
Available online at www.sciencedirect.com
www.elsevier.com/locate/jss

The Journal of Systems and Software 81 (2008) 414–430
Proactive and reactive multi-dimensional histogram maintenance
for selectivity estimation q

Zhen He a,*, Byung Suk Lee b, X. Sean Wang b

a Department of Computer Science, La Trobe University, Bundoora, Vic. 3086, Australia
b Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Received 23 May 2006; received in revised form 22 November 2006; accepted 31 March 2007
Available online 19 April 2007
Abstract

Many state-of-the-art selectivity estimation methods use query feedback to maintain histogram buckets, thereby using the limited
memory efficiently. However, they are ‘‘reactive’’ in nature, that is, they update the histogram based on queries that have come to
the system in the past for evaluation. In some applications, future occurrences of certain queries may be predicted and a ‘‘proactive’’
approach can bring much needed performance gain, especially when combined with the reactive approach. For these applications, this
paper provides a method that builds customized proactive histograms based on query prediction and mergers them into reactive histo-
grams when the predicted future arrives. Thus, the method is called the proactive and reactive histogram (PRHist). Two factors affect the
usefulness of the proactive histograms and are dealt with during the merge process: the first is the predictability of queries and the second
is the extent of data updates. PRHist adjusts itself to be more reactive or more proactive depending on these two factors. Through exten-
sive experiments using both real and synthetic data and query sets, this paper shows that in most cases, PRHist outperforms STHoles, the
state-of-the-art reactive method, even when only a small portion of the queries are predictable and a significant portion of data is
updated.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Selectivity estimation; Proactive; Reactive; Histograms; Query optimization
1. Introduction

Extensive literature exists on the selectivity estimation
problem. A variety of solutions have been proposed, but
most popular ones are histogram-based solutions. Many
state-of-the-art histogram methods adopt a ‘‘self-tuning’’
strategy, and construct and maintain histograms based
on the feedback information provided in the form of query
results (Aboulnaga and Chaudhuri, 1999; Bruno et al.,
2001; Stillger et al., 2001). This allows them to keep more
histogram buckets in regions queried more frequently.
Due to the common spatial and temporal locality of user
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2007.03.088

q This work was partially done while the author was at the Department
of Computer Science, University of Vermont.

* Corresponding author. Tel.: +61 394 793036; fax: +61 394 793060.
E-mail addresses: z.he@latrobe.edu.au (Z. He), Byung.Lee@uvm.edu

(B.S. Lee), Sean.Wang@uvm.edu (X.S. Wang).
queries, these methods usually make more efficient use of
the limited memory than methods based solely on data
distribution.

However, all existing self-tuning histograms are ‘‘reac-
tive’’ in nature, that is, they are updated based on the feed-
back information of the past queries only. This reactive
approach does not consider the possibility that certain
future query occurrences can be predicted. In this paper,
by building and using ‘‘proactive histograms’’ based on
query prediction, we show that a proactive approach can
make more efficient use of histogram memory, when com-
bined with the reactive approach. We believe this paper is
the first to introduce the idea of proactive histograms and
to provide a method to take advantage of these histograms.

Query prediction may be obtained by inspecting the
query log and identifying patterns in it, or may be derived
directly from the business practice of the enterprise. For
example, (1) in a university database, queries on students’

mailto:z.he@latrobe.edu.au
mailto:Byung.Lee@uvm.edu
mailto:Sean.Wang@uvm.edu

Data–driven

Histograms

Query–driven

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 415
course grades occur more frequently at the end of every
semester, and (2) in a financial company database, queries
on financial records occur more frequently at the end of
every financial quarter.

Queries are predictable to a varying degree, either
because they follow patterns to a varying degree or the
patterns are recognizable to a varying degree. It is thus
important to handle queries with different degrees of
predictability. To this end, we equip our method with the
ability to adjust itself to be more proactive or reactive
depending on query predictability. We call our method
the proactive and reactive histogram (PRHist).

Within the PRHist method, we need to deal with two
main issues: (1) predicting future queries, and (2) using
the predicted queries to improve selectivity estimation. In
order to address the first issue, we have PRHist find patterns
in the query log.1 Looking for patterns of individual query
occurrences is not feasible because those occurrences may
rarely repeat themselves (the classical overfitting phenome-
non). Therefore, PRHist groups queries into ‘‘clusters’’ and
looks for patterns considering all queries in the same cluster
as a whole. Section 4.1 provides a formal definition of a
cluster of queries and cluster patterns.

In order to address the second issue, we have PRHist
operate in two phases: off-line and on-line. In the off-line
phase, we divide the future into a sequence of consecutive
subintervals of time which we call f-subintervals. Then we
predict a set of queries for each f-subinterval. Then, it builds
a sequence of proactive histograms, one histogram for each
of the f-subintervals. In the on-line phase, PRHist main-
tains an on-line reactive histogram using query feedback
as done in the STHoles. At the beginning of each f-subinter-
val, it loads the proactive histogram built for the f-subinter-
val and merges it with the on-line reactive histogram. At the
time of the merge, PRHist assigns a weight to each histo-
gram based on its ‘‘confidence’’ in the proactive histogram,
thereby becoming more reactive (when the confidence is
low) or more proactive (otherwise). The confidence is mea-
sured as a combination of two factors: the predictability of
queries and the extent of data updates.

Our method incurs very small additional run-time over-
head over above existing reactive histogram techniques.
This small overhead is for loading the off-line proactive his-
togram into memory and merging it with the on-line reac-
tive histogram at the beginning of each f-subinterval. For
example, if a proactive histogram is loaded every 30 min
as is the case in our experiments with the real query set, this
amounts to one or two extra page loadings2 plus one merge
operation for every 30 min. The merge operation is fast
since the histograms often contain only a small number
of buckets.
1 Deriving query patterns from the enterprise business practice is
possible but beyond the scope of this paper.

2 Histograms are typically very small, often fewer than one or two pages
in size (Aboulnaga and Chaudhuri, 1999; Bruno et al., 2001; Poosala and
Ioannidis, 1997).
We have conducted extensive performance comparisons
between PRHist and the state-of-the-art reactive histogram
method STHoles, using both real and synthetic data sets.
The results show that PRHist outperforms STHoles for
most test cases even when only a very small portion of
the queries are predictable or even when there are a high
percentage of data updates.

We make two key contributions through this paper. We
(1) develop a novel histogram maintenance method, which
uses proactive histograms complemented with reactive his-
tograms to improve selectivity estimation accuracy, and (2)
conduct an extensive performance study to show the per-
formance advantage of our method in a variety of
situations.

The rest of the paper is organized as follows. Following
this introduction, we discuss related work in Section 2, and
formally define the problem addressed by PRHist in
Section 3. We describe the off-line proactive histogram con-
struction in Section 4 and the on-line PRHist maintenance
in Section 5. In Section 6, we present the experiments, and
with Section 7, we conclude the paper.

2. Related work

In this section we discuss three areas of related work:
histograms for selectivity estimation, forecasting methods
for query prediction, and proactive optimization methods
used in database systems.

2.1. Histograms

We classify histograms as shown in Fig. 1. Data-driven
histograms are built and/or maintained solely based on the
distribution of the data (Gunopulos et al., 2000; Lee et al.,
1999; Muralikrishna and DeWitt, 1988; Poosala et al.,
1996; Vitter and Wang, 1999), and are typically rebuilt
or re-organized if the number of data updates exceeds a
threshold or the estimation error is above a tolerance value
(Donjerkovic et al., 2000; Gibbons et al., 1997; Matias
et al., 2000; Thaper et al., 2002). These histograms have
the drawback of assuming that all queries are equally
likely at all times, which is rarely true as certain regions
may be queried more frequently than others at certain
times.
Reactive Proactive

Data–reactive Data–time–reactive

Fig. 1. Taxonomy of histogram methods.

416 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
Query-driven histograms are the ones considered in this
paper. They are built and/or maintained based on the
occurrences of queries. This allows for allocating more
memory to regions queried more frequently, thereby using
the memory more efficiently. These histograms are either
reactive or proactive. Reactive histograms are responding
to changes in either data only (called data-reactive) or both
data and time (called data-time-reactive). Data-time-reac-
tive histograms are maintained by taking the temporal
locality of queries into consideration so newer query
regions are modeled more accurately; in contrast, data-
reactive histograms treat all queries equally without regard
to their time of execution. There is no existing selectivity
estimation method that uses proactive or data-time-reac-
tive histograms.

Data-reactive histograms use query feedback to adapt to
changing data distributions. There are two existing ones:
STGrid (Aboulnaga and Chaudhuri, 1999) and STHoles
(Bruno et al., 2001). STGrid uses query feedback to merge
and split buckets of a grid-based histogram. STHoles
improves on STGrid by allowing buckets to be created any-
where in the data space without any grid. It can create a
child bucket (or ‘‘hole’’) inside a parent bucket, thus con-
figuring the buckets into a tree structure. This hole
approach implicitly allows non-rectangular buckets to be
created, thereby modeling complex data distributions. It
creates histogram buckets as query feedback arrives, and
merges them when the memory is used up. Although both
STGrid and STHoles use query feedback to maintain the
histogram reactively, they do not age out buckets as they
become old and not used anymore and, therefore, are not
data-time-reactive.

To our knowledge, the only existing work that supports
data-time-reactivity is LEO (Stillger et al., 2001). However,
LEO is not a histogram-based technique per se, nor used
specifically for selectivity estimation. It rather offers a com-
prehensive way of repairing incorrect statistics and cardi-
nality estimates of a query execution plan by using
feedback information from recent query executions.

We believe PRHist is the only query-driven histogram
method that uses all three types of histograms under the
query-drive category for selectivity estimation.

2.2. Forecasting methods

PRHist takes advantage of the forecasting ability of time
series forecasting methods to predict future queries based
on query clusters. There are a number of existing time series
forecasting methods, including general exponential smooth-
ing (Brown, 1963), Holt’s linear trends model (Gardner and
McKenzie, 1985), Holt-Winters seasonal model (HWSM)
(Chatfield and Yar, 1988; Ord et al., 1997), parametric
regression (Farnum and Stanton, 1989; Fox, 1997), and
Box et al. (1994). These methods are designed to find pat-
terns such as seasonal changes and trends.

In order to be usable by PRHist, however, they must
be modified by incorporating the concept of query clus-
tering. Our query prediction method clusters queries
before looking for patterns using a forecasting method.
We have chosen to use HWSM since empirical results
suggest that simple methods like HWSM are robust to
complex trends and seasonal effects and also achieve accu-
racy comparable to that of complex methods like Chat-
field (2001). Moreover, HWSM is easy to automate and
fast, hence ideal for finding a large number of patterns
(Chatfield, 2001). We will describe HWSM further in Sec-
tion 4.2.2.

2.3. Proactive optimization

We present three proactive optimization techniques:
prefetching, speculative query processing and proactive
query reoptimization. Prefetching is typically used in cache
management (Curewitz et al., 1993; Gerlhof and Kemper,
1994; Knafla, 1997; Knafla, 1998; Su et al., 2000). It pre-
dicts items (e.g., disk page, web page, cache line) requested
immediately next and preloads them into cache, thereby
overlapping the fetch latency of IO, network, etc. with
CPU time. Most existing prefetching methods use low
order Markov Chains (Curewitz et al., 1993; Knafla,
1998), N-gram sequences (Su et al., 2000), or structural
information (Gerlhof and Kemper, 1994; Knafla, 1997)
to make predictions. The prediction methods designed for
prefetching are not suitable for our purpose of predicting
items (i.e., queries) for the near future that is more distant
from the immediate next. Predicting the immediate next
queries may not be useful since it needs impractical on-line
generation of proactive histograms.

In speculative query processing, proposed by Polyzotis
and Ioannidis (2003), the system monitors querying behav-
iors of the user and builds a user-behavior model. Then,
using the model, the system expects certain features of par-
tial queries the user is likely to ask soon and prepares the
query processor by ‘‘issuing asynchronous manipulations
that are likely to make the final query more efficient’’
(Polyzotis and Ioannidis, 2003). Their work has a different
focus from ours. That is, they are focused on the entire
query optimization process whereas we are focused on
selectivity estimation only. Another difference is that we
combine both reactive and proactive methods whereas they
consider only reactive methods.

Babu et al. (2005) propose a proactive approach to
reducing the overheads of query reoptimization in conven-
tional approaches. The key idea is to generate a set of
robust and switchable execution plans of a query in a
way to reduce the need for reoptimizing the query and
the loss of pipelined execution. Specifically, plans are made
robust, thus reducing the need for reopitmization, by
allowing for some uncertainties in the cardinality estima-
tions. Besides, a plan in a set of switchable plans is selected
efficiently to allow the reuse of pipelined work. Their work
has a different objective from ours. That is, their objective
is efficient query re-optimization whereas our objective is
accurate selectivity estimation.

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 417
3. Problem formulation

In this section, we formally define the selectivity estima-
tion problem addressed by PRHist.
3.1. Preliminaries

We define a data set D as a set of tuples. A query q is
defined by the minimum and maximum bounds on the
value of each queried attribute, i.e., q � hðv1min

; v1maxÞ;
ðv2min

; v2maxÞ; . . . ; ðvdmin
; vdmaxÞi where each ðvimin

; vimaxÞ denotes
the bounds. A query log Slog is defined as a sequence of
timestamped queries, i.e., Slog � hqt1

; qt2
; . . . ; qts

i where
t1, t2, . . . , ts are timestamps.

We assume our whole time line includes the time cov-
ered by the Slog and the future time for which we want to
make our predictions (see Fig. 2). Then, we divide this
whole time line into consecutive intervals, called baseline

intervals, each of which is of the same length. We call a par-
ticular consecutive sequence of future baseline intervals
f-subintervals, denoted I � hI1,I2, . . . , Ihi. We want to pre-
dict the queries that will appear in these f-subintervals
based on the queries in the query log.
3.2. Problem definition

PRHist addresses the problem of selectivity estimation
in two phases: an off-line phase and an on-line phase. In
the off-line phase, given a query log (Slog), a sequence of
f-subintervals I � hI1, I2, . . . , Ihi, a memory limit (M), and
a data set (D), PRHist outputs a sequence of proactive his-
tograms (PHs � hPH1,PH2, . . . ,PHhi) customized to mini-
mize the total selectivity estimation error for a sequence of
actual query sets in I. Each PHi must fit in the memory
limit M. The main issues in the off-line phase are predicting
the set of queries that will appear in each f-subinterval and
determining how to build the optimal histogram for each of
the predicted query sets.

In the on-line phase, PRHist merges each PHi into an
on-line reactive histogram (RH) at the beginning of Ii.
Within each f-subinterval Ii, it uses RH to minimize the
selectivity estimation error for queries arriving incremen-
tally during Ii. The main issue in the on-line phase is how
to best merge the proactive and reactive histograms in con-
sideration for such query characteristics as the predictabil-
ity and the locality.
past

1 I2 I3 I4 I5 I6 I7

future

Slog

f-subintervals

I

Fig. 2. A query log (Slog) and f-subintervals (hI1,I2, . . . ,Ihi).
4. Off-line proactive histogram sequence construction

Fig. 3 shows the high-level algorithm used for off-line
proactive histogram sequence construction. First, the query
log is used to find a set of ‘‘useful’’ clusters (line 1). These
clusters are then used for predicting queries, which in turn
are used to construct a sequence of proactive histograms
(line 2). Then, optimal weights are assigned to the buckets
of the proactive and reactive histograms using an optimiza-
tion algorithm (line 3). (The weights are used during the
on-line phase for histogram merging, to be described in
Section 5.)
4.1. Basic concepts of query clusters

Our insight is that patterns can often be found from a
group of queries rather than from individual queries. For
example, consider queries executed by a particular real
estate agent on a database of houses listed for sale. The
agent may use the database only on Monday, Wednesday,
and Friday afternoons, and each query for houses may use
only a particular price range – $350–$400K for instance.
There may not be any pattern identifiable for each partic-
ular query unless the query is repeated. However, if all
the queries executed by the agent are examined together,
a pattern may be identified. For example, we may find that
queries for houses in the price range of $300–$600K occur
on Monday, Wednesday, and Friday afternoons.

A group of queries form a cluster. A query cluster is
defined as a group of queries that are close to one another
according to a certain distance metric. The distance metric
used in this paper is cluster utility (to be defined in
Eq. (10)). A cluster may show a cluster pattern which is
defined as a predictable sequence of the frequencies of
query cluster appearances. The frequencies are modeled
using the discrete time-frequency distribution (DTFD) (see
Section 4.2.2). Note that a cluster pattern is a tool for pre-
dicting the future occurrences of queries in a cluster, and is
not in itself a representation of a cluster. The prediction
task is to predict the frequency at a cluster level for each
subinterval.

Not all clusters are equally useful. A useful cluster
should meet the following two criteria. First, its cluster pat-
tern should be reliable for predicting the frequency of its
queries for f-subintervals. Otherwise, inaccurate predic-
tions may cause histogram buckets to be created in regions
that are not queried and, thus, waste scarce memory
resources. Second, its queries should cover a small region
of the multi-dimensional space. Otherwise, the cluster
Fig. 3. High-level algorithm for proactive histogram sequence con-
struction.

418 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
would not be useful for predicting which region is likely to
be queried. We refer to the first criterion as the predictabil-

ity and the second criterion as the spatial locality. These
two often contradict with each other, as a larger area often
leads to higher predictability. How to establish a balance is
the key. (Further details of these criteria are discussed in
Section 4.2.3.)

4.2. Finding useful clusters

Finding the theoretically most useful clusters is very
costly because calculating the usefulness of a cluster
involves checking the two criteria mentioned above – pre-
dictability and spatial locality – while checking each crite-
rion is an expensive operation (as will be shown in
Section 4.2.3). We thus use a greedy algorithm based on
the heuristics of finding one cluster at a time, from the cur-
rent most useful one first (described below).

Fig. 4 outlines the algorithm Find_useful_clusters. (The
numbers prefixed with ‘§’ refer to the sections where the
topics are discussed in detail.) We first give a high-level
overview of the algorithm here, and then elaborate on each
step of the algorithm in the remainder of this subsection.

The algorithm first generates a set of possibly overlap-
ping clusters (line 1) and partitions the timestamped query
sequence Slog into a training sequence and a testing
sequence (line 2). Then, it repeatedly searches through
the clusters generated in Step 1, taking one cluster out each
time (lines 3–17). Specifically, it first extracts a cluster pat-
tern from each cluster (line 5), and then predicts the fre-
quency of queries in the cluster during the time interval
covered by the testing query sequence (line 6). Then, based
on the heuristics, it chooses the cluster that gives the high-
est utility value (a measure of usefulness, defined in Section
4.2.3.3) among those whose patterns’ prediction accuracies
(line 7) and spatial localities (line 8) are above their respec-
Fig. 4. Algorithm for fin
tive thresholds (line 11), and then saves the chosen cluster
in the set of useful clusters (line 13).

To avoid double counting the queries, it removes the
queries in the cluster from the remaining clusters (line
14). This removal also has the advantage of making cluster
patterns previously less predictable possibly more predict-
able, since queries showing conflicting patterns may be
removed. In addition, previously less spatially local clusters
may become more spatially local, since removing queries
reduces the volume of the region covered by the remaining
queries. If any cluster is made empty through this process,
then the cluster is removed (line 15). The search continues
until no clusters remain or all the remaining clusters have
either the predictability or spatial locality or both below
their respective thresholds.

Fig. 5 illustrates the algorithm Find_useful_clusters. Sup-
pose there are three overlapping clusters, c1, c2, and c3, in
the group generated from queries in Slog (see Fig. 5a).
Then, the cluster c1 is inserted into Cuseful as its utility value
0.72 (=0.9 · 0.8; see Eq. (10)) is the highest among the
three clusters. After removing c1, the cluster c2 becomes
c02 as a result of removing the queries that belong to c1.
Fig. 5b shows the remaining unselected clusters. Its new
predictability, 0.80, and new spatial locality, 0.95, are both
above the thresholds and the new utility value 0.76
(=0.80 · 0.95) is the highest among the remaining (two)
clusters. Thus c02 is inserted into Cuseful. There is no change
to the predictability and spatial locality of c3 and both are
lower than their respective thresholds. Hence, c3 is dis-
carded. As a result, the algorithm returns fc1; c02g as Cuseful,
shown in Fig. 5c.

4.2.1. Query clustering strategies

There is no restriction on how the query clusters can be
generated. Ideally, the clusters should be generated by con-
sidering only a certain utility metric (like the one to be
ding useful clusters.

Fig. 5. An illustration of the algorithm Find_useful_clusters: (a) clusters generated from Slog; (b) clusters after selecting (and removing) c1; (c) clusters in
the resulting Cuseful. (ci(pred, loc): pred � predictability of ci; loc � spatial locality of ci) (predictability threshold = 0.7; spatial locality threshold = 0.7).

S log

Δ 4Δ 3Δ 1 Δ 2 Δ n3 Δ n2 Δ n1 Δ n

fΔ (c)
i

.

Fig. 6. Discretizing the time span of Slog to build DTFD for cluster c.

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 419
shown in Eq. (10)). If unlimited computational power were
available, we could generate all possible overlapping sub-
sets of the queries in Slog. Evidently, this is computationally
expensive, and we thus opt for application-specific cluster-
ing strategies to reduce the search space.

In our experiments in Section 6, we will assume the fol-
lowing three simple clustering strategies: clustering by user,
clustering by region, and a combination of the two,
namely, clustering by user-region. (The clustering by user
has been mentioned as an example in Section 4.1.) More
specifics of these strategies will appear in Section 6.1.1.

4.2.2. Cluster pattern extraction and query frequency

prediction

After the query clusters are found, a cluster pattern is
extracted from each cluster. We use the discrete time-fre-
quency distribution (DTFD) for modeling the cluster pat-
tern. To build the DTFD for a given cluster (c), PRHist
first discretizes the time span covered by Slog into a
sequence of time slots D1,D2, . . . ,Dn of equal length such
that (1) each Di interval is entirely contained within a base-
line interval, and (2) the union of all these Di (i = 1, . . . ,n)
intervals is equal to the union of a consecutive sequence
of baseline intervals.

Then, it counts the frequency (fDiðcÞ) of the queries in
the cluster c within each Di, i = 1,2, . . . ,n (see Fig. 6). The
resulting DTFD can be considered a time series of query
frequency, and thus opens a door to using a time series
forecasting algorithm.

As mentioned in Section 2.2, we use the Holt-Winters

seasonal model (HWSM) (Chatfield and Yar, 1988; Ord
et al., 1997) because it is particularly suitable for our
needs. HWSM uses exponential smoothing techniques
and recurrence equations to model both seasonal and trend
variations. Specifically, HWSM uses three recurrence equa-
tions, capturing the local level, growth, and season aspects
of the time series. Each equation has one smoothing
parameter. The equations are intended to give higher
weights to recent observations and lower weights to obser-
vations further in the past. These weights are geometrically
decreasing by a constant ratio.

There are two types of HWSM models: additive and
multiplicative. The additive model is optimal for a seasonal
auto-regressive integrated moving average (ARIMA)
model of a complicated form (Chatfield, 2001). The multi-
plicative model is near optimal for a class of non-linear
state and space models. We use the additive model in our
work, as it provides more accurate predictions than the
multiplicative model in our experiments. The additive
model is expressed as three recurrence equations involving
what are called the level, Li, trend, Ti, and seasonal index,
Ii, of the time series:

Li ¼ aðxi � I i�sÞ þ ð1� aÞðLi�1 þ T i�1Þ ð1Þ
T i ¼ cðLi � Li�1Þ þ ð1� cÞT i�1 ð2Þ
I i ¼ dðxi � LiÞ þ ð1� dÞI i�s ð3Þ

S log

S train
S test

I test 1
I test h

.

Fig. 7. Partitioned Slog for predictability computation.

420 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
where s is the order of seasonality and xi is the ith element
of the training time series. Here, s < i 6 n where n is the size
(number of elements) of the training time series. The
parameters a, c, and d are the smoothing parameters,
whose values are determined as a result of the training.
The starting values of Li, Ti, and Ii (Ls, Ts, hI1,I2, . . . , Isi)
are computed using the following equations.

Ls ¼
1

s
ðx1 þ x2 þ � � � þ xsÞ ð4Þ

T s ¼
1

s
xsþ1 � x1

s
þ xsþ2 � x2

s
þ � � � þ xsþs � xs

s

� �
ð5Þ

I1 ¼ x1 � Ls; I2 ¼ x2 � Ls; . . . ; Is ¼ xs � Ls ð6Þ

The forecast of the jth time element (j = 1,2, . . . ,h) from the
time of the nth element is computed using the following
equation.

x̂nðjÞ ¼ Ln þ jT n þ In�sþj ð7Þ

When applied to PRHist, xi is fDiðcÞ (i.e., the frequency
of queries in the cluster c within Di), s is the number of time
slots (D1,D2, . . . ,Ds) in a period (e.g., s = 24 if the time ser-
ies repeats every day and each Di interval represents one
hour), and x̂nðjÞ is the query frequency within the jth f-sub-
interval from the last time slot (Dn) of the query log.

In order to tune the parameters while training the model
shown above (Eqs. (1)–(3)), PRHist uses the simulated
annealing (Kirkpatrick et al., 1983) heuristic search algo-
rithm. For each enumerated value of the parameters, PRH-
ist computes the forecasting (i.e., prediction) accuracy
using the same metric as that used for computing the pre-
dictability of a cluster (see Eq. (8) in Section 4.2.3).

Due to space constraint we do not elaborate further on
HWSM but instead refer the reader to the articles by Chat-
field and Yar (1988) and by Ord et al. (1997) for more
detailed descriptions.

4.2.3. Predictability, spatial locality, and cluster utility

4.2.3.1. Predictability. In order to know how effective a
cluster pattern will be for accurately predicting query fre-
quencies, PRHist uses a metric commonly applied to eval-
uating time series forecasting accuracy (Chatfield, 2001).
Specifically, it first partitions the baseline intervals that
are covered by the queries in Slog into two parts based on
one time point: all the baseline intervals before the time
Q
1

Q
3

Q
4

Q
2

Fig. 8. Region covering the queries in a cluster: (a) que
point are called Strain and after the time point are called
Stest. The baseline intervals in Stest are called test subinter-

vals: I test1
; I test2

; . . . ; I testh (see Fig. 7).
Then, given a cluster c generated from the training

sequence, it extracts a cluster pattern p(c) and uses it to
predict the query frequency for each subinterval I testi ;
i ¼ 1; 2; . . . ; h. It then uses the following equation to com-
pute the predictability of the pattern for a cluster c,
PðcÞ.

PðcÞ ¼ 1�
Ph

i¼1jfI testi
ðcÞ � f̂ I testi

ðpðcÞÞjPh
i¼1 maxðfI testi

ðcÞ; f̂ I testi
ðpðcÞÞÞ

ð8Þ

where fI testi
ðcÞ is the actual frequency of queries in the clus-

ter c occurring in I testi and f̂ I testi
ðpðcÞÞ is the corresponding

predicted frequency obtained using the cluster pattern p(c).

4.2.3.2. Spatial locality. PRHist uses Eq. (9) to compute the
spatial locality, Lðc;QÞ, for a cluster c generated from the
set of queries Q in the query log.

Lðc;QÞ ¼ 1�
vol

S
qj2cqj

� �

vol
S

qi2Qqi

� � ð9Þ

where volð
S

qi2QqiÞ is the volume of the region covered by
the union of all queries in Q and volð

S
qj2cqjÞ is the volume

of the region covered by the union of all queries in c.
Fig. 8b illustrates the region covered by the union of all
queries within a cluster shown in Fig. 8a.

4.2.3.3. Cluster utility. PRHist computes the utility of a
cluster c, UðcÞ, as a product of the two key metrics – pre-
dictability and spatial locality.

UðcÞ ¼ PðcÞ �LðcÞ ð10Þ
ries in a cluster, (b) union of queries in the cluster.

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 421
As mentioned in Section 4.1, there is often a trade-off be-
tween the two metrics. For example, a cluster with a single
small query gives a very high spatial locality value, but the
query may not occur regularly enough to be predictable.

4.3. Constructing a proactive histogram sequence

Fig. 9 outlines the algorithm Build_PHs which con-
structs a sequence of proactive histogram for a given
sequence of f-subintervals. The algorithm has two steps.
In the first step (lines 1–4), using the query log Slog,
it extracts a cluster pattern from each useful cluster (in
Cuseful) provided by the algorithm Find_useful_clusters

(line 2), and then predicts the query frequency of the cluster
for each f-subinterval using the cluster pattern (line 3). In
the second step (lines 5–11), for each f-subinterval, it com-
bines the predicted queries of each useful cluster and inserts
them into a set of queries if the query frequency of the clus-
ter is above the minimum frequency threshold (lines 7–9),
and then, for the queries thus collected, it creates histogram
buckets within the memory limit M, using the data set D to
compute the statistics (line 10).

Note that the clusters whose query frequencies are below
the minimum frequency threshold are discarded. The rea-
son is that including clusters with low query frequency
decreases the spatial locality of the combined queries, while
there is only a relatively small corresponding increase in
estimation accuracy. For example, if a cluster has 10 que-
ries but the queries are predicted to occur only twice during
an f-subinterval (that is, query frequency is two), then
including this cluster of queries to build proactive histo-
gram may give rise to ten histogram buckets, while only
two of the buckets may be used by future queries.

The time complexity of the query frequency prediction
(Lines 1–4 in Fig. 9) is O(nc(n + pn + h)), where nc is the
number of useful clusters, n is the number of D time slots
in Slog, pn is the time used to build the HWSM model for
a cluster with n input values, and h is the number of f-sub-
intervals. A detailed analysis, for each useful cluster, is as
Fig. 9. Algorithm for constructing a
follows. First, the starting values Ls, Ts, hI1,I2, . . . , Isi are
computed with the complexity O(s) using the first s ele-
ments of the time series (see Eqs. (4)–(6)). Then, the next
n � s values are computed with the complexity of
O(n � s) (O(1) each; see Eqs. (1)–(3)). We leave pn unspec-
ified as it depends on the specific method used to build the
HWSM model, and with the simulated annealing we used
in the experiments, pn is rather small but varies a lot for dif-
ferent clusters. Then, forecasting the h f-subintervals is
computed with the complexity O(h) (O(1) each; see Eq.
(7)). Thus, the total is O(nc(s + (n � s) + pn + h)) =
O(nc(n + pn + h)).

The running time complexity of proactive histogram
construction (lines 5–11 in Fig. 9) is Oðhðnc þ nqb2

MÞÞ,
where nq is the number of queries in Q and bM is the max-
imum number of buckets that can be contained in a histo-
gram occupying the memory of size M. The term nqb2

M is
for the time needed to construct a histogram (of bM buck-
ets) with the memory limit M given nq queries. This term is
derived from the STHoles histogram construction algo-
rithm; the time complexity of this algorithm is dominated
by the time complexity of bucket merging which involves
comparing the cost-benefit ratio for each pair of the bM

buckets, thus taking time proportional to b2
M , and this

bucket merging needs to be done for each query inserted,
thus the merging time multiplied by nq. (More details can
be found from the article by Bruno et al. (2001).)

The proactive histogram construction can be done
straightforwardly by inserting predicted queries into the
empty reactive histogram. In our work, we have used
STHoles (Bruno et al., 2001), but any other reactive histo-
gram (like STGrid Aboulnaga and Chaudhuri, 1999) may
be used as well.

Fig. 10 illustrates the algorithm Build_PHs given the
Cuseful shown in Fig. 10a (continuing from the example
in Fig. 5). Suppose the following query frequency is pre-
dicted for each of ci and c02 for a sequence of four f-subin-
tervals hI1, I2, I3, I4i: h4,3,2,1i for c1 and h0,1,2,2i for c02.
Additionally, suppose the minimum frequency threshold
proactive histogram sequence.

Fig. 10. An illustration of the algorithm Build_PHs: (a) clusters in Cuseful, (b) predicted queries in each f-subinterval, (c) buckets created within the
memory limit M (=4 buckets).

422 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
is 2. Then, the combined query set, Q, includes queries in
the following clusters for each f-subinterval: {c1} for I1,
{c1} for I2, fc1; c02g for I3, and fc02g for I4 (see Fig. 10b).
Suppose the memory is limited to store only four buckets.
Then, only four buckets remain for each f-subinterval as a
result of inserting all the buckets in Fig. 10b. Fig. 10c
shows one possible result. The figure assumes STHoles,
for which the root (i.e., outermost box) is considered a
bucket as well. (The particulars of the resulting buckets
depend on the reactive histogram technique used to insert
the buckets.)

4.4. Finding optimal bucket weights

As mentioned in Section 1, PRHist automatically
adjusts itself to be more proactive or reactive depending
on the predictability of queries and the extent of data
updates. This is done by assigning different weights to the
buckets of the reactive and proactive histograms and using
the weights when merging the two types of histograms dur-
ing the on-line phase. The weights thus indirectly affect the
Fig. 11. Algorithm for finding opti
estimated selectivity through its (direct) effect on the histo-
gram construction.

Bucket weights are initially computed off-line based on
only the predictability of queries. Then, they are adjusted
during the on-line phase based on the extent of data
updates. In this subsection, we discuss how the initial
weights are computed off-line. The on-line adjustment will
be discussed in Section 5.1.

PRHist supports buckets of all three histogram types
classified in Section 2.1. We categorize them into proactive,
data-reactive, and data-time-reactive buckets following
their histogram type names. That is, buckets of a proactive
histogram are labeled as proactive buckets; buckets created
by incorporating dynamically arriving user queries are
labeled as reactive buckets; a reactive bucket is labeled as
data-reactive by default, and labeled as data-time-reactive
if ‘‘touched’’ (i.e., used or created) during the previous f-
subinterval.

We use a simple weighting scheme that assigns the same
weight to all buckets of the same type. Intuitively, higher
weights should be assigned to proactive buckets if the
mal off-line weights of buckets.

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 423
predictability is higher, to data-time-reactive buckets if
temporal locality is higher (so more recently touched buck-
ets are preferred to those giving higher selectivity estima-
tion accuracies), and to data-reactive buckets otherwise.

Fig. 11 outlines an algorithm for finding the optimal
weight combination wopt for the three bucket types. Since
this is a costly operation, PRHist performs it off-line. It
first partitions Slog into a training sequence Strain and a test-
ing sequence Stest in the same manner as in the algorithm
Find_useful_clusters (Fig. 4) (line 1). Then, it further parti-
tions Stest into a sequence of subintervals (line 2). It then
constructs a proactive histogram sequence (using the algo-
rithm Build_PHs in Fig. 9) for the sequence of subintervals
spanning Stest while using Strain, instead of Slog, as the
query log (line 3). A heuristic search is then performed to
find the optimal weight combination (lines 4–9). In our
experiments we have used the simulated annealing heuristic
search technique. It is appropriate for our purpose because
it can avoid local optima, which may not be the global
optimum, without an exhaustive search. But other tech-
niques may be used as well. The optimality criterion is to
minimize the sum of squared errors of selectivity estimation
obtained by executing queries in Stest reactively in the on-
line PRHist maintenance mode (to be described in Section
5) (line 7).

5. On-line PRHist maintenance

Fig. 12 gives a high-level overview of the on-line mainte-
nance of PRHist. A proactive histogram built off-line is
loaded and merged with an on-line reactive histogram at
the beginning of every f-subinterval. At this point, the
bucket weights are adjusted depending on the percentage
of data updates. Then, during the f-subinterval, the histo-
gram is updated reactively with the feedback from incre-
mentally occurring queries.
Reactive Histogram
 Maintenance

Sequence of
offline
proactive

histograms

Query

Query Plan

Query result
Selectivity Estimator

Plan Enumerator

Reactive Histogram

Execution
Engine

proactive histogram with
online reactive histogram

Merge current offline

Fig. 12. On-line PRHist maintenance.
5.1. Adjusting the bucket weights

In case the data are updated significantly between the
off-line construction of proactive histograms and their
merge with the on-line reactive histogram, the tuple density
of the proactive histogram buckets may no longer be accu-
rate. We have identified two alternative resolutions to this
potential problem.

The first approach, used by PRHist, is to adjust the
weights of the proactive and reactive buckets at the time
of the merge based on the percentage of recorded updates.
Specifically, the weights are scaled using a simple heuristic
which reflects that reactive buckets are adaptive to the
changes whereas proactive buckets (built off-line) are not.
That is, the initial weights (determined off-line using the
algorithm Optimal_off-line_bucket_weights in Fig. 11) are
scaled by (1 + data update percentage/100), and proactive
buckets are scaled by (1 � data update percentage/100).
For example, if zero percent of data have been updated,
then the bucket weights are unchanged, whereas if 100%
of the data have been updated, the proactive buckets are
given the weight of zero. This is the approach used in our
experiments.

The second approach is to update the number of tuples
associated with the proactive buckets to reflect the changes
in data distribution at the time of the merge. A possible
way of implementing this approach is to extend existing
methods designed for rebuilding single dimensional data-
driven histograms (Gibbons et al., 1997; Matias et al.,
2000) to work with multi-dimensional proactive histo-
grams. We leave this approach as future work.

5.2. Merging proactive and reactive histograms

In merging proactive and reactive histograms, the goal is
to produce a set of buckets that have high weights and that
show highly contrasting tuple densities between the inside
and the outside. Buckets with higher weights are more
likely to be used to answer queries. Buckets with higher
contrast in tuple densities make more difference in the
selectivity estimation accuracy for queries overlapping the
bucket significantly.

We handle the histogram merge in two steps: bucket
insertions and bucket merging. First, buckets from the
two histograms are inserted into an empty histogram in
the descending order of their weight (possibly using some
extra memory space temporarily). The reason for this
ordered insertion is that a bucket inserted later is more
likely to be fragmented into small buckets, as illustrated
in Fig. 13 using STHoles as an example. The figure shows
that holes (i.e., buckets) are ‘‘drilled’’ in existing buckets
when a new bucket overlapping the existing buckets is
inserted. (Readers are referred to Bruno et al. (2001) for
more details.) The fragmentation causes some of the origi-
nal volume to be lost. Fragmented buckets created as a
result of a bucket insertion are assigned the same weight
as the bucket inserted.

New BucketExisting bucket Created Bucket

Fig. 13. Fragmentation of a bucket after insertion: (a) inserting a new bucket, (b) buckets created as a result of insertion.

424 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
Second, the inserted buckets are merged so the resulting
buckets fit within the memory limit. We take advantage of
STHoles’s merge algorithms except that we scale the merge
penalty by the weight of the bucket that is merged out. In
STHoles, the merge penalty is computed as the difference in
the estimation accuracies between the old histogram, in
which both buckets are separate, and the new histogram
in which the two or more buckets are merged into one.
In our case, for a parent–child merge we scale the merge
penalty by the weight of the child bucket, which is the
one removed, and for a sibling–sibling merge, by the sum
of the weights of the sibling buckets that are merged.

6. Experiments

We evaluate PRHist by comparing it with STHoles
using both real and synthetic query/data sets. In this sec-
tion, we first describe the experimental setup, and then
present the results from five experiments.

6.1. Experimental setup

6.1.1. Query clustering strategies

We use the three clustering strategies mentioned in Sec-
tion 4.2.1: by user, by query region, and by user-region. We
use all three strategies together to create a large pool of
overlapping clusters. Clustering by user is done by group-
ing all queries by the same user together and is suitable
for finding patterns in which the level of activity for a user
is predictable. Clustering by query region uses the K means
algorithm (MaxQueen, 1967) to group all queries based on
spatial distance between their centers. This clustering strat-
egy is useful for finding clusters of high spatial locality.

Clustering by user-region is done by first clustering some
queries by the same user together (e.g., all queries of the
same user in one Di interval) and then uses the K means
clustering algorithm to further cluster based on the spatial
distance between the centers of the queries in the same
user-id group. An example pattern that can be found using
this clustering strategy is that a user (e.g., a real estate
agent) issues queries for a particular region of the data
space (e.g., price range of $300–$600K) every Monday
and a different region (e.g., price range of $150–$250K)
every Tuesday.
6.1.2. Evaluation method

For performance evaluation, we use the tail portion of a
query log, covering one day in length, as the evaluation

query sequence (i.e., used for performance evaluation) and
all the queries before that tail portion in the query log as
the training query log (i.e., Slog defined in Section 3). Then,
for PRHist, we use the time interval covered by the test
query sequence as the ‘‘future time interval’’(I), and use
the query sequence in the training query log to generate
the sequence of proactive histograms for the future interval
(without looking at the evaluation query sequence). We ini-
tialize STHoles by starting with an empty histogram and
then running the STHoles query insertion algorithm on
the sequence of queries in the training query log. We initial-
ize PRHist with a proactive histogram built for the first f-
subinterval.

6.1.3. Real query set and data set
We used the University of Vermont student administra-

tion database as the source of queries and data. This data-
base is used by various departments of the university for
managing information about student course registrations,
student course grades, etc. We used a query log spanning
19 days. The query log contains 204,549 query execution
records. In order to speed up the experiments (so we can
test more cases), we used 4091 queries sampled (through
stratified sampling) from the full log. The data contains a
table storing the course descriptions, course codes, date
course was taught, etc. The table stores 15,037 tuples.

The queries used in the experiment are to find all course
instances taught before a specified date and to return the
description of the most recently taught course instance.
Here, a course instance is uniquely identified by the course
code and the date the course was taught. The queries we
used perform two-dimensional selections on the data, with
the following two conditions in the ‘where’ clauses: the
course code must be equal to a user-specified code and
the date the course was taught must be before a user-spec-
ified date.

6.1.4. Synthetic query sets and data sets

A synthetic query set is made of three types of queries:
patterned (PAT) queries, showing predictable patterns
and spatial locality, used to test the proactive part of PRH-

3 The predictability and locality vary widely among different data sets.
So, we have set those threshold values through manual tuning while not
necessarily seeking the optimal values. In our experiments, PRHist
outperforms STHoles in the entire range of threshold values.

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 425
ist, (2) local (LOC) queries, showing temporal locality, used
to test the data-time-reactive part of PRHist, and (3) non-

local (NON) queries, showing no temporal (nor spatial)
locality, used to test the data-reactive part of PRHist. Que-
ries of these three types are mixed to test the adaptability of
PRHist.

PAT queries are generated in groups so that each group
encompasses five Gaussian (standard deviation = 4)
regions and is populated with queries around the Gaussian
centers. The Gaussian distribution simulates the spatial
locality of queries. We use three group types based on
the three clustering strategies (see Section 6.1.1): by user,
by query region, and by user-region. In the first type, all
the queries in a group are from the same user and distrib-
uted randomly to the five regions. In the second type, all
the queries in a group are from the same user and distrib-
uted to the five regions in a repeating pattern (e.g., queries
timestamped between 12:30 p.m. and 1:30 p.m. on Monday
of every week are distributed to the region number one and
five). In the third type, all the queries in a group are from
randomly chosen users. This simulates many users query-
ing shared data at similar times. Note that these groups
may overlap in terms of both region and user. This allows
us to test how well PRHist can find clusters despite the
overlaps.

In addition, each group is assigned with a randomly gen-
erated cluster pattern that has both seasonal change com-
ponents and trend components. The seasonal component
is simulated by repeating the same pattern periodically
(i.e., every day or week); the trend component is simulated
by monotonously increasing (or decreasing) the frequency
at a rate randomly selected between 0 and 1.

LOC queries and NON queries are generated by first
generating 100 Gaussian centers, and then randomly pick-
ing one of them and generating a certain number (NLOC) of
queries around it. This process repeats, with one Gaussian
center randomly picked each time. This creates a temporal
order for the queries, where a timestamp is assigned to each
query. Thus, NLOC controls the temporal locality of the
queries, that is, NON if NLOC = 1 and when NLOC

increases, the query set exhibits more locality. We set NLOC

to 50 for LOC and to 1 for NON.
All the synthetic query sets used in the experiments con-

sist 40% PAT, 30% LOC, and 30% NON (except for those
used in Sections 6.2.2 and 6.2.3 where we vary the ratio
among PAT, LOC, and NON). Synthetic query sets are
labeled daily if their patterns repeat daily (i.e., the period
of the pattern spans one day) and daily–weekly if repeat
both daily and weekly.

We created three query logs. The first one (called daily-

2D) consists of daily query sets spanning over six days,
with 1700 queries, executed against a two-dimensional data
set (see below). The second (called daily–weekly-2D) and
the third (called daily–weekly-3D) consist of daily-weekly
query sets spanning over three weeks, with 3500 queries,
executed against a two-dimensional data set and a three-
dimensional data set, respectively. Daily–weekly query sets
are assigned with more queries because they cover longer
time intervals.

All synthetic query sets occupy 1% of the volume of the
entire multi-dimensional space, similarly to that used in
Bruno et al. (2001).

The synthetic data sets are generated around 100 ran-
domly generated Gaussian centers with the standard devi-
ation of 2. Each data set consists of 20,000 data points,
with 200 data points created around each of the 100 Gauss-
ian centers. The data sets are either two-dimensional or
three-dimensional.

6.1.5. Parameter settings

We set the memory limit (M) to 1 KB, similarly to that
used in other works (Bruno et al., 2001; Poosala et al.,
1996), except in the experiment for varying memory limit.
For PRHist, we set the following threshold values needed
by the algorithm Find_useful_clusters: predictability thresh-
old to 0.2 for synthetic query/data set and to 0.1 for the
real query/data set, and spatial locality threshold to 0.95
for synthetic query/data sets and to 0.1 for the real
query/data set.3 (Section 6.2.5 examines the effects of vary-
ing these two thresholds.) Additionally, we set the mini-
mum query frequency threshold (needed by the algorithm
Build_PHs) to 5. The length of each f-subinterval
(I1, I2, . . . , Ih) of the future interval is set to 30 min. The
length of the testing query sequence, used for both the pre-
dictability computation and the automatic off-line (initial)
weight selection (see Sections 4.2.3 and 4.4), is set to one
day, and the length of each subinterval of the testing query
sequence is set to 30 minutes. We used an additive HWSM
model for forecasting the query frequencies since we found
it gives higher prediction accuracy.

6.1.6. Performance metric

We use the same normalized absolute error as in Bruno
et al. (2001) to measure the selectivity estimation accuracy
of various histogram maintenance methods. Given a data
set D, a histogram maintenance method H, and a testing
query sequence Stest, the normalized absolute error NAE

is defined as follows:

NAEðD;H ; StestÞ ¼
P

q2Stest
jq̂H ðqÞ � qðD; qÞjP

q2Stest
jq̂uðD; qÞ � qðD; qÞj ð11Þ

where q̂H ðqÞ is the selectivity of query q estimated using H,
q̂uðD; qÞ is the selectivity of q estimated assuming the uni-
form distribution for D, and q(D,q) is the actual selectivity
of q. This metric is normalized with respect to how much
the data deviates from the uniform distribution, and this al-
lows us to better compare the results across data sets of dif-
ferent distributions. The uniform distribution is suitable as
the reference distribution because, in a multi-dimensional

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.5 1 1.5 2

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

memory size (KB)

STHoles
PRHist

 0.2

 0.3

 0f .4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

memory size (KB)

STHoles
PRHist

Fig. 14. Results of varying memory size when using synthetic query set and data set: (a) daily-2D, (b) daily–weekly-2D.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

memory size (KB)

STHoles
PRHist

Fig. 15. Results of varying memory size when using real query set and
data set.

426 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
case as PRHist is designed for, data rarely show the uni-
form distribution across the whole data set.

We have chosen NAE over the conventional abso-
lute error ð

P
q2Stest
jq̂H ðqÞ � qðD; qÞjÞ or relative error

ð
P

q2Stest
jq̂HðqÞ � qðD; qÞjqðD; qÞÞ for the following reasons.

An absolute error may vary significantly across different
data sets, and is not so meaningful without reference to
the range of the actual selectivity q(D,q). A relative error
biases the comparison against a few test queries with very
low actual selectivity (i.e., q(D,q) in the denominator).

6.2. Experimental results

We conducted five different experiments to compare the
effects of (1) varying memory limit, (2) using different
bucket weighting schemes for PRHist, (3) varying the three
query characteristics (PAT, LOC, NON), (4) varying the
data update percentage, and (5) varying threshold values.

Due to space constraints, we cannot show the results
from all possible combinations of different query sets, dif-
ferent data sets, and different parameter values. Thus, we
omit some of those that show similar trends as those pre-
sented here.
 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 20 40 60 80 100

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

Percentage LOC

STHoles
PRH-D-reactive

PRH-DT-reactive
PRH-proactive

PRHist

Fig. 16. Results of various weighting schemes: (a) varying
6.2.1. Varying memory limit

This experiment examines the effects of varying the
memory limit on the accuracy of STHoles and PRHist.

Figs. 14a and b show the results for the synthetic query
sets and data sets. We see that PRHist consistently per-
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

Percentage NON

STHoles
PRH-D-reactive

PRH-DT-reactive
PRH-proactive

PRHist

percentage of LOC, (b) varying percentage of NON.

 0.75

 0.8

 0.85

 0.9

er
ro

r STHoles
PRHist

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 427
forms better than STHoles. Considering that only 40% are
PAT queries (see Section 6.1.4), and thus 60% of the que-
ries are not predictable, this result indicates PRHist’s good
performance even with a small portion of PAT queries.
This can be credited to three features of PRHist: using only
useful clusters, using automatic off-line weighting of buck-
ets, using on-line reactive histogram to compensate for
unpredictable queries.

Fig. 15 shows the results for the real query set and data
set. It shows PRHist performs better than STHoles by up
to a factor of 2.6 for the memory size between 0.6 KB
and 1.4 KB and equal to STHoles outside the range. A clo-
ser examination reveals that with PRHist, the useful clus-
ters collectively contain 15% of the queries in the real
data set. This indicates that predictable patterns do exist
in the real query set, and the patterns can indeed be used
to improve performance.
Normalized absolute error ratio (PRHist/STHoles)

 0
 20

 40
 60

 80
 100

PC percentage 0 10 20 30 40 50

 NLOC

 0.7
 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84

Normalized absolute error ratio (PRHist/STHoles)

 0
 20

 40
 60

 80
 100

PC percentage 0 10 20 30 40 50

 NLOC

 0.6

 0.65

 0.7

 0.75

 0.8

Normalized absolute error ratio (PRHist/STHoles)

 0
 20

 40
 60

 80
 100

PC percentage 0 10 20 30 40 50

 NLOC

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

Fig. 17. Results of the varying PAT, LOC, and NON: (a) daily-2D,
(b) daily–weekly-2D, (c) daily–weekly-3D.
6.2.2. Comparing different bucket weighting schemes

For this experiment, we add the following three variants
of PRHist to the methods to be compared: (1) PRH-D-

reactive, assigning weight 1 to data-reactive buckets
and 0 to the proactive and data-time-reactive buckets,
(2) PRH-DT-reactive, assigning weight 1 to data-time-reac-
tive buckets and 0 to the proactive and data-reactive buck-
ets, and (3) PRH-proactive, assigning weight 1 to proactive
buckets and 0 to the reactive buckets.

In this experiment, we vary the percentages of LOC and
NON to observe the effects of different weighting schemes
on varying amounts of temporal locality. For example,
 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 20 40 60 80 100

N
or

m
al

iz
ed

 a
bs

ol
ut

e

update percentage

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

update percentage

STHoles
PRHist

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 20 40 60 80 100

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

update percentage

STHoles
PRHist

Fig. 18. Results of varying data update percentage: (a) daily-2D,
(b) daily–weekly-2D, (c) daily–weekly-3D.

428 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
PRH-DT-reactive should work well when there is signifi-
cant temporal locality (as is the case when LOC is high).

Fig. 16a shows the results of varying LOC. For this
experiment, we have set the percentage of NON to be
5% of the queries and assigned varying portions of the
remaining 95% of queries to PAT and LOC. The figure
shows that PRHist consistently outperforms the other
weighting schemes. This demonstrates its ability to be
more proactive or reactive depending on which is more
beneficial.

In the same figure, the PRHist variants’ weighting
schemes show the expected trends as follows. First, PRH-
D-reactive performs essentially the same as STHoles. This
is because it does not age out old buckets and, thus, main-
tains the histogram using the same algorithm as STHoles.
Second, PRH-DT-reactive outperforms the other methods
(except PRHist) by an increasing margin as LOC percent-
age increases. This is because the queries are increasingly
more temporally-local, which in turn benefits from PRH-
DT-reactive’s tendency of aging out old buckets. Third,
PRH-proactive performs increasingly worse as LOC per-
centage increases and eventually performs the same as
STHoles. This is because, as the number of PAT queries
decreases, PRH-proactive is not able to find useful clusters
(due to low predictability) and, thus, produces empty pro-
active histograms; In this case, its performance is no differ-
ent from that of STHoles.

Fig. 16b shows the results for varying NON. For this
experiment, we used zero percent LOC. We can make the
same observations as those for varying LOC. Due to space
constraints we do not elaborate any further.

6.2.3. Varying the three query characteristics

In this experiment, we compare PRHist with STHoles
across the full spectrum of PAT, LOC, and NON. This
allows us to observe how consistently PRHist outperforms
STHoles across different query characteristics. We use a
three-dimensional plot to present the results. In the x-axis,
we vary the percentage of PAT queries, and, in the y-axis,
we vary the NLOC parameter as specified in Section 6.1.4.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

Locality threshold value

STHoles
PRHist

Fig. 19. Results of varying predictability and spatial locality thresholds usi
threshold.
Fig. 17 shows the results as the ratio of the NAEs
between PRHist and STHoles. We see that PRHist outper-
forms STHoles consistently for the full spectrum of query
characteristics.

6.2.4. Varying data update percentage

In this experiment we compare the abilities of the two
histogram methods to adjust to varying update percentage.
To do this, we have changed the original data to be used by
queries in the test query sequence after constructing the
proactive histogram sequence. The changes have been
made by generating new data points around 100 randomly
generated Gaussian centers (with the standard deviation of
2) and, then, randomly replacing a certain percentage of
the original data points with those randomly picked among
the new data points.

Fig. 18 shows the results. We see that PRHist always
performs better than or the same as STHoles, sometimes
even when the update percentage is high. This performance
advantage of PRHist stems from its ability to adjust the
bucket weights depending on the percentage of data
updates (see Section 5.1).

6.2.5. Varying threshold values
In this experiment, we test the effect of varying the spa-

tial locality threshold and the predictability threshold of
PRHist.

Fig. 19a shows the results for varying spatial locality
threshold. It shows that the spatial locality threshold value
giving the lowest error is not at the two extremes of 0 and 1.
This is because, at a low locality threshold values, clusters
showing low locality can still be included as useful clusters.
However, the proactive histograms built using these clus-
ters are not concentrated in certain regions and, hence,
their utility values diminish. On the other hand, when
locality threshold is close to 1, there are not enough clusters
selected and thus the proactive histograms built do not
cover many of the queries that actually occur.

Fig. 19b shows the results for varying predictability
threshold. Again, the lowest error result does not occur
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 a
bs

ol
ut

e
er

ro
r

Predictability threshold value

STHoles
PRHist

ng real queries: (a) varying locality threshold, (b) varying predictability

Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430 429
at the two extremes. This is because, at low prediction
threshold values, clusters that have poor prediction accura-
cies are included, which in turn causes poor-quality proac-
tive histograms to be built. On the other hand, when
predictability threshold value is high, few clusters are cho-
sen and, thus, the proactive histograms built do not cover
many of the queries that actually occur.
7. Conclusions

In this paper we have developed a novel multi-dimen-
sional histogram method, called PRHist. We believe it is
the first method that incorporates proactive histograms
for selectivity estimation. PRHist has an off-line and an
on-line phase. In the off-line phase it proactively builds cus-
tomized histograms for query sets predicted for future time
intervals. To accommodate the fact that predictability of
queries may vary, PRHist uses a weighted combination
of reactive and proactive histograms during the on-line
phase. The weight is automatically determined based on
the predictability of the queries and adjusted based on
the extent of data updates.

We have performed extensive experiments comparing
PRHist with the state-of-the-art reactive method STHoles,
using both real and synthetic query/data sets. The results
show PRHist gives lower estimation error than STHoles
for most of the test cases. We have found PRHist outper-
forms STHoles even when only a small portion of the que-
ries are predictable or a large portion of data are updated.

Our method can be easily incorporated into an existing
database management system by extending it to handle the
on-line loading and merging of proactive histograms. The
reactive operation has already proven to be readily incor-
porable in Bruno et al. (2001). The necessary extension is
straightforward and incurs minimum additional run-time
overhead.

We believe the key concept of PRHist, that is, predicting
query patterns and using it to proactively manage a model
coupled with reactive on-line maintenance, is applicable to
other database applications like aggregation query answer-
ing (Acharya et al., 2000; Babcock et al., 2003; Chaudhuri
et al., 2001), index selection (Valentin et al., 2000), view
materialization (Agrawal et al., 1997; Colby et al., 1996;
Salem et al., 2000), etc. We plan to investigate these appli-
cations in our future work. Additionally, it may be possible
to extend other selectivity estimation models like wavelets
and sampling instead of histograms to be proactive and
reactive. This is in our future work as well.

In addition, we plan to study algorithms for finding
optimal f-subintervals given a future time interval and the
algorithms for finding query clusters without application-
specific strategies (Section 4.2.1). Furthermore, we plan
to investigate the effects of using different forecasting meth-
ods (such as those described in Section 2.2) for cluster pat-
tern extraction and query frequency prediction (Section
4.2.2). Lastly, we will explore automated techniques for
determining the best threshold values of predictability
and locality (Section 6.1.5).

Acknowledgments

We thank Dennis Fuchs for providing us with the imple-
mentation of STHoles. We also thank Nancy Snow Little-
field, Michael Grundhauser, and Keith Kennedy for
providing us with the real data and query sets. This
research has been supported by the US National Science
Foundation through Grant No. IIS-0415023 and the US
Department of Energy through Grant No. DE-FG02-
ER45962.

References

Aboulnaga, A., Chaudhuri, S., 1999. Self-tuning histograms: Building
histograms without looking at data. In: ACM SIGMOD, pp. 181–192.

Acharya, A., Gibbons, P.B., Poosala, V., 2000. Congressional samples for
approximate answering of group-by queries. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
pp. 487–498.

Agrawal, D., Abbadi, A.E., Singh, A.K., Yurek, T., 1997. Efficient view
maintenance at data warehouses. In: Proceedings of SIGMOD, pp.
417–427.

Babcock, B., Chaudhuri, S., Das, G., 2003. Dynamic sample selection for
approximate query processing. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 539–550.

Babu, S., Bizarro, P., DeWitt, D., 2005. Proactive re-optimization. In:
Processings of SIGMOD, pp. 107–118.

Box, P., Jenkins, M., Reinsel, C., 1994. Time Series Analysis, Forecasting
and Control. Prentice-Hall.

Brown, G.R., 1963. Smoothing, Forecasting and Prediction. Prentice-
Hall.

Bruno, N., Chaudhuri, S., Gravano, L., 2001. STHoles: a multidimen-
sional workload-aware histogram. In: ACM SIGMOD, pp. 211–222.

Chatfield, C., 2001. Time-Series Forecasting. Chapman & Hall/CRC.
Chatfield, C., Yar, M., 1988. Holt-Winters forecasting: some practical

issues. The Statistician, 129–140.
Chaudhuri, S., Das, G., Narasayya, V., 2001. A robust, optimization-

based approach for approximate answering of aggregate queries. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 295–306.

Colby, L.S., Griffin, T., Libkin, L., Mumick, I.S., Trickey, H., 1996.
Algorithms for deferred view maintenance. In: Proceedings of
SIGMOD, pp. 469–480.

Curewitz, K.M., Krishnan, P., Vitter, J.S., 1993. Proceedings of practical
prefetching via data compression. In: ACM SIGMOD, pp. 43–53.

Donjerkovic, D., Ioannidis, Y., Ramakrishnan, R., 2000. Dynamic
histograms: capturing evolving data sets. In: ICDE, pp. 411–422.

Farnum, R.N., Stanton, W.L., 1989. Quantitative Forecasting Methods.
PWS-Kent.

Fox, J., 1997. Applied Regression Analysis, Linear Models, and Related
Methods. Sage Publications, Thousand Oaks, CA.

Gardner, S.E., McKenzie, E., 1985. Forecasting trends in time series.
Management Science, 1237–1246.

Gerlhof, C.A., Kemper, A., 1994. A multi-threaded architecture for
prefetching in object bases. In: EDBT, pp. 351–364.

Gibbons, P.B., Matias, Y., Poosala, V., 1997. Fast incremental mainte-
nance of approximate histograms. In: VLDB, pp. 466–475.

Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C., 2000.
Approximating multi-dimensional aggregate range queries over real
attributes. In: ACM SIGMOD, pp. 463–474.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by
simulated annealing. Science 220 (4598), 671–680.

430 Z. He et al. / The Journal of Systems and Software 81 (2008) 414–430
Knafla, N., 1997. A prefetching technique for object-oriented databases.
In: British National Conference on Advances in Databases, pp. 154–
168.

Knafla, N., 1998. Analysing object relationships to predict page access for
prefetching. In: International Workshop on Persistent Object Systems:
Design, Implementation and Use, pp. 160–170.

Lee, J., Kim, D., Chung, C., 1999. Multi-dimensional selectivity estima-
tion using compressed histogram information. In: ACM SIGMOD,
pp. 205–214.

Matias, Y., Vitter, J.S., Wang, M., 2000. Dynamic maintenance of
wavelet-based histograms. In: VLDB, pp. 101–110.

MaxQueen, J., 1967. Some methods for classification and analysis of
multivariate observations. In: Berkeley Symposium on Mathematical
Statistics and Probability, pp. 281–297.

Muralikrishna, M., DeWitt, D.J., 1988. Equi-depth histograms for
estimating selectivity factors for multidimensional queries. In: ACM
SIGMOD, pp. 28–36.

Ord, K.J., Koehler, B.A., Snyder, D.R., 1997. Estimation and prediction
for a class of dynamic nonlinear statistical models. Journal of
American Statistical Association 92, 1621–1629.

Polyzotis, N., Ioannidis, Y., 2003. Speculative query processing. In:
Processings of CIDR.

Poosala, V., Ioannidis, Y., 1997. Selectivity estimation without the
attribute value independence assumption. In: VLDB, pp. 486–495.

Poosala, V., Ioannidis, Y., Haas, P., Shekita, E., 1996. Improved
histograms for selectivity estimation of range predicates. In: ACM
SIGMOD, pp. 294–305.

Salem, K., Beyer, K.S., Cochrane, R., Lindsay, B.G., 2000. How to roll a
join: Asynchronous incremental view maintenance. In: Proceedings of
SIGMOD, pp. 129–140.

Stillger, M., Lohman, G., Markl, V., Kandil, M., 2001. LEO – DB2’s
learning optimizer. In: VLDB, pp. 19–28.

Su, Z., Yang, Q., Lu, Y., Zhang, H., 2000. What next: A prediction system
for web requests using n-gram sequence models. In: Conference on
Web Information Systems Engineering, pp. 214–222.

Thaper, N., Guha, S., Indyk, P., Koudas, N., 2002. Dynamic multi-
dimensional histograms. In: ACM SIGMOD, pp. 428–439.

Valentin, G., Zuliani, M., Zilio, D.C., Lohman, G., 2000. DB2 advisor:
An optimizer smart enough to recommend its own indexes. In:
Proceedings of IEEE International Conference on Data Engineering,
pp. 101–110.

Vitter, J.S., Wang, M., 1999. Approximate computation of multi-
dimensional aggregates of sparse data using wavelets. In: ACM
SIGMOD, pp. 193–204.
Zhen He is a lecturer in the department of computer science at La Trobe
University. His main research areas are database systems optimization,
time series mining, wireless sensor networks and XML information
retrieval. Prior to joining La Trobe University, he worked as a postdoc-
toral research associate in the University of Vermont. He holds a Bachelor
of Computer Science, Honors and Ph.D. degrees from the Australian
National University.

Byung Suk Lee is Associate Professor of Computer Science at the Uni-
versity of Vermont. His main research areas are database systems, data
management, and query processing. He held positions in industry and
academia: Gold Star Electric, Bell Communications Research, Datacom
Global Communications, University of St. Thomas, and currently Uni-
versity of Vermont. He was also a visiting professor at Dartmouth College
and a participating guest at Lawrence Livermore National Laboratory.
He served on international conferences as a program committee member,
a publicity chair, and a special session organizer, and also on US federal
funding proposal review panel. He holds a B.S. degree from Seoul
National University, M.S. from Korea Advanced Institute of Science and
Technology, and Ph.D. from Stanford University.

X. Sean Wang is the Dorothean Professor of Computer Science at the
University of Vermont (UVM), Burlington, Vermont. He obtained his
PhD degree in 1992 in Computer Science from the University of Southern
California, Los Angeles, California, and earned his MS and BS degrees in
Computer Science earlier from Fudan University, Shanghai, China. In
1992, he joined the faculty of the Information and Software Engineering
Department at George Mason University, Fairfax, Virginia, and in 2003,
he moved to UVM. His research areas include database systems, system
support for temporal data and time series data, data mining, temporal
reasoning, and information security. He is the Principal Investigator or
Co-Principal Investigator of a number of federally sponsored research
projects, and was a recipient of both the National Science Foundation’s
Career and Research Initiation Awards. He has published widely in the
general area of database systems in journals and at conferences such as
ACM Transactions on Database Systems (TODS), IEEE Transactions
on Knowledge and Data Engineering (TKDE), ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), and Very
Large Data Bases Conference (VLDB). He has served on Program
Committees (PC), as PC chair, or in other capacities for many conference
organizations, and is on the editorial boards of a number of technical
journals.

	Proactive and reactive multi-dimensional histogram maintenance for selectivity estimation
	Introduction
	Related work
	Histograms
	Forecasting methods
	Proactive optimization

	Problem formulation
	Preliminaries
	Problem definition

	Off-line proactive histogram sequence construction
	Basic concepts of query clusters
	Finding useful clusters
	Query clustering strategies
	Cluster pattern extraction and query frequency prediction
	Predictability, spatial locality, and cluster utility
	Predictability
	Spatial locality
	Cluster utility

	Constructing a proactive histogram sequence
	Finding optimal bucket weights

	On-line PRHist maintenance
	Adjusting the bucket weights
	Merging proactive and reactive histograms

	Experiments
	Experimental setup
	Query clustering strategies
	Evaluation method
	Real query set and data set
	Synthetic query sets and data sets
	Parameter settings
	Performance metric

	Experimental results
	Varying memory limit
	Comparing different bucket weighting schemes
	Varying the three query characteristics
	Varying data update percentage
	Varying threshold values

	Conclusions
	Acknowledgments
	References

