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Abstract-This paper argues for an approach which places the management of large knowledge bases into 
a comprehensive, engineering-oriented framework, and reports on an initial demonstration of these 
concepts. The underlying concepts are well-recognized as being effective in many areas of science: 

I. Partitioning of the knowledge into manageable segments. 
2. Rules for the composition of these segments. 
3. A language to provide access to these segments, control their composition, and provide the power 

of the system in a flexible and clear way. 

The motivation for this research is to deal with problems that are beginning to occur in large 
knowledge-based systems. As current developments of such systems lead to further growth, we foresee 
that their management needs will exceed the capabilities of the existing system infrastructure. In particular, 
we find that in the past issues related to knowledge maintenance have been ignored. Maintenance of 
knowledge-bases is critical if the systems are to persist. 

1. INTRODUCTION 

Problems of knowledge maintenance in large knowl- 
edge-based systems motivate our research. Today 
these problems are evident in only some instances, 
but will become more prevalent as knowledge-based 
systems grow in scope and depth, and last beyond the 
lifetime of a Ph.D. Thesis. Some researchers from 
the AI community have looked towards database 
technology to help in dealing with issues of size and 
update management [l]. Database systems have 
focused on simple structuring and normalization to 
deal with large bodies of information, and do not deal 
well with the complexities of structures needed to 
represent knowledge. 

We are using concepts from database research here 
as well, but must be very careful in intermingling 
database and knowledge-base representations. We 
need to avoid creating a combination with the weak- 
nesses of the two fields, rather than the strengths. 
Future information systems will benefit from dis- 
tributed knowledge sources and distributed compu- 
tation. An architecture to deal with future systems 
must consider the technological opportunities that 
are becoming available. We see these systems 
supporting decision-makers through a two-phase 
process: 

1. Locating and selecting relevant factual data 
and aggregating it according to the decision 
alternatives. 

2. Processing and reducing the data so that the 
number of alternative choices to be decided 
among is small, and the parameters for each 
choice are aggregated to a high conceptual 
level. 

Today most of these support tasks are carried out by 
human experts who mediate between the database 
and the decision maker. For many tasks in medicine, 
warfare, emergency relief and other areas requiring 
rapid actions, dependence on human intermediaries 
introduces an intolerable delay. Future information 
systems will increasingly need to use automatic 
mediators to speed up these support processes [2]. 

The databases, the mediators and the applications 
will all reside on nodes of powerful networks. The 
end-users will always have computers available to 
serve their specific tasks. We refer to those machines 
as application workstations, although they may at 
times be large and powerful processors. 

1.1. Large knowledge bases 

We expect that future information systems will 
contain quantities of knowledge in order to support 
high-level decision-making tasks [3,4]. A few large 
systems of this type exist today [5] and more are being 
planned, some of extremely large size [6]. In the 
process of building these systems and endowing them 
with great deductive power, the issue of long-term 
maintenance is underemphasized. This issue is recog- 
nized by the people actually using large knowledge 
bases [7]. 

The lack of emphasis on maintenance in early 
systems is easy to understand. At first, knowledge 
seems to be a static resource to be acquired, repre- 
sented and utilized. However, the world changes, and 
both the underlying data and the knowledge we 
derive from this data change, albeit at different rates. 
Large and long-lived systems need a clear approach 
on how changes to data and knowledge are to be 
managed. 
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In database design, update has always been a 
concern and has affected the storage representation 
and hence, the methods of retrieval that are feasible. 
Methods for representation of knowledge which seem 
best for retrieval may become inadequate when 
updates to knowledge become a concern. In turn, a 
representation suitable for maintenance will require 
adaptation of the methods used to exploit the stored 
knowledge. 

This paper focuses on the specifics of knowledge 
management. We will need to deal with knowledge 
update and retrieval. We have argued earlier for a 
distinction between data (that portion of information 
which can be mechanically maintained) and knowl- 
edge (the portion requiring expertise for its main- 
tenance) [8]. Expertise is required for knowledge 
maintenance because changes can have wide impli- 
cations. The distinction between knowledge and data 
is less sharp in utilization, since here integration is 
essential. 

In addition to distinguishing knowledge and data, 
our approach further partitions knowledge along 
two dimensions: horizontally and vertically. Before 
describing the partitioning, however, we present 
some background to justify our criteria for horizontal 
partitioning. 

1.2. Overview of the paper 

This paper deals with a specialization of the 
mediator concept elucidated in [2]. The partitions 
we will define are the SODS? introduced in that paper. 

Our partitioning involves data and two categories 
of knowledge-based processing. Access to data was 
surveyed in [2]. In the next section we elaborate a 
conceptual distinction within knowledge-based sys- 
tems as pragmatic vs formal approaches. This distinc- 
tion defines a boundary we use for an engineered 
partitioning of large knowledge bases. We will assign 
pragmatic processing predominantly to the appli- 
cation layer and formal processing predominantly to 
the SOD layer. 

Subsequently we discuss how knowledge may be 
partitioned into manageable units, and in Section 4 
we present the approaches available for their synthe- 
sis. We follow a traditional engineering principle 
here: analysis of a problem into solvable subcom- 
ponents, followed by a synthesis phase into a 
product. Section 5 of the paper presents a simple 
demonstration. A mapping of the conceptual archi- 
tecture into modern, distributed hardware follows. 
Finally, we list some hard topics yet to be addressed. 
In the conclusions, we discuss some generalizations 
now foreseen, but in our work best delayed until we 
have gained experience with the concepts presented 
here. 

tThe term SOD is a new term to correspond with the 
new concept described here. We found that all other 
words we could think of already had excessive semantic 
baggage. 

2. PARADIGMS OF ARTIFICIAL 
INTELLIGENCE 

The problems we are addressing are not novel, but 
are related to what we view as the source of some 
controversy in artificial intelligence research. We find 
two equally valid paradigms in artificial intelligence: 
the pragmatic paradigm, and the formal paradigm. 
We use these two terms simply as convenient labels, 
and include in the formal paradigm the logic-based 
approaches, which seek a formal, typically math- 
ematical, grounding, and in the pragmatic paradigm 
those that focus on the cognitive aspects of human 
knowledge. 

The knowledge-base partitioning we propose rec- 
ognizes their differences and is intended to support 
and profit from both of them. We will briefly discuss 
some salient features of each. 

2.1. The pragmatic paradigm 

Much knowledge exists in the minds of experts. It 
is obtained from education and experience, and forms 
the most powerful tool we have for solving problems 
[9]. One of the great powers of such knowledge is that 
an expert, when confronted with a new set of facts, 
can use extrapolations and analogies to predict and 
evaluate the future effects of actions. The internal 
models in the experts’ minds are undoubtedly quite 
deep and extremely difficult to extract. However, the 
rules by which these experts operate can be extracted, 
at least in part. 

The acquisition of knowledge from experts has led 
to a large and successful activity starting from 
MYCIN [lo] and documented in [3]. In general, only 
surface knowledge needs to be obtained to have 
effective systems focusing on advice-giving on one 
specific topic. Modest numbers of rules, often fewer 
than 100, have provided effective encodings of some 
experts’ domain knowledge. For many domains, 
however, more rules are needed. 

More depth in the knowledge base is needed when 
expert systems are to encompass knowledge covering 
more than one topic, i.e. knowledge from more than 
one expert. Due to their interaction, the number of 
rules for problems covering multiple topics increase 
faster than their sum. 

Even more serious is the issue of mutual consist- 
ency, when disparate topics are joined. We cannot 
expect the surface extraction of the internal models of 
two experts, covering dissimilar but overlapping 
topics, to match. More depth, i.e. the explicit repre- 
sentation of internal causal events and the logic which 
leads to their external expression, is likely to be 
needed. Mismatches of terms used to describe 
internal phenomena makes the results hard to vali- 
date. The issue of mismatch in databases has been 
addressed by a recent thesis [ 111; in expert systems the 
problem is harder. 

User interfaces and explanation facilities further 
greatly increase the size of systems. When the set of 
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rules becomes large, problems of performance, vali- 
dation and knowledge maintenance become critical. 

2.1.1. The formal paradigm. The alternative 

paradigm is the formal paradigm, which has received 
a major impetus since logic programming languages 
have appeared on the scene and made experimen- 
tation in this direction effective [ 121. Here we often see 
a direct exploitation of underlying data resources, 
and wide variety of schemes to make data access 
effective [ 131. 

The formal paradigm derives all its answers from 
well-founded base rules and their composition. 
Heuristics are mainly used to improve the perform- 
ance of the systems, typically by focusing search. 
Most accepted heuristics can be shown to have no 
effect on the result values [alpha beta]; others have a 
small risk of missing some potentially useful results 
[maximal objects]. 

The formality of the approach provides much 
confidence in the results, but also leads to some 
obvious weaknesses. We perceive as the fundamental 

weakness that any provable scheme is restricted to 
deal with the past up to the present. Any extrapol- 
ation of results into the future can never be procen, 
since unpredictable events can always occur. 
Unfortunately, the beneficial use of information by 
decision-makers is always due to a prediction of the 
future. 

2.2. Combining the two paradigms 

We need both the power of the formal approach, 
to make large systems predictable and manageable, 
and the power of expert abstraction and extrapol- 
ation. The interaction of the rules in an expert system 
is such that the user cannot predict the result-and 
that is of the essence of the service which is provided. 
In multi-expert systems, the roles of experts and users 
are intertwined. As these systems grow, a point is 
reached where an expert can no longer predict 
the outcomes. Formal structures will help with the 
managing the knowledge, but the complexity of 
interacting bodies of knowledge is such that truly 
large systems need a partitioning. 

The right combination will let us build future 
systems which are both reliable and non-trivial. 
Combining concepts from these two paradigms is not 
novel; we see it everywhere in today’s practice, 
wherever systems are effectively used. However, 
today’s tools do not promote any partitioning of the 
two types of knowledge, it is even hard to separate 
deductive rules and ground facts. 

When we analyze practical systems today, we find 
a mixture of both paradigms, but often a dominance 
of one over the other, according to the application 

and the taste of the designer. In a recent paper we 
survey a number of projects, tools and approaches 

that provide a knowledge-based layer for dealing with 
data [2]. We used the term mediator to capture the 
general concept of a knowledge layer between the 
user and the data. Mediators may be programs, 
written by an expert, in which heuristic knowledge is 
fully integrated with the formal techniques. 

2.3. Heuristics 

In our discussion we often focused on the issue of 
heuristics. We found that use of heuristics does not 
in itself provide a discrimination of the pragmatic and 
formal paradigms. Heuristics are nearly always used 
to deal with computational complexity. Most knowl- 
edge processing paradigms would not be feasible in 
practice without their use, and optimization strategies 
used heuristics based on parameters such as expected 
domain sizes, user needs, etc. to develop practical 
solutions. The results obtained by such strategies are 
typically correct but not necessarily optimal. 

In pragmatic systems we see a further exploitation 
of heuristics. Here application knowledge may pro- 
vide heuristics about adequate approximate sol- 
utions. These may have errors in terms of set 
membership or rankings, but without taking such 
risks then no answers would be obtained. The prag- 
matic systems, in that sense, model with an unfortu- 
nate accuracy the situations faced by decision makers 
in practice. 

2.4. Large systems 

We have stated earlier that we are primarily con- 
cerned with large systems. Unfortunately, there are 
no simple criteria for the size of knowledge-based 
systems. A simple count of rules is a deceptive 
measurement. Some apparently large systems may 
use a substantial number of rules to store ground 
facts or static data. The expert knowledge may still 
consist of only a few hundred deductive rules. 

Some other expert systems that do embody much 
knowledge use fairly simple knowledge represen- 
tations; for instance, AI/RHEUM [14] uses an inter- 
action matrix of symptoms and diagnosis. Expanding 
such a simple representation, however, (for instance, 
to include issues such as time dependencies [15]) has 
been difficult. 

3. PARTITIONING 

There are two dimensions to the partitioning of the 
information systems we foresee. Horizontal partition- 
ing divides the architecture into three main layers, as 
summarized in the following Table 1. 

Table I 

Layer 

H3 
H2 

Type of information 

Broad application knowledge 
Formal domain knowledge 

Deductions supported 

Pragmatic reasoning 
Logical inference 

Implemented with 

Expert applications 
SODS 

Hl Factual knowledge or data Relational algebra Relational database 
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result + decision making 

3 Independent applications on workstations 

network services to information servers 

2 Multiple Mediators: /I 

network services to data servers 

1 Multiple databases. 

inout + real-world channes 

Fig. 1. Interfaces for three horizontal layers of this architecture. 

These layers have been sketched already in [2]. The (or the underlying facts which led to a piece of 
need for distinguishing updates to factual data and knowledge) can be accommodated with sec- 
knowledge (for instance constraint rules) is reiterated ondary changes of limited and predictable 
in [16]. scope. 

There is another dimension of partitioning in our 
model. Layers Hl, HZ and H3 cannot be monolithic 
entities, and each will be vertically partitioned. The 
bottom layer, Hl, may contain multiple autonomous 
databases and H2 will contain many SODS. These 
SODS may have some limited interaction as peers, but 
more importantly, they will share the underlying 
databases by means of views. At the top level (H3), 
multiple applications will exist, sharing and com- 
bining knowledge from the SODS of layer H2. 

This paper focuses on the central issue of knowl- 
edge partitioning in the relatively formal layer H2, 
but must, of course, also deal with the interfaces to 
the supporting data layer Hl and the supported 
application layer H3. 

They deal with one constrained set of base data 
so that updates to the underlying data and data 
structure required by new knowledge can be 
handled effectively and unambiguously. 
They produce one range of results, understand- 
able in terms of scope and depth by the end- 
user applications. 

An essential hypothesis for our research is that 
the partitions for these four dimensions can be 
made congruent. Complementary to this partitioning 
hypothesis will be a combination hypothesis, to 
follow in Section 4. 

3.1. Desiderata for the partitioning of knowledge into 
SODS 

From these criteria we can derive some more 
specific observations on the natural structures we 
expect to find in the domains of a SOD. We plan to 
exploit these structures whenever possible. 

Recall that our objective is to make knowledge 
manageable. Two prerequisties have to be fulfilled to 
achieve this goal: 

3.2. The str~~tare and reiated se~~t~cs of SODS 

1. The knowledge can be formally Structured. 
2. The knowledge is limited to manageable 

Domain of discourse. 

Since eventually, we also wish to support automat- 
able combinations of the results of the SODS, we also 
must be concerned that the SODS use mergable 
representations for their knowledge. It is hence not 
adequate to have arbitrary dissimilar SODS, whose 
results are presented on, say, distinct windows of a 
terminal. This approach forces the end-user to per- 
form all integration visually or manually by cut-and- 
paste methods. While having multiple terminal 
windows provides an advance over a desk piled high 
with multiple pieces of paper and terminals, it does 
not cover our vision of the future. 

The principle for the vertical partitioning into 
SODS is based on Da~~ains of Ktzowledge. These 
are seen to correspond simultaneously in multiple 
dimensions: 

The structure of a SOD expresses the structure of 
its semantics. We hope to have many structurally 
similar SODS, since we expect that that common 
structures will appear in many different domains, 
although their labels and cardinalities may differ 
greatly. Our goal is as well to decompose knowledge- 
bases so that the structure of many SODS will be 
simple. We prefer hierarchical structures, but realize 
that some SODS will need to use sets, DAGs or more 
complex representations. 

1. They are limited in scope so that one expert can 
cover them and recognize inconsistencies. 

2. They each have one consistent structure im- 
posed on them so that changes in knowledge 

3.2.1. HierarchicaL structures. In any specific do- 
main there is strong tendency to impose a hierarchy 
on the knowledge structures, which often cor- 
responds with organizational requirements of the 
organizations dealing with the information. Hier- 
archies are instantiations of the divide-and-conquer 
paradigm we are trying to exploit also within the 
SODS. When manipulating data through a hierarchy, 
we have a predefined generali~tion-socialization 
structure. Processing in such a structure is much 
easier to manage than in arbitrarily connected net- 
works of knowledge-many important problems 
which are intractable for general graphs have 
O(n logn) solutions for hierarchies. 

The hierarchical structure is beneficial in oper- 
ations of grouping and aggregating base data into 
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higher level abstractions, searching for specific infor- 
mation defined by predicates which describe such 
abstractions~ and disambiguating updates. 

While predicates can specify abstraction levels di- 
rectly (department in a personnel hierarchy) quantita- 
tive goals may be satisfied by finding the right level 
of the hierarchy. If we need more programmers than 
we can find in our department, a move up to the 
division level may satisfy that request [17]. 

3.2.2. Closed worlds. We expect our SODS to be 
self-desc~bing and inspectable, and an important 
part of a SOD is a description of what kinds of 
assumptions we can make about the domain the SOD 
represents. Some of the SODS will be able to support 
the closed-world assumption (CWA) [18]. This 
assumption is commonly made when dealing with 
databases, but is risky for general expert systems. If 
the maintaining expert’s confidence and the intrinsic 
definition of a domain is such that the CWA holds, 
then operations requiring universal quantification 
and negation can be supported in SOD, otherwise 
they should not be supported. 

In a SOD dealing with corporate personnel and 
maintained by an expert attached to the personnel 
department, the CWA is likely to be valid. A SOD 
dealing with database consultants may be able to 
locate many instances of consultants, but is unlikely 
to be able to locate all of them until an ACADEMY 

OF DATABASE CONSULTING is established, and all 
non-members are disbarred. 

Since SODS are not restricted to relational data we 
will eventually need to support more flexible formal- 
isms, such as circumscription [19]. 

3.23. Closure. We will often look for a SOD to 
provide all instances satisfying some precisely stated 
criteria of relatedness. For example we may want to 
find all the descendants of a given person, or find all 
the papers which are “similar” to a given example 
paper. Such queries look for some sort closure in the 
domain, and for SODS with a hierarchical structure, 
these queries are often expressed most naturally in 
terms of transitive closure. At other times, like in the 
“similar” papers example, we will to use distance- 
based concepts which are not transitive. While for 
simple structures, such closure-based queries can be 
dealt with by simple extensions to database query 
languages, we will need to provide some faitly com- 
plex computations to answer such queries over more 
general SODS. This issue intertwines closely with 
the ideas of closed-world SODS expressed above. 
Whether or not the closed world assumption holds in 
a SOD may affect the implementation of a closure- 
based query, but more importantly, drastically affects 
the interpretation and confidence to be attached to 
the results of the query. 

3.3. Evaluation functions 

For decision-making process we often need only 
the n besr alternatives according to some ranking. The 
rank is obtained by an evaluation-function; such 

functions may be simple (say, the highest paid pro- 
grammers) or compiex (say, the best programmers). 
The SODS for these two queries may be distinct, 
although the database views needed for the evalu- 
ation may be overlapping. The highest paid pro- 
grammers are obtained from the personnel SOD; the 
challenge here is to find an efficient algorithm that 
can avoid unnecessary database accesses. The SOD to 
find the best programmer will be complex and will 
depend both on some experts’ insights and on com- 
plex database access functions in order to collect all 
the correlative data. In fact, there may be more than 
one SOD available to answer the best-programmer 
query, say the Brooks-best-programmer SOD and the 
Orr-best-programmer SOD. 

3.3.1. Inspectability. We now arrive at a new cri- 
terion for SODS. We wish them to be inspectable. 
Whereas simple formal systems may hide lower level 
information in order to maintain application inde- 
pendence, we cannot see doing this for SODS because 
the application user should have the capability of 
determining whether the BrooksSoD or the Orr-SoD 
is best for the current objective. Such an inspection 
may be mediated by an inspector SOD, and may not 
support copying of the SOD or direct access to the 
base data. 

3.3.2. Declarative approaches. To support in- 
spectability it is desirable that, as much as possible, 
the processes within a SOD be driven by declarations 
and formal parameters. We would hope to capture 
the differences of Brook’s evaluation and Orr’s evalu- 
ation by parameter settings and that the same pro- 
cessing routine can be employed by both SODS. 

3.4. From data to SODS 

Because we propose a partitioned architecture for 
future info~ation systems, an important issue is the 
interface between the supporting data layer Hl and 
the SODS of layer H2. Although the SODS are most 
naturally implemented with object structures (as dis- 
cussed in Section 5), we use relational databases as 
the storage scheme for factual information of layer 
Hl. 

Storing information in the form of complex objects 
can seriously inhibit sharing-different groups of 
users will need to assign different object boundaries 
to the same information [ZO]. However, object- 
oriented presentations of information can be clearer 
and more concise than long tables of voluminous 
text. A desirable compromise is to provide an object- 
oriented interface to relational data, combining many 
of the better features of each representation [2]. Such 
an interface serves as an effective mapping from 
databases to SODS, translating Hl’s relational tuples 
into H2’s object instances. An active area of our 
research has been directed toward this goal. 

We introduce an object-based interface on top of a 
relational database system. This architecture does not 
call for storing objects explicitly in the database, but 
rather for generating and manipulating temporary 



66 GIO WIEDERHOLD et al. 

object instances by binding data from base relations 
to predefined object templates. The three components 
of the object interface are: 

1. The object generator maps relations into object 
templates; each of which can be a complex 
combination of join and projection operations 
on the base relations. In addition, an object 
network groups together related templates, 
thereby identifying different object views of the 
same database. The set of object networks 
constructed over a given database form an 
object schema, which, like the data schema for 
a relational database, represents the domain- 
specific information needed to gain access to 
the objects. The whole process is knowledge- 
driven, using the semantics of the database 
structure. 

2. The object instantiator provides non-pro- 
cedural access to the actual object instances. A 
declarative query specifies the template of in- 
terest. Combining the database-access function 
(stored in the template), and the specific selec- 
tion criteria, the system automatically gener- 
ates the relational query and transmits it to the 
DBMS, which in turn transmits back the set of 
matching relational tuples. In addition to per- 
forming the database-access function, the ob- 
ject template specifies the structure and linkage 
of the data elements within the object. This 
information is necessary for the tuples to be 
correctly assembled into the desired instances. 

3. The object decomposer implements the inverse 
function; that is, it maps the object instances 
back to the base relations. This component is 
invoked when changes to some object instances 
need to be made persistent at the database 
level. An object instance is generated by col- 
lapsing (potentially) many tuples from several 
relations. By the same token, one update oper- 
ation on an object may result in a number of 
update operations that need to be performed 
on the base relations. We plan to apply here 
results of research in the KBMS project, which 
deals with updating through relational views 

PI. 
An object template therefore represents a view 

of the database. Instantiation selects, retrieves and 
aggregates relevant data into object instances that can 
now be manipulated by a SOD. In addition, the SODS 
can share factual information by sharing the object 
templates and their access functions. The same object, 
say a person, can be instantiated by more than one 
SOD, let’s say in one SOD as a faculty member and 
in another SOD as a database consultant. 

The formal design for this approach is domain- 
independent. It is then our belief that ideas, principles 
and programs developed in this process will be 
applicable to other knowledge-based interface 
approaches. 

4. COMPOSITION 

A single SOD has a power which is comparable to 
that of a simple expert system with access to a 
database or, in the database paradigm, of an ad- 
vanced database query processor. Such systems are 
typically limited to one domain and implemented 
using one type of structure. Simple hierarchical sys- 
tems can be effective for some tasks, as classification, 
ranking of alternatives, etc. but are rarely adequate 
for multi-objective assessments and decision-making 
support [23]. We do not wish to make our SODS more 
complex, lest we lose maintainability. 

Instead we wish to make them composable. 
Successful composition is the second hypothesis in 
this research. 

One way in which SODS can cooperate is as peers, 
working like a team of expert advisors to a top 
executive, to solve a common problem. In order to 
cooperate, they will need a way to exchange infor- 
mation. To facilitate this, the high-level language, by 
which applications query and command SODS should 
have good algebraic properties. We discuss the basic 
language features in this section and will return to 
present further work needed in Section 7. 

There is another kind of composition that must be 
supported, and this composition relates to the inter- 
nal structure of a SOD. A SOD is a complex entity, 
containing data, inference techniques, knowledge and 
abstractions. All these subunits should be sharable, 
and in fact must be shared wherever possible. This 
is the exactly same reason that databases are nor- 
malized or software is built of reusable modules- 
duplicated structure leads to inefficiency and update 
anomalies. 

4.1. An access language for SODS 

We envisage SODS to be used by high-level, heuris- 
tic applications. Flexibility of access requires that the 
interface be non-rigid, and the intent to be able to 
deal with multiple SODS in an application requires 
composability as further addressed in the next 
section. 

We hence specify an access language SAL which 
provides access to information produced by the 
SODS. This information is seen to have the form of 
instantiated complex objects, similar to the nested- 
relation tuples described by [24]. The mappings 
from data resources to these objects is hidden within 
SODS. We do need, however, some additional 
functionality. 

This language is not fully specified, but it must 
support primitives to specify: 

1. 

2. 
3. 
4. 
5. 

Selection of subsets of objects satisfying user 
defined criteria. 
Transitive closure 
Constraints on the cardinality r of answer sets. 
A best predicate to select from a ranking. 
Computation over temporal data. 
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We will not discuss this last feature in this paper, 
although it is obvious that to project results into the 

future, some temporal processing is needed, as shown 
in some of our earlier research [25,26]. 

It is important to note that distinct SODS may 
support the extended primitives (2-4 above) in differ- 
ent ways, dependent on the structure of their do- 
mains. The best predicate is especially likely to be 
interpreted in a domain-sensitive manner. Without a 
defined best predicate a SOD can just return the r first 
object instances when a cardinality constraint is 

imposed. 
Note that this language is intended to provide a 

smooth and sensible transition between the tra- 
ditional database and PROLOG styles of data 

retrieval. The database style, exemplified by 
DATALOG, retrieves all instances, i.e. implies a 
cardinality constraint Y = M. The Prolog style 
retrieves initially the first instance found, implying 
r = 1. Having the cardinality specified explicitly also 
addresses a vexing problem in the database-to- 
programming-language interface. Most program- 
ming languages deal only with fixed length structures, 
or at best with variable length structures up to a 
certain maximum size. (As our current demonstration 
is implemented in Lisp. this issue does not now 

arise.) 
Today, without the knowledge encoded in SODS, 

the methods for retrieving the best information are 
explicitly specified by the user. It is likely to require 
distinct methods for multiple domains. Both in data- 
base and Prolog access styles, these specifications 
require knowledge of each the underlying domains 
and their structure. In today’s database languages a 
sensible specification is likely impossible to state, so 
that all the data has to be retrieved into memory, and 
then processed and reduced by application programs. 

The application at layer H3 takes the information 
provided by the SODS, composes it, and reduces it as 
desired by intersecting results of distinct SODS with 
each other. It also presents the information in the 
most appropriate forms to the user. To service the H3 
layer we are looking for a language similar in style to 
a relational algebra, rather than to a language such 
as SQL which attempts to provide a user-friendly 
interface as well as programmed access, and fails at 
both. 

Having a language interface simplifies the tasks of 
the SODS at layer H2 since direct external presen- 
tation issues are ignored. Enough corresponding 
meta-data must be made available to layer H3 so that 
smart formatting and pleasant presentation is feasible 
[27]. We have not addressed this issue yet. We are 
experimenting with a smart menu system, using such 
knowledge. 

4.2. A SOD result language 

In order to make SODS comparable, one SOD must 
be able to act on the results of another. We therefore 
define a SOD result language SOREL by which this 

kind of communication can take place. SOREL will 
be extremely simple and limited, especially in com- 

parison to the SOD access language. One way of 
looking at this is to realize that SAL is in some sense 
a union of capabilities, since it must be powerful 
enough to express anything we would ask of a SOD, 
while the SOD result language is more like an inter- 
section, since it should be understood by all SODS. 

The exact form of SOREL will depend on the SODS 
and the needs of the application, but for most 
applications, we expect the SODS to return only 
ground data, i.e. tuples, relations and object iden- 

tifiers. 
The answers given by a SOD in SOREL will be 

returned to the application at H3. The application 
may then use results directly or as input to another 
SOD. 

4.2.1. Identifying shared objects. One of the first 
problems that must be handled for SODS to work 
together cooperatively is to get them to agree on a 
common ground for communication. Human experts 
often disagree as to the meanings of words or of 
concepts, and this will be a problem for SODS as well. 
In one common case, the architecture and its support 
for definitional composition can help greatly in iden- 
tifying shared objects. Because our SODS can be built 

from simpler, shared components, it will often hap- 
pen that two SODS will be using an object created at 
a lower level. In this case, it is easy for the SODS to 
recognize that they are sharing the same object---they 
are both looking at the same object identifier. 

In the more general case, identification is not this 
easy. If the SODS are using objects created on differ- 
ent computer systems, or if the objects are created at 
a higher level, we can easily have two computer 
“objects” (with distinct identifiers) that nevertheless 
denote the same abstract object in the real world. 
When this happens, we will have to compare the 
objects, relying on key values and matching heuris- 
tics. Perhaps we can invoke a SOD to help us with the 
merging tasks. If the domains of the attributes to be 
merged are actually mismatched, then we certainly 
need intelligent processing, and we may need rank- 
ings based on the best match [I 11. 

4.3. Power of the combined system 

By partitioning the knowledge base, we gain the 
ability to use and combine special-purpose SODS and 
their knowledge representations without having to 
build one super-interpreter which understands all 
knowledge representations (and all the combinations 
of the knowledge representations). This partitioning 
then makes maintenance much more tractable. How- 
ever, in partitioning the data into SODS, and allowing 
them to communicate only via the restricted SOD 
result language, we lose some of the arbitrary connec- 
tiveness associated with knowledge representations, 
such as semantic nets. 

This loss of connectivity may reduce the expressive 
power of the system. For example, let’s say that when 
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designing a wing, an aircraft designer looks at two 
SODS, one of which can evaluate and optimize a 
design for aerodynamic performance, and another 
SOD which looks at mechanical strength and weight. 
Since the wing should have good performance 
according to the criteria of both SODS, the designer 
is faced with an iterative (or even trial-and-error) 
process, of checking designs though both SODS and 
looking for a global optimum. 

This iterative process might have been avoidable, 
if the two SODS were unified into one super-SOD 
able to find a global optimum for aerodynamics, 
strength and weight. What this example tells us is 
that the design process which splits knowledge 
into SODS is quite critical. A given partitioning 
may gain us a great deal in terms of implementation, 
maintenance and assignment of responsibility, 
but may also incur a significant cost in expressive 
power. 

5. A DEMONSTRATION 

To demonstrate the concepts, the students on the 
KSYS project have chosen the task of assigning 
reviewers for journal papers submission. Four SODS 
serve 

1. 

the task: 

Relevance-we need reviewers with a back- 
ground relevant to the submitted paper. This 
task is performed by matching in a keyword 
classification hierarchy. 
Quality-we prefer the most qualified review- 
ers. For this task we rank potential reviewers 
based on their published output in books, 
journals, etc. 
Conflict avoidance-we cannot assign review- 
ers to friends or colleagues. Here we match 
people based on institutional affiliation in over- 
lapping intervals. 
Responsiveness-the reviewers must produce 
their reviews in time. Here we can look at a log 
of electronic-mail interactions. 

We can use this example to elucidate the difference 
of the AI paradigms allocated to level H3 and H2. 
The tasks in the SODS at layer H2 can all be defined 
quite formally. At the top layer H3 some unwar- 
ranted pragmatic heuristics are used to implement the 
reviewer selection task. For instance: 

1. Having written high-quality publications in a 
topic area does not assure one that the can- 
didate does equally well as reviewer. It is 
the best guess that our application task can 
make, but we all know some excellent critics 
who do not write much. The mapping of 
qualified-writer + qualified-reviewer is prag- 
matic. The establishment of a set of quali- 
fied-writers is adequately formal to justify its 
allocation to a SOD. 

Having worked together does not make one a 
friend, and being a friend does not imply 
favoritism. But we do not need to weed out 
risky matches-in fact, due to prior publi- 
cations the most likely best match is the sub- 
mittor of the paper. 
Electronic mail responsiveness is probably only 
weakly correlated with fast reviewing-there 
are people who respond instantly to email and 
never respond to review requests. 

The language currently used between layers Hl and 
H2 is LISP because it supports the extensibility 
essential to rapid research progress. 

The data accessed by the first three SODS are 
distinct views of an extensive bibliography of knowl- 
edge and database references, collected over about 
18 yr, with about 6000 entries. Information kept 
includes type of publication (for the Quality-SOD), 
authors (the principal identifiers), author’s location 
(for the Conflict-avoidance-SOD), publication details 
and sequence with dates (for the Conflict-avoidance- 
SOD), title, abstract and classification (the last three 
are used by the Relevance-SOD). 

Two of the SODS are currently implemented-rel- 
evance and conflict avoidance. They are implemented 
as Lisp programs which have access to the object 
system and a commercial relational database. As we 
gain more experience, we intend to replace the Lisp 
code with a more declarative representation. 

At the simplest level, the Relevance-SOD takes a 
keyword (or list of keywords) describing the subject 
of the paper to be reviewed, and looks in the database 
for authors who have written papers on the key- 
word(s). If enough authors are returned by this 
database query, this is all that happens. If however, 
the database query does not find enough authors, or 
if the application asks for more candidate reviewers 
later, the Relevance-SOD will replace the original 
query by a more general one, in order to increase the 
cardinality of the result. 

This capability is an example of query generaliz- 
ation [17]. It is possible because the SOD makes use 
of some of the semantics of the keywords. The 
keywords are arranged in a hierarchy, in which the 
parent is the more general keyword, and the children 
the more specific. If a query does not return suf- 
ficiently many results, a concept of semantic distance 
in the hierarchy is used to suggest alternate keywords 
to try. 

The data structures used by the SOD are designed 
to efficiently support this kind of iterated query style 
efficiently. A set of authors can be found by a 
succession of related queries can be answered with 
about the same total effort as would be needed to find 
that same set of authors with one more general query. 

The application interface is simply a set of Lisp 
functions which the application can use. As our 
system evolves, we intend to build a higher-level 
interface. In our design, an application which is 
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looking for reviewers would submit a query of the 
form: 

select best 3 reviewer 
from relevance-SoD 
where relevant = ‘knowledge- base’ 

and reviewer not in 
(select all friend 
from conflict-avoidance-SoD 
where author =‘Gio Wiederhold’) 

Note that this query refers to two different SODS. 
Since a particular SOD can only answer queries about 
its own domain, this query is translated into a slightly 
lower level form. which specifies the individual 
queries to the SODS, and the information flow be- 
tween them. 

a: = select all friend 
from conflict-avoidance-SoD 
where author =‘Gio Wiederhold’ 

b: = select best 3 reviewer 
from relevance-SoD 
where relevant =‘knowledge-base’ 
and not in a 

RETURN b 

Note that even this second query is fairly high level. 
It refers to such abstractions as relevant, which are 
implemented by the SODS. 

6. THE IMPLEMENTATION ARCHITECTURE 

The demonstration is implemented in fairly 
straightforward way, but a short description will 
illustrate some issues better than an abstract dis- 
cussion can. 

6.1. SOD implementation 

The criteria we have listed encourages an im- 
plementation which supports object-oriented type 
definitions. We building a simple Lisp-frame struc- 
ture to support SODS. Low level frames correspond 
to database schema entries and support retrieval from 
databases; data that is retrieved must be bound into 
the object-type structures and represent object in- 
stances as discussed in the previous section. Concepts 
such as trackers [13] deal with effective handling of 
partially- or fully-instantiated sets of data. 

Functions and predicates from the object type 
definitions are inherited by the object instances. 
Default values are overridden by any actual data 
retrieved from the database. 

Common methods, as selection and transitive 
closure, will be shared by multiple SODS, especially 
when their general structure is similar. Sharing should 
be possible even if their object types and instances 
differ. General parameters, as the CWA, can cause 
alternate variants of methods to be invoked. Note 
again that SODS are not distinguished by their pro- 
gram structure or algorithms, but rather by their 
structure and domain knowledge. 

Interface: high-level language 

Primitives 

‘p7-j 

I 
Binding I 

Interface: data-base access language(s) 

Fig. 2. The components of a SOD. 

6.2. Elements of a SOD 

The specific structure of a SOD is shown in Fig. 2. 
Each SOD contains a simple hierarchy of objects 

pertaining to its domain. The views provided by the 
objects compose the entire view of the SOD over the 
database. Rules embedded in the object structures are 

used to control the instantiation of objects and 
compute dynamic slot values. Each SOD provides 
primitive operations it can support and accepts the 
parameters it needs from applications. Binding inter- 
faces the SOD objects with the underlying databases 
by retrieving object instances generated from the 
databases. For efficiency, the instances of the SOD 
objects are bound into memory as early as possible. 

In terms of their external interface we expect SODS 
to be free-standing units, accessible on the high-speed 
communication networks now in the planning stage. 
For efficient execution, SODS can be replicated on 
other computing nodes where the data (Hl) or the 
applications (H3) reside. 

6.3. Structure qf an object 

We indicated earlier that we are implementing the 
SODS using frames, similar to those seen in the 
UNITS system [28] and its successors such as 
KEE and RX [25]. This means that an object is 
implemented as a frame in a Lisp structure. 

A frame is composed of a number of slots. Each 
slot is labeled, and contains the following elements: 

1. An indication of its SOD membership. 
2. A domain definition, to constrain its values. 
3. A value. 

Values may be constants or references to other 
objects. Constants occur mainly in frames that have 
been instantiated from the database. 

An object frame inherits its slots from the SOD that 
it is a member of. A frame in our system that belongs 
to a single SOD differs but little from frames seen in 
other systems. The differences arise when an object 
becomes a member of multiple SODS. 

6.4. Structural support for composition 

An object may be a member of multiple SODS. It 
is the task of the binding layer to recognize that 
information for an object already exists and performs 
the binding for the two overlapping instances. 
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The joint object will inherit the slots from all the 
SODS it belongs to. We see here a departure from the 
common schemes used when multiple inheritance is 
needed: the information is not intermingled according 
to local rules. Since we mainly use information from 
the database, it is not likely that there will be rules to 
cover the variety of interactions that can be realized 
among objects from distinct SODS. The disjoint 

inheritance is also imposed on the values in the object 
slots: 

l An inherited slot value is inherited from only one 
specified SOD. 

We hence provide for multiple inheritance into 

objects, but not into the same slots of objects. This 
rule eliminates the multiple inheritance problem for 
which no general solution is likely to be found. We 
find solutions that have been proposed too specific 
for a general system, but recognize that multiple 
inheritance is a valid and useful concept. 

An example will clarify our approach. Say that the 
Personnel-SOD has retrieved an individual (John) 
with location, job-classification, salary, etc. infor- 
mation from a PEOPLE database. John is also being 
retrieved by a Skills-SOD as possessing the skills and 
a willingness to do weekly consulting on some topic. 
The slots identifying John are identical and shared, 
not requiring inheritance. The salary slot belongs to 
the Personnel-SOD, and may either be explicitly 
retrieved or filled in by inheritance for all employees 
of that classification. The fee slot belongs to the 
Skills-SOD, and may be estimated by averaging 
known fees of similar individuals. There is less likely 
to be a well-established hierarchy here. 

For some decision-making process at layer H3 we 
may actually need an income estimate. The applica- 
tion can obtain the distinct components and combine 
them as it pleases. 

If the task of estimating incomes is frequent and 
consistency is desired, then it should be formalized. 
This means we assign a new expert to the task and let 
her define a SOD for income estimation. An income 
slot, inherited from that SOD may be adjoined to the 
object for John and income is then computable on 
the basis of salary, fee, alimony, and any other 

financial reward slots that other SODS may instantiate 
in this object. The values in this slot will not be 
subject to inheritance, only the formula is inherited. 

It is clear why inspectability of SODS is needed. The 
questions of composability are so complex that it is 
often desirable to determine how a value as income 
is computed. Still, we wish to delegate the actual 
computation to a SOD, in which we normally place 
some trust. The confidence in the SOD emulates 
confidence we have in the reports and summaries 
provided by specialists from our Personnel depart- 
ment, the Skills specialists and in our assistants who 
compose the information. Only if we need to question 
the result do we inquire into their methods. 

7. SUBPROBLEMS TO BE ADDRESSED 

The task of managing large knowledge-bases, 
which undergo growth and change is daunting. While 
we have sketched those aspects of our approach that 
seem clear to us, there are many tasks which require 
expansion and generalization. 

We will list some here. For some of these we have 
some ideas on how to address them, other problems 
are quite open. 

7.1. Object ident$cation 

Correct object identification is critical for the 
matching operations at layers H3. While objects 
instantiated with SODS at layer HZ have a simple 
linkage with the underlying database, we can use 
database keys or derived surrogates from layer Hl to 
identify objects. 

When derived objects are created within SODS such 
identifiers may become difficult to link. The fact that 
SODS will share computational processes can help, 
but probably not guarantee correct matching when 
information follows different processing paths. 

7.2. Dynamic slot generation 

Dynamic slot values are derived using knowledge 

about the data in the databases. This may take the 
form of a default values when the base data are 
unpopulated, procedural functions over the base data 
or declarative rule sets. 

1 Label I SOD I domain I value 

ID 

I I I 
- identifier I internal 

I name I- I identifier I John I 
I iob_class I Personnel I code I G21 I 
I salarv 1 Personnel I dollars I 35000 I 
I deductions I Pavroll I count 13 I 

skill 

fee 

1 Consult code ) 2324, 2366, 3756 

1 Consult 1 dollars I 1000 I 
willingness 1 Consult +scale 14 
income 1 Estimator 1 formula 1 salary + alimony*12 + fee*52 

Fig. 3. Frame with SOD labeled slots. 
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The issues in this area involve deciding at what frame instances are needed, its view is translated into 

point to compute the derived value and determining a relational query and delivered to the database. The 

how to recompute this value when the base data query results are stored in main memory and pro- 

changes. It may even be that some derived values are cessed. We expect that for many complex queries 

stored in the database for efficiency. In this case we delivered to the database we cannot achieve reason- 

may need trigger mechanisms to update the values able performance by simply delivering the queries to 

when the base data changes. the database. 
At a higher level of abstraction we must consider 

how objects acquire new slots. In our example a slot 
was acquired by merging selected objects with the 
Estimator-SOD. How such a procedure can be gen- 
eralized has not yet been defined. A follow-on phase 
could have the application at H3 define a private 
SOD. or its equivalent, so that private computations 
can be attached to materialized objects in layer H2. 
We do not foresee dynamic generation of data access- 
ing slots. 

We are thus developing a binding strategy for 
minimizing accesses to secondary storage databases. 
The binding strategy is to cache the multiple query 
results in a nested, prejoined form for compact 
storage for retrieval of frame instances. Queries deliv- 
ered to the database are modified as needed whenever 
the binding module detects that relevant reusable 
query results have already been bound into the main 
memory. 

7.5. Interacting SODS 

7.3. Lmguuge optimization 

Choosing an algebraic language SAL for commu- 

nicating with the SOD should enable optimization. 
Currently, we process the SODS in the order men- 
tioned in the task definition, but other sequences are 
likely to provide better performance. While we under- 
stand issues of join ordering [29], we now have new 
operations that will require new optimization rules. 

This SAL language operates on larger granules of 
primitives than current 4GL languages. Semantically 
similar primitives of the language will be executed 
differently in the various SODS. To perform global 
optimization the SODS have to be able to provide 
abstractions or evaluation functions of their methods 
to the global optimizer. 

At present the top application layer is the executive 
responsible for the integration of knowledge obtained 

from SODS. An extension of this architecture we must 
investigate is the hierarchical composition of a SOD 
from subSoDs. In this way the parent SOD would 
perform the task of integrating knowledge from 
subSoDs, and itself might be a subSoD of another 
SOD. For this to be possible, the interface exported 
from a SOD (i.e. the query language supported) must 
provide a superset of the functionality used by a SOD. 

This direction moves us closer to the interacting 
ACTORS paradigm [30]. We do, however, still expect 
to impose constraints on their composition, and in 
that sense are closer to concepts of the ORG ap- 
proach [31]. 

Note that SODS interact at the language interface 

level in at least two ways: 8. CONCLUSION 

I. The output from one SOD may help another 
SOD reduce its search. 

2. The output from one SOD may necessitate a 
previously-executed SOD to be reexecuted. 

For example. when searching for “three competent 
and responsive reviewers,” the list of competent 
reviewers could help reduce the search for responsive 
reviewers, but if only one of the competent reviewers 
turns out to be responsive, then perhaps the “com- 
petency” test should be relaxed and reexecuted in 
order to return the requested three reviewers. In 
neither of two cases will it be necessary to ship large 
volumes of data for resolution of the intersection 
result to the computer used for the application. 

We have presented an approach to deal with the 
management of large knowledge-based systems. The 
approach is based on a domain and structure-sensi- 
tive partitioning of the data and knowledge to be 

managed, and careful and limited interactions among 
the partitions. A simple demonstration illustrates our 
approach. 

7.4. Object instantiation 

We define the criteria for SODS, our principal unit 
for the partitioning, and discuss the effects of the 
criteria. With the benefits of partitioning a loss of 
power is induced; we can no longer navigate in 
seemingly arbitrary ways throughout the knowledge 
base. It is difficult to assess the cost-benefit ratio 
of this tradeoff. We are optimistic that it is high; 
analogies can be found in human organizations as 
well as in other large computer systems. 

In the system design adopted for KSYS, a binding 
module interfaces between the frame system layer and 
database layer. It provides object instances generated 
from databases data into the frame system. 

The instances of frames used by SODS are gener- 
ated from relational databases. Each frame prototype 
for a SOD defines a view of the database for selecting 
a subset of the database as frame instances. When 

In our current demonstration the efficiency cannot 
be measured. We know that acceptance of new 
technology requires both conceptual benefits as well 
as reasonable efficiency and we hope to gain efficiency 
with our binding approaches. These will benefit from 
the structure information that SODS provide. 

Automation of techniques of knowledge manage- 
ment will be essential in a wide range of future 
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applications. We hope and expect that the principles [13] S. Ceri, G. Gottlob and G. Wiederhold. Interfacing 

we have laid out will contribute to an orderly and relational databases and PROLOG efficiently. IEEE 

productive growth of the field. 
Trans. Software Engng Feb, 153-164 (1989). 

[14] L. C. Kingsland, D. A. B. Lindberg and G. C. Sharp. 
AI/RHEUM: a consultant system-for rheumatology. 
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