP correlation (in Line 7), the algorithm does find one if it exists in a given
dimensional set. Moreover, the algorithm searches every minimum correlated di-
mensional set of size one to Max si ze because of its bottom-up search strategy
which starts with the dimensional sets of the smallest size (see Line 3). Hence, the
algorithm finds all the minimum PP correlations.

Example 8 Figures 7 and 8 show examples of how PCA can be used to find PP
correlations. Suppose the given period is four and Vth = 1.0. Figure 7a shows the
time series S in three periods and the three four-dimensional data points (point 1,
point 2, point 3) mapped from S; Fig. 7b shows the pre-computed X, A, and D.
Figure 8a and b shows the intermediate covariance matrices and PP correlation
equations computed when finding PP correlations in the dimensional sets {d1, d2}
and {d3}, respectively. Specifically, Fig. 8a shows the minimum variance PCA
vector v2 and the extracted covariance matrix CDSet used to find the PP correlation
in the dimensional set {d1, d2}. Figure 8b shows the same for dimensional set {d3}.

4.2 Analysis

4.2.1 Number of passes over time series

As mentioned already, the algorithm find minimum needs to scan the time series
data only once to find all the minimum PP correlations. This is due to a combina-
tion of the following two properties. First, the algorithm computes D and A once
and reuses it to find PP correlations in all candidate dimensional sets without re-
visiting the data. Second, the computation of D and A is done incrementally as
more data points are added. The first property has been explained in the algorithm
description above. The reason for the second property is as follows. It is trivial
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Fig. 7 An example time series S and the pre-computed X, A and, D

d 1 2, d

d 1 2

}

 − 30 = 0+  d

=
108.33    108.33

−108.33    108.33

dimension set:

C

PP correlation:

= < 1, 1>v

DSet = {

2

DSet Variance = 0.0

(a)

d3

= < 1 >1v

 − 8 = 03d

C

PP correlation: 

}

= 1

dimension set: DSet = {

DSet
Variance = 1.0

(b)

Fig. 8 Examples of applying PCA to find PP correlations in the time series S of Fig. 7

to see that D can be computed incrementally. For A, using Eq. (6), each of its
elements Ai j is computed as

Ai j = 1

m − 1

m∑

r=1

(Xir − X̄i )(X jr − X̄ j ) (16)

= 1

m − 1
(

m∑

r=1

Xir X jr − X̄ j

m∑

r=1

Xir − X̄i

m∑

r=1

X jr +
m∑

r=1

X̄i X̄ j ) (17)

Each of the summations in the above equation can be computed incrementally.
The first summation multiplies two dimensions always at the same rth data point
and, therefore, the data point can be discarded once used to update the summa-
tion incrementally. The second summation can be computed incrementally since
the average of the data values in the jth dimension (X̄ j ) can be computed incre-
mentally and the sum of the ith components of all the data points can also be
computed incrementally. Following this argument, the third summation can also
be computed incrementally. Finally, the fourth summation can be computed incre-
mentally since it equals m multiplied by the two averages X̄i and X̄ j (which can
both be computed incrementally).
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4.2.2 Memory required

The amount of memory required to find the PP correlations is the sum of the
amounts of memory needed to store the A matrix (whose size is proportional
to p2), the coordinate mean vector D (whose size is proportional to p) and the
PP correlation set (resulting from the algorithm find minimum). Thus, the amount
of memory required(M R) can be given as

MR(p) = p2 + 2p + CM (18)

where C M denotes the amount of memory for storing the PP correlation set. Note
that M R is shown as a function of p to reflect the p2 term (for storing A) and the
2p term (one p for storing D and another p for storing the sum of each dimension
needed during the computation of A).

4.2.3 Run time complexity

The time complexities of pre-computing a covariance matrix A and a coordinate
mean vector D (Line 1) are as follows. Computing the covariance matrix A in-
volves the computation shown in Eq. (6); its complexity is O(mp2) where p is the
period and m is the number of data points. Computing D involves only averaging
the values of coordinates in each dimension; therefore, its complexity is O(pm).
Thus, the total pre-computation complexity is O(mp2).

For the rest of the algorithm, the worst-case run time will be exponential to
min(p, Max dsi ze) since we may need to consider all subsets of up to size p or
Max dsi ze, whichever is smaller. Note this complexity is independent of m (the
number of data points). The average time complexity in practice, however, is not
as bad, as we will show in our experimental results.

5 Evaluations

We have evaluated the efficiency and efficacy of our PCA-based technique through
three experiments. The first experiment regards the effects of the following param-
eters on the execution time: the number of data points (m) (i.e., the number of peri-
ods considered), the number of dimensions (i.e., the period p), and the maximum
size of a dimensional set (Max dsi ze). Naturally, we use synthetic time series
for this experiment. The second experiment regards comparing the number of PP
correlations found between mining minimum PP correlations and mining all PP
correlations. We use both synthetic and real time series for this experiment. The
third experiment regards the actual minimum PP correlations found in real time
series. In this section, we first describe the experimental setup and then present
the experimental results.

5.1 Experimental setup

Variants of the PCA-based technique: To demonstrate different aspects of our
technique, we have generated three variants of the algorithm find minimum. The
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first one is find minimum multipass, which is the same as find minimum (see
Fig. 6) with the exception that, in Line 5 of the algorithm, the one-pass covari-
ance computation is disabled so that each covariance matrix CDSet is computed
directly from the time series data instead of being extracted from A. The second
one is find all, which finds all PP correlations (i.e., including non-minimum PP
correlations) using the same algorithm as find minimum except that, in Line 4 of
the algorithm, all the dimensional sets of size dsi ze are searched. The third one is
find all multipass, which is a combination of the first two variants.

Synthetic data sets: We have built a synthetic time series generator which
works as follows. It needs two input parameters: the period (p) and the number
of data points (m). It first generates 2p − 2 potentially overlapping dimensional
sets, consisting of two-dimensional sets of size one, two-dimensional sets of size
two, and so on, up to two-dimensional sets of size p − 1. Then, it generates a
time series running for m periods while introducing one PP correlation using each
of the 2p − 2 dimensional sets generated. The domain of the value of a time se-
ries element is a real number in the range of 0 to 100. To add some variance to the
data, we add to each element value a random number with the uniform distribution
between 0 and 1.0% of the value.

Real data sets: We have used two different real data sets. The first one is a
time series of hourly residential power consumption over a period of 1 year. It is
the same time series as the one used in [8]. The second one is a time series of daily
(weekdays only) closing price of IBM stock from January 1, 1980 to October 8,
1992 [14].

Computing platform: All the experiments were performed on a laptop com-
puter with a single 1.8 GHz Intel Centrino CPU, 1 GB RAM, and 60 GB hard
disk.

5.2 Experimental results

5.2.1 Experiment 1: execution time for varying parameter values

Figure 9 shows the execution time of find minimum, fund minimum multipass,
find all, and find all multipass measured while varying the value of each of the
three parameters (m, p, Max dsi ze) with the other two set to the medians of their
respective ranges.

Figure 9a shows the execution times of the algorithms for a varying num-
ber of data points. (The curve for find all multipass does not show in the figure
because the execution time exceeds the maximum value that can be shown in the
figure (2000 s) for even the smallest number of data points used in the figure (1000
points).) The figure shows that one-pass algorithms (i.e., find minimum, find all)
scale much better with the number of data points than the multipass counterparts
(i.e., find minimum multipass, find all multipass). This is as expected, because
repeated passes through the time series data become increasingly more costly due
to an increase in the PCA computation cost per scan as the number of data points
(i.e., time series periods scanned) increases. Since find minimum and find all take
only one pass through the time series data, their relative performances are largely
unaffected by the varying number of data points.
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Fig. 9 Execution time for varying values of the parameters (Vth = 1). a Varying number of
data points (m) (p = 24, Max dsi ze = 3). The curve of find all multipass is out of bound.
b Varying period (p) (m = 5000, Max dsi ze = 3). c Varying maximum dimension-set size
(Max dsi ze) (m = 5000, p = 24)
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Figure 9b shows the execution times of the four algorithms for a varying pe-
riod. (The curves for find all multipass and find minimium multipass do not show
the points at the periods 35 and 45 respectively, or larger because the execution
times at those periods exceed the maximum value that can be shown in the fig-
ure (2000 s).) The figure shows that one-pass algorithms are increasingly more
efficient than multipass algorithms as the period increases. The reason is that the
number of dimensional sets searched increases with the increasing period and,
therefore, so does the overhead of scanning the time series for all the dimensional
sets.

Figure 9(c) shows the execution times of the four algorithms for a vary-
ing maximum dimension-set size (Max dsi ze). The curves show the same
trend as those in Fig. 9(a) and (c). Interestingly, find all is slightly faster than
find minimum when Max dsi ze is large. This happens when find minimum’s
overhead of checking if a dimensional set equals the union of any PP correlations
already found is higher than find all’s overhead of looking for all PP correlations
(in one scan).

5.2.2 Experiment 2: the number of PP correlations found

In this experiment, we use only the one-pass algorithms since the number of PP
correlations found is independent of the number of passes. We use both synthetic
and real data sets for this experiment. Figure 10 shows the results for varying
the variance threshold Vth while setting Max dsi ze to 5 for all the data sets and
setting the period to 24 for the synthetic or power consumption data set and to 5 for
the IBM stock price data set. The figure shows that the number of PP correlations
found using find minimum are orders of magnitude smaller than that found using
find all. This demonstrates how effective the pruning of find minimum is.

The result of find all for the power consumption data set (Fig. 10b) shows
a different trend from those for the synthetic (Fig. 10a) and IBM stock price
(Fig. 10c) data sets. The difference is that the number of PP correlations found de-
creases dramatically as Vth decreases for the power consumption data set whereas
it stays relatively constant for the other data sets. The reason for this is that
the power consumption data have higher variance than data in the other data
sets and, therefore, far fewer PP correlations can be found at a lower variance
threshold(Vth).

In the find minimum result, sometimes the number of PP correlations found
decreases with an increasing threshold value. This happens if, with a higher thresh-
old value, more PP correlations are found in small dimensional sets but they are
used to prune out even more PP correlations from larger dimensional sets. This
phenomenon is more likely to happen with the IBM stock price data set because
the number of possible PP correlations is far smaller (i.e., 26 (=

∑5
i=2 5Ci ) instead

of 16,777,191 (=
∑24

i=2 24Ci )) given the shorter period (i.e., 5 instead of 24).

5.2.3 Experiment 3: PP correlations found in real data sets

Table 1 shows, given different values of the variance threshold (Vth), the total
number of PP correlations found in real data sets and the example minimum PP
correlations.
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Fig. 10 The number of PP correlations found for varying Vth. a Synthetic data set (period=24,
Max dsi ze = 5, m = 5000). b Power consumption data set (period=24, Max dsi ze = 5). c
IBM stock price data set (period=5, Max dsi ze = 5)

Table 1a shows the results for the power consumption data set. The period
used is 24 (hours), and the dimensions d1, d2, . . . , d24 correspond to the 24 h of
the day, i.e., 12 a.m., 1 a.m., . . . , 11 p.m. Interestingly, we have observed that
PP correlations with low variances (with variances below 6) are found among the
dimensions d1 through d8. Since these dimensions correspond to early morning
hours (12 a.m.–7 a.m.), we infer that the correlation exists because there is not
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Table 1 Minimum PP correlations found in real time series data sets

Vth Number of minimum Example minimum PP correlation
PP correlations

5.0 35 −1.671 + 0.426d2 − 0.815d3 + 0.394d4 = 0
6.0 66 +2.246 − 0.332d2 − 0.717d3 − 0.569d4 −0.21d5− 0.022d8 = 0
7.0 148 3.115 − 0.567d2 − 0.796d3 − 0.213 d5 − 0.011 d14+ 0.01 d21 = 0
8.0 289 −1.708 − 0.128d15 + 0.559d16 − 0.735d17 + 0.359d18− 0.05d20 = 0

(a) Power consumption data set.
(p = 24, Max dsi ze = 5, {d1, d2, . . . , d24} = {12 a.m., 1 a.m., . . . , 11 p.m.})

Vth Number of minimum Example minimum PP correlation
PP correlations

0.6 2 0.1558 − 0.239d2 + 0.704d3 − 0.645d4 + 0.178d5 = 0
1.0 9 0.081 + 0.387d1 − 0.816d2 + 0.439d3 = 0
1.4 10 −0.074 + 0.707d1 − 0.707d2 = 0
1.8 11 0.115 + 0.516d1 − 0.806d3 + 0.29d5 = 0

(b) IBM stock price data set.
(p = 5, Max dsi ze = 5, {d1, d2, . . . , d5} = {Monday, Tuesday, . . . , , Friday})

much human activity during these early, sleeping hours and, consequently, the
power consumption is stable, limited to refrigerators, hot water furnaces, etc. that
consume power with little fluctuation.

Table 1b shows the results for the IBM stock price data set. The period used
is 5 (days), and the dimensions d1, d2, . . . , d5 correspond to the weekdays, i.e.,
Monday, Tuesday, . . . , Friday. Although we know that the data set contains cyclic
correlations conforming to the definition of PP correlations, it is hard for us to
identify the cause of the PP correlations found, due to our insufficient domain
knowledge in IBM stock price data. Such a cause analysis is beyond the scope of
this paper anyway.

6 Extension to multiple periods

In this section, we discuss a simple extension of our technique, by which multiple
periods in a given range are considered in one pass. Consider a range of periods
pl , pl+1, . . . , ph , and denote the covariance matrix and the coordinate mean vec-
tor computed for a given pk (l ≤ k ≤ h) as A(pk) and D(pk), respectively. Then,
since each A(pk) and D(pk) can be computed incrementally, we can compute all
the covariance matrices A(pl), A(pl+1), . . . , A(ph) and all the coordinate mean
vectors D(pl), D(pl+1), . . . , D(ph) in one pass. Then, for each pk (l ≤ k ≤ h),
the pair of A(pk) and D(pk) can be passed to the algorithm find minimum to find
the minimum PP correlations.

Since we pre-compute all the A(pk) and D(pk) for i ≤ k ≤ j , the number of
passes required is still only one. Given the range of periods pl–ph , the amount of
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memory required, M R R(pl , ph), is given by the following equation.

M R R(pl , ph) =
h∑

k=l

(p2
k + 2pk) + CMR (19)

where CMR denotes the amount of memory for storing the PP correlations found
for all periods in the given range. Similarly to Eq. (18), the p2

k term is for storing
the pre-computed A(pk) and the 2pk term is for storing the pre-computed D(pk)
and the sum of each dimension needed during the computation of A(pk).

7 Conclusions

In this paper, we introduced the notion of partial periodic (PP) correlations in
time series, which are shown in our experiments to appear frequently in real data.
For mining the PP correlations, we developed a PCA-based technique. In order
to avoid returning too many PP correlations, we focused on finding the minimum
PP correlations. In addition, we developed our technique in a way that it only
needs to have one pass through the time series data. Finally, we used experiments
involving both real and synthetic data sets to demonstrate that our approach is
computationally efficient and do find PP correlations existing in real time series.

Two research subjects may be of interest for some further study. The first area
is to use our PCA-based technique to mine PP correlations in data streams. This is
possible since the covariance matrix can be computed incrementally (as explained
in Sect. 4.2). Our technique can then use the matrix to mine PP correlations on
demand without revisiting the data. The second area is to further develop the ap-
proach described in Sect. 6 to create a more efficient way of mining PP corre-
lations for a range of periods. One approach may be to reuse some information
(e.g., co-variance matrix) of one period to avoid or accelerate the computation of
PP correlations for a different period.
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