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Abstract

Partial rollback mechanism has been widely supported by many database man-
agement systems (DBMSs). It allows a transaction to be rolled back partially, that
is, only back to a certain savepoint set by the user. A partial rollback, however,
makes the DBMS buffer management complicated because it requires the DBMS
to restore the state of not only the database but also the buffers. There are several
literature addressing such a partial rollback in a relational DBMS (RDBMS) which
has page buffer only. However, to our knowledge, there exists no literature ad-
dressing it in an object-oriented/relational DBMS (OO/ORDBMS). The RDBMS
partial rollback scheme cannot be applied to OO/ORDBMSs directly. The reason is
that, unlike RDBMSs, many OO/ORDBMSs use dual buffer which consists of ob-
ject buffer and page buffer. In this paper we thoroughly study the partial rollback
schemes for OO/ORDBMSs with dual buffer. For this, we propose four differ-
ent partial rollback schemes which are based on (single) page buffer, (single) object
buffer, dual buffer using a soft log, and dual buffer using shadows, respectively. The
schemes proposed are practical enough to be implemented in a real OO/ORDBMS.
The results of performance evaluations show that the dual buffer-based scheme
using shadows achieves the best performance.

1 Introduction

Transaction rollback is a mechanism for canceling the effect of operations executed within a database
transaction[1, 5, 9]. It revokes all updates from the beginning of a transaction, often incurring
significant cost. In order to alleviate this problem, a partial rollback scheme is used, which recovers
a transaction to a savepoint [5, 9]. A savepoint can be set by either the system or the user at
any point in time during a transaction. Applications executing long transactions often need to
annul operations executed erroneously or producing unsatisfactory results before the transactions
terminate, and to continue from that point on. Partial rollback is very useful in such cases.

Several database management systems (DBMSs) already support partial rollback. Some, typ-
ified by relational DBMSs (RDBMSs), are using only page buffers for partial rollback; others are
using both object buffers and page buffers, called dual buffers in combination. This difference
in buffer organizations has a large impact on the performance, as indicated by Subramanian and
Krishnamurthy [13]. As we see it, the DBMS industry is moving toward supporting a dual buffer
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as it is making a transition from RDBMSs to OO/ORDBMSs. Some commercial systems [10, 14]
and research prototypes [12] already support dual buffers.

Unfortunately, however, despite the existence of those DBMSs supporting partial rollback, few
research results have been published about their performance in relation to the buffer management
for partial rollback. Moreover, even those published assume RDBMSs using page buffers [9, 6, 3].
To the extent of the authors’ knowledge, there has been no research in the past proposing partial
rollback schemes for OO/ORDBMSs with a dual buffer. These shortcomings warrant the need
for a comprehensive and comparative study of new partial rollback schemes for different buffer
organizations.

In this paper, we propose a thorough study of partial rollback schemes of an OO/ORDBMSs
with a dual buffer. We propose four alternative partial rollback schemes and compare their perfor-
mance. We first classify them into the single buffer-based scheme (SB) and the dual buffer-based
scheme (DB) by the number of buffers used to process rollback. In the SB scheme, rollback oc-
curs to one buffer, which subsequently propagates to the other buffer. We further classify the SB
scheme into the page buffer-based scheme (PB) and the object buffer-based scheme (OB) by the
buffer rolled back. In the DB scheme, the OO/ORDBMS rolls back both the page buffer and the
object buffer. Based on the method of maintaining recovery data in the object buffer, we further
classify the DB scheme into a scheme using the soft log (DB-SL) and one using shadows (DB-SO).
As for the performance comparison, we assess the four schemes (i.e., PB, OB, DB-SL, and DB-SO)
using extensive simulation and validate the results by mathematical analysis.

The dual buffer-based scheme proposed in this paper can be used in other appli-
cations that need recovery of data whose copies exist in multiple layers. For eaxmple,
for partial rollback in client-server architecture with object cache, dual buffer-based
scheme can be applied to maintain cache consistency between the client and server
without resorting to the server’s recovery mechanism only. This improves the perfor-
mance by reducing the communication between the client and server and increasing
the object cache hit ratio.

The rest of this paper is organized as follows. In Section 2 we survey the partial rollback schemes
used in RDBMSs, which use page buffers only. In Section 3 we describe the dual buffer organization
of the OO/ORDBMS and discuss its effect on partial rollback. In Section 4 we explain the four
partial rollback schemes we propose for OO/ORDBMSs. In Section 5 we describe the experiments
performed and present the results. Finally, we conclude the paper in Section 6.

2 Related Work

A study on partial rollback schemes of OO/ORDBMSs has not been reported in the literature.
Here, we overview the partial rollback schemes of RDBMSs. A partial rollback should recover the
states of both the transaction execution and the database. A database state is recovered through
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a rollback to a savepoint using the log of performed updates. The transaction execution state is
represented by such main memory data structures as locks, cursors, and file handles [5]. These
data structures are updated frequently as locks are granted or released, as cursors are created or
destroyed, and as files are opened or closed. Besides, their sizes are quite small compared with the
database size. Thus, a DBMS typically stores a snapshot of them at each savepoint and uses the
snapshots to recover the transaction execution states[5].

Setting a savepoint and performing a partial rollback in those DBMSs are done as follows [4, 9].

At a savepoint: The DBMS (1) records the transaction execution state and the SaveLSN – the
log sequence number (LSN) of the last log record saved so far – in main memory and (2) returns a
savepoint identifier to the user.

Using the identifier, the user can request a partial rollback to the savepoint, which is executed
as follows.

During a partial rollback: The DBMS (1) undoes, in a reverse order, all updates performed
after recording the SaveLSN associated with the savepoint and (2) restores the transaction execution
state to the savepoint.

This scheme assumes RDBMSs using only page buffers. However, OO/ORDBMSs cannot
utilize the partial rollback scheme of RDBMSs as is because, unlike RDBMSs, many of them use a
dual buffer consisting of an object buffer and a page buffer.

3 Dual Buffer Organization in OO/ORDBMSs

From the perspective of a partial rollback scheme, one of the outstanding trends in the OO/ORDBMS
architecture is the use of a dual buffer [13]. In this section, we describe the dual buffer organization
and discuss its effect on partial rollback.

The objective of using the page buffer is to reduce the number of disk accesses. A DBMS
manages objects in the page buffer in the unit of disk page. In contrast, the objective of using
the object buffer is to accelerate the accesses to objects by caching them in the client to reduce
the traffic between the client and server [7]. While the page buffer is shared by multiple users, the
object buffer is not [8]. In a client-server environment where a server ships objects to a client, the
server maintains the page buffer while the client maintains the object buffer [11].

To access an object in a dual buffer, the data page containing the object is swapped in from
disk to the page buffer, and the object is in turn swapped in from the page buffer into the object
buffer. If the object buffer becomes full, a victim is chosen among the buffered objects. If the
chosen object is dirty (i.e., has been updated), it is swapped out to the page buffer, updating the
page that contains the object. At this point, if the page is not in the page buffer, it must be read in
again from disk, and replaces a page chosen as a victim. If the chosen page is dirty, it is swapped
out to disk to reflect the updates in disk.
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Table 1: Abbreviations for Partial Rollback Schemes.

Abbreviation Full name

SB Single buffer-based partial rollback scheme

PB Page buffer-based partial rollback scheme

OB Object buffer-based partial rollback scheme

DB Dual buffer-based partial rollback scheme

DB-SL Dual buffer-based partial rollback scheme using soft log

DB-SO Dual buffer-based partial rollback scheme using shadows

SUOL Savepoint updated object list

Since in an OO/ORDBMS the page buffer and the object buffer are extensions of the database,
we must recover the states of the two buffers as well when partially rolling back the database. An
OO/ORDBMS, like an RDBMS, can rollback the state of the page buffer and the disk using logs.
However, partially rolling back the state of the object buffer necessitates an additional mechanism.
For a total rollback after a transaction failure, the object buffer state can be simply ignored since
the transaction terminates at that point. In contrast, a partial rollback to a savepoint requires
recovering the object state to that of the savepoint, since the transaction continues from that point
after the partial recovery.

Updates of objects in the object buffer are not recorded in a log, nor reflected on disk, thus
hindering a partial rollback. As a solution, one may consider applying the partial rollback scheme of
the RDBMS, that is, using the snapshots of the object buffer recorded at savepoints. However, this
scheme incurs the substantial space and time overhead of saving the snapshots at every savepoint.
To address the problem, we propose other schemes that recover the database including the object
buffer in partial rollback of an OO/ORDBMS.

4 Partial Rollback Schemes of OO/ORDBMSs

In this section, we propose four partial rollback schemes for OO/ORDBMSs: the page buffer-based
scheme (PB), object buffer-based scheme (OB), dual buffer-based scheme with the soft log (DB-
SL), and dual buffer-based scheme with shadows (DB-SO). We explain the concept, procedures,
and advantages and disadvantages of each scheme. Table 1 summarizes the abbreviations
used to discuss partial rollback schemes in this paper.

4.1 Single Buffer-Based Partial Rollback Scheme (SB)

As mentioned in Introduction, the single buffer-based scheme uses either the page buffer or object
buffer, but not both, for managing recovery data for partial rollback. Depending on which buffer is
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the target of recovery, we further classify it into the page buffer-based and the object buffer-based
schemes. We explain these two schemes here.

4.1.1 Page Buffer-Based Partial Rollback Scheme (PB)

PB flushes updated objects from the object buffer to the page buffer at savepoints, and recovers
the state of only the page buffer at a partial rollback. Disk-resident logs are used to recover the
page buffer state. We call these logs hard logs to distinguish them from soft logs used in other
schemes (OB and DB-SL).

At a savepoint: PB performs operations extended from those of the RDBMSs (described in
Section 2) with the additional step of flushing the updated(i.e., dirty) objects in the object buffer
to the page buffer.

During a partial rollback: PB (1) restores the objects in the page buffer using the hard log,
and (2) deletes all objects in the object buffer because they might have been updated after the
savepoint.

PB is easily implementable due to its reliance on hard logs only, i.e., without any other recovery
data. However, frequent object buffer flushes incur the overhead of moving objects from the object
buffer to the page buffer, and also from the page buffer to disk, leading to an increasing number of
disk I/Os. We call this overhead the forced-flush overhead.

The forced-flush overhead may cause considerable performance degradation if savepoints are
set frequently. In addition, the deletion of buffered objects reduces the hit ratio of the object buffer,
causing more objects to be swapped in after a partial rollback. The performance degradation is
more noticeable in the client-server environment where the cost of object transfer is relatively high.

4.1.2 Object Buffer-Based Partial Rollback Scheme (OB)

OB is meant to remove the potential problems of PB – the forced-flush overhead and the low hit
ratio of the object buffer. It records in the soft log all updates occurring in the object buffer, and
recovers the state of the object buffer directly using the log. In order to undo the updates of the
objects swapped out prior to the partial rollback point, it swaps the objects back into the object
buffer before applying the soft log records. It also records in the hard log all updates in the page
buffer caused by the objects swapped out from the object buffer, but the hard log is used for a
total, not partial, rollback. While hard logs are stored in a stable disk, soft logs are stored in
main memory because they are no longer needed once a partial rollback or transaction execution is
completed. Furthermore, soft log records keep undo information only, which suffices for performing
partial rollbacks.

OB is different from the partial rollback scheme of RDBMSs primarily in two aspects: it uses
the soft log recorded for the object buffer, and swapping occurs between the object buffer and the
page buffer.
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At a savepoint: OB performs the same operations as in RDBMSs (described in Section 2) except
that is uses the soft log instead of the hard log.

During a partial rollback: OB (1) swaps in the objects swapped out prior to the partial
rollback point, (2) undoes all updates of objects in the object buffer using the soft log, and (3)
delete the used soft log records. Note that any swap-out’s occuring due to the swap-in’s in Step 1
are recorded in the hard log as normal updates.

OB indeed eliminates the aforementioned overhead of PB, and shows good performance pro-
vided that the object buffer is large enough to keep most objects that will be undone during partial
rollbacks. However, since undoing updates on swapped-out objects requires swapping them back
into the object buffer, other objects may have to be swapped out if main memory is not large
enough. This incurs more disk I/Os. In addition, OB uses increasingly large main memory to store
the soft log as more updates are performed within a transaction. We call this overhead the memory
overhead.

4.2 Dual Buffer-Based Partial Rollback Scheme (DB)

The performance degradation of single buffer-based schemes occur because updated objects stored
in one buffer are transferred to the other buffer at the time of either setting a savepoint (in PB) or
performing a partial rollback (in OB). DB deals with this problem by managing and recovering the
two buffers separately. This scheme utilizes hard logs for recovering updated objects in the page
buffer and recovery data (soft logs or shadows) for recovering those in the object buffer.

In DB, objects are classified into three types based on their update and swapping activities
between the savepoint and the partial rollback point as shown in Figure 1. In the figure, no
swapping is allowed during a time interval marked with a thick line, and swapping is required
during an interval marked with the recycling sign. Swapping activities during a time interval
marked with a thin line are irrelevant to the type of the objects.

...

Objects of Type 1

Objects of Type 2

Objects of Type 3

Objects of both Type 1 and Type 2

Savepoint Partial Rollback

: an update operation

...

...

: swap out and swap in: no swap out

Figure 1: Object Types.

The recovery method differs for each type. Objects of Type 1 are those updated only before
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the savepoint and therefore need no recovery during a partial rollback. There is a caveat for the
page buffer, however. In DB, updated objects are not flushed at a savepoint, but may be swapped
out to the page buffer after the savepoint due to object buffer replacement. We call such objects
delayed objects. The updates on those objects, which occurred before the savepoint, should not be
undone. To embody this idea, when the swap-out of an updated object is recorded as an update in
the hard log, the associated HardSaveLSN of the savepoint is stored together with the log record.
Then, during a partial rollback, a log record whose HardSaveLSN is identical to that of the given
savepoint is ignored.

Objects of Type 2 are those updated only after the savepoint. Since swapping before the
update has no effect to either buffer, the recovery mechanism is determined by swapping after the
update. There are three cases. First, if no swapping occurs at all, we simply discard the updated
objects in the object buffer because the updates have not been reflected in the page buffer yet.
Second, if only swap-out occurs, we recover the objects in the page buffer using the hard log. Note
that the swapped-out objects do not exist in the object buffer anymore. Third, if both swap-out
and swap-in occur, we recover the objects in the page buffer using the hard log and discard the
objects in the object buffer. This recovery mechanism is essentially identical to that of PB.

Objects of Type 3 are those updated both before and after the savepoint and not swapped out
until the point of the second update. They are recovered in the object buffer using the recovery data
in the same manner as in OB. Note that the first and second updates occurring in the object buffer
are recorded as no more than one update in the hard log because no swapping occurs between
the two updates. For this reason, using the hard log restores the objects in the page buffer to
either the state before the first update or after the second update, but never to the state at the
savepoint. However, it does not cause a problem as long as the objects in the object buffer are
restored correctly. The restored objects are eventually swapped out to replace the incorrect objects
in the page buffer. In our work, we choose to rollback the page buffer to the state prior to the
first update to simplify the entire recovery mechanism and to maintain the consistency with other
recovery schemes.

The recovery mechanism becomes intricate when we consider the swapping activities of objects
at different points in time after the savepoint. There are two cases. If objects updated before the
savepoint are swapped out and back in before the second update, they are handled as objects of
both Type 1 and Type 2 – Type 1 before the second update, and additionally Type 2 after the
second update. Note that if the objects are swapped after the second update (without having been
swapped before), they are handled as objects of Type 3. Any subsequent swapping does not affect
the type.

In order to implement the recovery mechanisms described above, we use a data structure called
the savepoint updated object list (SUOL), a list of updated objects in the object buffer at a given
savepoint. Using the SUOL, the type of an object is identified as follows: (1) objects that are in the
SUOL of a savepoint but not updated in the object buffer yet are classified as Type 1; (2) objects
that are not in the SUOL and updated after the savepoint are classified as Type 2; (3) objects
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that are in the SUOL and updated after the savepoint without being swapped out are classified as
Type 3; (4) objects that are in the SUOL but swapped out before being updated are classified as
Type 1, and additionally Type 2 after the update.

Algorithms 4.1 shows the procedure for maintaining the SUOL to facilitate the implementation
of the recovery mechanism in DB. This procedure is invoked whenever an object in the SUOL is
updated or swapped out. It requires the SUOL created at a savepoint and a flag for each SUOL
member object indicating whether it has been updated after the savepoint. The objects in the
SUOL with this flag on at the time of the savepoint are of Type 3. Those in the SUOL with this
flag off are of Type 1. Those not in the SUOL are of Type 2. By eliminating an object (O) from
the SUOL if the object is swapped out before the update after the savepoint, it realizes the case of
objects of both Type 1 and Type 2. For this purpose, it uses a flag indicating whether the object
has been updated after the savepoint.

Algorithm 4.1(Savepoint updated object list (SUOL) management)
Input: (1) an SUOL created at a savepoint

(2) a flag ‘U’ indicating “updated-after-the-savepoint”
for each object in the SUOL

(3) an object O being updated or swapped out of the
object buffer

Output: none
Procedure:

IF O is updated THEN set the flag U(O) to TRUE
IF O is swapped out and U(O) is FALSE
THEN delete O from the SUOL // O is a delayed object

Depending on the recovery data maintained in the object buffer, DB is classified into dual
buffer-based partial rollback using soft log (DB-SL) and dual buffer-based partial rollback using
shadows (DB-SO). We explain these two schemes in detail in the following subsections.

4.2.1 Dual Buffer-Based Partial Rollback Scheme Using Soft Log (DB-SL)

For a given savepoint, DB-SL recovers the objects in the SUOL using the soft log; for those not
in the SUOL, it deletes them from the object buffer if they exist in the object buffer. It restores
the objects using the hard log if they have been swapped out to the page buffer. When an object
contained in an SUOL is updated (thus becoming Type 3), the update is recorded in the soft log.

At a savepoint: DB-SL performs operations for handling the SUOL and the soft log. More specif-
ically, it (1) records the SUOL of the savepoint, the current transaction execution state, and the
SaveLSNs’s of hard and soft logs of the transaction (denoted by HardSaveLSN and SoftSaveLSN )
in main memory, and (2) returns a savepoint identifier.

During a partial rollback: DB-SL (1) deletes from the object buffer all objects not in the
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SUOL of the savepoint, (2) for all objects in the SUOL, undoes the updates in the object buffer
using the soft log up to the SoftSaveLSN of the savepoint(objects being undone are swapped in if
they are not currently in the object buffer), (3) undoes the updates in the page buffer using the
hard log up to the HardSaveLSN of the savepoint (excluding delayed objects), and (4) restores the
saved transaction execution state.

Among the steps of partial rollback steps in DB-SL, we see that objects of Type 1 are recovered
in steps 3 and 4, those of Type 2 are in steps 1, 3, and 4, and those of Type 3 are in steps 2, 3,
and 4.

As in OB, DB-SL incurs the overhead of using the soft log. However, compared with OB,
using the hard log in parallel reduces the overhead significantly for two reasons. First, since DB-SL
creates soft log records only for the objects in SUOL (i.e., of Type 33), the memory overhead is
smaller than that of OB for objects of Type 2 or of both Type 1 and Type 2. Second, since the
number of updates undone using the soft log is smaller in DB-SL, the overhead of swapping in the
objects that are not in the object buffer is also smaller than that of OB.

4.2.2 Dual Buffer-Based Partial Rollback Scheme Using Shadows (DB-SO)

DB-SO uses shadows instead of the soft log to avoid object swapping required in DB-SL. A shadow
is a copy of an object made at a point in time. When an object in an SUOL is updated for the first
time after the savepoint, the shadow of the object is created in main memory. The savepoint and
partial rollback operations are the same as in DB-SL except using shadows instead of the soft log.

At a savepoint: DB-SO (1) records the SUOL of the savepoint, the current transaction execution
state, and the HardSaveLSN of the savepoint in main memory, and (2) returns a savepoint identifier.

During a partial rollback: DB-SO (1) deletes from the object buffer the objects not in the
SUOL of the savepoint, (2) replaces all objects in the SUOL (or create them if they are not in the
object buffer) by their shadows, (3) undoes the updates in the page buffer using the hard log up
to the HardSaveLSN of the savepoint, and (4) restores the saved transaction execution state.

DB-SO has three advantages over DB-SL. First, DB-SO does not need object swapping during a
partial rollback. It can recover the state of the object buffer simply by copying the shadows directly
into the object buffer even for the objects not in the object buffer. Second, since DB-SO generates
shadows only at the first update of the objects in SUOLs, whereas DB-SL logs all updates of the
objects, it incurs much smaller memory overhead than DB-SL. Third, while the memory overhead
of DB-SL varies unpredictably depending on the number of updates on the objects in the SUOL
of the savepoint, that of DB-SO is no more than the number of objects in all SUOLs, offering a
predictable upper bound.

3Note that the SUOL objects of Type 1 are not updated after the savepoint. Thus, no soft log records are created

for them.
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4.3 Example Operations of the Four Schemes

We illustrate the four partial rollback schemes in this section using an example. Figures 2(b) and (c)
show how the states of the object buffer and the page buffer evolve at different points in time when
the update and swapping activities occur as shown in Figure 2(a). Figure 2(b) shows the snapshots
before the savepoint (ts), at the savepoint, and at the partial rollback point (tp); Figure 2(c) shows
the snapshots after the partial rollback to the savepoint. The snapshots in different schemes are
distinguished with the names of the schemes in parentheses. Every time an object is updated, it is
earmarked with the prime (′).

In the case of PB, the updated objects e
′
, f

′
, g
′
, and h

′
that are in the object buffer before

the savepoint ts are flushed to the page buffer at the savepoint. Then, as the result of executing
the update and swap operations shown in Figure 2(a), we obtain the buffer state shown in Fig-
ure 2(b)(iv) at the partial rollback point tp. At the same time, the following updates are recorded
in the hard log until the partial rollback point: < d → d

′
, h

′ → h
′′
, l → l

′
>. Then, by applying

the hard log records to the page buffer and deleting all objects in the object buffer, we obtain the
buffer state shown in Figure 2(c)(i).

In the cases of OB and DB, the updated objects e
′
, f

′
, g
′
, and h

′
that are in the object buffer

before the savepoint ts are not flushed to the page buffer at the savepoint. From this point on, OB
and DB take different paths. After executing the update and swap operations shown in Figure 2(a),
we obtain the buffer state shown in Figure 2(b)(v) at the partial rollback point tp.

In the case of OB, the following updates are recorded in the soft log until the partial rollback
point: < b → b

′
, d → d

′
, f

′ → f
′′
, h

′ → h
′′
, j → j

′
, l → l

′
>. Then, by applying the soft log records

after swapping in d
′
, h

′′
, and l

′
, we obtain the buffer state shown in Figure 2(c)(ii). The soft log

records are then deleted.

In the case of DB, the SUOL at the savepoint ts contains the following list of objects: < e
′
, f

′
,

g
′
, h

′
>. Among these SUOL objects, g

′
is removed from the list by the time of the partial rollback

point tp because it is swapped out without a preceding update, (i.e., it is a delayed object). Hence,
the SUOL at the partial rollback point tp contains < e

′
, f

′
, h

′
>. From this point on, DB-SL and

DB-SO take different paths.

In the case of DB-SL, the following updates are recorded in the soft log and hard log until
the partial rollback point: < b → b

′
, d → d

′
, f

′ → f
′′
, h → h

′′
, j → j

′
, l → l

′
> in the soft log and

< d → d
′
, g → g

′
, h → h

′′
, l → l

′
> in the hard log. Then, we (1) delete from the object buffer

all objects not in the SUOL, i.e., delete a, b
′
, i, and j

′
; (2) recover the objects in the object buffer

using the soft log, which restores f
′′

to f
′
and h

′′
to h

′
, (swapping in the objects that are in the

SUOL but not in the object buffer, i.e., h
′′
)and (3) recover the objects in the page buffer using the

hard log, which restores d
′
to d, h

′′
to h, and l

′
to l. Restoring h

′′
to h, not h

′
, in the page buffer

is not a problem because h
′
is restored in the object buffer. Here, e and g are objects of Type 1;

b, d, j and l are objects of Type 2; and f and h are objects of Type 3. Note that the delayed object
g
′
is not restored to g although its update is recorded in the hard log. Consequentially, we obtain
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Figure 2: An Example of Objects in a Dual Buffer.
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the buffer state shown in Figure 2(c)(iii).

In the case of DB-SO, shadows are created for the following set of objects: { f
′
, h

′ }. At the
same time, the same update records as in DB-SL are written to the hard log. Then, we (1) perform
the step 1 of DB-SL, deleting a, b

′
, i, and j

′
as the result; (2) replace objects in the SUOL by their

shadows, which result in the replacement of f
′′

by f
′
; insert the shadows of the objects that are

in the SUOL but not in the object buffer (i.e., swapped out), resulting in the insertion of h′, (4)
perform the step 4 of DB-SL, restoring d

′
to d, h

′′
to h, and l

′
to l. The resulting buffer state after

the partial rollback is identical to that in DB-SL.

5 Performance Evaluation of Partial Rollback Schemes

In this section, we evaluate performance of four schemes. Section 5.1 describes our experimen-
tal model, Section 5.2 presents analytical results of the performance, and Section 5.3 show the
experimental results.

5.1 Model of Experiments

Using simulations, we have evaluated the performance of the proposed schemes. In this section, we
describe the performance criteria, system model, and workload model used in our experiment. The
models are based on the one used by Franklin et al. [2] and have been modified to fit our purpose.

Performance Criteria We use the following three criteria:

1. nSwaps: the number of objects swapped between the object buffer and the page buffer

2. nDiskIOs: the number of disk I/Os for swapping pages in the page buffer and accessing the
hard log

3. MemoryOverhead : the size of the main memory space for storing recovery data such as soft
log or shadows

In order to distinguish between different schemes, we associate a performance criterion and a partial
rollback scheme by appending the latter to the former as a subscript, e.g., nSwapsPB for “nSwaps
of PB.”

System model Figure 3 shows the reference system model. It consists of a diskless client
workstation and a server machine with a disk, connected over the network. The client comprises
an object buffer manager, a data/recovery manager, a transaction source, and a resource manager.
The object buffer manager uses the LRU object replacement policy. The data/recovery manager
maintains either the soft log or shadow depending on the partial rollback scheme, and performs
partial rollback and commit operations in the object buffer. The transaction source initiates trans-
actions according to the workload model explained later. The resource manager provides CPU
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service and access to the network. The server is modeled similarly to the client, but with the
following differences. First, the resource manager manages disks as well as CPU. Second, the page
buffer manager manages pages instead of objects. Third, the data/recovery manager maintains a
hard log instead of a soft log.

 

Client 
Transaction 

Source 

Data/Recovery 

Manager 

Object Buffer 

Manager 

Resource Manager 

CPU 

Server 

Data/Recovery 

Manager 

Page Buffer 

Manager 

Resource Manager 

CPU Disk 

Network 

Manager 

Network 

fig02.eps Figure 3: System Model.

Table 1 shows the system parameters used in the experiments. We set the size of a page to 4
Kbytes, and the size of an object to 200 bytes, and assume the number of objects in a page is 20.
Because the soft log record contains undo information only, we set its size identical to the size of
an object. In addition, as the hard log record contains both undo and redo information, we set its
size to double the size of an object. The size of a log buffer is set to one page. The size of database
is set to 600 Mbytes, containing about 3 million objects. The page buffer size is set to 128 pages
(512 Kbytes)4.

Workload model Figure 4 shows the access pattern of a transaction, where m1 denotes the
number of operations from the transaction start to the first savepoint, m2 from the first savepoint
to the partial rollback point, and m3 from the partial rollback point to the commit point. The
number of operations between two consecutive savepoints is evenly set to m2/NS . We perform
partial rollbacks always to the first savepoint, which facilitates analyzing the overhead of savepoint
operations by keeping the number of undone operations constant.

Table 2 shows the workload parameters used to control the system workload. Since the number
of transactions in a single client system does not affect the performance in terms of our criteria5,
we assume a single transaction without loss of generality. Savepoint operations can be performed
as often as needed, but partial rollback operations are less frequent. Thus, we fix the number of
partial rollback operations to be one. Because update operations are less frequent than reference

4We used rather small sizes for the database and the buffer compared with what we would find on a modern

computer. We did it for the sake of efficiency of the experiments. However, the experimental results are valid because

they are determined by the ralative sizes of the database and buffer, not by the absolute sizes.
5In a multiple-client system, nDiskIOs will increase. Nevertheless, the trends will be similar.
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Table 2: System Parameters.

Parameter Value

Size of a page 4096 bytes

Size of an object 200 bytes

Size of a hard log record Size of an object × 2

Size of a soft log record Size of an object

Size of a log buffer One page

Size of database 600 MB (more than
3,000,000 objects)

Size of the page buffer (NPB) 128 pages (512 KB)

Size of the object buffer (NOB) 320, 640, . . . , 5440

start savepoint 1 savepoint 2 savepoint N
S

Partial

rollback to 

savepoint 1

commit

m
1

accesses

m
3

accesses

m
2
/N

s

accesses

m
2
/N

s

accesses

...

Figure 4: An Access Pattern of a Transaction.

operations in an ordinary transaction, we set the ratio of update operations RW to 0.3.

5.2 Analytical Results

We analyze the performance of the proposed schemes only for the case when there exists no object
accessed repeatedly. We follow the notations and assumptions described in Tables 1, 2, and Figure 3.

nSwaps The number of object swaps (nSwaps) is the sum of the number of swapped-in
objects (nSwapIns) and the number of swapped-out or flushed objects (nWriteOuts).

nSwapsPB = M + RW · (M −min(m2/NS , NOB)) (1)

nSwapsOB = M + RW · (M + 2 max(m2 −NOB, 0)) (2)

nSwapsDB = M + RW · (M −min(m2, NOB)) (3)

In Equation 1, RW ·min(m2/NS , NOB) is the number of objects that are accessed in the object buffer
after the NS-th savepoint and deleted during a partial rollback. In Equation 2, RW · 2max(m2 −
NOB, 0) is the number of object swaps for undoing m2 objects. In Equation 3, RW ·min(m2, NOB)
is the number of objects accessed after the first savepoint, and deleted during a partial rollback.

nDiskIOs The number of disk I/Os (nDiskIOs) is the sum of the number of I/Os due to page
swaps between the page buffer and the disk (nPageIOs), the number of page I/Os for undoing the
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Table 3: Workload Parameters.

Parameter Value

Number of transactions 1

Number of savepoints (NS) 1, 3, 5, 7, 9

Number of partial rollback 1

Ratio of update operations (RW ) 0.3

Number of object accesses per transaction (M) 10000 (M = m1 + m2 + m3)

Number of accessed objects per transaction 3000, 10000

Access sequence of repeatedly accessed objects Exponential distribution
(reference mean: 685, update mean: 457)

Access pattern of a transaction m1 = 2000, m2 = 5000, m3 = 3000

updates of objects in the page buffer (nUndoPageIOs), and the number of page I/Os for writing
to a hard log (nLogPageIOs).

nPageIOs is obtained by adding nSwapIns6 and 2 × nWriteOuts and then subtracting
NPB, where nSwapIns is the number of disk I/Os for the pages containing swapped-in objects,
2×nWriteOuts is the number of reading and writing disk pages containing swapped-out or flushed
objects, and NPB is the number of pages still in the page buffer after the transaction termination.
Since we assume that there are 10 log records per page and there is only one transaction executed,
nLogPageIOs is calculated as the number of accessed log records divided by 10.

nDiskIOsPB = M + RW · (2.1(M + m2 − 2min(m2/NS , NOB)))−NPB (4)

nDiskIOsOB = M + RW · (max(m2 −NOB, 0) + 2.1(M + max(m2 −NOB, 0)))−NPB (5)

nDiskIOsDB = M + RW · (2.1(M + m2 − 2min(m2, NOB)) + 0.1min(m1, NOB))−NPB (6)

MemoryOverhead The memory overhead of the proposed schemes, except that of OB, is
either zero or negligible. The memory overhead of OB stems from its soft log. It is calculated
as the number of log records multiplied by the record size. Because one log record is written per
object access, the total number of log records is calculated as m1 + max(m2,m3). Note that the
second term is the larger one between the number of log records written between a savepoint and
a partial rollback point and that between the partial rollback point and a transaction termination
point.

MemoryOverheadPB = 0 (7)

MemoryOverheadOB = m1 + max(m2,m3) (8)

MemoryOverheadDB ≈ 0 (9)
6We ignore the effect of object clustering, and assume that all accessed objects reside in different pages.
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5.3 Experimental Results

In this section we outline the simulation performed and evaluate the results. Our empirical result
in the same case is 99% identical to the analytical result.

Outline We use the following three dimensions: the size of the object buffer, the frequency
of savepoint operations, and the hit ratio of the object buffer. First, we vary the number of objects
maintained in the object buffer (NOB) from 320 (< m2/NS) to 5,440 (> m2) by an increment of
320 to the effect of increasing the object buffer size. Second, we vary the number of savepoints
(NS) from 1 to 9 by an increment of 2 to the effect of changing the frequency of savepoints.
Third, we consider two cases of different object buffer hit ratios: case 1 without objects accessed
repeatedly (i.e., hit ratio = 0) and case 2 with such objects (i.e., hit ratio > 0). For case 1, we
set the number of accesses per transaction to 10,000 and the number of accessed objects to 10,000.
For case 2, we set the former to 10,000 and the latter to 3,000. In a DBMS, accesses to objects
are typically concentrated on a small number of objects[2]. We simulate this effect by using an
exponential distribution of accesses to objects. That is, we generate a sequence of 10,000 array
indices exponentially distributed in the range of 1 to 3,000. Here, the means are set to 685 for
references and 457 for updates. Then, we use the 10,000 numbers as indices to the object array to
obtain an object access sequence.

Given the three dimensions, in Experiment 1, we compare the performance of the four schemes
for different values of NOB, and in Experiment 2, for the different values of NS . In Experiment 3,
we compare the memory overhead for different values of NOB and NS . Each experiment is divided
into the two cases: with or without objects accessed repeatedly.

Experiment 1 We observe how the performance varies with NOB while fixing NS to 1.
Figure 5 shows the resulting nSwaps of the four schemes. As shown in Figure 5(a), without objects
accessed repeatedly, nSwaps decreases slowly as NOB increases. While PB and DB show almost
identical nSwaps, OB shows greater nSwaps than the other schemes. It is because, while the
other schemes just delete the objects in the object buffer during the partial rollback, OB swaps in
the objects to be undone (if not in the object buffer), thus forcing other objects to be swapped
out, and also swaps out the undone objects after the partial rollback as the transaction continues.
Additionally, DB-SL and DB-SO show the same nSwaps because no object is undone in the object
buffer during a partial rollback.

Figure 5(b) shows that DB outperforms the other schemes when there are objects accessed re-
peatedly. We see that nSwapsPB exceeds nSwapsDB when NOB reaches 960, and exceeds nSwapsOB

when NOB reaches 1,600. It is because, while the object buffer hit ratios of OB and DB improves
as NOB increases, thus reducing the number of objects swapped, the forced flush in PB will in-
crease the number of objects swapped out. nSwaps of DB-SL is slightly higher than that of DB-SO
because DB-SL occasionally swaps in the objects to be undone during a partial rollback.

Figure 6 shows that nDiskIOs of the four schemes changes similarly to nSwaps as NOB changes.
In Figure 6(a), nDiskIOs of all schemes except OB decreases more rapidly than nSwaps as NOB
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(a) Without objects accessed repeatedly. (b) With objects accessed repeatedly.

Figure 5: nSwaps for varying NOB when the Number of Savepoints NS = 1.

increases. It is because, as the number of swapped objects decreases, so do the number of disk
I/Os and the number of objects undone in the page buffer during a partial rollback. nDiskIOs of
OB does not decrease as much as the others because it does not undo the updates recorded in the
hard log during a partial rollback. However, when there exist objects accessed repeatedly as in
Figure 6(b), nDiskIOs of OB drops as much as those of the other schemes. It is because of the
OB’s sensitivity to the rate of object swapping during a partial rollback. Obviously, a higher object
buffer hit ratio reduces the number of object swapping.

We find from the result of the experiment that the performance of all four schemes improves
as the object buffer size increases. We also make other observations. When there exist objects
accessed repeatedly, PB shows inferior performance to the others as NOB increases because of the
forced-flush overhead. This phenomenon becomes more noticeable as NS increases, as we see in
Experiment 2. When NOB is quite large and there exist objects accessed repeatedly, OB shows
performance comparable to DB due to the increase of object buffer hit ratio. DB consistently
performs better than SB regardless of NOB and the existence of repeatedly accessed objects.

Experiment 2 We observe the performance as NS is changed. Due to the forced-flush
overhead at savepoints, PB’s performance is sensitive to NS , while the others are not. Since DB-
SO offers the best performance among partial rollback schemes, we focus on PB ans DB-SO in our
experiment7. We shows the change of nDiskIOsPB and nDiskIOsDB-SO with respect to NS and NOB

in Figure 7. The numbers appended to ‘PB NS’ and ‘DB-SO NS’ denote the number of savepoints.
For example, ‘PB NS1’ means the “nDiskIOs of PB in the case of one savepoint.”

In Figure 7(a) and (b), when NS = 1, the performances of PB and DB-SO are almost identical.
7We also have performed experiments for the other schemes. The performances of the other schemes are not

sensitive to NS either. Due to lack of space, we omit the details here.
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(a) Without objects accessed repeatedly. (b) With objects accessed repeatedly.

Figure 6: nDiskIOs for varying NOB when the Number of Savepoints NS = 1.

However, PB’s performance decreases as NS increase, since updated objects in the object buffer
are flushed frequently as savepoints are set frequently. In contrast, DB-SO’s performance does not
changes as NS changes. As a result, DB-SO outperforms PB when savepoints are set frequently.

As shown in Figure 7(a), when no object is accessed repeatedly, nDiskIOs of PB does not
decrease despite the increase of object buffer size if the number of savepoints is more than one. For
example, when NS = 5, nDiskIOs remains almost constant at 18,000 for NOB greater than 960. We
can explain this phenomenon as follows. PB deletes the objects in the object buffer during a partial
rollback, which decreases the number of object swaps, as well as the number of disk I/Os for swap-
ping pages and writing hard log records. The number of deleted objects is RW ·min(m2/NS , NOB)
as described in Equation 1. We observe that, as savepoints are set frequently, updated objects in
the object buffer are flushed frequently. As a result, the number of deleted objects are fixed to
m2/NS , and therefore nDiskIOs remains the same even if the object buffer size increases. Further-
more, when there exist objects accessed repeatedly, given more than one savepoint, the number
of flushed objects increases even though the object buffer size increases. Thus, as shown in Fig-
ure 7(b), it causes more disk I/Os, reducing the rate of decrease of nDiskIOsPB. Consequently, for
a larger value of NS , the performance of PB improves less as NOB increases. We omit the result of
nSwapsPB here because the trend of nSwaps is similar to that of nDiskIOs.

Experiment 3 We observe the memory overhead of the four schemes. When there exists
no object accessed repeatedly, OB incurs very large overhead to maintain the soft log while the
other schemes do not at all, as mentioned in Section 5.2. PB by its nature does not maintain any
separate recovery data of the object buffer. For DB, without objects accessed repeatedly, no more
update occurs for the objects contained in SUOL, and therefore, no recovery data is created.

When there exist objects accessed repeatedly, the memory overhead of the four schemes changes
with NOB and NS as shown in Figure 8. The horizontal axis shows the object buffer size, and the
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(a) Without objects accessed repeatedly. (b) With objects accessed repeatedly.

Figure 7: nDiskIOsPB and nDiskIOsDB-SO for varying NOB when the Number of Savepoints NS

= 1, 3, 5, 7, and 9.

vertical axis the memory overhead represented as either the number of shadows (in DB-SL) or the
number of soft log records (in DB-SO). For both DB-SL and DB-SO, the number of savepoints is
appended to ‘DB-SL NS’ and ‘DB-SO NS,’ respectively.

As expected, the memory overhead of PB is always zero. OB’s memory overhead is equal to
the number of updates performed before the partial rollback, and is irrelevant to NS and NOB.
In contrast, as shown in Figure 8, the memory overhead of DB-SL and DB-SO increases with NS ,
but is still far smaller than that of OB. It is because, although the number of objects in SUOLs
increases as NS increases, the number is still very small compared with the number of all objects
updated until the partial rollback. The memory overhead of DB-SL is slightly more than that of
DB-SO as expected. It is because DB-SO scheme records the recovery data only for the first update
of the object after the savepoint, while DB-SL records the recovery data whenever the object in
the SUOLs is updated.

Summary In PB, the number of force-flushed objects increases as savepoints are set more
frequently. This overhead causes performance degradation, and also dwarfs the performance gain
obtained from increasing the object buffer size.

The performance of OB is not affected by the number of savepoints. It is, however, influenced
by the size and the hit ratio of the object buffer. The smaller the object buffer size may be, the
more object swaps occur during a partial rollback (in order to undo the updates of objects not in
the object buffer), resulting in poorer performance. By contrast, as the object buffer grows in size,
the swapping overhead shrinks rapidly. In addition, as more objects are accessed repeatedly, more
object buffer hits occur, which result in less frequent object swaps and therefore better performance.
Lastly, OB incurs an inherent memory overhead for maintaining the soft log.

The performance of DB is not affected by the number of savepoints. It shows relatively good
performance compared with other schemes regardless of the object buffer size and the existence
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Figure 8: Memory Overhead for varying NOB when there Exist Repeatedly Accessed Objects,
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of repeatedly accessed objects. Besides, its memory overhead is negligible compared with that of
OB. DB incurs more memory overhead than PB. Nonetheless, DB’s performance is regarded better
than PB’s because it can accommodate more frequent savepoints. Between the two schemes of DB,
DB-SO shows better performance than DB-SL.

6 Conclusion

We have proposed a thorough study of partial rollback schemes of OO/ORDBMSs with a dual
buffer. We have proposed four partial rollback schemes for OO/ORDBMSs, which are page buffer-
based, object buffer-based, dual buffer-based using soft log, and dual buffer-based using shadows.
Then, we have explained the concepts and procedures of each scheme, and discussed the pros
and cons of them individually. In addition, we have described the experiments conducted for
performance evaluation of the four schemes and the results. We have validated the results by
mathematical analysis.

We summarize the performance of the four proposed schemes as follows. The page buffer-
based scheme is the easiest to implement because it requires the minimum extension of the existing
scheme of RDBMSs. However, it suffers from performance degradation due to forced-flush overhead
if savepoints are set frequently. The object buffer-based scheme shows good performance when the
object buffer size is large enough. However, it has to sustain memory overhead to maintain the soft
log for recovery. The dual buffer-based schemes are harder to implement than the previous two.
However, they always show relatively good performance regardless of the number of savepoints
and the size of the object buffer. Their memory overhead is much smaller than that of the object
buffer-based scheme. The dual buffer-based scheme using shadows shows better performance than
the one using soft logs. These observations suggest that in general the dual buffer-based partial
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rollback scheme using shadows performs the best.

The partial rollback mechanism is essential to any system supporting interactive users. Thus,
we believe the proposed partial rollback schemes and their evaluation results are very helpful to
the design and implementation of OO/ORDBMSs using a dual buffer.
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