
Information Systems Vol. IS, No. I, pp. 61-72, 1990 0306-4379/90 $3.00 + 0.00

Printed in Great Britain. All rights reserved Copyright c 1990 Pergamon Press plc

PARTITIONING AND COMPOSING KNOWLEDGE

GIO WIEDERHOLD, PETER RATHMANN, THIERRY BARSALOU, BYUNG SUK LEE and DALLAS QUASS

Stanford University, Stanford, CA 94305-2171. U.S.A.

(Received for publication 16 November 1989)

Abstract-This paper argues for an approach which places the management of large knowledge bases into
a comprehensive, engineering-oriented framework, and reports on an initial demonstration of these
concepts. The underlying concepts are well-recognized as being effective in many areas of science:

I. Partitioning of the knowledge into manageable segments.
2. Rules for the composition of these segments.
3. A language to provide access to these segments, control their composition, and provide the power

of the system in a flexible and clear way.

The motivation for this research is to deal with problems that are beginning to occur in large
knowledge-based systems. As current developments of such systems lead to further growth, we foresee
that their management needs will exceed the capabilities of the existing system infrastructure. In particular,
we find that in the past issues related to knowledge maintenance have been ignored. Maintenance of
knowledge-bases is critical if the systems are to persist.

1. INTRODUCTION

Problems of knowledge maintenance in large knowl-
edge-based systems motivate our research. Today
these problems are evident in only some instances,
but will become more prevalent as knowledge-based
systems grow in scope and depth, and last beyond the
lifetime of a Ph.D. Thesis. Some researchers from
the AI community have looked towards database
technology to help in dealing with issues of size and
update management [l]. Database systems have
focused on simple structuring and normalization to
deal with large bodies of information, and do not deal
well with the complexities of structures needed to
represent knowledge.

We are using concepts from database research here
as well, but must be very careful in intermingling
database and knowledge-base representations. We
need to avoid creating a combination with the weak-
nesses of the two fields, rather than the strengths.
Future information systems will benefit from dis-
tributed knowledge sources and distributed compu-
tation. An architecture to deal with future systems
must consider the technological opportunities that
are becoming available. We see these systems
supporting decision-makers through a two-phase
process:

1. Locating and selecting relevant factual data
and aggregating it according to the decision
alternatives.

2. Processing and reducing the data so that the
number of alternative choices to be decided
among is small, and the parameters for each
choice are aggregated to a high conceptual
level.

Today most of these support tasks are carried out by
human experts who mediate between the database
and the decision maker. For many tasks in medicine,
warfare, emergency relief and other areas requiring
rapid actions, dependence on human intermediaries
introduces an intolerable delay. Future information
systems will increasingly need to use automatic
mediators to speed up these support processes [2].

The databases, the mediators and the applications
will all reside on nodes of powerful networks. The
end-users will always have computers available to
serve their specific tasks. We refer to those machines
as application workstations, although they may at
times be large and powerful processors.

1.1. Large knowledge bases

We expect that future information systems will
contain quantities of knowledge in order to support
high-level decision-making tasks [3,4]. A few large
systems of this type exist today [5] and more are being
planned, some of extremely large size [6]. In the
process of building these systems and endowing them
with great deductive power, the issue of long-term
maintenance is underemphasized. This issue is recog-
nized by the people actually using large knowledge
bases [7].

The lack of emphasis on maintenance in early
systems is easy to understand. At first, knowledge
seems to be a static resource to be acquired, repre-
sented and utilized. However, the world changes, and
both the underlying data and the knowledge we
derive from this data change, albeit at different rates.
Large and long-lived systems need a clear approach
on how changes to data and knowledge are to be
managed.

61

62 GIO WIEDERHOLD et al.

In database design, update has always been a
concern and has affected the storage representation
and hence, the methods of retrieval that are feasible.
Methods for representation of knowledge which seem
best for retrieval may become inadequate when
updates to knowledge become a concern. In turn, a
representation suitable for maintenance will require
adaptation of the methods used to exploit the stored
knowledge.

This paper focuses on the specifics of knowledge
management. We will need to deal with knowledge
update and retrieval. We have argued earlier for a
distinction between data (that portion of information
which can be mechanically maintained) and knowl-
edge (the portion requiring expertise for its main-
tenance) [8]. Expertise is required for knowledge
maintenance because changes can have wide impli-
cations. The distinction between knowledge and data
is less sharp in utilization, since here integration is
essential.

In addition to distinguishing knowledge and data,
our approach further partitions knowledge along
two dimensions: horizontally and vertically. Before
describing the partitioning, however, we present
some background to justify our criteria for horizontal
partitioning.

1.2. Overview of the paper

This paper deals with a specialization of the
mediator concept elucidated in [2]. The partitions
we will define are the SODS? introduced in that paper.

Our partitioning involves data and two categories
of knowledge-based processing. Access to data was
surveyed in [2]. In the next section we elaborate a
conceptual distinction within knowledge-based sys-
tems as pragmatic vs formal approaches. This distinc-
tion defines a boundary we use for an engineered
partitioning of large knowledge bases. We will assign
pragmatic processing predominantly to the appli-
cation layer and formal processing predominantly to
the SOD layer.

Subsequently we discuss how knowledge may be
partitioned into manageable units, and in Section 4
we present the approaches available for their synthe-
sis. We follow a traditional engineering principle
here: analysis of a problem into solvable subcom-
ponents, followed by a synthesis phase into a
product. Section 5 of the paper presents a simple
demonstration. A mapping of the conceptual archi-
tecture into modern, distributed hardware follows.
Finally, we list some hard topics yet to be addressed.
In the conclusions, we discuss some generalizations
now foreseen, but in our work best delayed until we
have gained experience with the concepts presented
here.

tThe term SOD is a new term to correspond with the
new concept described here. We found that all other
words we could think of already had excessive semantic
baggage.

2. PARADIGMS OF ARTIFICIAL
INTELLIGENCE

The problems we are addressing are not novel, but
are related to what we view as the source of some
controversy in artificial intelligence research. We find
two equally valid paradigms in artificial intelligence:
the pragmatic paradigm, and the formal paradigm.
We use these two terms simply as convenient labels,
and include in the formal paradigm the logic-based
approaches, which seek a formal, typically math-
ematical, grounding, and in the pragmatic paradigm
those that focus on the cognitive aspects of human
knowledge.

The knowledge-base partitioning we propose rec-
ognizes their differences and is intended to support
and profit from both of them. We will briefly discuss
some salient features of each.

2.1. The pragmatic paradigm

Much knowledge exists in the minds of experts. It
is obtained from education and experience, and forms
the most powerful tool we have for solving problems
[9]. One of the great powers of such knowledge is that
an expert, when confronted with a new set of facts,
can use extrapolations and analogies to predict and
evaluate the future effects of actions. The internal
models in the experts’ minds are undoubtedly quite
deep and extremely difficult to extract. However, the
rules by which these experts operate can be extracted,
at least in part.

The acquisition of knowledge from experts has led
to a large and successful activity starting from
MYCIN [lo] and documented in [3]. In general, only
surface knowledge needs to be obtained to have
effective systems focusing on advice-giving on one
specific topic. Modest numbers of rules, often fewer
than 100, have provided effective encodings of some
experts’ domain knowledge. For many domains,
however, more rules are needed.

More depth in the knowledge base is needed when
expert systems are to encompass knowledge covering
more than one topic, i.e. knowledge from more than
one expert. Due to their interaction, the number of
rules for problems covering multiple topics increase
faster than their sum.

Even more serious is the issue of mutual consist-
ency, when disparate topics are joined. We cannot
expect the surface extraction of the internal models of
two experts, covering dissimilar but overlapping
topics, to match. More depth, i.e. the explicit repre-
sentation of internal causal events and the logic which
leads to their external expression, is likely to be
needed. Mismatches of terms used to describe
internal phenomena makes the results hard to vali-
date. The issue of mismatch in databases has been
addressed by a recent thesis [111; in expert systems the
problem is harder.

User interfaces and explanation facilities further
greatly increase the size of systems. When the set of

Partitioning and composing knowledge 63

rules becomes large, problems of performance, vali-
dation and knowledge maintenance become critical.

2.1.1. The formal paradigm. The alternative

paradigm is the formal paradigm, which has received
a major impetus since logic programming languages
have appeared on the scene and made experimen-
tation in this direction effective [121. Here we often see
a direct exploitation of underlying data resources,
and wide variety of schemes to make data access
effective [131.

The formal paradigm derives all its answers from
well-founded base rules and their composition.
Heuristics are mainly used to improve the perform-
ance of the systems, typically by focusing search.
Most accepted heuristics can be shown to have no
effect on the result values [alpha beta]; others have a
small risk of missing some potentially useful results
[maximal objects].

The formality of the approach provides much
confidence in the results, but also leads to some
obvious weaknesses. We perceive as the fundamental

weakness that any provable scheme is restricted to
deal with the past up to the present. Any extrapol-
ation of results into the future can never be procen,
since unpredictable events can always occur.
Unfortunately, the beneficial use of information by
decision-makers is always due to a prediction of the
future.

2.2. Combining the two paradigms

We need both the power of the formal approach,
to make large systems predictable and manageable,
and the power of expert abstraction and extrapol-
ation. The interaction of the rules in an expert system
is such that the user cannot predict the result-and
that is of the essence of the service which is provided.
In multi-expert systems, the roles of experts and users
are intertwined. As these systems grow, a point is
reached where an expert can no longer predict
the outcomes. Formal structures will help with the
managing the knowledge, but the complexity of
interacting bodies of knowledge is such that truly
large systems need a partitioning.

The right combination will let us build future
systems which are both reliable and non-trivial.
Combining concepts from these two paradigms is not
novel; we see it everywhere in today’s practice,
wherever systems are effectively used. However,
today’s tools do not promote any partitioning of the
two types of knowledge, it is even hard to separate
deductive rules and ground facts.

When we analyze practical systems today, we find
a mixture of both paradigms, but often a dominance
of one over the other, according to the application

and the taste of the designer. In a recent paper we
survey a number of projects, tools and approaches

that provide a knowledge-based layer for dealing with
data [2]. We used the term mediator to capture the
general concept of a knowledge layer between the
user and the data. Mediators may be programs,
written by an expert, in which heuristic knowledge is
fully integrated with the formal techniques.

2.3. Heuristics

In our discussion we often focused on the issue of
heuristics. We found that use of heuristics does not
in itself provide a discrimination of the pragmatic and
formal paradigms. Heuristics are nearly always used
to deal with computational complexity. Most knowl-
edge processing paradigms would not be feasible in
practice without their use, and optimization strategies
used heuristics based on parameters such as expected
domain sizes, user needs, etc. to develop practical
solutions. The results obtained by such strategies are
typically correct but not necessarily optimal.

In pragmatic systems we see a further exploitation
of heuristics. Here application knowledge may pro-
vide heuristics about adequate approximate sol-
utions. These may have errors in terms of set
membership or rankings, but without taking such
risks then no answers would be obtained. The prag-
matic systems, in that sense, model with an unfortu-
nate accuracy the situations faced by decision makers
in practice.

2.4. Large systems

We have stated earlier that we are primarily con-
cerned with large systems. Unfortunately, there are
no simple criteria for the size of knowledge-based
systems. A simple count of rules is a deceptive
measurement. Some apparently large systems may
use a substantial number of rules to store ground
facts or static data. The expert knowledge may still
consist of only a few hundred deductive rules.

Some other expert systems that do embody much
knowledge use fairly simple knowledge represen-
tations; for instance, AI/RHEUM [14] uses an inter-
action matrix of symptoms and diagnosis. Expanding
such a simple representation, however, (for instance,
to include issues such as time dependencies [15]) has
been difficult.

3. PARTITIONING

There are two dimensions to the partitioning of the
information systems we foresee. Horizontal partition-
ing divides the architecture into three main layers, as
summarized in the following Table 1.

Table I

Layer

H3
H2

Type of information

Broad application knowledge
Formal domain knowledge

Deductions supported

Pragmatic reasoning
Logical inference

Implemented with

Expert applications
SODS

Hl Factual knowledge or data Relational algebra Relational database

64 GIOWIEDERHOLD et al.

result + decision making

3 Independent applications on workstations

network services to information servers

2 Multiple Mediators: /I

network services to data servers

1 Multiple databases.

inout + real-world channes

Fig. 1. Interfaces for three horizontal layers of this architecture.

These layers have been sketched already in [2]. The (or the underlying facts which led to a piece of
need for distinguishing updates to factual data and knowledge) can be accommodated with sec-
knowledge (for instance constraint rules) is reiterated ondary changes of limited and predictable
in [16]. scope.

There is another dimension of partitioning in our
model. Layers Hl, HZ and H3 cannot be monolithic
entities, and each will be vertically partitioned. The
bottom layer, Hl, may contain multiple autonomous
databases and H2 will contain many SODS. These
SODS may have some limited interaction as peers, but
more importantly, they will share the underlying
databases by means of views. At the top level (H3),
multiple applications will exist, sharing and com-
bining knowledge from the SODS of layer H2.

This paper focuses on the central issue of knowl-
edge partitioning in the relatively formal layer H2,
but must, of course, also deal with the interfaces to
the supporting data layer Hl and the supported
application layer H3.

They deal with one constrained set of base data
so that updates to the underlying data and data
structure required by new knowledge can be
handled effectively and unambiguously.
They produce one range of results, understand-
able in terms of scope and depth by the end-
user applications.

An essential hypothesis for our research is that
the partitions for these four dimensions can be
made congruent. Complementary to this partitioning
hypothesis will be a combination hypothesis, to
follow in Section 4.

3.1. Desiderata for the partitioning of knowledge into
SODS

From these criteria we can derive some more
specific observations on the natural structures we
expect to find in the domains of a SOD. We plan to
exploit these structures whenever possible.

Recall that our objective is to make knowledge
manageable. Two prerequisties have to be fulfilled to
achieve this goal:

3.2. The str~~tare and reiated se~~t~cs of SODS

1. The knowledge can be formally Structured.
2. The knowledge is limited to manageable

Domain of discourse.

Since eventually, we also wish to support automat-
able combinations of the results of the SODS, we also
must be concerned that the SODS use mergable
representations for their knowledge. It is hence not
adequate to have arbitrary dissimilar SODS, whose
results are presented on, say, distinct windows of a
terminal. This approach forces the end-user to per-
form all integration visually or manually by cut-and-
paste methods. While having multiple terminal
windows provides an advance over a desk piled high
with multiple pieces of paper and terminals, it does
not cover our vision of the future.

The principle for the vertical partitioning into
SODS is based on Da~~ains of Ktzowledge. These
are seen to correspond simultaneously in multiple
dimensions:

The structure of a SOD expresses the structure of
its semantics. We hope to have many structurally
similar SODS, since we expect that that common
structures will appear in many different domains,
although their labels and cardinalities may differ
greatly. Our goal is as well to decompose knowledge-
bases so that the structure of many SODS will be
simple. We prefer hierarchical structures, but realize
that some SODS will need to use sets, DAGs or more
complex representations.

1. They are limited in scope so that one expert can
cover them and recognize inconsistencies.

2. They each have one consistent structure im-
posed on them so that changes in knowledge

3.2.1. HierarchicaL structures. In any specific do-
main there is strong tendency to impose a hierarchy
on the knowledge structures, which often cor-
responds with organizational requirements of the
organizations dealing with the information. Hier-
archies are instantiations of the divide-and-conquer
paradigm we are trying to exploit also within the
SODS. When manipulating data through a hierarchy,
we have a predefined generali~tion-socialization
structure. Processing in such a structure is much
easier to manage than in arbitrarily connected net-
works of knowledge-many important problems
which are intractable for general graphs have
O(n logn) solutions for hierarchies.

The hierarchical structure is beneficial in oper-
ations of grouping and aggregating base data into

Partitioning and composing knowledge 65

higher level abstractions, searching for specific infor-
mation defined by predicates which describe such
abstractions~ and disambiguating updates.

While predicates can specify abstraction levels di-
rectly (department in a personnel hierarchy) quantita-
tive goals may be satisfied by finding the right level
of the hierarchy. If we need more programmers than
we can find in our department, a move up to the
division level may satisfy that request [17].

3.2.2. Closed worlds. We expect our SODS to be
self-desc~bing and inspectable, and an important
part of a SOD is a description of what kinds of
assumptions we can make about the domain the SOD
represents. Some of the SODS will be able to support
the closed-world assumption (CWA) [18]. This
assumption is commonly made when dealing with
databases, but is risky for general expert systems. If
the maintaining expert’s confidence and the intrinsic
definition of a domain is such that the CWA holds,
then operations requiring universal quantification
and negation can be supported in SOD, otherwise
they should not be supported.

In a SOD dealing with corporate personnel and
maintained by an expert attached to the personnel
department, the CWA is likely to be valid. A SOD
dealing with database consultants may be able to
locate many instances of consultants, but is unlikely
to be able to locate all of them until an ACADEMY

OF DATABASE CONSULTING is established, and all
non-members are disbarred.

Since SODS are not restricted to relational data we
will eventually need to support more flexible formal-
isms, such as circumscription [19].

3.23. Closure. We will often look for a SOD to
provide all instances satisfying some precisely stated
criteria of relatedness. For example we may want to
find all the descendants of a given person, or find all
the papers which are “similar” to a given example
paper. Such queries look for some sort closure in the
domain, and for SODS with a hierarchical structure,
these queries are often expressed most naturally in
terms of transitive closure. At other times, like in the
“similar” papers example, we will to use distance-
based concepts which are not transitive. While for
simple structures, such closure-based queries can be
dealt with by simple extensions to database query
languages, we will need to provide some faitly com-
plex computations to answer such queries over more
general SODS. This issue intertwines closely with
the ideas of closed-world SODS expressed above.
Whether or not the closed world assumption holds in
a SOD may affect the implementation of a closure-
based query, but more importantly, drastically affects
the interpretation and confidence to be attached to
the results of the query.

3.3. Evaluation functions

For decision-making process we often need only
the n besr alternatives according to some ranking. The
rank is obtained by an evaluation-function; such

functions may be simple (say, the highest paid pro-
grammers) or compiex (say, the best programmers).
The SODS for these two queries may be distinct,
although the database views needed for the evalu-
ation may be overlapping. The highest paid pro-
grammers are obtained from the personnel SOD; the
challenge here is to find an efficient algorithm that
can avoid unnecessary database accesses. The SOD to
find the best programmer will be complex and will
depend both on some experts’ insights and on com-
plex database access functions in order to collect all
the correlative data. In fact, there may be more than
one SOD available to answer the best-programmer
query, say the Brooks-best-programmer SOD and the
Orr-best-programmer SOD.

3.3.1. Inspectability. We now arrive at a new cri-
terion for SODS. We wish them to be inspectable.
Whereas simple formal systems may hide lower level
information in order to maintain application inde-
pendence, we cannot see doing this for SODS because
the application user should have the capability of
determining whether the BrooksSoD or the Orr-SoD
is best for the current objective. Such an inspection
may be mediated by an inspector SOD, and may not
support copying of the SOD or direct access to the
base data.

3.3.2. Declarative approaches. To support in-
spectability it is desirable that, as much as possible,
the processes within a SOD be driven by declarations
and formal parameters. We would hope to capture
the differences of Brook’s evaluation and Orr’s evalu-
ation by parameter settings and that the same pro-
cessing routine can be employed by both SODS.

3.4. From data to SODS

Because we propose a partitioned architecture for
future info~ation systems, an important issue is the
interface between the supporting data layer Hl and
the SODS of layer H2. Although the SODS are most
naturally implemented with object structures (as dis-
cussed in Section 5), we use relational databases as
the storage scheme for factual information of layer
Hl.

Storing information in the form of complex objects
can seriously inhibit sharing-different groups of
users will need to assign different object boundaries
to the same information [ZO]. However, object-
oriented presentations of information can be clearer
and more concise than long tables of voluminous
text. A desirable compromise is to provide an object-
oriented interface to relational data, combining many
of the better features of each representation [2]. Such
an interface serves as an effective mapping from
databases to SODS, translating Hl’s relational tuples
into H2’s object instances. An active area of our
research has been directed toward this goal.

We introduce an object-based interface on top of a
relational database system. This architecture does not
call for storing objects explicitly in the database, but
rather for generating and manipulating temporary

66 GIO WIEDERHOLD et al.

object instances by binding data from base relations
to predefined object templates. The three components
of the object interface are:

1. The object generator maps relations into object
templates; each of which can be a complex
combination of join and projection operations
on the base relations. In addition, an object
network groups together related templates,
thereby identifying different object views of the
same database. The set of object networks
constructed over a given database form an
object schema, which, like the data schema for
a relational database, represents the domain-
specific information needed to gain access to
the objects. The whole process is knowledge-
driven, using the semantics of the database
structure.

2. The object instantiator provides non-pro-
cedural access to the actual object instances. A
declarative query specifies the template of in-
terest. Combining the database-access function
(stored in the template), and the specific selec-
tion criteria, the system automatically gener-
ates the relational query and transmits it to the
DBMS, which in turn transmits back the set of
matching relational tuples. In addition to per-
forming the database-access function, the ob-
ject template specifies the structure and linkage
of the data elements within the object. This
information is necessary for the tuples to be
correctly assembled into the desired instances.

3. The object decomposer implements the inverse
function; that is, it maps the object instances
back to the base relations. This component is
invoked when changes to some object instances
need to be made persistent at the database
level. An object instance is generated by col-
lapsing (potentially) many tuples from several
relations. By the same token, one update oper-
ation on an object may result in a number of
update operations that need to be performed
on the base relations. We plan to apply here
results of research in the KBMS project, which
deals with updating through relational views

PI.
An object template therefore represents a view

of the database. Instantiation selects, retrieves and
aggregates relevant data into object instances that can
now be manipulated by a SOD. In addition, the SODS
can share factual information by sharing the object
templates and their access functions. The same object,
say a person, can be instantiated by more than one
SOD, let’s say in one SOD as a faculty member and
in another SOD as a database consultant.

The formal design for this approach is domain-
independent. It is then our belief that ideas, principles
and programs developed in this process will be
applicable to other knowledge-based interface
approaches.

4. COMPOSITION

A single SOD has a power which is comparable to
that of a simple expert system with access to a
database or, in the database paradigm, of an ad-
vanced database query processor. Such systems are
typically limited to one domain and implemented
using one type of structure. Simple hierarchical sys-
tems can be effective for some tasks, as classification,
ranking of alternatives, etc. but are rarely adequate
for multi-objective assessments and decision-making
support [23]. We do not wish to make our SODS more
complex, lest we lose maintainability.

Instead we wish to make them composable.
Successful composition is the second hypothesis in
this research.

One way in which SODS can cooperate is as peers,
working like a team of expert advisors to a top
executive, to solve a common problem. In order to
cooperate, they will need a way to exchange infor-
mation. To facilitate this, the high-level language, by
which applications query and command SODS should
have good algebraic properties. We discuss the basic
language features in this section and will return to
present further work needed in Section 7.

There is another kind of composition that must be
supported, and this composition relates to the inter-
nal structure of a SOD. A SOD is a complex entity,
containing data, inference techniques, knowledge and
abstractions. All these subunits should be sharable,
and in fact must be shared wherever possible. This
is the exactly same reason that databases are nor-
malized or software is built of reusable modules-
duplicated structure leads to inefficiency and update
anomalies.

4.1. An access language for SODS

We envisage SODS to be used by high-level, heuris-
tic applications. Flexibility of access requires that the
interface be non-rigid, and the intent to be able to
deal with multiple SODS in an application requires
composability as further addressed in the next
section.

We hence specify an access language SAL which
provides access to information produced by the
SODS. This information is seen to have the form of
instantiated complex objects, similar to the nested-
relation tuples described by [24]. The mappings
from data resources to these objects is hidden within
SODS. We do need, however, some additional
functionality.

This language is not fully specified, but it must
support primitives to specify:

1.

2.
3.
4.
5.

Selection of subsets of objects satisfying user
defined criteria.
Transitive closure
Constraints on the cardinality r of answer sets.
A best predicate to select from a ranking.
Computation over temporal data.

Partitioning and composing knowledge 67

We will not discuss this last feature in this paper,
although it is obvious that to project results into the

future, some temporal processing is needed, as shown
in some of our earlier research [25,26].

It is important to note that distinct SODS may
support the extended primitives (2-4 above) in differ-
ent ways, dependent on the structure of their do-
mains. The best predicate is especially likely to be
interpreted in a domain-sensitive manner. Without a
defined best predicate a SOD can just return the r first
object instances when a cardinality constraint is

imposed.
Note that this language is intended to provide a

smooth and sensible transition between the tra-
ditional database and PROLOG styles of data

retrieval. The database style, exemplified by
DATALOG, retrieves all instances, i.e. implies a
cardinality constraint Y = M. The Prolog style
retrieves initially the first instance found, implying
r = 1. Having the cardinality specified explicitly also
addresses a vexing problem in the database-to-
programming-language interface. Most program-
ming languages deal only with fixed length structures,
or at best with variable length structures up to a
certain maximum size. (As our current demonstration
is implemented in Lisp. this issue does not now

arise.)
Today, without the knowledge encoded in SODS,

the methods for retrieving the best information are
explicitly specified by the user. It is likely to require
distinct methods for multiple domains. Both in data-
base and Prolog access styles, these specifications
require knowledge of each the underlying domains
and their structure. In today’s database languages a
sensible specification is likely impossible to state, so
that all the data has to be retrieved into memory, and
then processed and reduced by application programs.

The application at layer H3 takes the information
provided by the SODS, composes it, and reduces it as
desired by intersecting results of distinct SODS with
each other. It also presents the information in the
most appropriate forms to the user. To service the H3
layer we are looking for a language similar in style to
a relational algebra, rather than to a language such
as SQL which attempts to provide a user-friendly
interface as well as programmed access, and fails at
both.

Having a language interface simplifies the tasks of
the SODS at layer H2 since direct external presen-
tation issues are ignored. Enough corresponding
meta-data must be made available to layer H3 so that
smart formatting and pleasant presentation is feasible
[27]. We have not addressed this issue yet. We are
experimenting with a smart menu system, using such
knowledge.

4.2. A SOD result language

In order to make SODS comparable, one SOD must
be able to act on the results of another. We therefore
define a SOD result language SOREL by which this

kind of communication can take place. SOREL will
be extremely simple and limited, especially in com-

parison to the SOD access language. One way of
looking at this is to realize that SAL is in some sense
a union of capabilities, since it must be powerful
enough to express anything we would ask of a SOD,
while the SOD result language is more like an inter-
section, since it should be understood by all SODS.

The exact form of SOREL will depend on the SODS
and the needs of the application, but for most
applications, we expect the SODS to return only
ground data, i.e. tuples, relations and object iden-

tifiers.
The answers given by a SOD in SOREL will be

returned to the application at H3. The application
may then use results directly or as input to another
SOD.

4.2.1. Identifying shared objects. One of the first
problems that must be handled for SODS to work
together cooperatively is to get them to agree on a
common ground for communication. Human experts
often disagree as to the meanings of words or of
concepts, and this will be a problem for SODS as well.
In one common case, the architecture and its support
for definitional composition can help greatly in iden-
tifying shared objects. Because our SODS can be built

from simpler, shared components, it will often hap-
pen that two SODS will be using an object created at
a lower level. In this case, it is easy for the SODS to
recognize that they are sharing the same object---they
are both looking at the same object identifier.

In the more general case, identification is not this
easy. If the SODS are using objects created on differ-
ent computer systems, or if the objects are created at
a higher level, we can easily have two computer
“objects” (with distinct identifiers) that nevertheless
denote the same abstract object in the real world.
When this happens, we will have to compare the
objects, relying on key values and matching heuris-
tics. Perhaps we can invoke a SOD to help us with the
merging tasks. If the domains of the attributes to be
merged are actually mismatched, then we certainly
need intelligent processing, and we may need rank-
ings based on the best match [I 11.

4.3. Power of the combined system

By partitioning the knowledge base, we gain the
ability to use and combine special-purpose SODS and
their knowledge representations without having to
build one super-interpreter which understands all
knowledge representations (and all the combinations
of the knowledge representations). This partitioning
then makes maintenance much more tractable. How-
ever, in partitioning the data into SODS, and allowing
them to communicate only via the restricted SOD
result language, we lose some of the arbitrary connec-
tiveness associated with knowledge representations,
such as semantic nets.

This loss of connectivity may reduce the expressive
power of the system. For example, let’s say that when

68 GIO WIEDERHOLD et al.

designing a wing, an aircraft designer looks at two
SODS, one of which can evaluate and optimize a
design for aerodynamic performance, and another
SOD which looks at mechanical strength and weight.
Since the wing should have good performance
according to the criteria of both SODS, the designer
is faced with an iterative (or even trial-and-error)
process, of checking designs though both SODS and
looking for a global optimum.

This iterative process might have been avoidable,
if the two SODS were unified into one super-SOD
able to find a global optimum for aerodynamics,
strength and weight. What this example tells us is
that the design process which splits knowledge
into SODS is quite critical. A given partitioning
may gain us a great deal in terms of implementation,
maintenance and assignment of responsibility,
but may also incur a significant cost in expressive
power.

5. A DEMONSTRATION

To demonstrate the concepts, the students on the
KSYS project have chosen the task of assigning
reviewers for journal papers submission. Four SODS
serve

1.

the task:

Relevance-we need reviewers with a back-
ground relevant to the submitted paper. This
task is performed by matching in a keyword
classification hierarchy.
Quality-we prefer the most qualified review-
ers. For this task we rank potential reviewers
based on their published output in books,
journals, etc.
Conflict avoidance-we cannot assign review-
ers to friends or colleagues. Here we match
people based on institutional affiliation in over-
lapping intervals.
Responsiveness-the reviewers must produce
their reviews in time. Here we can look at a log
of electronic-mail interactions.

We can use this example to elucidate the difference
of the AI paradigms allocated to level H3 and H2.
The tasks in the SODS at layer H2 can all be defined
quite formally. At the top layer H3 some unwar-
ranted pragmatic heuristics are used to implement the
reviewer selection task. For instance:

1. Having written high-quality publications in a
topic area does not assure one that the can-
didate does equally well as reviewer. It is
the best guess that our application task can
make, but we all know some excellent critics
who do not write much. The mapping of
qualified-writer + qualified-reviewer is prag-
matic. The establishment of a set of quali-
fied-writers is adequately formal to justify its
allocation to a SOD.

Having worked together does not make one a
friend, and being a friend does not imply
favoritism. But we do not need to weed out
risky matches-in fact, due to prior publi-
cations the most likely best match is the sub-
mittor of the paper.
Electronic mail responsiveness is probably only
weakly correlated with fast reviewing-there
are people who respond instantly to email and
never respond to review requests.

The language currently used between layers Hl and
H2 is LISP because it supports the extensibility
essential to rapid research progress.

The data accessed by the first three SODS are
distinct views of an extensive bibliography of knowl-
edge and database references, collected over about
18 yr, with about 6000 entries. Information kept
includes type of publication (for the Quality-SOD),
authors (the principal identifiers), author’s location
(for the Conflict-avoidance-SOD), publication details
and sequence with dates (for the Conflict-avoidance-
SOD), title, abstract and classification (the last three
are used by the Relevance-SOD).

Two of the SODS are currently implemented-rel-
evance and conflict avoidance. They are implemented
as Lisp programs which have access to the object
system and a commercial relational database. As we
gain more experience, we intend to replace the Lisp
code with a more declarative representation.

At the simplest level, the Relevance-SOD takes a
keyword (or list of keywords) describing the subject
of the paper to be reviewed, and looks in the database
for authors who have written papers on the key-
word(s). If enough authors are returned by this
database query, this is all that happens. If however,
the database query does not find enough authors, or
if the application asks for more candidate reviewers
later, the Relevance-SOD will replace the original
query by a more general one, in order to increase the
cardinality of the result.

This capability is an example of query generaliz-
ation [17]. It is possible because the SOD makes use
of some of the semantics of the keywords. The
keywords are arranged in a hierarchy, in which the
parent is the more general keyword, and the children
the more specific. If a query does not return suf-
ficiently many results, a concept of semantic distance
in the hierarchy is used to suggest alternate keywords
to try.

The data structures used by the SOD are designed
to efficiently support this kind of iterated query style
efficiently. A set of authors can be found by a
succession of related queries can be answered with
about the same total effort as would be needed to find
that same set of authors with one more general query.

The application interface is simply a set of Lisp
functions which the application can use. As our
system evolves, we intend to build a higher-level
interface. In our design, an application which is

Partitioning and composing knowledge 69

looking for reviewers would submit a query of the
form:

select best 3 reviewer
from relevance-SoD
where relevant = ‘knowledge- base’

and reviewer not in
(select all friend
from conflict-avoidance-SoD
where author =‘Gio Wiederhold’)

Note that this query refers to two different SODS.
Since a particular SOD can only answer queries about
its own domain, this query is translated into a slightly
lower level form. which specifies the individual
queries to the SODS, and the information flow be-
tween them.

a: = select all friend
from conflict-avoidance-SoD
where author =‘Gio Wiederhold’

b: = select best 3 reviewer
from relevance-SoD
where relevant =‘knowledge-base’
and not in a

RETURN b

Note that even this second query is fairly high level.
It refers to such abstractions as relevant, which are
implemented by the SODS.

6. THE IMPLEMENTATION ARCHITECTURE

The demonstration is implemented in fairly
straightforward way, but a short description will
illustrate some issues better than an abstract dis-
cussion can.

6.1. SOD implementation

The criteria we have listed encourages an im-
plementation which supports object-oriented type
definitions. We building a simple Lisp-frame struc-
ture to support SODS. Low level frames correspond
to database schema entries and support retrieval from
databases; data that is retrieved must be bound into
the object-type structures and represent object in-
stances as discussed in the previous section. Concepts
such as trackers [13] deal with effective handling of
partially- or fully-instantiated sets of data.

Functions and predicates from the object type
definitions are inherited by the object instances.
Default values are overridden by any actual data
retrieved from the database.

Common methods, as selection and transitive
closure, will be shared by multiple SODS, especially
when their general structure is similar. Sharing should
be possible even if their object types and instances
differ. General parameters, as the CWA, can cause
alternate variants of methods to be invoked. Note
again that SODS are not distinguished by their pro-
gram structure or algorithms, but rather by their
structure and domain knowledge.

Interface: high-level language

Primitives

‘p7-j

I
Binding I

Interface: data-base access language(s)

Fig. 2. The components of a SOD.

6.2. Elements of a SOD

The specific structure of a SOD is shown in Fig. 2.
Each SOD contains a simple hierarchy of objects

pertaining to its domain. The views provided by the
objects compose the entire view of the SOD over the
database. Rules embedded in the object structures are

used to control the instantiation of objects and
compute dynamic slot values. Each SOD provides
primitive operations it can support and accepts the
parameters it needs from applications. Binding inter-
faces the SOD objects with the underlying databases
by retrieving object instances generated from the
databases. For efficiency, the instances of the SOD
objects are bound into memory as early as possible.

In terms of their external interface we expect SODS
to be free-standing units, accessible on the high-speed
communication networks now in the planning stage.
For efficient execution, SODS can be replicated on
other computing nodes where the data (Hl) or the
applications (H3) reside.

6.3. Structure qf an object

We indicated earlier that we are implementing the
SODS using frames, similar to those seen in the
UNITS system [28] and its successors such as
KEE and RX [25]. This means that an object is
implemented as a frame in a Lisp structure.

A frame is composed of a number of slots. Each
slot is labeled, and contains the following elements:

1. An indication of its SOD membership.
2. A domain definition, to constrain its values.
3. A value.

Values may be constants or references to other
objects. Constants occur mainly in frames that have
been instantiated from the database.

An object frame inherits its slots from the SOD that
it is a member of. A frame in our system that belongs
to a single SOD differs but little from frames seen in
other systems. The differences arise when an object
becomes a member of multiple SODS.

6.4. Structural support for composition

An object may be a member of multiple SODS. It
is the task of the binding layer to recognize that
information for an object already exists and performs
the binding for the two overlapping instances.

70 GIO WIEDERHOLD et al.

The joint object will inherit the slots from all the
SODS it belongs to. We see here a departure from the
common schemes used when multiple inheritance is
needed: the information is not intermingled according
to local rules. Since we mainly use information from
the database, it is not likely that there will be rules to
cover the variety of interactions that can be realized
among objects from distinct SODS. The disjoint

inheritance is also imposed on the values in the object
slots:

l An inherited slot value is inherited from only one
specified SOD.

We hence provide for multiple inheritance into

objects, but not into the same slots of objects. This
rule eliminates the multiple inheritance problem for
which no general solution is likely to be found. We
find solutions that have been proposed too specific
for a general system, but recognize that multiple
inheritance is a valid and useful concept.

An example will clarify our approach. Say that the
Personnel-SOD has retrieved an individual (John)
with location, job-classification, salary, etc. infor-
mation from a PEOPLE database. John is also being
retrieved by a Skills-SOD as possessing the skills and
a willingness to do weekly consulting on some topic.
The slots identifying John are identical and shared,
not requiring inheritance. The salary slot belongs to
the Personnel-SOD, and may either be explicitly
retrieved or filled in by inheritance for all employees
of that classification. The fee slot belongs to the
Skills-SOD, and may be estimated by averaging
known fees of similar individuals. There is less likely
to be a well-established hierarchy here.

For some decision-making process at layer H3 we
may actually need an income estimate. The applica-
tion can obtain the distinct components and combine
them as it pleases.

If the task of estimating incomes is frequent and
consistency is desired, then it should be formalized.
This means we assign a new expert to the task and let
her define a SOD for income estimation. An income
slot, inherited from that SOD may be adjoined to the
object for John and income is then computable on
the basis of salary, fee, alimony, and any other

financial reward slots that other SODS may instantiate
in this object. The values in this slot will not be
subject to inheritance, only the formula is inherited.

It is clear why inspectability of SODS is needed. The
questions of composability are so complex that it is
often desirable to determine how a value as income
is computed. Still, we wish to delegate the actual
computation to a SOD, in which we normally place
some trust. The confidence in the SOD emulates
confidence we have in the reports and summaries
provided by specialists from our Personnel depart-
ment, the Skills specialists and in our assistants who
compose the information. Only if we need to question
the result do we inquire into their methods.

7. SUBPROBLEMS TO BE ADDRESSED

The task of managing large knowledge-bases,
which undergo growth and change is daunting. While
we have sketched those aspects of our approach that
seem clear to us, there are many tasks which require
expansion and generalization.

We will list some here. For some of these we have
some ideas on how to address them, other problems
are quite open.

7.1. Object ident$cation

Correct object identification is critical for the
matching operations at layers H3. While objects
instantiated with SODS at layer HZ have a simple
linkage with the underlying database, we can use
database keys or derived surrogates from layer Hl to
identify objects.

When derived objects are created within SODS such
identifiers may become difficult to link. The fact that
SODS will share computational processes can help,
but probably not guarantee correct matching when
information follows different processing paths.

7.2. Dynamic slot generation

Dynamic slot values are derived using knowledge

about the data in the databases. This may take the
form of a default values when the base data are
unpopulated, procedural functions over the base data
or declarative rule sets.

1 Label I SOD I domain I value

ID

I I I
- identifier I internal

I name I- I identifier I John I
I iob_class I Personnel I code I G21 I
I salarv 1 Personnel I dollars I 35000 I
I deductions I Pavroll I count 13 I

skill

fee

1 Consult code) 2324, 2366, 3756

1 Consult 1 dollars I 1000 I
willingness 1 Consult +scale 14
income 1 Estimator 1 formula 1 salary + alimony*12 + fee*52

Fig. 3. Frame with SOD labeled slots.

Partitioning and composing knowledge 71

The issues in this area involve deciding at what frame instances are needed, its view is translated into

point to compute the derived value and determining a relational query and delivered to the database. The

how to recompute this value when the base data query results are stored in main memory and pro-

changes. It may even be that some derived values are cessed. We expect that for many complex queries

stored in the database for efficiency. In this case we delivered to the database we cannot achieve reason-

may need trigger mechanisms to update the values able performance by simply delivering the queries to

when the base data changes. the database.
At a higher level of abstraction we must consider

how objects acquire new slots. In our example a slot
was acquired by merging selected objects with the
Estimator-SOD. How such a procedure can be gen-
eralized has not yet been defined. A follow-on phase
could have the application at H3 define a private
SOD. or its equivalent, so that private computations
can be attached to materialized objects in layer H2.
We do not foresee dynamic generation of data access-
ing slots.

We are thus developing a binding strategy for
minimizing accesses to secondary storage databases.
The binding strategy is to cache the multiple query
results in a nested, prejoined form for compact
storage for retrieval of frame instances. Queries deliv-
ered to the database are modified as needed whenever
the binding module detects that relevant reusable
query results have already been bound into the main
memory.

7.5. Interacting SODS

7.3. Lmguuge optimization

Choosing an algebraic language SAL for commu-

nicating with the SOD should enable optimization.
Currently, we process the SODS in the order men-
tioned in the task definition, but other sequences are
likely to provide better performance. While we under-
stand issues of join ordering [29], we now have new
operations that will require new optimization rules.

This SAL language operates on larger granules of
primitives than current 4GL languages. Semantically
similar primitives of the language will be executed
differently in the various SODS. To perform global
optimization the SODS have to be able to provide
abstractions or evaluation functions of their methods
to the global optimizer.

At present the top application layer is the executive
responsible for the integration of knowledge obtained

from SODS. An extension of this architecture we must
investigate is the hierarchical composition of a SOD
from subSoDs. In this way the parent SOD would
perform the task of integrating knowledge from
subSoDs, and itself might be a subSoD of another
SOD. For this to be possible, the interface exported
from a SOD (i.e. the query language supported) must
provide a superset of the functionality used by a SOD.

This direction moves us closer to the interacting
ACTORS paradigm [30]. We do, however, still expect
to impose constraints on their composition, and in
that sense are closer to concepts of the ORG ap-
proach [31].

Note that SODS interact at the language interface

level in at least two ways: 8. CONCLUSION

I. The output from one SOD may help another
SOD reduce its search.

2. The output from one SOD may necessitate a
previously-executed SOD to be reexecuted.

For example. when searching for “three competent
and responsive reviewers,” the list of competent
reviewers could help reduce the search for responsive
reviewers, but if only one of the competent reviewers
turns out to be responsive, then perhaps the “com-
petency” test should be relaxed and reexecuted in
order to return the requested three reviewers. In
neither of two cases will it be necessary to ship large
volumes of data for resolution of the intersection
result to the computer used for the application.

We have presented an approach to deal with the
management of large knowledge-based systems. The
approach is based on a domain and structure-sensi-
tive partitioning of the data and knowledge to be

managed, and careful and limited interactions among
the partitions. A simple demonstration illustrates our
approach.

7.4. Object instantiation

We define the criteria for SODS, our principal unit
for the partitioning, and discuss the effects of the
criteria. With the benefits of partitioning a loss of
power is induced; we can no longer navigate in
seemingly arbitrary ways throughout the knowledge
base. It is difficult to assess the cost-benefit ratio
of this tradeoff. We are optimistic that it is high;
analogies can be found in human organizations as
well as in other large computer systems.

In the system design adopted for KSYS, a binding
module interfaces between the frame system layer and
database layer. It provides object instances generated
from databases data into the frame system.

The instances of frames used by SODS are gener-
ated from relational databases. Each frame prototype
for a SOD defines a view of the database for selecting
a subset of the database as frame instances. When

In our current demonstration the efficiency cannot
be measured. We know that acceptance of new
technology requires both conceptual benefits as well
as reasonable efficiency and we hope to gain efficiency
with our binding approaches. These will benefit from
the structure information that SODS provide.

Automation of techniques of knowledge manage-
ment will be essential in a wide range of future

72 GIO WIEDERHOLD ef al.

applications. We hope and expect that the principles [13] S. Ceri, G. Gottlob and G. Wiederhold. Interfacing

we have laid out will contribute to an orderly and relational databases and PROLOG efficiently. IEEE

productive growth of the field.
Trans. Software Engng Feb, 153-164 (1989).

[14] L. C. Kingsland, D. A. B. Lindberg and G. C. Sharp.
AI/RHEUM: a consultant system-for rheumatology.

Acknowledgements-This paper presents research results J. Med. Systems I, 221-227 (1983).
developed primarily with the KBMS project on manage- [15] A. Bolour, T. Anderson, L. Dekeyser and H. Wong.
ment of large knowledge bases, supported by DARPA The role of time in information processing: a survey.
under Contract N39-84-C-211. Useful insights were gath- ACM SIGART Newslett. 80, 28-48 (1982).
ered by interaction with researchers at DEC (project title [16] H. Katsuno and A. 0. Mendelzon. A unified view of
“Reasoning about RIME”) and the RX knowledge acquisi- propositional knowledge base updates. Report Univ. of
tion nroiect. NCHSR/DHHS HSC4389. NLM LM-4334. bv Toronto (1989).
NIH’ RR HD-12327, RR-0785 and F32 GM08092. ‘We [17] S. Chaudhuri.’ Generalization and a frameword for
would like to thank Professor Arthur Keller, Surajit Chaud- query generalization. IEEE Data Engng 6, Los Angeles,
huri and Keith Hall for their help and careful reading of Feb (1990).
earlier drafts of this paper. 1181 R. Reiter. On closed world data bases. Lo& and Dam

111

PI

[31

[41

PI

161

[71

181

PI

1101

[Ill

[121

REFERENCES

L. Kerschberg (Ed.). Expert Database Systems. Ben-
jamin-Cummins, Reading, Mass. (1985).
G. Wiederhold. The architecture of future information
systems. (Abstract) Proc. Int. Symp. on Database Sys-
tems for Advanced Applications, KISS and IPSJ, Seoul
(1989).
E. Feigenbaum, P. Nii and P. McCorduck. The Rise
of the Expert Company: How Visionary Companies
are Using Artificial Intelligence fo Achieve Higher Pro-
ductivity and Profits. Times Books (1988).
L. B. Methlie and R. H. Sprague. Knowledge represen-
tation for decision support systems (1985).
J. Bachant and J. McDermott. Rl revisited: four vears

. in the trenches. AI Mug. 5(3), 21-32 (1984).
D. Lenat, M. Prakash and M. Shepherd. Cyc: using
common sense knowledge to overcome brittleness and
knowledge acquisition bottlenecks. AI Mug. 6(4),
65-85 (1986).
V. E. Barker and D. E. O’Connor. Expert systems for
configuration at Digital: XCON and beyond. Commun.
ACM 32 (3), 2988318 (1989).
G. Wiederhold. Knowledae versus data. On Knowledge
Base Management Systyms (M. L. Brodie and -J.
Mylopoulos, Eds), pp. 77-82. Springer-Verlag, New
York (1968).
D. Lenat and E. Feigenbaum. On the thresholds of
knowledge. IJCAI 87, Milan (1987).
E. H. Shortliffe. Computer-Based Medical Consul-
tations: MYCIN. Elsevier, New York (1976).
L. De Michiel. Performing operations over mismatched
domains. IEEE Data Engng 5, Los Angeles, Feb
(1989).
H. Gallaire, J. Minker and J.-M. Nicolas. Logic and
databases: a deductive approach. ACM Comput. Surv.
16, 153-185 (1984).

_ _
Bases (H. Gallaire and J. Minker, Eds), pp. 119-140.
Plenum, New York (1978).

[19] J. M. McCarthy. Circumscription-a form of non-
monotonic reasoning. ArfiJicial Infell. 13, 27-39 (1980).

[20] G. Wiederhold. Views, objects and databases. IEEE
Comput. 19(12), 37-44 (1986).

[21] T. Barsalou. An object-based architecture for bio-
medical expert database systems. Proc. Twelfth Symp.
Comput. Applications in Medical Care, pp. 572-578.
IEEE Computer Society (1988).

[22] A. M. Keller. The role of semantics in translating view
uudates. IEEE Comnut. 19(l). 63-73 (1986).

[23] J.* R. Miller. Professional Decision Making-A Pro-
cedure for Evaluating Complex Alternatives. Praeger,
New York (1970).

[24] M. A. Roth, H. F. Korth and A. Silberschatz. Ex-
tended algebra and calculus for nested relational data-
bases. ACM TODS 13 (2). 389-417 (1988).

[25] R. L. Blum. Discovery‘and representation of causal
relationships from a large time-oriented clinical data-
base. the RX project. Lecture Notes in Medical Infor-
matics. Springer-Verlag, New York (1982).

[26] I. dezegher-Geets, A. Freeman, M. Walker, R. Blum
and G. Wiederhold. Summarization and display of
on-line medical records. MD Compur. 5(3), 38-45
(1988).

[27] J. Mackinlay and M. Genesereth. Expressiveness and
language choice data. Knowledge Engng l(l), 17-29
(1985).

[28] M. Stefik. An examination of a frame-structured rep-
resentation system. IJCAI 79, Tokyo (1979).

[29] A. Swami and A. Gupta. Optimization of large join
queries. Proc. ACM-SIGMOD Im. Conf on Manage-
mem of Data (1988).

[30] C. Hewitt, P. Bishop and R. Steiger. A universal
modular ACTOR formalism for artificial intelligence.
IJCAI 3. SRI. Aug. DD. 235-245 (1973).

I.1

[31] T. W. Malone, K. R. Grant, F. ‘A. Turbaks, S. A.
Brobst and M. D. Cohen. Intelligent information-
sharing systems. CACM 30(5), 390-402 (1987).

