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This paper addresses the problem of causally predicting the top-k most likely next events over
real-time event streams. Existing approaches have limitations—(i) they model causality in an acyclic
causal network structure and search it to find the top-k next events, which does not work with real
world event streams as they frequently manifest cyclic causality, and (ii) they prune out possible
non-causal links from a causal network too aggressively and end up omitting many less frequent
yet important causal links. We overcome these limitations using a novel event precedence model
(EPM) and a run-time causal inference mechanism. The EPM constructs a Markov chain incremen-
tally over event streams, where an edge between two events signifies a temporal precedence rela-
tionship between them, which is a necessary condition for causality. Then, the run-time causal
inference mechanism performs causality tests on the EPM during query processing, and temporal
precedence relationships that fail the causality test in the presence of other events are removed.
Two query processing algorithms are presented. One performs exhaustive search on the model and
the other performs more efficient reduced search with early termination. Experiments using two real
data sets (cascading blackouts in power systems and web page views) verify efficacy and efficiency

of the proposed probabilistic top-k prediction algorithms.
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1. INTRODUCTION

Causal prediction (e.g. [1–3]) is emerging as an essential field
for real-time monitoring, planning and decision support in
diverse applications such as stock market, electric power grid,
sensor network, cyber security and world wide web. There is a
need for active systems that continuously monitor the event
streams from these applications to allow for the prediction of
future effect events in real time. Specifically, given a sequence
of potentially causal events, many applications would benefit
from good algorithms to predict the next most likely (namely,
top k) effect events. The potentially huge answer space, how-
ever, and the unknown dynamics as well as the streaming
nature of data make such top-k prediction a challenging task.
Consider the following two scenarios as motivating

examples:

EXAMPLE 1. Web page click stream: Consider web-based
online systems. A majority of them display the same content
for everyone. However, the user experience can be more

productive with a dynamic system where content is displayed
based on real-time prediction of users’ most likely activities,
given historical data. One can use the results (i.e. the web
pages/links most likely to be visited next) to display the most
relevant links, content and advertisements at each step of the
user activity.

EXAMPLE 2. Electric power grid: Consider an electric power
grid. When components of a power grid fail, as a result of a
storm, malfunction or cyber-attack, a cascading sequence of
subsequent component failures may result, which may lead to
a very large blackouts (e.g. [4]). Thus, a timely prediction of
the components that are most likely to fail next, given a list
of a few components that have failed, may enable operators
to take mitigating actions (like shutting down sections of the
power grid) before a large-scale blackout occurs. Cascading
blackouts typically progress slowly (minutes to tens of min-
utes) in the initial stages; a few seconds delay to compute and
implement emergency controls is generally sufficient.
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In this paper, we meet the challenges for continuously pre-
dicting the top-k most probable next effects in real-time
streams. Specifically, we focus on three central research
problems.

(1) Continuous causal prediction: To the best of our
knowledge, there are no existing top-k causal query
processing mechanisms that are sufficiently efficient
to support time-critical applications such as those in
examples 1 and 2. Moreover, the previous works on
the causal prediction are based on inefficient exhaust-
ive search (ES) over a large search space of causal
network (e.g. [5, 6]), which is not suitable for real-
time streams.

(2) Cyclic causality: The traditional causal network,
which models causality in a directed acyclic graph,
does not support cyclic causality such as

  A B C A or «A B (e.g. [7, 8]). The event
streams from many applications, however, exhibit
cyclic relationships. For example, a visitor to a news
web site may visit the home page, proceed to read an
article, and then return to the home page, creating a
cyclic relationship between these vertices in the
graph.

(3) Causal information loss: The causal Markov condition,
often considered an essential property of traditional
causal networks, holds conservative assumptions in
the causal inference process. As a result, it removes
many infrequent causal relationships from the causal
network [8–11]. Specifically, the causal Markov con-
dition calls for the removal of any suspicious and
weak relationships which could potentially be inde-
pendent in the presence of one or more events. Often
this approach backfires by removing less frequent
but important causal relationships [8]. We call this
limitation the causal information loss.

To address these problems, we proceed as follows in this
paper. First, we propose an event precedence model (EPM)
that captures temporal precedence relationship between every
two event types into a first order absorbing Markov chain.
The resulting graphical structure is called event precedence
network (EPN), where an edge signifies the temporal relation-
ship between two events. The inclusion of all temporal prece-
dence—hence likely causal—relationships helps to avoid
causal information loss. Since EPN encodes all cyclic as well
as non-cyclic precedence relationships from event streams,
the less frequent but important potential causal relationships
are not discarded. Note that EPN is a generative model of the
observed event stream, which is built over a set of predefined
event types instead of event instances.
Second, we propose a run-time causal inference method to

support cyclic causal inference. The cyclic causality has to be

resolved in real-time as soon as the cause event whose effects
are to be predicted is observed in the event stream. In run-
time causal inference, the edges of EPN are examined by cau-
sal tests (i.e. marginal and conditional independence [CI]
tests) on the fly to determine causality.
Third, we present two query processing algorithms—the

ES algorithm and the Reduced Search Early Termination
(RSET) algorithm—to continuously predict top-k event types
with the highest scores based on the inferred causal relation-
ships. The ES algorithm formalizes an outward breadth-first
search of EPN, performed to calculate the scores of event
types as they are traversed, while identifying a ‘causal search
order’ to enable fail-safe score calculations before the run-
time causal inference. The RSET algorithm is built upon the
ES algorithm, and reduces the search space and terminates
the search early whenever possible. As a result, it decreases
the runtime with only marginal reduction in prediction
accuracy.
Fourth, we present experiments conducted to evaluate the

accuracy and runtime performance of the proposed ES and
RSET algorithms using two real data sets. In each evaluation,
there are two objectives. The first objective is to compare the
run-time causal inference mechanism of the proposed algo-
rithms (i.e. ES, RSET) against the state-of-the-art traditional
causal inference mechanism called the Fast Causal Network
Inference (FCNI) algorithm [12]. The FCNI algorithm is
essentially inapplicable to our problem due to its inability to
handle cyclic causality and runtime causal inference, but is
the best available in the state of the art. The second objective
is to compare the query processing mechanisms between the
ES algorithm and the RSET algorithm.
The contributions of this paper are summarized as follows:

(1) It presents an EPM to represent the temporal prece-
dence relationships between event types and pro-
poses an algorithm to construct an EPN
incrementally over event streams. The network con-
struction is fast, and the resulting network is cyclic,
which is critical to supporting cyclic causality during
causal inference.

(2) It introduces a runtime causal inference mechanism
to infer the causal relationships in real time, and pro-
poses two query processing algorithms: ES and
RSET, to continuously predict the top-k next effects
over event streams. Novelty of the algorithms
include (i) performing runtime causal tests, (ii) find-
ing causal search order during the EPN search, and
(iii) reducing search space and allowing for early ter-
mination for computational efficiency.

(3) It empirically demonstrates the advantages of the
proposed runtime causal inference mechanism and
the query processing algorithms in terms of the pre-
diction accuracy and the runtime.
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The remainder of the paper is organized as follows.
Section 2 discusses the related work, and Section 3 presents
some preliminary concepts. Sections 4 and 5 describe the
EPM and the query processing model, respectively. Section 6
evaluates the proposed query processing algorithms. Section
7 concludes the paper and suggests future work.

2. RELATED WORK

This section discusses the limitations of conventional causal
inference techniques and related work on predictions, and
points out the unique contributions of our work.
There are two approaches for constructing a traditional cau-

sal network. The first approach, search and score-based (e.g.
[13–16]), performs greedy search (usually hill climbing) over
all possible causal networks of the data to select the network
with the highest score. This approach, however, has two lim-
itations. First, the computational complexity increases expo-
nentially as the number of variables in the causal network
increases. Second, the problem of equivalence classes [17],
where two or more network structures represent the same
probability distribution, makes the causal direction between
nodes quite random and therefore unreliable. The second
approach, constraint-based (e.g. [1, 11, 18, 19]), performs CI
tests between variables to construct a causal network. This
approach does not have the problem of equivalence classes,
but performs a prohibitively large number of conditional
independent tests. The state-of-the-art FCNI by the authors of
this paper [12] provided a faster algorithm for constructing a
traditional constraint-based causal network over event
streams. (Thus, we consider the FCNI algorithm as the repre-
sentative of the traditional causal network approach in this
paper.) The FCNI algorithm learns temporal precedence rela-
tionships from the event stream and only performs causal
inference between those event types that exhibit temporal pre-
cedence relationship, thereby reducing the number of CI tests.
(This idea is employed in this paper as well.) However, like
others, FCNI assumed acyclic causality in the data.
There has been some work (e.g. [20–22]) to support cyclic

Bayesian network which aims to handle the cyclic causality
in Bayesian networks. This work, however, still carries the
drawbacks inherent in the Bayesian network approach—that
is, the ambiguity of equivalence classes and the inability to
meet the requirement of a causal network that the parent node
in the network should always represent the direct cause—and
hence is not useful in our work.
The existing body of work on ‘causal prediction’ only

addresses inference of the likelihood of occurrence of an
effect variable given a cause variable (e.g. [23–28]), while the
prediction of top-k effects requires finding the most likely k
effects among all possible effect variables. Therefore, the
only way to find the top-k next effects is to construct a trad-
itional causal network, which ignores cyclic causality and

suffers from causal information loss, over event streams and
then infer the top-k effects of the cause exhaustively (e.g. [5,
6, 29]). To the best of our knowledge, there is no solution
that supports cyclic causality, mitigates the causal information
loss, and performs only necessary partial search to find the
top-k effects of the given causes over event streams.
Web click stream prediction has been a popular research

topic lately. Markov models and their variations have been
found well-used for this problem (e.g. [30–35]). One funda-
mental problem of these models, however, is that a Markov
model alone cannot explain causality. In contrast, our work
considers both—specifically, in a two-step approach, that is,
first starting with a lower order Markov chain model and then
augmenting it with causality tests. Indeed, in many critical
applications (like the electric power grid monitoring) where
tolerance for false positives is low, we need such a stronger
test for prediction by considering not only temporal prece-
dence but also statistical dependency—that is, causal
prediction.
Association rule mining algorithms (e.g. [36–38]) are

extensively used for prediction and recommendation.
However, association does not necessarily imply causation
(e.g. [39–44]), and therefore they are not useful to our prob-
lem due to their exclusion of the fundamental concept of
causality. That is, two variables that are associated require
stronger conditions, such as temporality and strength, to be
considered causally related.
A few works on top-k query processing in the Internet

domain, such as over social-tagging networks [45] and over
web 2.0 stream [46], were published. Unlike our work, however,
these works do not address causal prediction in an event-based
environment at all.

3. PRELIMINARIES

In this section, we introduce the concepts that are central to
the techniques explained in the paper.

3.1. Event streams

An event stream is a discrete, indefinitely long sequence of
event instances. An event instance (or event) refers to a time-
stamped action which may have an effect. Each event
instance is created by one event owner. Two events are
related to each other if they share common attributes such as
event owner, location and time. These attributes are called
common relational attributes (CRAs). In examples 1 and 2,
the CRAs are the session id and the blackout id, respectively.
A prototype for creating events is called an event type.
An event has the following schema: 〈timestamp, type,

CRA, attribute-set〉. That is, an event has the timestamp at
which it was created, the event type it belongs to, the CRA
value, and a set of additional attributes called the attribute-set.
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For simplicity, we refer to an event as eij where i is the value
of the CRA and j (= ¼1, 2, 3, ) is its event type id (Ej).

EXAMPLE 3. Figure 1 shows an illustrative example of
events in a user click event stream of example 1. The first
field in each line (e.g. e21) denotes the actual event instance
shown in the remainder of the line (e.g. 〈05/05/11 1:12 pm,
1, 2, [200 s, ...]〉). The session id serves as the CRA and the
webpage categories (e.g. frontpage, news, weather, sports,
entertainment, tech, local) are the event types. For instance,
in the event instance e32, 2 is the event type and 3 is the
CRA. Note that the event type is represented by a numerical
equivalent of the original event type (e.g. frontpage= E1,
news= E2, weather= E3, sports= E4, entertainment= E5,
tech= E6, local= E7).

We use a window, called partitioned window [12], to collect
the events from the stream for a user-specified observation per-
iod T. To group related events in the window, these events are
partitioned by the CRA and then arranged in the temporal
order within individual partitions. Figure 2 shows a partitioned
window for the event stream described in Fig. 1. Once the
observation period expires, the window shifts to the next batch
of events. The last event of one window overlaps the first event
of the next window in order to ensure consistency in event pre-
cedence modeling across two consecutive windows.

DEFINITION 3.1 (Partition). A partition Wi in a partitioned
window is defined as a set of observed events sharing the

same CRA value i and arranged in the temporal order over a
time period T, that is

= { ( ) £ Î Î [ ]}∣W e t t T i j NA, , 1,i ij

where t is the timestamp, A is the set of all possible CRA
values, j is the event type id and N is the number of event types.

The events that are being predicted are effect events while
the events that are used for prediction are cause events. We
denote the cause event type and the effect event type as

ÎC Ei and ÎT Ej , respectively, where i and j are the posi-
tions of the events in each sequence. Note that Ci and Ei are
not necessarily the same, and nor are Tj and Ej.
Table 1 summarizes the key notations used in this paper.

3.2. Causal networks

A causal network (or causal Bayesian network) (e.g. [1, 11,
13–16, 19]) is a directed acyclic graph G = (V, Ξ) to encode
causality, where V is the set of nodes (representing event
types) and Ξ is the set of edges between nodes. For each
directed edge, the parent node denotes the cause, and the
child node denotes the effect.
The joint probability distribution of a set of N event types
º { ¼ }E EE , , N1 in a causal network is specified as

( ) = ( )
=

∣P P EE Pa
i

N

i i
1

where Pai is the set of the parent nodes of event type Ei.

FIGURE 1. Sample of event instances in a stream from example 1.

FIGURE 2. Event stream. (eijs are abbreviations of actual event
instances such as shown in Figure 1.)

TABLE 1. Definitions of key symbols.

Symbols Definitions

Np Number of partitions
Nei Number of event instances in the ith partition
Ne Total number of event instances in all partitions
Ei Event type with id i
eij Event instance of type j and CRA i
N Number of event types
Ci Cause event type at position i
Ti Effect event type at position i
O Causal search order
Si Event type at the ith position in O

dC The most recent cause event type
E Set of N event types in the data { ¼ }E E E, , , N1 2

Rk Ranked list of the top-k event types
Ninstances Number of event instances
NCRA Number of common relational attributes
( )f E E,i j Number of observations of the instances of type Ei

followed by the instances of type Ej
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Consider the event stream of Fig. 2. The causal relation-
ships among the event types in the stream may be modeled as
a causal network like the one shown in Fig. 3.

3.3. CI tests

CI test establishes causality between two random variables X
and Y in the presence of a set of random variables, C. One of
the popular metrics for CI, is conditional mutual information
(CMI) (e.g. [18, 47]).

å å å( ) = ( )
( )

( ) ( )Î Î Î

∣ ∣
∣ ∣

X Y P x y c
P x y c

P x c P y c
CCMI , , , log

,

x X y Y c C
2

where P is the probability mass function calculated from the
frequencies of variables. CMI gives the strength of depend-
ency between variables in a measurable quantity, which helps
to identify the weak (or spurious) causal relationships.
In the traditional CMI, two variables X and Y are said to be

independent if ( )∣X Y CCMI , = 0, and dependent otherwise.
This criterion itself offers no distinction between weak and
strong dependencies. With a higher value of ( )∣X Y CCMI , , the
dependency between X and Y should be considered stronger.
Thus, weak dependencies are pruned out using a threshold CMI
value, below which the evidence is considered ‘too weak’. To do
so, we relate CMI with the G2 test statistics [1, 48] as below:

( ) = ( )∣ · · · ∣G X Y N X YC C, 2 log 2 CMI ,s e
2

where Ns is the number of samples (i.e. event instances).
Under the independence assumption, G2 follows the c2 dis-

tribution [49] with the degree of freedom df equal to
( - )( - )  În n n1 1x y s S s, where nx, ny and ns are the num-
ber of possible distinct values of X, Y and S, respectively. So,
we perform the test of independence between X and Y given
C by using the calculated G2 test statistics as the c2 test

statistics in a c2 distribution, which provides the threshold
based on df and significance level α, to validate the result.
We set α as the typically accepted value of 95% [50].
We define a Boolean function IsIndependent ( )X Y C, , to

test the CI between two variables X and Y given a set of condi-
tion variables C using the G2 test statistics. It returns true if
these two variables are conditionally independent for any subset
of C; otherwise, it returns false. Specifically, the IsIndependent
function performs a series of CI tests, one for each of the

-2 1C distinct subsets of C. The goal of each CI test is to
check if X and Y are dependent in the presence of the given
subset of C. To control false positives, a single failure in any of
these tests returns that X and Y are not dependent, that is, they
are independent. The statistical power of the IsIndependent test
is the product of the statistical powers of individual conditional
independent tests, which could be calculated provided with the
population sizes of the individual subsets of C.
The unbounded and continuous nature of event streams of

interest makes it infeasible to store all of the historical data.
Therefore, we use an incremental approach such that when a
new batch of events is processed, we only update the record of
the frequency of observations without storing the old events.

4. EVENT PRECEDENCE MODEL

In this section, we introduce the proposed incremental mech-
anism to model the precedence relationships between events
in a network structure.

4.1. Model

To overcome the problems described in Section 1, we propose
an EPM. Founded upon the fact that temporal precedence is a
required condition for causality, EPM models the temporal
precedence relationship between events as a Markov chain.
The resulting graphical structure is called EPN. Specifically,
EPM takes the partitioned window (collected from the event
stream) as an input and incrementally builds a model to reflect
all precedence relationships found in it. Once a new batch of
events arrives, the EPN is updated with the information from
the new partitioned window. Such an adaptive approach is
essential for a streaming environment with continuous and
unbounded data. To avoid any information loss, the evidence
of every precedence relationship is preserved.
We have made the following decisions for in the EPM:

• Causal relationships between events of the same type
are not considered and, therefore, such precedence
relationships are ignored. Otherwise, with our causal
modeling done at the event type level, there would be
‘self-causation’ introduced in the model, which might
present a serious flaw in causal inference. It is particu-
larly true in such circumstances as in the electric

FIGURE 3. Causal network. (The event type names in the subfigure
a are from the web page click stream in Figure 2, and the event type
notations in the subfigure b are symbols used to represent the real
event type names.)
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power grid application, where the same component
cannot fail twice when cascading failures occur (see
details about the data set in Section 6.1.2).

• The cause and effect events should share the same
CRA value. As described in Section 3.1, the events
are grouped into partitions based on their CRA values
(e.g. session id in example 1, blackout id in example
2, respectively). In other words, two events are not
related to if they have different CRA values.

The proposed EPM is a first-order absorbing Markov chain
[51] which models both direct and indirect dependencies
through a sequence network structure. The chain is ‘absorbing’
to allow every state to transition to an absorbing (a.k.a. termin-
ating) state—in other words, to accommodate in an EPN those
events that are not causing other events (which do happen in
real applications). Since in a first order Markov chain an obser-
vation is independent of all previous observations except the
most recent one, the probability of occurrence of an effect
event given past cause events is given as follows:

( ¼ ) = ( )d d∣ ∣P T C C C P T C, , , .0 0 1 0

( )d∣P T C0 can be rewritten as below:

( ) =
( )
( )

d
d

d
∣P T C

P T C

P C

,
0

0

By approximating the probabilities in the numerator and the
denominator, ( )d∣P T C0 can be estimated as shown below:

( ) »d

( )

( )

d

d
∣P T C

f C T

N
f C

N

0

, 0

where N is the number of event instances observed so far and
( )df C T, 0 denotes the number of observations in which

instances of the type dC precedes instances of the type T0.
This equation is then simplified to

( ) »
( )
( )

d
d

d
∣P T C

f C T

f C

,
0

0

and, by replacing ( )df C by the sum of ( )df C E, j over all
children nodes Ej’s, we obtain

( ) »
( )

å ( )
( )d

d

dÎ ( )d

∣P T C
f C T

f C E

,

,
1

E children C j
0

0

j

In summary, EPM allows us to automatically build a tract-
able probabilistic graphical model from the events, discover-
ing the existing dependencies among the event types in the
event stream. These dependencies are represented by a graph,
as illustrated in Fig. 4, where conditional probabilities are

stored at the condition node. Storing conditional probabilities
in the condition nodes facilitates computing the probability of
an effect given the occurrence of a cause effect.

4.2. Algorithm

Algorithm 1 outlines the EPN construction algorithm. It has
two steps: observation and graph generation. These steps are
discussed below:

(1) Observation: This step observes adjacent neighbor
events in each partition of the window to learn the pre-
cedence relationships and updates the frequency matrix.
Note that, based on the assumptions stated earlier, the
precedence relationships should be between events in
the same partition and between events of different
types. For every pair of adjacent events that meet these
criteria, it increment by 1 the frequency matrix’s count
element between the ordered pair of their event types,
denoted as ( )f E E,i j where Ei and Ej are the event
types of the two adjacent events, respectively. The fre-
quency matrix is updated incrementally for each new
partition of events.

(2) Graph generation: This step starts with an edgeless
graph = ( X)G V , where V is the set of nodes (event
types) and Ξ is an empty set of edges. Then, for any
evidence of precedence relationship between event
types Ei and Ej (i.e. f(E E,i j) > 0), an edge is added
between the two nodes that represent these event
types. Note that the graph supports a cyclic loop of
edges via two or more nodes; thus, the graphical
model offers the flexibility to incorporate all possible
types of relationships, unlike in the traditional sys-
tems where only directed edges are supported. In

FIGURE 4. Illustration of EPN construction from the event stream
in Fig. 2.
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addition, for every edge added in the graph, the prob-
ability of an event type given its parent event type is
calculated using equation 1. The calculated probabil-
ity is then stored in the parent node.

The running time complexity of the algorithm is polyno-
mial with the total number of events that have arrived thus far
and the number of event types. First, the observation step
counts every pair of consecutive events in every partition of
the window. Clearly, for each partition, the number of the
counts is always one less than the number of events in it. If
Ne and Np are the number of events and the number of parti-
tions, respectively, then the running time complexity of this
step is given as ( )å ( - ) = ( )= N NO 1 Oi

N
ei e1

p , where Nei is the
number of events in the ith partition. Second, the graph gen-
eration phase checks for the evidence of the precedence rela-
tionships between every pair of event types. In the worst
case, the EPN is completely connected (including cyclic
edges) and has ( - )N N 1 edges. So, the running time com-
plexity of this step is ( )NO 2 . Hence, the total running time of
the algorithm is given as ( + )N NO e

2 .

5. TOP-K PREDICTIVE QUERY PROCESSING

In this section, we first discuss the predictive causal query
processing model and then present the two top-k continuous
predictive query processing algorithms—ES algorithm and
the more efficient RSET algorithm.

5.1. Predictive query processing model

The predictive query processing problem can be formulated
as a search problem to find the possible effects of a given set
of observed events in a causal network. The traditional causal
network, however, is not equipped to run a causal inference
query in the face of causal information loss and lack of support
for cyclic causality. To address this issue, we propose to infer
causality from the EPN ‘on the fly’ during query processing,
since every causal relationship subsumes a temporal precedence
relationship.
In our work, the predictive query is a standing query run-

ning continuously, and the ranked result list may change
when a new event is observed. This query processing is done
by exploring the EPN, which represents all precedence rela-
tionships between event types. Since a cause event always
precedes its effect events, an outward breadth first search
from a cause event node in the EPN is required to predict its
effect events. If a node is revisited, as EPN is cyclic, it is
ignored. We call the event type, from which EPN exploration
starts, the effect observation point (EOP). For instance, in
Fig. 4, consider the two event types E3 and E4. E3 is the effect
of E4 when E4 is the EOP whereas E4 is the effect of E3

when E3 is the EOP, as illustrated in Fig. 5.
Two issues, however, make EPN insufficient to answer a

causal predictive query. First, two variables that have a prece-
dence relationship are not necessarily causally related, that is,
unless they prove to be statistically dependent as well.
Second, two variables that are causally related in the absence
of other variables may not be in the presence of others. For
example, rain and wet ground are causally related, as rain
causes ground to become wet. However, they are not, in the
presence of a roof over the ground (which is a conditional
variable), as the roof keeps rain from causing the ground wet.
To resolve these two issues, we perform CI tests (described in
Section 3.3) on the edges of the EPN during query

FIGURE 5. Views from the EOPs for Fig. 4.

Algorithm 1 EPM construction.

Require: A partitioned window P from a batch of new
events.
{ }Observation:

1: for each partition ÎW Pk where k is the CRA value do
2: for each pair of consecutive events (of type Ei and Ej,

respectively, such that ¹i j) in Wk do
3: ( )f E E,i j ++, i.e. increase the observed frequency

by 1;
4: end for
5: end for

{ }GraphGeneration:
6: Construct an edgeless network = ( X)G V , ;
7: for each pair of event types, Ei and Ej such that ¹i j, do
8: if ( ) >f E E, 0i j then
9: ÈX {X {  }}≔ E Ei j i.e. add an edge E E ;i j

10: ( )
( )

å ( )Î ( )

∣ ≔P E E
f E E

f E E

,

,
;j i

i j

E children E i kk i

11: else
12: ( )∣ ≔P E E 0;j i

13: end if
14: if ( ) >f E E, 0j i then
15: ÈX {X {  }}≔ E Ej i i.e. add an edge E E ;j i

16: ( )
( )

å ( )Î ( )

∣ ≔P E E
f E E

f E E

,

,
;i j

j i

E children E j kk j

17: else
18: ( )∣ ≔P E E 0;i j

19: end if
20: end for
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processing. The edge between two event types that fail these
tests is determined non-causal, and hence ignored.
The ranking score of the predicted effect event type Ei is

calculated as ( )d∣P E Ci given its EOP dC . An EPN node stores
the conditional probability of every child node given the cur-
rent node as the parent node. Scores across a chain of event
types,  E E Eg p i (where Ep is a parent of Ei and Eg

is a parent of Ep), in EPN is calculated using the multiplica-
tive property of conditional probability ( ) =∣P E Ei g

( ) ( )∣ · ∣P E E P E Ei p p g .

5.2. ES algorithm

5.2.1. Approach

The most straightforward approach to the top-k prediction
problem is to search for all possible effects exhaustively dur-
ing the runtime causal inference over EPN and then sort them
in non-increasing order of the score to determine the k effects
with the top scores. This ES approach offers a robust strategy
for exploring the EPN to infer effects, and, as mentioned earl-
ier, an outward breadth first search is performed over the
EPN for runtime causal inference.
The score calculation of the effects, however, is not straight-

forward. To apply multiplicative property of conditional prob-
ability described in Section 5.1, the scores of the parents of an
event type should be known before its score can be calculated,
but this is not always possible as demonstrated in Fig. 6.
Therefore, we employ a search strategy that determines the
causal search order before exploring the EPN for run-time
causal inference. It gives us an order of event types when tra-
versing the EPN such that the probabilities of parent nodes are
always known before calculating the probabilities of their chil-
dren nodes.

DEFINITION 5.1 (Causal Search Order). The causal search
order O is an ordered set of event types { ¼ }S S S, , ., N1 2

observed during the outward breadth first search of the EPN

such that +Si j is never an ancestor of Si, where >j 0 and
+ £i j N .

EXAMPLE 4. Let us illustrate the causal search order consid-
ering the EPN shown in Fig. 4. See Fig. 7 for the illustration.
As described earlier, we run outward breadth first search in
EPN from the EOP. Suppose E3 is the EOP. Initially, E3 is
added to O and is explored. Then, the children of E3 are added,
so O becomes { }E E E E, , ,3 1 4 5 . Then, since E3 has already
been explored, the next unexplored node in O, E1, is explored.
However, no new nodes are added to O as E1 has no child.
Then, we consider the next unexplored node (E4) in O and add
its unexplored child node E6 to O. Now, the next unexplored
node in O is E5. So, the children of E5 are added to O, which
then becomes { }E E E E E E, , , , ,3 1 4 5 6 7 . The recently added
unexplored node E6 has no unexplored children and E7 has no

FIGURE 6. Illustration of the need for a causal search order. (Score
of Ej is P(Ej jEi) + P(Ej jEl) P(EljEk) P(EkjEi). Note that El is
explored after Ej (and Ek) in breadth-first search and, therefore, P
(EljEi) is not known when Ej ’s score is calculated.)

FIGURE 7. Illustration of the steps to determine causal search order
for the EPN of Fig. 4.
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children and, therefore, no new nodes are added to O. So, the
final causal search order O is { }E E E E E E, , , , ,3 1 4 5 6 7 . These
steps are shown in Fig. 7(a). Similarly, when EOP is E5,
the causal search order O may be determined to be {E E, ,5 7

}E E E E, , ,6 3 4 1 , as shown in Fig. 7(b).

5.2.2. Algorithm
Algorithm 2 outlines the ES algorithm. It has a two-pass strat-
egy for exploring EPN to infer effects. In the first pass,
breadth-first search is performed over the EPN to determine
the causal search order. In the second pass, EPN is explored
in this search order for runtime causal inference. The input to
the algorithm includes the EPN G, the most recently observed
cause event type, i.e. EOP, dC , and the size k of the result.
The main steps of the algorithm are given as follows:

(1) First, an outward breadth first search over the EPN is
run from the EOP to determine the causal search
order O (Line 2).

(2) Second, marginal independence tests1 are performed
between each pair of event types that have an edge
in the EPN, and the edge is removed from the EPN
if the two event types are judged independent, which
is an indication of weak causal relationship (Lines
3–7). (See Section 3.3 for the function
IsIndependent.) Note that this step helps to reduce
the number of tests required in the next step.

(3) Third, the EPN is traversed to find the effect events
of each unexplored node Ej according to the order of
event types in O (Line 8). We perform CI tests on
edges between Ej and each of its parents and, then,
the edge is excluded if the two event types are
judged conditionally independent, which is an indi-
cation of weak causal relationship (Lines 9–13).
Note that in our work only the parents of Ej can have
causal effects on Ej and, therefore, we perform the
tests only against them. Then, the score of the node
Ej is calculated from the remaining edges (i.e. those
that are judged to be dependent) and is stored in the
buffer together with the node (Lines 16–17).

(4) Finally, all event types thus explored are sorted in
non-increasing order of the score, and then the event
types with the top-k scores are returned (Line 19).

EXAMPLE 5. Let us illustrate the ES algorithm considering
the EPN shown in Fig. 4. Suppose dC is E3 and k is 2.

(1) The causal search order O, from the EOP (i.e. E3), is
determined as { }E E E E E E, , , , ,3 1 4 5 6 7 .

(2) The marginal independence tests are performed on
each edge in EPN. For simplicity in illustration, we
assume that these tests fail to exclude any edge.

(3) Now, the score of each event type in O is calculated
and stored into the buffer BT:
(a) The score of the first unexplored event type E1 is

calculated and updated in BT as follows:
(i) Determine the parents of E1, that is,

{ }≔S Eparents 3 .
(ii) Perform CI test between E3, (the single par-

ent of E1) and E1. Suppose the CI test suc-
ceeds and thus the edge E E1 3 is
considered a causal link and is not
excluded.

(iii) Calculate the score of E1 as ( )d∣P E C1 ≡
( )∣P E E1 3 , which we assume equals 0.33.

(iv) Update BT as {( )}E , 0.331 .
(b) The score of the next unexplored event type E4

is calculated similarly as above, and let us
assume that the score is 0.50. Then, BT is
updated to {( ) ( )}E E, 0.33 , , 0.501 4 .

(c) Following the same step as above, let us say BT

is updated to {( )E , 0.331 , ( )E , 0.504 , ( )}E , 0.165

for the next event type E5, to {( )E , 0.331 ,
( )E , 0.504 , ( )E , 0.165 , ( )}E , 0.1436 for the event

Algorithm 2 ES algorithm.

Require: EPN = ( X)G V , ; EOP dC ; result size k.
1: Create empty buffer BT (to store the effect event types

and their scores);
2: Determine causal search order, O, with the outward

breadth first search in G from the EOP dC ;
3: for every edge  Î XE Ei j do
4: if IsIndependent ( Æ)E E, ,i j returns true then
5: X X - {  }≔ E E ;i j {Exclude the edge}
6: end if
7: end for
8: for every node Î ( - )dE O Cj then
9: ≔Sparents parents of Ej;
10: for every node ÎE Si parents do
11: if IsIndependent ( - { })E E S E, ,i j parents i returns true

then
12: X X - {  }≔ E E ;i j {Exclude the edge}
13: - { }≔S S E ;parents parents i

14: end if
15: end for
16: ( ) å ( ) ( )d dÎ∣ ≔ ∣ ∣P E C P E E P E C ;j E S j p pp parents

17: Insert the pair ( ( ))d∣E P E C,j j into BT;
18: end for
19: Sort the nodes in BT in non-increasing order of score and

return the top-k results from BT;

1A marginal independence test disregards the effect of other event types; in
other words, it is equivalent to a CI test with an empty condition set.
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type E6, and to {( )E , 0.331 , ( )E , 0.504 ,
( )E , 0.165 , ( )E , 0.1436 , ( )}E , 07 for the event
type E7. Note that the zero score for E7 (i.e.
( ) =d∣P E C 07 ) means that the CI test between

E7 and E5 has failed and as a result the edge
E E5 7 has been excluded from the EPN.

(4) BT is sorted in non-increasing order of the score to
{( )E , 0.504 , ( )E , 0.331 , ( )E , 0.165 , ( )E , 0.1436 ,
( )}E , 07 . Then, the top two, ( )E , 0.504 and
( )E , 0.331 , are selected from BT and returned.

5.3. RSET algorithm

5.3.1. Approach

While the ES algorithm is robust, it evidently scales poorly as
the number of event types, hence the network size, increases.
This section describes the alternative, RSET algorithm we
designed to overcome or alleviate the problem, with the goal
of reducing the running time with little or no reduction in the
prediction accuracy. Specifically, the strategies discussed
below are employed.
To reduce the query execution time, we first reduce the

search space in EPN by exploring only descendants of the
nodes currently in the top-k. The nodes that are not in the top-k
or their descendants have lower scores, due to the multiplicative
property of conditional probability (in Section 5.1), and there-
fore are disqualified from being top-k candidates. Second, we
use a priority-based breadth-first search in the EPN with an
early termination criterion such that the query execution is
stopped as soon as it is certain that the top-k results have been
found. This search always chooses the unexplored descendant
node with the highest score to explore its children. The early
termination criterion is met when there is no change in the list
of event types in the top-k, that is, when there is no more des-
cendant node whose score can be greater than those in the cur-
rent top-k. This strategy effectively reduces the EPN to be only
partially explored. For this reason, even though the causal infer-
ence is done at runtime, it incurs only a small overhead.
Reduced search may affect the achieved accuracy. The pre-

diction error would be higher when the value of k is smaller
or when the graph density of EPN is higher, because then
more nodes might be ignored. In practice, however, the
impact is insignificant as explained below in the algorithm.

5.3.2. Algorithm
Algorithm 3 outlines the RSET algorithm and can be
described as follows:

(1) First, two empty buffers, BC and Bk, are created
(Line 1), and the EOP, dC , with 1 as its score is
added to both buffers (Line 2). Note that dC has the
probability of 1 because the event type has already
been observed. BC is to store the event types

explored during query processing, and Bk is to store
the top-k effect event types computed.

(2) Second, marginal independence tests are performed
(Lines 3–7), in the same way as in the ES algorithm
(algorithm 2).

(3) Then, the algorithm traverses the EPN in the
priority-based breadth-first search order starting with
the EOP while performing CI tests on edges selected
to reduce the search space. The key ideas implemen-
ted are as follows. First, the EPN is traversed for the

Algorithm 3 RSET algorithm.

Require EPN = ( X)G V , ; EOP dC ; the result size k
1: Create two empty buffers f=BC and f=B ;k

2: È {( )}d≔B B C , 1 ;C C

3: for every edge  Î XE Ei j do
4: if IsIndependent f( )E E, ,i j returns true do
5: X X - {  }≔ E E ;i j {Exclude the edge}
6: end if
7: end for
8: for each unvisited node Î ({ }dE Cc ∪ set of event types

in Bk) with the highest score do
9: Mark Ec as visited;
10: ≔Schildren children of Ec;
11: for each node ÎE Sj children do
12: Set of parents Sparents ≔ set of parents of EjÇ set of

event types in BC;
13: for each node ÎE Si parents do
14: if IsIndependent( - { }E E S E, ,i j parents i ) is true

then
15: X X - {  }≔ E E ;i j {Exclude the edge}
16: - { }≔S S E ;parents parents i

17: end if
18: end for
19: ( ) å ( ) ( )d dÎ∣ ≔ ∣ ∣P E C P E E P E C ;j E S j p pp parents

20: È {( ( ))}d≔ ∣B B E P E C, ;C C j j

21: if £∣ ∣B kk then
22: È {( ( ))}d≔ ∣B B E P E C, ;k k j j

23: Sort the event types in Bk in non-increasing order
of their scores;

24: else
25: Find the entry with the lowest score,

(E P,lowest lowest), in Bk.
26: if ( )>d∣P E Cj the lowest value in Bk then
27: ( - {( )}) È≔B B E P,k k lowest lowest

{( ( ))}d∣E P E C, ;j j

28: Sort the event types in Bk in non-increasing
order of their scores;

29: end if
30: end if
31: end for
32: end for
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EOP or each unvisited node in the buffer Bk (i.e.
top-k) (Line 8). In other words, for any child event
type Ec that is not in Bk, Ec and its descendants are
ignored, thus reducing the search space. Note, again,
that the probabilities of the children of Ec are much
lower than that of Ec due to the multiplicative property
of conditional probability. We then perform CI test on
edges between each child Ej of Ec and each of its par-
ents already visited, and the edge is excluded if
judged conditionally independent (Lines 12–18). The
score of the node Ej is then calculated from the
remaining edges (Line 19) and is stored in Bc and Bk

(Lines 20–30). If the buffer Bk overflows, then the
node with the lowest score, Elowest is removed from
the buffer (Lines 25–29), which further reduces the
search space. The buffer Bk is always sorted in non-
increasing order of the score after a new event type is
added to it (Line 23 and Line 28), and so in traversing
the EPN the priority is always given to an unvisited
node with the highest score.

Note that, although the search space is reduced by ignoring
those nodes in Bc that are not in Bk, its impact on the predic-
tion accuracy is insignificant because children of the ignored
nodes have even lower scores and therefore have no chance
of being in the top-k result.
In addition, note that the algorithm terminates early when

there is no change in the list of event types in Bk (see Line 8
of the algorithm) after exploring their children because it
means that there is no more event type beyond the current
level of exploration in the EPN that has higher score than
those already in Bk.
Computational complexity of the RSET algorithm is domi-

nated by the number of CI tests, as is for the ES algorithm,
and for both algorithms the number is exponential in the
worst case [12]. Hence, in the worst case both algorithms
have exponential computational complexity. In practice, how-
ever, the RSET algorithm reduces the computational com-
plexity significantly by virtue of its reduced search space and
early termination strategies.

EXAMPLE 6. Let us illustrate the RSET algorithm consider-
ing the EPN shown in Fig. 4. Suppose dC is E3 and k is 2. We
omit the causal search ordering and marginal independence
test steps:

(1) Two empty buffers BC and Bk are created to store all
the event types explored so far and to store the cur-
rent top-k predicted event types, respectively.

(2) The search starts with the EOP (E3) and updates BC

to {( )}E , 13 .
(3) Each unvisited event type is explored as follows. For

simplicity of illustration, we assume that the CI tests
return false and hence the edges are not excluded.

(a) The first unvisited event type, E3, is marked as
visited and its children, Schildren (={ }E E E, ,1 4 5 ),
are explored.
(i) The score of the first unexplored child, E1,

is calculated and added to the two buffers as
follows:
(A) Determine the parents of E1; Sparents i

set to { }E3 .
(B) Perform CI test of the edge between E1

and E3 given Sparents.
(C) Calculate the score of E1 as

( )d∣P E C1 = ( )∣P E E1 3 ( )d∣P E C3 = 0.33.
(D) Update BC to {( )E , 13 , ( )}E , 0.331 .
(E) Update and sort Bk to {( )}E , 0.331 .

(ii) The same steps as above are followed for
the next unexplored child E4. The two buf-
fers BC and Bk are updated to {( )E , 13 ,
( )E , 0.33 ,1 ( )}E , 0.504 and {( )E , 0.504 ,
( )}E , 0.331 , respectively.

(iii) BC and Bk are updated to {( )E , 13 ,
( )E , 0.331 , ( )E , 0.504 , ( )}E , 0.165 and
{( )E , 0.504 , ( )}E , 0.331 , respectively, for
the next unexplored child E5.

(b) Now, the next unvisited event type, E4 in Bk, is
marked as visited and its children are explored.
However, there is no child of E4, i.e. Schildren is
empty. Therefore, there is no computation done.

(c) The same result is seen for the next event type,
E1, as well. As it has no child (i.e. empty
Schildren), there is no computation done.

(4) The top-k result in Bk is obtained as {( )E , 0.504 ,
( )}E , 0.331 .

For the same dC , the RSET algorithm considered only four
event types—E E E, , ,3 1 4 E5—and the ES algorithm con-
sidered all event types—E E E E E E, , , , ,3 1 4 5 6 7. Note that in
this example, RSET produced the same result (i.e.

= {( )B E , 0.50 ,k 4 ( )}E , 0.331 ) as ES. This is typical unless
the value of k is significantly large. It shows the merit of the
early terminating reduced search approach of the RSET algo-
rithm against the ES approach of the ES algorithm.

6. PERFORMANCE EVALUATION

We conducted experiments to evaluate the runtime causal
inference model and the top-k query processing mechanism in
the proposed RSET algorithm and the ES algorithm. One
evaluation was with respect to the accuracy of the top-k
results, and the other evaluation was with respect to the run-
time. Section 6.1 describes the experiment setup, including
the evaluation measures, data sets and the platform used, and
Section 6.2 presents the experiment results.
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6.1. Experiment setup

6.1.1. Performance measures

The measures of evaluating top-k query processing are accur-
acy and runtime.

Accuracy measure
Suppose Rk is the ranked list of the top-k effects predicted
given an EOP dC observed in the test sequence. Then, the
accuracy can be measured by checking the next event type
observed in the test sequence, Eo ( Î [ ]o N1, ), against the
predicted ranked list Rk. If Eo exists in Rk, then we say the
prediction is correct (or ‘hit’), and otherwise incorrect (or
‘miss’).
We used two alternative methods to calculate the accuracy:

hit-or-miss and weighted. The hit-or-miss method gives any
hit 100% accuracy and any miss 0% accuracy, whereas the
weighted method rates the accuracy of a hit according to
the rank of Eo in Rk. Either method is suitable depending on
the application requirements. The specific formulas can be
summarized as follows:

Hit-or-miss accuracy: Let nhits and nmisses be the number of
hits and the number of misses, respectively, out of ntests tests.
Then, the hit-or-miss accuracy of the result, a -h m, is calcu-
lated as follows:

a = =
+

( )-
n

n

n

n n
2h m

hits

tests

hits

hits misses

Weighted accuracy: Suppose ( )P Eo is the score of Eo in Rk.
As discussed earlier, the rank is based on the score; we nor-
malize the score such that the prediction accuracy decreases
gradually with the decrease in the rank of Eo in Rk. That is, in
the case of a hit, the accuracy is given as ( )

{ ( ) Î }∣
P E

P E E Rmax
o

j j k
,

where the denominator is the highest probability among all

event types in Rk. (Note that this measure gives the top event
type the accuracy of 100%.) In the case of a miss, the accur-
acy of Eo is 0%.
So, given nhits and nmisses, the weighted accuracy of the

result, aweighted, is calculated as follows:

{ }
a =

å
( )

( ) Î= ∣
P E

P E E R

n

max
weighted

i
n o

j j k

tests

1
tests i

i i i

where Eoi
is the ith observed event type in the test sequence.

Since the accuracy of a miss is 0%, we can consider only
the hits in the numerator:

{ }
a =

å
( )

( ) Î

+
( )

= ∣
P E

P E E R

n n

max
3weighted

h
n oh

j j k

hits misses

1
hits

h h h

where Eoh
is the hth observed event type in the test sequence

that has a result hit.

Runtime measure
The runtime was the CPU time taken during query process-
ing. Note that the EPN construction is not part of the query
processing mechanism and, therefore, we did not include it to
measure runtime. In the query processing with the RSET algo-
rithm and the ES algorithm, there is an overhead of runtime
causal inference, and so it was included in the runtime. In con-
trast, the query processing with the traditional causal inference
(i.e. FCNI algorithm) does not include the causal network
construction time in the runtime because the causal inference
is performed only once (during the causal network construc-
tion) prior to query processing.
In our work, latency is the interval between the arrival of a

new event and the identification of its top-k effect events.
However, as the time for EPN update is insignificant (see the
polynomial runtime in Section 4.2) compared to the time for
query processing (which is exponential), latency is essentially
the query processing time.

6.1.2. Data sets
Experiments were conducted using two real-world data sets
(profile summary in Table 2) to evaluate the proposed
algorithms.

Electric power grid data set
This data set contains simulated temporal sequences of cas-
cading electric power grid component outages, such as those
that can lead to very large blackouts (e.g. [52]). The
sequences were generated using a model of the Polish power
network, which is described in [53]. Each sequence represents
the order in which the components failed, as well as the time
of the failure. Each grid component was considered an event
type, whereas a component failure was an event instance.
This data set includes 4492 cascade sequences and 565 dis-
tinct event types.
In the original data set, each file, representing one blackout,

has a list of the components that failed in that blackout. The
original schema of the power grid data is as follows: 〈event
indicator, timestamp, component id〉. The event indicator can
be one of 0, 1 and −1, which refer to an initiating event, a

TABLE 2. Profiles of the data sets.

Data set N Ninstances CRA NCRA

Web page click 17 4 698 795 session id 989 818
Electric power grid 565 94 339 blackout id 4492

N, number of event types; Ninstances, number of event instances;
NCRA, number of different CRA values.
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dependent event and a stop event, respectively. There is
always at least one initiating event at the beginning of each
component failure sequence (with 0 as its starting time).
Since these events are always at the beginning of the
sequence, there is no inward edge toward them in the EPN. A
dependent event is the result of the initiating event or another
dependent event. A blackout sequence always has at least one
dependent event. We treated both an initiating event and a
dependent event in the same way. On the other hand, a stop
event denotes the end of the blackout and is not a real event.
Therefore, we ignored stop events. The timestamp and the
component id are, respectively, the starting time of an event
and the attribute that uniquely identifies a grid component.
To create an event stream, we modified the schema and

mixed the data from the files in random order while preserv-
ing the temporal order of the component failures in each
blackout. The modified schema, 〈timestamp, component id,
blackout id, event indicator〉, has an additional tag blackout
id to identify the blackout to which the component failure
belongs to. So, the blackout id is the CRA in the power grid
data set.

Web page click stream data set
This data set consists of click-stream data of 989 818
sequences obtained from the University of California, Irvine’s
machine learning repository [54]. Each sequence reflects the
browsing activities, arranged in temporal order, in one user
session. The data set gives a random sample of the length of
visits of users browsing the msnbc.com web site on the whole
day of 28 September 1999. The length of the visit is an esti-
mate of the total number of clicks or pages seen by each user
and is based on the ‘Internet Information Server (IIS) logs for
msnbc.com and news-related portions of msn.com’. A web-
page category is an event type, and a webpage visit is an
event instance. The session id of the visit is the CRA for its
event instance.
The number of distinct event types is 17. That is, a

sequence can have web activities related to 17 different web-
page categories. These event types (i.e. webpage categories)
are frontpage, news, technology, local, opinion, on-air, mis-
cellaneous, weather, MSN-news, health, living, business,
MSN-sports, sports, summary, BBS and travel. The total
number of event instances (i.e. page visits) is 4 698 795.
To create an event stream, we randomly mixed the events

while preserving the temporal order of the events for each
session. The schema of the events is 〈timestamp, webpage
category, session id 〉.

6.1.3. Experiment platform
The experiments were conducted on 2.3 GHz Intel Core i5
machine with 4GB of memory, running Windows 7. The
algorithms were implemented in Java 1.7.0.

6.2. Experiment results

We conducted two sets of experiments to evaluate the RSET
and ES algorithms for top-k predictive query processing. One
set of experiments was to evaluate the prediction accuracy,
and the other set of experiments was to evaluate the runtime.
There were two objectives in each set of experiments. The
first objective was to compare the causal inference mechan-
ism used in query processing—that is, between the runtime
causal inference mechanism of RSET and ES algorithms and
the traditional causal inference mechanism of the FCNI algo-
rithm. For better fairness, we incorporated the RSET algo-
rithm (as opposed to ES) into the FCNI algorithm for query
processing because RSET is more efficient than ES. The
second objective was to compare the query processing mech-
anism between the RSET algorithm and the ES algorithm. In
both sets of experiments, we also studied the effect of varying
the value of k on the proposed algorithms.
For each real data set, we used 70% for training and 30%

for testing the proposed algorithms. The division of web page
click stream data set was done by session id, and the division
of electric power grid data set was done by blackout id. From
the event stream in training data set, an EPN was constructed
and input to the RSET and ES algorithms and a causal net-
work was constructed and input to the FCNI algorithm. The
window observation period was set to 10 msec for the web
page click stream data set and to 10 sec for the electric power
grid data set. Testing data simulated an event stream. As soon
as a new event arrived, it was added to the partitioned win-
dow and, then, the top-k prediction query execution was trig-
gered in response to the most recent event at position δ

(called the EOP index) in the sequence of cause events in the
same partition. Note that the RSET and ES algorithms per-
form query processing over an EPN whereas the FCNI algo-
rithm does so over a causal network. Upon the arrival of a
new event, the measurements of prediction accuracy and run-
time were repeated and the calculated average accuracy and
average runtime were reported.

6.2.1. Accuracy
Figures 8 and 9 show the hit-or-miss accuracy and the
weighted accuracy, respectively, for the web page click
stream data set, and Figs. 10 and 11 show those for the elec-
tric power grid data set. In these figures, the accuracies of the
RSET algorithm, the ES algorithm and the FCNI algorithm
are shown for varying value of the EOP index (δ) over the
sequence of events in the condition set. Note that the EOP
index δ is the position of the most recent event in the
sequence of cause events in the same partition. In addition,
Figs. 12 and 13 show the average hit-or-miss and weighted
accuracies for different values of k in the web page click
stream data set and the electric power grid data set,
respectively.
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FIGURE 8. Hit-or-miss accuracies of the RSET, ES and FCNI algorithms for the web page click stream data set.
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FIGURE 9. Weighted accuracies of the RSET, ES and FCNI algorithms for the web page click stream data set.
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FIGURE 10. Hit-or-miss accuracies of the RSET, ES and FCNI algorithms for the electric power grid data set.
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FIGURE 11. Weighted accuracies of the RSET, ES and FCNI algorithms for the electric power grid data set.
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Note that the hit-or-miss accuracy is never lower than the
weighted accuracy. This always holds in all cases because in
the hit-or-miss accuracy a hit always receives the score of
100% while in the weighted accuracy a hit receives a score
lower than 100% unless it is the observed event type (from
the test data set) that has the highest score in the ranked list.
Note as well that, the two accuracy measures give the same
value when k is 1 because then the size of the result ranked
list is one and hence equation 3 reduces to equation 2.
Now, we discuss below our observations from comparing

the accuracies of the three algorithms.

Comparison of the causal inference mechanism
All results showed that the prediction accuracies of the pro-
posed algorithms (both ES and RSET) were significantly
higher than that of the FCNI algorithm at every EOP index
(δ). This difference in accuracy came from their causal mod-
els. That is, the traditional causal model of the FCNI algo-
rithm was limited due to its lack of support for cyclic
causality and due to the loss of causal information that the
prediction accuracy was compromised significantly compared
with that of the RSET algorithm. (Recall that, for fairness, in
the FCNI algorithm we used the same query processing

mechanism used in the RSET algorithm.) In comparison, the
run-time causal inference of the RSET and ES algorithms
readily supported cyclic causality and reduced causal infor-
mation loss, thereby achieving higher prediction accuracies.
The results also showed that, for the same reason (i.e. cau-

sal models), the prediction accuracies of the proposed ES and
RSET algorithms were always higher than that of the FCNI
algorithm for different number k of predicted events. Besides
the accuracy of all three algorithms increased with the
increase of k. The reason is that a larger number k of pre-
dicted event types generally contributes more to the overall
accuracy calculated from the resulting set of event types (see
equations 2 and 3).

Comparison of the query processing mechanism
The results showed that the prediction accuracy of the ES
algorithm was always higher than that of the RSET algorithm,
which is evident given that the ES algorithm performs an ES
whereas the RSET algorithm performs only a partial search.
It was discussed earlier why the accuracies of all three

algorithms increase as the value of k increases. Here, we add
further explanation on the ES algorithm and the RSET algo-
rithm based on their search mechanisms for query processing.
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FIGURE 12. Average accuracies of the RSET, ES and FCNI algorithms w.r.t. k for the web page click stream data set.
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In the RSET algorithm, the search space increases as k
increases, therefore reducing the probability of missing out
the correct top-k events. In the ES algorithm, the ES space is
constant, but, still, larger k means lower probability of miss-
ing the correct top-k events as a result of the search.

6.2.2. Runtime
Figures 14 and 15 show the runtime for the web page click
stream data set and the electric power grid data set, respect-
ively. In these figures, the runtime of the three algorithms are
compared for different values of the EOP index (δ) over the
sequence of events in the condition set. In addition, Fig. 16
shows the runtime for different values of k in the web page
click stream and the electric power grid data sets.

Comparison of the causal inference mechanism
The results showed that the runtimes of the RSET and ES
algorithms were longer than that of the FCNI algorithm at
every EOP index for every value of k. As discussed in
Section 5.3, the RSET and ES algorithms have an overhead
of the runtime causal inference during query processing while
FCNI algorithm does not because it uses a pre-built causal
network for prediction. Therefore, the runtimes for the ES
and RSET algorithms are always longer than that of the FCNI
algorithm.
Interestingly, the runtimes of the three algorithms were

longer in the electric power grid data set than the web page

click stream data set. This is because of the larger number N
of event types in the electric power grid data set.

Comparison of the query processing mechanism
First, as expected, the runtime of the RSET algorithm was
always shorter than that of the ES algorithm. The main reason
lies in the difference in their search strategies (i.e. reduced in
RSET as opposed to exhaustive in ES) as discussed in
Section 5. Besides, there is an additional overhead in the ES
algorithm to calculate the causal search order.
Second, the runtime reduction of the RSET algorithm from

that of the ES algorithm was much larger for in the electric
power grid data set than for the web page click stream data
set. This demonstrates that the RSET algorithm scales up bet-
ter than the ES algorithm for data sets with a larger number
of event types, that is, larger EPN. The larger EPN for the
electric power grid data set results in a larger search space
(which is typical over event streams) for the ES algorithm
and, thus, requires longer runtime for query processing. The
RSET algorithm, on the other hand, is capable of significantly
reducing the search space and terminating the query process-
ing early even in the larger search space.
Third, the runtime of the ES algorithm did not change with

an increase in k. The ES algorithm always runs an ES, irre-
spective of the value of k, and uses k only to filter out the
top-k event types out of N event types at the end, which has
insignificant effect on the overall runtime. On the other hand,
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the runtime of the RSET algorithm does increase with an
increase in k. The search space covered by the RSET algo-
rithm increases with k, which leads to the increased runtime.

6.2.3. Discussion of experiment results
The proposed runtime causal inference mechanism, in the
RSET and ES algorithms, handled cyclic causality and
avoided causal information loss, and thus improved predic-
tion accuracy significantly. The FCNI algorithm, on the other
hand, performed worse than both the RSET and ES algo-
rithms as it could not handle cyclic causality. The ratios of

the number of cycles over the number of edges in the EPN
were 0.69 for the electric power grid data set and 0.85 for the
web page click stream data set. Intuitively, the accuracy of
the FCNI algorithm would suffer increasingly more as the
number of cycles increases. Thus, despite its reduced runtime,
the FCNI algorithm is judged unsuitable for top-k predictive
query processing over event streams.
The RSET algorithm achieved comparable accuracy as the

ES algorithm, and it was much faster than the ES algorithm.
Additionally, the running time of the RSET algorithm showed
scaling better than the ES algorithm with an increase in the
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network size. We thus conclude that the RSET algorithm is
more suitable for real-time continuous top-k query processing
over event streams; whereas the ES algorithm is more suitable
when the time is of lesser importance. This is clearly evident
for real-time applications with hundreds (or possibly thou-
sands) of event types such as the electric power grid data set
because then the pruning effect of reduced search and early
termination becomes increasingly more significant.
Between the two data sets, the runtime for the electric

power grid data set was much longer than the runtime for the
web page click stream data set. This is because of the differ-
ence in the numbers of event types in these two data sets.
That is, the much larger number of event types in the electric
power grid data set leads to much more CI tests during the
runtime causal inference, thus resulting in slower query exe-
cution. In our work, the runtime measurements were made on
a low-end laptop. The use of a more powerful computational
setup (e.g. parallel processing) would further reduce the
runtime.

7. CONCLUSION AND FUTURE WORK

This paper addressed the problem of continuously predicting
top-k effect events over event streams. We proposed a novel
run-time causal inference mechanism to support cyclic causal
relationships and to overcome causal information loss. Then,
we proposed two query processing algorithms, the Reduced
Search with Early Termination (RSET) algorithm and the ES
algorithm, which use runtime causal inference to predict top-k
effects continuously. Through experiments, we demonstrated
that the proposed approach overcomes the two main limita-
tions of the traditional causal inference approach—acyclic
causality and causal information loss. We showed in two
problem domains that the proposed RSET and ES algorithms
significantly improved the causal inference power.
We plan to address a number of issues for the future work.

First, in this paper, we assumed that events in a stream are
always in the correct temporal order. If, however, events
arrive out of order, erroneous relationships can be introduced
in the EPN, thereby degrading the accuracy of prediction.
One idea to deal with such an out-of-order stream is to allow
for ambiguity in the edge direction by introducing, for
example, undirected edges and then allowing the algorithm to
resolve edge directions at query processing time. Second, in
this paper, for the sake of computational efficiency, we only
supported direct causality, therefore only one-level of predic-
tion, under the assumption that an event is the most likely
effect of its immediately preceding event. Extended from this,
supporting indirect causality between events, thus multiple
levels of causal prediction through a chain of intermediate
events, would be appealing. Since the mechanism to compute
the propagation of probabilities through the EPN is already in
place (see Examples 5 and 6), this extension is not difficult

conceptually. However, the computational cost, which
increases exponentially with the number of prediction levels,
is likely to be a challenge. Third, in this paper, we assumed
that event types are provided by domain experts, but it may
not be always possible. Some applications may require that
the EPN constructor automatically identify and define event
types from event streams. Fourth, in this paper, we focused
on building a single generative prediction model to enable
real-time causal modeling and causal prediction at event type
level. It will be an interesting extension, especially for the
web page click stream application, to personalize the predic-
tion by modeling the causality pertaining to different users in
multiple models.
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