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Abstract. Time series data generated by environmental sensors are typically 

“messy,” with unexpected anomalies that must be corrected prior to extracting 

useful information. This paper addresses automatic detection of such anomalies 

and discusses two lines of study for achieving efficient and accurate detection 

using AI techniques with a focus on peak anomalies. One study uses the classic 

knowledge-engineering process and the other uses a deep-learning method to 

mimic how a trained watershed scientist detects anomalies. These two ap-

proaches were applied to time series data collected from a research watershed in 

Vermont, U.S.A., and their performances were assessed with respect to detection 

accuracy and computational efficiency. The two approaches had different anom-

aly detection accuracy depending on the peak type. The knowledge engineering 

approach was readily tunable to achieve competitive or better detection accuracy 

while computationally far more efficient than the deep learning approach. Results 

indicate the advantage of using the two approaches in combination, while a more 

general study involving other watersheds’ time series data would be needed. 

Keywords: Peak anomaly detection, sensor-generated data, time series data, 

knowledge engineering, deep learning. 

1 Introduction 

Background and motivation. Anomaly detection from sensor-generated time series data 

is an important problem in many real-world applications for manufacturing, monitor-

ing, and management of resources. Often associated with the Internet-of-Things, there 

has been a large body of work conducted in this area (see the surveys by Cook et al. 

2019 [1] and Sgueglia et al. 2022 [2]). Publications show a substantial focus on envi-

ronmental sensor-generated time series data such as temperature, humidity, etc. (e.g., 

Hill and Minker 2010 [3], Jae-Myoung et al. 2020 [4], Conde 2011 [5], Hayes and 

Capretz 2014 [6], Hill and Minker 2006 [7], Russo et al. 2020 [8]).  

This paper focuses on a data-driven approach to anomaly detection using watershed 

environment sensor-generated time series data. These time series data are typically 

“messy”, with unexpected phenomena. At the present time, watershed scientists rely on 

manual examination of the time series data, their domain expertise in having observed 

a variety of anomaly types, and field notes during on-site sensor maintenance to detect 
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anomalies. Recently there has been increasing attention in the environmental science 

community in replacing human effort with a more automated process (e.g., Jones et al., 

2021 [9]). This is a challenging endeavor because of the “messiness” of data; but suc-

cessful automation has the potential to bring great scientific and societal benefits. 

Objectives. Our primary objective is to develop an automatic mechanism for detect-

ing anomalies in time series data for a hydrological and biogeochemical study. A sec-

ondary objective is to build an inventory of common anomaly types for domain scien-

tists (e.g., hydrologists) and study the performance for different anomaly types. 

Methodology. The performance study employs classification-based anomaly detec-

tion, which is a supervised machine-learning task and requires labeled anomaly data for 

training and tuning. Two machine-learning approaches are used: knowledge-engineer-

ing and deep-learning. Knowledge engineering is a process that identifies parameters 

based on the domain expert to solve the problem at hand (i.e., detecting anomalies). 

The deep-learning fits a model, i.e., a neural network trained using expert labeled data. 

Knowledge engineering specializes in a fixed set of anomaly types (i.e., patterns) and 

uses a small number of “hand-crafted” parameters (e.g., 2 to 5 for each anomaly type) 

to characterize the patterns. Deep learning, on the other hand, generalizes to a variety 

of anomaly types (i.e., patterns) and uses millions of neural-network parameters (or 

coefficients) to characterize the patterns at different levels of the network. Naturally, 

knowledge engineering incurs much lower computing cost (in terms of both computa-

tion time and the memory consumption) to tune the parameters, and it may perform 

better or worse than deep learning depending on the complexity of the pattern. 

Outcome summary. The deep learning approach and the knowledge engineering ap-

proach had different performances. They achieved different detection accuracies de-

pending on the peak type, while overall accuracy was comparable. Besides, there were 

contrasting relative accuracies between the different time series data (fDOM and tur-

bidity). The knowledge engineering was significantly more efficient computationally 

(i.e., training time and memory usage) for all peak types. Using both the knowledge 

engineering and the deep learning approaches in combination would take advantage of 

the different performances of the two approaches. 

Contributions. The contributions of our work can be summarized as follows. 

 It introduces peak anomalies as an important anomaly type and identifies a set of 

peak types of practical importance in hydrological watershed science. 

 It implements classification-based peak anomaly detection using supervised learning 

techniques via knowledge engineering and deep learning approaches and compares 

the resulting performances. 

 It identifies and labels the peak types in hydrological time series data collected from 

a watershed.  
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2 Related Work 

There are different anomaly types handled by anomaly detection methods, categorized 

into point anomaly, pattern anomaly, and system anomaly (Lai et al., 2021 [10]), (Chan-

dola et al., 2009 [11]). A point refers to a single time series sample data; a pattern is 

identified over a sequence of time series samples that exhibit a given characteristic (e.g., 

statistic, shape) or behavior (e.g., trend, change); and a system refers to a group of sys-

tems (e.g., multivariate time series patterns) where one of many systems is in an abnor-

mal state. 

Most of the existing work on anomaly detection addresses point anomalies (Cho et 

al., 2015 [12], (Enikeeva et al., 2019 [13]), (Fearnhead et al., 2010 [14]), (Fryzlewicz 

and Piotr, 2014 [15]), (Tveten et al., 2020 [16]).  Pang et al., 2021 [17] mentioned that 

the methods for detecting point anomalies cannot be applied to group anomalies as they 

have entirely distinct characteristics. Group anomalies refer to a subset of anomalous 

data instances, which has the same definition as pattern anomalies used in our work. 

The peak anomalies in our watershed data are a type of pattern anomaly identified by 

the shapes of time series sample sequences. 

There are some works on pattern anomaly detection from hydrological watershed 

sensor-generated time series data, mainly focused on detecting pattern deviations. Yu 

et al. ,2020 [18] used a distance-based approach to extract the trend and mean feature 

of time series segments of equal size, for which they proposed two algorithms called 

the Trend Feature Symbolic Aggregate approximation (TFSAX) and weighted Proba-

bilistic Suffix Tree (wPST). Sun et al., 2017 [19]’s work also depends on significant 

feature points in which the time series is separated into numerous patterns; the system 

then calculates the pattern features using a density-based anomaly detection algorithm. 

Qin et al., 2019 [20] proposed the iForest algorithm to extract anomalous patterns using 

an adaptive segmentation algorithm based on key feature points; the pattern features of 

each time series segment are then translated to a k-dimensional space, i.e., restricted to 

a space with k orthogonal axes. The nearest neighbor distance is then used to extract 

top-K patterns and the K patterns with the highest anomaly scores are output. However, 

the pattern anomalies detected by these algorithms are not the peak anomalies handled 

in our work. 

We find works closer to the peak anomaly detection in our time series data in other 

application domains, such as ECG anomaly detection (Lin et al., 2018 [21]), (Li et al., 

2020 [22]).  These ECG datasets are annotated with codes that indicate whether seg-

ments are normal or abnormal at each R peak location. However, to the best of our 

knowledge, there is nothing similar in hydrological watershed time series data.  
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3 Time Series Data and Peak Anomaly Types 

3.1 Time series data 

This study uses experimental sensor time series data collected over nine years at a small 

forested research watershed in Vermont, U.S.A.1 The researchers measure stream stage, 

from which stream discharge is computed, at a 5-minute interval. They measure turbid-

ity and fluorescent Dissolved Organic Matter (fDOM) at a 15-minute interval, using 

optical Turner Designs Cyclops sensors (see Fig. 1). The sensors are positioned below 

the depth of ice formation and are operated year-round. The data are used to estimate 

stream fluxes of dissolved and particulate organic carbon (DOC and POC). Turbidity 

in the water interferes with light transmission needed for the fDOM measurement, so 

fDOM values are corrected based on the turbidity values. Fluorescence is temperature 

sensitive, so fDOM values are also adjusted using concurrent water temperature meas-

urements. The stage time series has 231,465 samples, and the turbidity and fDOM time 

series have 229,620 samples each. 

 

Stage is already corrected and used as reference data; so, in this study, anomalies 

are defined and detected for fDOM and turbidity. The actual anomalies in the fDOM 

and turbidity data sets have been labeled through a visual examination and have been 

vetted by a domain scientist. We refer to these labeled datasets as the “ground truth” in 

this study. Fig. 2 shows the three time-series (stage, fDOM, turbidity) segments with 

normal peaks. 

                                                           
1 The watershed name is not mentioned due to a data management policy of the agency that owns 

the datasets. 

Fig. 1. Turbidity/fDOM sensor mounted on a board immersed in the water. The image in 

the corner is a Turner Designs Cyclops-7 submersible sensor. 
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(a) Stage.        (b) fDOM.       (c) Turbidity. 

Fig. 2. The watershed time series data (from May 27 – June 6, 2012) containing normal peaks. 

3.2 Peak anomaly types 

The focus is on “peak anomaly” types in this study. Five main anomaly types have been 

identified: skyrocketing peaks (SKP), plummeting peaks (PLP), flat plateau (FPT), flat 

sinks (FSK), and phantom peaks (PHP). Normal (i.e., non-anomalous) peaks (NAP) are 

of another peak type. See Fig. 3 for illustrations. A skyrocketing peak is an upward 

spike or a narrow peak (with a short base width), and a plummeting peak is a downward 

spike; both may be caused by electronic sensor noise. A plummeting peak is observed 

in fDOM only and its detection requires that there is no preceding rise in the turbidity 

(which triggers a drop in fDOM). A flat plateau and a flat sink are characterized by 

near-constant signal amplitude near the top (plateau) and the bottom (sink); they may 

be caused by sediment deposition near or around the sensors. Flat sinks are observed in 

fDOM only. A phantom peak appears as a normal peak but has no preceding stage rise 

that triggers the peak; it may be caused by a non-hydrological event like animal activity 

in the water near the sensor. Note that detecting a phantom peak and a plummeting peak 

requires identifying causal relationships between two data time series, whereas the 

other peak types require only one data time series. 

     
(a) fDOM normal peak.           (b) Skyrocketing turbidity.        (c) Plummeting fDOM. 

 

     
(d) Flat plateau fDOM.                    (e) Flat sink fDOM.                  (f) Phantom fDOM. 

Fig. 3. Examples of peak types. 
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4 Computational Methods 

4.1 Knowledge engineering 

As mentioned earlier, the knowledge engineering in this study is a process to emulate 

what a domain expert does to identify and detect anomalies. The knowledge gained 

from our expert hydrologist has been formalized into the definition of each anomalous 

peak type. The detection mechanism of anomaly instances according to the definition 

of an anomalous peak type and the associated threshold parameters are summarized 

below. The threshold parameters are tuned against the labeled anomaly instances in the 

ground truth time series. Fig. 4 summarizes some key terms used in the definition of 

peak anomalies, where base width is the 

interval (number of data points) be-

tween the start time and end time of a 

peak; amplitude is the maximum rise 

above baseline among all values be-

tween the start and end times of the 

peak; and prominence is the amplitude 

of a peak measured relative to the am-

plitudes of the neighboring peaks. 

Definition of peak anomaly types 

The intuitive meaning, detection mechanism, and the associated threshold parameters 

are defined below for each anomalous peak type. 

Skyrocketing peak (SKP) is an upward peak for which the base width is smaller than 

a threshold number δSPBW (e.g., 10) of data points and the prominence is larger than a 

threshold unit δSPA (e.g., 10 units). A probable cause is the sensor impulse noise. 

Plummeting peak (PLP) (for fDOM only) is a downward peak (decrease) for which 

the base width is smaller than a threshold number δPLPFBW (e.g., 4) of points and the 

negative prominence (decrease from baseline) is larger than a threshold unit δPLPFA (e.g., 

4 units), and there is no abrupt rise or elevated level of turbidity more than δPLPTI NTU 

(e.g. 100 NTU) within the preceding threshold time interval δPLPFI (e.g., 1 hour). Here, 

NTU stands for “Nephelometric Turbidity Units.” A probable cause of a plummeting 

peak is the sensor impulse noise. 

Flat plateau (FPT) denotes consecutive samples between an abrupt rise and an ab-

rupt drop where the rise amplitude is more than a threshold value δFPA (e.g., 300) and 

the values within the plateau portion remain near-constant. Here, “near-constant” 

means (max − min) / max ratio of the sample amplitudes is less than a threshold ratio 

δFPR (e.g., 20%), and “abrupt” rise/drop is defined as a rise/drop of more than 10 units 

over the course of four points in the time series, before and after the ends of the plateau. 

A flat plateau may be caused by a sensor partially buried under sediment. 

Fig. 4. Terms used in defining a peak. 

https://www.allacronyms.com/nephelometric_turbidity_unit/abbreviated
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Flat sink (FSK) denotes consecutive samples between an abrupt drop and an abrupt 

rise where the drop amplitude is more than a threshold value δFSA (e.g., 2) and the am-

plitude within the drop portion is near-constant. Here, “near-constant” and “abrupt” are 

defined the same as those for the flat plateau (FPT). A flat sink may be caused by a 

sensor buried under sediment partially or completely. 

Phantom peak (PHP) is an upward peak that is not preceded by a rise in stage within 

a threshold interval δPHPI-F for fDOM, δPHPI-T for turbidity (e.g., 0.5 hour) (and, hence, is 

not a real peak). There are additional conditions to account for exceptional cases spe-

cific to either fDOM or turbidity: 

 For a phantom peak in fDOM, the period of Sep-15 to Oct-31 is not considered. This 

additional condition during the foliage season in Vermont accounts for fluorescent 

DOC released from fallen leaves in the stream channel, which may cause in increase 

in fDOM without a hydrological driver. (For phantom peaks in fDOM, the fDOM time 

series is smoothed prior to this detection in order to keep locally fluctuating small peaks from 

being detected as phantom peaks.) 

 For a phantom peak in turbidity, the prominence of the peak is above a threshold 

δPHPTA and there is no turbidity interference evident in fDOM. True turbidity (values 

above 100 NTU) causes a drop in fDOM by more than a threshold ratio in an other-

wise rising fDOM trajectory; and this phenomenon indicates that the turbidity peak 

is a real peak. 

Fig. 5 illustrates fDOM phantom peaks in relation to the stage time series. Fig. 6 illus-

trates turbidity phantom peaks in relation to the stage time series (subfigure a) and the 

fDOM time series (subfigure b). 

 

Fig. 5. fDOM phantom peaks. 
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(a)              (b) 

In the subfigure (a), the first peak following a stage rise is real, and the second peak is 

phantom. In the subfigure (b), the first peak causing a turbidity-interference in fDOM 

is real, and the second which does not is phantom. 

Fig. 6. Turbidity phantom peaks. 

Precedence among peak anomaly types. There are peaks that fit the definitions of 

two or more peak anomaly types. In this study, only one anomaly type is chosen ac-

cording to a predefined precedence rule. Specifically, for fDOM, in order of highest to 

lowest precedence, skyrocketing peaks, phantom peaks, plummeting peaks, flat plat-

eaus, flat sinks, non-anomaly peaks. For turbidity, the order is skyrocketing peaks, 

phantom peaks, flat plateaus, and non-anomaly peaks. 

4.2 Deep learning 

We have chosen ResNet as the deep learning model for its proven ability to avoid the 

vanishing gradient issue, thereby achieving outstanding classification accuracy. Specif-

ically, we use a 1-D time-series ResNet-50 implementation, with the PyTorch model 

code obtained from the repository of Hong et al. 2020 [23]. It showed the best perfor-

mance in a review by Fawaz et al. 2019 [24] for univariate time series classification 

among the current state-of-the-art deep learning-based time series classification algo-

rithms. 

Fig. 7 shows the network architecture of the deep learning model. The architecture 

has a t × 3 input matrix, where t is the variable number of data samples, and the 3 

represents the three types of time series data (i.e., fDOM, turbidity, and stage). As dif-

ferent peaks occur over varying sample lengths, we make use of PyTorch’s pad_se-

quence function, which pads a list of variable length tensors with a given padding value. 

Specifically, we use a padding value of 0. We believe this is the least intrusive value 

possible, which is important as we do not want to give the classifier any extra bias from 

the padded values. The core idea behind the ResNet model is to use residual blocks that 

have shortcut connections between blocks to calculate the residual function, which 



9 

   

 

eases learning as compared to much deeper convolutional neural networks (Hong et al. 

2020 [23]). 

 

Fig. 7. Time series 1-D ResNet-50 architecture. 

5 Performance Evaluation 

5.1 Experiment setup 

The anomaly detection framework used is multiclass classification. In the knowledge 

engineering approach, there is one binary classifier run for each anomaly type; the 

anomaly detection algorithm runs the multiple classifiers sequentially (not in parallel) 

to monitor individual time series, and, for each peak, looks at every classifier’s response 

and determines the anomaly class. When the multiple classifiers detect different anom-

aly types, the precedence rule is applied to choose one. In the deep-learning approach, 

the three time-series -- stage, turbidity, and fDOM -- are treated as one tri-variate time-

series, as mentioned in Section 4.2. 

Data augmentation for class balancing. The dataset collected from the research wa-

tershed is severely skewed in the anomaly class distribution, with the non-anomalous 

peak (NAP) class accounting for 93% of the fDOM peaks and 73% of the turbidity 

peaks within the seven-year period of data between 2012 and 2019 (see Fig. 8(a) and 

(c)). Such a severe class imbalance would drive the classifier to focus on correctly de-

tecting the far more numerous non-anomalous peaks rather than the far fewer anoma-

lous peaks during training, as a result not trained adequately to detect anomalous peaks. 

So, we augmented the dataset to keep the class sizes better balanced (see Fig. 8(b) and 

(d)). The augmentation scheme alters randomly selected real peaks in both the peak 

base widths and the peak amplitude to a degree randomly selected within a predefined 

range. This range varies by the peak type. The peak amplitudes were multiplied by a 
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uniformly generated number in the range of 1.1 to 3 for flat plateaus, 0.2 to 3 for flat 

sinks, and 0.8 to 1.2 for the other peak types. To produce a balanced peak distribution, 

the augmentation algorithm tracks the current distribution of peaks, and samples a new 

peak based on the current distribution. In addition, test-time augmentation was used for 

statistical significance of the result. 

 
(a) fDOM original  (b) fDOM augmented  (c) Turb. Original     (d) Turb. Augmented 

Fig. 8. Class sizes of fDOM peaks and turbidity peaks before and after augmentation. 

Training, validation, and testing scheme. We used pre-

quential evaluation (as opposed to the conventional cross-

validation) to consider the effect of temporal ordering in-

herent in time series. Basically, each new batch of data is 

first used as test data and then appended to the existing 

training data. Thus, the training data size keeps increasing, 

and so does the training time (see Fig. 9). Our prequential 

evaluation is a “growing window” version adopted from 

the empirical study done by Cerqueira et al., 2020 [25]. 

Each time series data was split into 90% for training/val-

idation and 10% for testing. The batch size was set to 32 

samples. 

Knowledge engineering threshold parameter tuning. For each anomaly type, the ran-

dom search approach was used to select parameter values in the parameter space de-

fined by the threshold parameters belonging to the anomalous peak type. The set of 

parameter values that maximizes the anomaly detection performance was found using 

a random search iterated 1,000 times for each batch of data (added in the prequential 

evaluation). 1,000 iterations are more than enough, and it gives 99.996% probability of 

achieving near optimum within 1% of the true optimum. (A random search of n itera-

tions has 1 − (1 − ε)n probability of finding parameter values achieving near-optimum 

within the error ε from the true optimum (Firebug 2016 [26]).) 

Deep learning model parameter tuning. Given the ResNet-50 used as the core 

model, the Adam optimizer was used, alongside a batch size of 32 samples, with 50 

epochs and a learning rate of 1 × e-3. Learning rate decay was added, with the learning 

rate decreasing by 0.1 every ten epochs. Early stopping was implemented as well, with 

Fig. 9. Prequential evaluation 

(source: Cerqueira et al. [25]). 
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a patience of five epochs. If the validation score did not change after five epochs, the 

algorithm stops training. 

Performance metrics are the accuracy of peak anomaly detection and, additionally, 

computing resources (time and memory) consumed for the anomaly detection. 

Computing platform. All experiments were performed on a local desktop, equipped 

with an i7 quad-core 4790k CPU clocked at 4.0 GHz, 16 GB of DDR3 RAM, a GeForce 

GTX 1080 GPU, and 750 GB of SSD storage.  

5.2 Experiment results 

Accuracy results. Fig. 10 and Fig. 11 show the confusion matrices of peak anomaly 

detection accuracy achieved by the knowledge engineering and the deep learning ap-

proaches for fDOM and turbidity time series, respectively. 

.  

(a) Knowledge engineering          (b) Deep learning 

Fig. 10. Confusion matrix of fDOM peak anomaly detection (PLP = plummeting; SKP = sky-

rocketing; PHP = phantom; FPT = flat plateau; FSK = flat sink; NAP = non-anomalous). 

 
(a) Knowledge engineering         (b) Deep learning 

Fig. 11. Confusion matrix turbidity peak anomaly detection (SKP = skyrocketing; PHP = phan-

tom; FPT = flat plateau; NAP = non-anomalous). 
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Table 1 compares the accuracy achieved by the knowledge engineering approach 

and the deep learning approach (compiled from Fig. 10 and Fig. 11) for each applicable 

peak type of fDOM and turbidity.2 

Table 1. Comparison of accuracy between knowledge engineering and deep learning for fDOM 

(left) and turbidity (right). 

fDOM 

KE 

(%) 

DL 

(%) 

DL/KE 

ratio 

KE/DL 

ratio   

Tur-

bidity 

KE 

(%) 

DL 

(%) 

DL/KE 

ratio 

KE/DL 

ratio 

PLP 70.59 83.82 1.19 0.84             

SKP 50.00 70.90 1.42 0.71   SKP 88.29 62.81 0.71 1.41 

PHP 33.62 75.00 2.23 0.45   PHP 86.84 63.83 0.74 1.36 

FPT 100.00 97.84 0.98 1.02   FPT 56.75 98.52 1.74 0.58 

FSK 100.00 100.00 1.00 1.00             

NAP 70.83 20.00 0.28 3.54   NAP 35.39 67.60 1.91 0.52 

Additionally, Table 2 shows the composite accuracy (i.e., balanced accuracy and 

F1-score) achieved for fDOM and turbidity. 

Table 2. Composite accuracies achieved. 

 

Approach 

fDOM Turbidity 

Balanced ac-

curacy (%) 

F1-score (%) Balanced ac-

curacy (%) 

F1-score (%) 

Knowledge engineering 69.86% 67.74% 66.87% 66.01% 

Deep learning 74.66% 72.05% 73.19% 71.23% 

Computing costs. Table 3 shows the computing costs of each approach in terms of 

the training time and memory usage. The computation time was clock time measured 

using a Python’s built-in time package called “datetime”. The clock was started upon 

initiation of the split 1 and was stopped upon completion of the split 5. Memory usage 

tracking was done using a Python’s built-in memory tracker called “tracemalloc” for 

CPU memory in knowledge engineering and the PyTorch CUDA memory summary 

function for GPU memory in deep learning. The memory usage tracking started and 

stopped at the same clock points as the computation time tracking. 

Table 3. Computing resources consumed. The average memory usage was calculated over the 

entire run time. 

Approach Training time Average memory usage Peak memory usage 

Knowledge engineering 1.03 hours 1.39 MB 3.81 MB 

Deep learning 4.08 hours 2001.34 MB 3015.57 MB 

                                                           
2 Note that anomalous peaks are positive instances, and non-anomalous peaks are negative in-

stances in this anomaly detection problem. 
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5.3 Discussion 

The knowledge engineering approach and the deep learning approach had different 

anomaly detection accuracies depending on the peak type (Table 1), while the deep 

learning did a bit better than the knowledge engineering overall (see Table 2). The 

knowledge engineering approach was computationally a lot more efficient (consuming 

less computation time and memory) than the deep learning (see Table 3).  Let us share 

below some further observations made. 

Accuracy. Summarizing the confusion matrices (Fig. 10 and Fig. 11) gives interest-

ing contrasts in the peak anomaly detection accuracy between fDOM and turbidity (see 

Table 1). 

 For fDOM, deep learning outperformed knowledge engineering for PLP (by 1.23 

times), SKP (1.43 times), and PHP (2.18 times) while comparable for FPT and FSK. 

On the other hand, knowledge engineering outperformed deep learning for NAP 

(i.e., normal peaks) by 3.57 times. 

 For turbidity, the results are different and somewhat reversed. Knowledge engineer-

ing outperformed deep learning for SKP (by 1.41 times) and for PHP (1.36 times) 

whereas underperformed for FPT (1.74 times) and NAP (1.91 times).  

It is particularly noticeable that the deep learning did worse with NAP for fDOM 

while better with NAP for turbidity. We speculate this difference is due to their being 

more anomaly types for fDOM (five) than for turbidity (three), and therefore when be-

ing trained for fDOM the deep learning “paid more attention” to correctly detecting 

anomalous peaks at the expense of detecting non-anomalous peaks incorrectly. 

Additionally, for turbidity, there was a large gap in accuracy for FPT between deep 

learning and knowledge engineering. We speculate the underlying cause is an excessive 

sparsity of FPT instances in the dataset. The original turbidity dataset has only one 

labeled FPT instance, and this single instance does not seem as steep (along the rising 

and falling edges of the plateau) as the knowledge engineering approach was looking 

for. Although during the peak augmentation (see Section 5.1) some of the FPT instances 

may have been made steep enough, not all of them would have been; and, as a result, 

the limited number of parameters for knowledge engineering caused the approach to 

miss the overall shape of the plateau, something that ResNet was extremely successful 

at (note that the accuracies for FPT and FSK in fDOM were quite high). 

Computing resources. As shown in Table 3, the knowledge engineering approach 

used much less computation time (25%) and memory (0.36% on average, 0.13% peak) 

for the threshold parameter tuning than the deep learning approach for the model train-

ing (i.e., model parameter tuning). This is expected given the large difference in the 

number of parameters needed in the two approaches --- that is, a few threshold param-

eters per anomaly type in the knowledge engineering as opposed to over 25 million 

parameters (see Table 8 in Zagorukyo and Komodakis, 2016 [27]) in the deep learning.  

Note that the amount of computing resources used by the knowledge engineering is 
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within the control of the “knowledge engineers” doing the parameter tuning and, spe-

cifically, depends on the number of random search points tried during the tuning; the 

results in Table 3 are for 1,000 random search points. 

Combining knowledge engineering and deep learning. Given the differences in ac-

curacies observed for the knowledge engineering and the deep learning for different 

peak types, combining the two approaches toward improving the accuracy would be a 

natural next step. One straightforward way is to use both approaches, and for each peak 

type, choose the approach that had the higher accuracy in the test results. For example, 

with fDOM, we would choose the deep learning approach for all peak types except for 

NAP, for which we would choose the knowledge engineering approach. Ultimately, 

integrating the two approaches into a single classifier would achieve the best accuracy, 

and we defer this to the future work. 

6 Conclusion 

This paper presented a study conducted to detect peak anomalies from hydrological 

time series data collected from a watershed in Vermont, U.S.A.  We identified a set of 

peak anomaly types important to the hydrological and geochemical study of the water-

shed and implemented two different computational approaches, knowledge engineering 

and deep learning. We then assessed performance between the two approaches with 

respect to the anomaly detection accuracy and the computational resources (time and 

memory).  The differences between knowledge engineering and deep learning for 

fDOM and turbidity were quite interesting. For fDOM, we believe that the lower de-

tection accuracy on non-anomalous peaks can be attributed to dealing with a larger 

number (five) of anomalous peak type classes, as compared with three in turbidity. This 

difference caused the fDOM deep learning classifier to be worse at detecting non-anom-

alous peaks. 

There are a number of future works in the plan. First, we will further improve the 

computational tuning/training by breaking the time series data by season and model 

each season separately. The breakdown can be by the calendar, such as winter (Decem-

ber – March), spring (April – May), summer (June – September), and fall (October — 

November), or can be adaptive to the actual data by incorporating a time series change 

point detection algorithm (e.g., BEAST (Bayesian Estimator for Abrupt Seasonal and 

Trend change) (Kaiguang 2022 [28])). Second, we will generalize the study to include 

multiple additional watersheds, and extend the work toward automated machine learn-

ing which selects the best model (tuned parameters) based on precompiled characteris-

tics of the input time series data (Chatterjee et al. [29]). Having more data from different 

geographical areas would also lead to a more generalized classifier, as different water-

sheds may exhibit peak instances of different shapes for the same anomaly type. Third, 

we will develop a mechanism involving some form of merged classifier that trains using 

both the deep learning approach and the knowledge engineering approach. A model 

could learn to rely upon one or the other for a given peak type, using confidence values 
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or some other form of measurement, and train using this method. This could lead to 

higher accuracies in detecting anomalies in different peak classes. 
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