
Reservoir Sampling over Memory-Limited Stream Joins

Mohammed Al-Kateb Byung Suk Lee X. Sean Wang

Department of Computer Science
The University of Vermont
Burlington VT 05405, USA

{malkateb,bslee,xywang}@cs.uvm.edu

Abstract

In stream join processing with limited memory, uniform
random sampling is useful for approximate query evalua-
tion. In this paper, we address the problem of reservoir
sampling over memory-limited stream joins. We present
two sampling algorithms, Reservoir Join-Sampling (RJS)
and Progressive Reservoir Join-Sampling (PRJS). RJS is
designed straightforwardly by using a fixed-size reservoir
sampling on a join-sample (i.e., random sample of a join
output stream). Anytime the sample in the reservoir is used,
RJS always gives a uniform random sample of the origi-
nal join output stream. With limited memory, however, the
available memory may not be large enough even for the join
buffer, thereby severely limiting the reservoir size. PRJS al-
leviates this problem by increasing the reservoir size dur-
ing the join-sampling 1. This increasing is possible since
the memory requirement by the join-sampling algorithm de-
creases over time. A larger reservoir provides a closer rep-
resentation of the original join output stream. However, it
comes with a negative impact on the probability of the sam-
ple being uniform. Through experiments we examine the
tradeoffs and compare the two algorithms in terms of the
aggregation error on the reservoir sample.

1. Introduction
Uniform random sampling has been known for its use-

fulness and efficiency for generating consistent and unbi-
ased estimates of an underlying population. It has been
extensively used in the database community for evaluating
queries approximately [2] [10] [15] [16] [27] [36]. This ap-
proximate query evaluation may be necessary due to limited
system resources like memory space or computation power.
Two types of queries have been mainly considered: aggre-
gation queries [2] and join queries [2] [10]. Between the
two types, it is far more challenging for join queries because
uniform random sampling of join inputs does not guarantee

1Uniform random sampling on a join result is called join-sampling in
[10].

a uniform random sample of the join output [2] [10]. This
paper concerns join queries.

In the context of data stream processing, Srivastava et
al. [31] addressed that challenge with a focus on stream-
ing out (without retaining) a uniform random sample of the
result of a sliding-window join query with limited mem-
ory. There are, however, many data stream applications for
which such a continuous streaming out is not practical.

One example is the applications that need a block of tu-
ples (instead of a stream of tuples) to perform some statis-
tical analysis like median, variance, etc. For these applica-
tions, there should be a way of retaining a uniform random
sample of the join output stream.

Another example comes from the applications that col-
lect results of join queries from wireless sensor networks
using a mobile sink. Data collection applications have been
extensively addressed in research literature [8] [9] [11] [19]
[21] [29] [30] [32] [35]. In these applications, a mobile sink
traverses the network and collects data from sensors. Thus,
each sensor needs to retain a uniform random sample of the
join output, instead of streaming out the sample tuples to-
ward the sink.

A natural solution to keep a uniform random sample of
the join output stream is to use reservoir sampling [25] [33].
Reservoir sampling selects a uniform random sample of a
fixed size from an input stream of an unknown size. How-
ever, keeping a reservoir sample over stream joins is not
trivial since streaming applications can be limited in mem-
ory size [5] [17] [26].

In this paper we address the problem of reservoir sam-
pling over memory-limited stream joins. To our knowledge,
this problem has not been addressed in any previous work.
We present two algorithms that perform reservoir sampling
on the join result: Reservoir Join-Sampling (RJS) algo-
rithm and Progressive Reservoir Join-Sampling (PRJS) al-
gorithm. The RJS algorithm is straightforward. We simply
apply the conventional reservoir sampling to join-sample tu-
ples streaming out from a join operator. The reservoir size
is fixed. Naturally, the sample in the reservoir is always a

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

uniform random sample of the join result. Therefore, RJS
fits those applications that may use the sample in the reser-
voir at any time (e.g., continuous queries). This algorithm,
however, may not accommodate a memory-limited situa-
tion in which the available memory may be too small even
for storing tuples in the join buffer. In such a situation, it
may be infeasible to allocate the already limited memory to
a reservoir with an adequately large size.

The PRJS algorithm is designed to alleviate this prob-
lem by increasing the reservoir size during the sampling
process. For this, we modify the conventional reservoir
sampling technique to what we call the progressive reser-
voir sampling [3]. The key idea of PRJS is to exploit the
property of reservoir sampling that the sampling probabil-
ity keeps decreasing for each subsequent tuple. Based on
this property, the memory required by the join buffer keeps
decreasing during the join-sampling (details in Section 4.3).
Therefore, PRJS releases the join buffer memory not needed
anymore and allocates it to the reservoir.

Evidently, a larger reservoir sample represents the orig-
inal join result more closely. It, however, comes at a cost
in terms of the uniformity of the sample. Once the reser-
voir size is increased, the sample’s uniformity is damaged.
Besides, even after the enlarged reservoir is filled again
with new tuples, the sample’s uniformity is still not guar-
anteed, that is, the sample’s uniformity confidence stays be-
low 100% [3] (details in Section 2). There is a tradeoff
that a larger increase of reservoir size leads to lower uni-
formity confidence after the reservoir is filled again. There-
fore, PRJS is suitable for those applications that can be tol-
erant in terms of the uniformity of the sample. Specifically,
it fits those applications that use the sample at a predeter-
mined time (such as applications of data collection over
wireless sensor networks). Given such a tradeoff, PRJS is
designed so that it determines how much the reservoir can
be increased given a sample-use time and a uniformity con-
fidence threshold.

We have done extensive experiments to evaluate the two
algorithms with respect to the two competing factors (size
and uniformity of sample). We have also compared the two
algorithms in terms of the aggregation error resulting from
applying AVG on the join result. The experimental results
confirm our understanding of the tradeoffs.

In this paper, we make the following contributions:

1. We identify a new problem of reservoir sampling
on the output of a memory-limited stream join, and
present two algorithms as solutions to the problem:
one with a fixed reservoir size (called Reservoir
Join-Sampling (RJS)) and the other with an increas-
ing reservoir size (called Progressive Reservoir Join-
Sampling (PRJS)).

2. For the PRJS algorithm we introduce an algorithm,
called progressive reservoir sampling, and formally

discuss a property that the uniformity of sample is not
guaranteed if the reservoir size is increased in the mid-
dle of sampling.

3. We evaluate the two presented algorithms with respect
to their performance tradeoffs between the size and
uniformity of a reservoir sample as well as aggrega-
tion results on the reservoir sample.

The rest of the paper is organized as follows. Section 2
introduces our progressive reservoir sampling algorithm.
Section 3 outlines the join-sampling processing model. Sec-
tion 4 presents RJS and PRJS algorithms. Section 5 eval-
uates the two algorithms through experiments. Section 6
discusses related work. Section 7 concludes the paper and
outlines future work.

2. Progressive Reservoir Sampling
In this section, we review the conventional reservoir

sampling algorithm. Then, we conduct a theoretical study
on the effects of increasing a reservoir size in the middle of
sampling, and propose our progressive reservoir sampling
algorithm. Results of this theoretical study and the origin of
the proposed algorithm appear in [3].

2.1. Reservoir sampling

The conventional reservoir sampling [25] selects a uni-
form random sample of a fixed size, without replacement,
from an input stream of an unknown size (see Algorithm 1).

Algorithm 1 Conventional Reservoir Sampling
1: input: r {reservoir size}
2: k = 0
3: for each tuple arriving from the input stream do
4: k = k + 1
5: if k ≤ r then
6: add the tuple to the reservoir
7: else
8: sample the tuple with the probability r

k
and replace a

randomly selected tuple in the reservoir with the sam-
pled tuple

9: end if
10: end for

Initially, the algorithm places all tuples in the reservoir
until the reservoir (of size r tuples) becomes full. After that,
each kth tuple is sampled with the probability r

k . A sam-
pled tuple replaces a randomly selected tuple in the reser-
voir. This way, the reservoir always holds a uniform random
sample of all the tuples seen from the beginning [25].

2.2. To increase the size of a reservoir

A sample is a uniform random sample if it is produced
using a sampling scheme in which all statistically possible
samples of the same size are equally likely to be selected.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Table 1. Notations used in this paper.
Symbol Description

Si Data stream i (i = 1, 2)
λi Rate of stream Si

si Tuple arriving in stream Si

Wi Sliding window on stream Si

A Join attribute (common to S1 and S2)
Si-probe Join tuple produced by si ∈ Wi

ni(si) Number of Si-probe join tuples produced by a
tuple si ∈ Si before it expires from Wi

S Sample in a reservoir
r Initial reservoir size
δ Increment of a reservoir size
k Number of tuples seen so far in an input stream
l Number of tuples that would be generated with-

out join-sampling by the time the reservoir
sample will be used (or collected)

RC Reservoir refill confidence
ξ Reservoir refill confidence threshold

UC Uniformity confidence in a reservoir sample
ζ Uniformity confidence threshold
m Uniformity confidence recovery tuple count,

i.e., number of tuples to be seen in an input
stream of the progressive reservoir sampling
until UC for the enlarged reservoir reaches ζ

x Number of tuples to be selected from k after
increasing the reservoir size

y Number of tuples to be selected from m after
increasing the reservoir size

p1 Join sampling probability in the first phase of
the algorithms RJS and PRJS

p2 Reservoir sampling probability in the second
phase of the algorithms RJS and PRJS

In this case, we say the uniformity confidence in the sam-
pling algorithm equals 100%. In contrast, if some statis-
tically possible samples cannot be selected using a certain
sampling algorithm, then we say the uniformity confidence
in the sampling algorithm is below 100%. Thus, we define
uniformity confidence as follows.

the number of different samples of the same size
possible with the algorithm

the number of different samples of the same size
possible statistically

× 100

(1)
For reservoir sampling, the uniformity confidence in a

reservoir sampling algorithm which produces a sample S

of size r (denoted as S[r]) is defined as the probability that
S[r] is a uniform random sample of all the tuples seen so far.
That is, if k tuples have been seen so far, then the uniformity
confidence is 100% if and only if every statistically possible
S[r] has an equal probability to be selected from the k tuples.
As we show below, if the reservoir size is increased from

Figure 1. Increasing the reservoir size.

Figure 2. UC(Sr+δ) with respect to m (Equa-
tion 2).

r to r+δ (δ > 0), then some statistically possible S[r+δ]’s
cannot be selected.

Suppose the size of a reservoir is increased from r to r+δ
(δ > 0) immediately after the kth tuple arrives (see Fig-
ure 1). Then, the reservoir has room for δ additional tuples.
Clearly, there is no way to fill this room from sampling the
k tuples as they have already passed by. We can only use
incoming tuples to fill the room. The number of incoming
tuples used to fill the enlarged reservoir is denoted as m and
called the uniformity confidence recovery tuple count.

For the sake of better uniformity, we allow some of the r
existing tuples to be evicted probabilistically and replaced
by some of the incoming m tuples. In our work, we ran-
domly pick the number of tuples evicted (or equivalently,
the number of tuples retained). Clearly, the number of tu-
ples that are retained, x, can be no more than r. Besides, x
should not be less than (r + δ) − m if m < r + δ (because
otherwise, with all m incoming tuples the enlarged reservoir
cannot be refilled), and no less than 0 otherwise. Hence, we
can have x tuples, where x ∈ [max{0, (r + δ) − m}, r],
from the k tuples and the other r + δ − x tuples from the m
tuples. This eviction scheme allows for

(
k
x

)(
m

r+δ−x

)
differ-

ent S[r+δ]’s for each x in the range [max{0, (r+δ)−m}, r].
On the other hand, the number of different samples of size
r + δ that should be statistically possible from sampling
k + m tuples is

(
k+m
r+δ

)
. Hence, with the eviction in place,

the uniformity confidence is expressed as follows:

UC(k, r, δ,m) =

∑r
x=max {0,(r+δ)−m}

(
k
x

)(
m

r+δ−x

)
(
k+m
r+δ

) × 100

(2)where m ≥ δ.
Examining this formula shows that the uniformity confi-

dence increases monotonously and saturates as m increases.
Figure 2 shows this pattern given one setting of k, r, and δ.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Note that the uniformity confidence never reaches 100%,
as exemplified by Figure 3 which magnifies the uniformity
confidence curve of Figure 2 for m ≥ 9000.

The following theorem summarizes the uniformity con-
fidence property of reservoir sampling in the event of in-
creasing the reservoir size in the middle of sampling.

Theorem 1 If the size of a reservoir is increased from r to
r + δ (δ > 0) while sampling from an input stream is in
progress (after seeing more than r tuples), it is not possi-
ble to maintain the sample in the enlarged reservoir with a
100% uniformity confidence.
Proof Let x be the number of tuples that can be selected
in the enlarged reservoir (of size r + δ) from the k tuples
seen so far in the input stream. Then, the uniformity con-
fidence is equal to 100% if and only if x can be any value
in the range of [0,r + δ]. However, x cannot be more than
r since we have only r tuples from the k tuples seen so far.
From this we conclude that the uniformity confidence can-
not reach 100%.

2.3. Progressive reservoir sampling algo-
rithm

Algorithm 2 Progressive Reservoir Sampling
Inputs: r {reservoir size}

k {number of tuples seen so far}
ζ {uniformity confidence threshold}

1: while true do
2: while reservoir size does not increase do
3: conventional reservoir sampling (Algorithm 1).
4: end while
5: Find the minimum value of m (using Equation 2 with the

current values of k, r, δ) that causes the UC to exceed ζ.
6: flip a biased coin to decide on the number, x, of tuples to

retain among r tuples already in the reservoir (Equation 3).
7: randomly evict r − x tuples from the reservoir.
8: select r + δ − x tuples from the incoming m tuples using

conventional reservoir sampling (Algorithm 1).
9: end while

Based on the above discussion, our progressive reser-
voir sampling works as shown in Algorithm 2. As long
as the size of the reservoir does not increase, it uses the
conventional reservoir sampling to sample the input stream
(Line 3). Once the reservoir size increases by δ, the algo-
rithm computes the minimum value of m (using Equation 2)
that causes the UC to exceed a given threshold (ζ) (Line 5).
Then, the algorithm flips a biased coin to decide on the num-
ber of tuples (x) to retain among the r tuples already in the
reservoir (Line 6). The probability of choosing the value x
is defined as:

p(x) =

(
k
x

)(
m

r+δ−x

)
(
k+m
r+δ

) (3)

where max {0, (r + δ) − m} ≤ x ≤ r.

Figure 3. Figure 2 magnified for m ≥ 9000.

Figure 4. Join-sampling processing model.

After that, the algorithm randomly evicts r − x tuples
from the reservoir (Line 7) and refills the remaining reser-
voir space with r + δ − x tuples from the arriving m tuples
using the conventional reservoir sampling (Line 8). Even-
tually, the algorithm continues sampling the input stream
using the conventional reservoir sampling (Line 3) as if the
sample in the enlarged reservoir were a uninform random
sample of the k + m tuples.

We will use these results to design the Progressive Reser-
voir Join-Sampling algorithm presented in Section 4.3.

3. Join-Sampling Processing Model
Figure 4 illustrates the processing model of join-

sampling, i.e., uniform random sampling over a (two-way)
join output stream. Tuples in the two sliding windows (W1

and W2) on the input data streams (S1 and S2) are equi-
joined, i.e., with S1 ��S1.A=S2.A S2. (A is the join at-
tribute.) A sliding window is either time-based or tuple-
based. If time-based, at any time τ a window Wi (i = 1, 2)
contains the tuples of Si whose timestamp t is in the range
[τ − |Wi|, τ], where |Wi| denotes the size of Wi. If tuple-
based, Wi contains the |Wi| tuples that arrived on Si most
recently. The result of a join query is a stream of tuples
s1‖s2 (i.e., concatenation of s1 and s2) where s1 is a tuple
in S1, s2 is a tuple in S2, and s1.A = s2.A.

We adopt the following notions from the join-sampling
processing model in [31]. Every join-result tuple is clas-
sified as either an S1-probe join tuple or an S2-probe join
tuple. When a new tuple s1 arrives on S1 and is joined with
a tuple s2 ∈ W2, s1 is said to produce an S2-probe join
tuple. An S1-probe join tuple is defined symmetrically. A
tuple s1 ∈ S1 may first produce S2-probe join tuples when

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

it arrives. Then, before it expires from W1, it may pro-
duce S1-probe join tuples with tuples newly arriving on S2.
n1(s1) is a function which returns the number of S1-probe
join tuples produced by a tuple s1 ∈ S1 before it expires
from W1. n2(s2) is defined symmetrically.

Tuples arrive in a data stream in a monotonically increas-
ing order of the timestamp. In other words, there is no out
of order arrival. The available memory M is limited, and
insufficient for the join buffer to hold all tuples of the cur-
rent sliding windows. We assume the initial reservoir size,
r, is given. Determining the initial reservoir size, that is, al-
locating the memory M between the reservoir and the join
buffer, is an interesting future research problem.

Under this join-sampling processing model, we have ob-
served that as time passes we can lower memory require-
ment on the join buffer and transfer memory from the join
buffer to the reservoir. This makes our results on progres-
sive reservoir sampling applicable to this processing model.

4. Join-Sampling Algorithms
In this section, we first give an overview of the Uni-

form Join-Sampling (UNIFORM) algorithm [31], and then
present our proposed algorithms: Reservoir Join-Sampling
(RJS) and Progressive Reservoir Join-Sampling (PRJS).
UNIFORM is used as a building block in RJS and PRJS.
Each of the proposed algorithms has two phases: join sam-
pling phase and reservoir sampling phase. We denote the
sampling probabilities used in the first phase as p1 and the
sampling probability used in the second phase as p2.

4.1. Uniform join-sampling

Algorithm 3 Uniform Join-Sampling (UNIFORM)
1: for each s2 in W2 where s2.A = s1.A do
2: s2.num = s2.num + 1
3: if s2.num = s2.next then
4: output s1‖s2

5: decide on the next s1 to join with s2

6: end if
7: end for
8: pick X ∼ G(p1) {geometric distribution}
9: s1.next = s1.num + X

10: if s1.next > n1(s1) then
11: discard s1

12: end if

UNIFORM [31] streams out a uniform random sample
of the result of a sliding-window join query in a memory-
limited stream environment. Algorithm 3 outlines the steps
of the algorithm for one-way join from S2 to S1. (Join in the
opposite, from S1 to S2, is symmetric.) The basic assump-
tion of the algorithm is that ni(si) (see Table 1) (i = 1, 2)
is known. The algorithm works with two prediction models
that provide ni(si): frequency-based model and age-based
model. Frequency-based model assumes that, given a do-
main D of the join attribute A, for each value v ∈ D a

fixed fraction f1(v) of the tuples arriving on S1 and a fixed
fraction f2(v) of the tuples arriving on S2 have value v of
the attribute A. Age-based model assumes that for a tuple
s1 ∈ S1 the S1-probe join tuples produced by s1 satisfies
the conditions that (1) the number of S1-probe join tuples
produced by s1 is a constant independent of s1 and (2) out
of the n1(s1) S1-probe join tuples of s1, a certain number
of tuples is produced when s1 is between the age g − 1 and
g. These definitions are symmetric for a tuple s2 ∈ S2.
The choice of a predictive model is irrelevant to our work;
thus, without loss of generality, we use the frequency-based
model in the rest of the paper.

For the frequency-based model, n1(s1) = λ2 × W1 ×
f2(s1.A). The join sampling probability p1 is computed
by first obtaining the expected memory usage (i.e., the ex-
pected number of tuples retained in the join buffer) in terms
of p1 and, then, equate this to the amount of memory avail-
able for performing the join and solving it for p1. The ex-
pected memory usage of W1 thus obtained as [31]:

λ1W1

∑

v∈D

f1(v)(1 − (1 − p1)(1 − (1 − p1)λ2W1f2(v))
p1λ2W1f2(v)

)

(4)
A symmetric expression holds for the expected memory

usage of W2, assuming the same sampling probability p1

for the S2-probe join tuples. That is,

λ2W2

∑

v∈D

f2(v)(1 − (1 − p1)(1 − (1 − p1)λ1W2f1(v))
p1λ1W2f1(v)

)

(5)
Summation of these two expressions gives the total

memory usage for W1 �� W2.
Given p1, the algorithm proceeds as shown in Algo-

rithm 3. When a tuple s1 arrives on S1, UNIFORM looks
for every s2 ∈ W2 such that s1.A = s2.A (Line 1). Then, it
outputs s1‖s2 if this s1 is the tuple s2 is waiting for to output
the next sample tuple (Line 4), and then decides on the next
s1 for s2 (Line 5). Moreover, once s1 arrives on S1, UNI-
FORM flips a coin with bias p1 to decide the next S1-probe
join tuple of s1 (Line 8-9). To do that, UNIFORM picks X
at random from the geometric distribution with parameter
p1, G(p1). If all remaining S1-probe join tuples of s1 are
rejected in the coin flips, s1 is discarded (Line 10-12).

4.2. Reservoir join-sampling

RJS applies the conventional reservoir sampling on the
output of UNIFORM. Thus, it uses a fixed size reservoir,
and always holds a uniform random sample in the reser-
voir. Algorithm 4 outlines the steps of RJS. Given a fixed
reservoir of size r, the first r join-sample tuples produced
by UNIFORM are directly placed in the reservoir (Line 3-
4). After that, each join-sample tuple is re-sampled using
reservoir sampling with a probability p2 so that a p1 × p2 =
r/(k + 1), that is, p2 = (r/(k + 1)/p1 (Line 6).

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Algorithm 4 Reservoir Join-Sampling (RJS)
1: k = 0
2: for each tuple output by UNIFORM do
3: if k ≤ r then
4: add the tuple to the reservoir
5: else
6: sample the tuple with the probability

p2 = (r/(k + 1))/p1

7: end if
8: k = k + (1/p1)
9: end for

Algorithm 5 Progressive Reservoir Join-Sampling (PRJS)
1: k = 0

{Initially, the memory utilization of the join buffer is 100%.}
2: while the memory utilization of the join buffer does not de-

crease do
3: for each tuple output by UNIFORM do
4: if k ≤ r then
5: add the tuple to the reservoir
6: else
7: sample the tuple with a probability p2 = (r/(k +

1))/p1

8: end if
9: k = k + (1/p1)

10: set p1 = r/(k + 1) {for the next incoming tuple}
11: recompute the memory utilization of the join buffer us-

ing Equations 4 and 5
12: end for
13: end while
14: while (RC(m) ≥ ξ)

and (UC(Sr+δ) ≥ ζ)
and (m ≥ (x + y) − (p1(k + 1))) do

15: decrease p1 by a specified constant value
16: recompute the memory utilization of the join buffer using

Equations 4 and 5
17: increase δ by the amount of unused memory
18: end while
19: while (RC(m) < ξ)

or (UC(Sr+δ) < ζ)
or (m < (x + y) − (p1(k + 1))) do

20: δ = δ − 1
21: if δ = 0 then
22: return
23: end if
24: end while
25: release δ memory units from the join buffer and allocate the

released memory to the reservoir.
26: flip a biased coin to decide on x and y (Equation 3)
27: randomly evict r − x sample tuples from the reservoir
28: get y sample tuples out of m using Algorithm 1
29: continue sampling the input stream using Algorithm 1

k is an index of the original join output tuples that would
be generated from the join. Since join-sampling selects only
a portion of them, the value of k should be estimated. This
estimation is done as follows. When a tuple s1 produces
an S2-probe join tuple, 1/p1tuples would be generated on
average from the exact join since the algorithm samples a
join result tuple with probability p1. Therefore, k = k +
(1/p1) (Line 8). This estimation process is symmetric for
S1-probe join tuples.

4.3. Progressive reservoir join-sampling

The key idea behind PRJS is to utilize the property of
reservoir sampling that the sampling probability keeps de-
creasing for each subsequent tuple (see Algorithm 1). This
property allows to release memory from the join buffer and
transfer it to the reservoir. However, the benefit of increas-
ing a reservoir size comes at a cost on the uniformity of the
sample, as stated in Theorem 1.

PRJS needs to know the values of m (uniformity confi-
dence recovery tuple count) and ζ (uniformity confidence
threshold). Given the time left until the sample-use (or col-
lection) time (denoted as T), the number of tuples (denoted
as l) that would be generated during T if there were no join-
sampling is computed as follows:

l = Tλ1λ2(W1 + W2)
∑

v∈D

f1(v)f2(v) (6)

PRJS proceeds in two phases: join-sampling phase and
reservoir-sampling phase. Tuples in the join-sampling
phase are sampled with a probability p1. Therefore, the
expected number of tuples to be seen by the reservoir-
sampling phase (m) is:

m = lp1 (7)
Given m and ζ, PRJS works as shown in Algorithm 5.

There are four main steps in the algorithm. The first step
(Lines 2-13) concerns the memory transfer mechanism of
PRJS. Initially there is no memory that can be transferred,
since the memory utilization of the join buffer is 100%. As
long as this is the case, PRJS works in the same way as
RJS does (Algorithm 4) except that, for each new tuple si

arriving on join input stream Si, p1 is decreased to r/(k +
1) and, accordingly, PRJS recomputes memory utilization
of the join buffer. The reason for assigning this particular
value to p1 is that all Si-probe join tuples to be produced
by si while si ∈ Wi should be sampled with effectively
a probability of no more than r/(k + 1). In other words,
this is the smallest possible value that can be assigned to
p1. PRJS keeps decreasing p1 and recomputing the memory
utilization until it finds that some memory can be released
from the join buffer and transferred to the reservoir.

In the second step (Lines 14-18) and in the third step
(Lines 19-24), PRJS finds the largest amount of memory
(δ) that can be released from the join buffer and transferred
to the reservoir, considering the following constraints:

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

• Refill confidence: The refill confidence, RC, is defined
as the probability that m is at least the same as the
enlarged reservoir size. That is given r and δ:

RC(m) = probability(m >= r + δ) (8)
Unlike the progressive reservoir sampling (Section 2),
PRJS cannot guarantee that the enlarged reservoir will
be filled out of m tuples since m is only an expected
number of tuples on the outcome of the join-sampling
phase (see Equation 7). That is, the value of m is an
expected value rather than an exact value. This means
that actual value of m may be less than r + δ, and this
implies that δ ≤ y ≤ min(m, r + δ). (y is the number
of tuples to be selected from the m tuples). Therefore,
the algorithm has to make sure that y falls in that range
with a confidence no less than a given threshold ξ.

• Uniformity confidence: UC ≥ ζ. (See Equation 2.)
That is, the uniformity confidence should be no less
than ζ after the enlarged reservoir is filled.

• Uniformity-recovery tuple count: m ≥ (x + y) −
(p1(k + 1)). The rationale for this constraint is as fol-
lows. PRJS assumes the reservoir sample (of x + y
tuples) will be used (or collected) after it will have
seen m tuples. But if the sample-use does not hap-
pen, then it will have to continue with the conven-
tional reservoir sampling on the join-sample tuples as
if the sample in the reservoir were a uniform random
sample of all join result tuples seen so far. In this
case, (x + y)/((k + (m/p1)) + 1) ≤ p1. Hence,
m ≥ (x + y) − (p1(k + 1)).

If all these three constraints are satisfied, then in the sec-
ond step PRJS keeps decreasing p1 and increasing δ until
one or more of them are not satisfied anymore. The more
p1 is decreased, the larger δ can be. Therefore, PRJS finds
the smallest possible p1 that makes the three constraints sat-
isfied. This ensures to find the largest possible memory (δ)
to be transferred to the reservoir.

When PRJS enters the third step, δ has been set too large
to satisfy one or more of the three constraint. So, PRJS
decreases δ until the constraints are satisfied or δ becomes
0. The latter case means that the reservoir size cannot be
increased.

Once δ (> 0) is determined, in the fourth step (Line 25-
29) PRJS releases δ memory units from the join buffer and
allocates the released memory to the reservoir. Then, PRJS
works in the same way as in the progressive reservoir sam-
pling (see Lines 6-8 of Algorithm 2) to refill the reservoir.

5. Performance Evaluations
As mentioned in the Introduction, there is a tradeoff

between the two presented algorithms: Reservoir Join-
Sampling (RJS) and Progressive Reservoir Join-Sampling
(PRJS). Thus, in our evaluation we aim to compare these
two algorithms in terms of the two traded factors: the

achieved reservoir sample size and the achieved (recovered)
uniformity of the sample. In addition, we conduct another
set of experiments to put our evaluations in the database
context. Specifically, we do an aggregation (AVG) on the
reservoir sample, and compare the aggregation errors be-
tween the two algorithms.

The experimental results confirm the following:
• Size of reservoir sample: Regardless of the initial

reservoir size, PRJS eventually results in a reservoir
larger than the fixed-size reservoir of RJS.

• Uniformity of reservoir sample: Naturally, RJS’s sam-
ple uniformity is always no lower than PRJS’s sam-
ple uniformity. For PRJS, the uniformity is degraded
when the reservoir size is increased but starts recov-
ering promptly and approaches toward 100% as addi-
tional join-sample tuples are generated.

• Aggregation on a reservoir sample: For all the ex-
perimental settings used, we have observed from the
results of aggregation errors on the reservoir sample
that the benefit of gaining reservoir size is larger than
the cost of losing sample uniformity. Naturally, PRJS
achieves smaller aggregation errors than RJS unless
the initial reservoir size is too large for PRJS to have
room for increasing the size.

5.1. Setup
Algorithm setup: Both window sizes (W1 and W2) are

set to 500 time units, and the two stream rates (λ1 and λ2)
are set to 1 tuple per time unit and 5 tuples per time unit,
respectively. These settings of sliding window sizes and
stream rates are the same as those used in UNIFORM [31]
which provides a basis of RJS and PRJS. Memory allocated
to join buffer is 50% of the memory required for an exact
result. The initial size of reservoir is 100 (i.e., r = 100
tuples) which represents 6% of the total available memory.
We set both the uniformity confidence threshold ζ and the
refill confidence threshold ξ to 0.90. We believe this value is
sufficiently large to constrain the increase of reservoir size
in PRJS. Unless stated otherwise, the results we report are
obtained as an average of the results of 50 runs.

Data streams setup We have generated stream data sets
each of which contains tuples amounting to 10000 time
units. Values of join attribute in the input stream tuples are
generated assuming the frequency-based model as indicated
in Section 4. The values are drawn from a normal distribu-
tion with mean µ = 1000 and variance σ2 = 1000. Values
of aggregate attribute are drawn from a normal distribution
with mean µ = 1000 and variance σ2 = 10000.

5.2. Reservoir sample size
The objective of this experiment is to observe how the

size of a sample in the reservoir changes size over time. Fig-
ure 5 shows the average sample size over time, at the inter-
val of 10 time units, for both PRJS and RJS. For PRJS, the

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Reservoir size increase time is marked with a diamond
and sample-use time is marked with a circle.

Figure 5. Average sample size over time.

Figure 6. Change in sample size over time.

sample size increases linearly until the enlarged reservoir is
filled, and then the increase saturates. The same happens for
RJS, but sample size does not ever exceed the initial reser-
voir size.

Figure 6 shows the sample size over the first 1000 time
units for a single run. Note that the sample size decreases
initially because some sample tuples are evicted from the
reservoir after x and y are decided. This is recovered
quickly after that.

Figure 7 shows the effect of PRJS on the reservoir size
for varying l. We use l instead of m because the value of m
is an expected value for a given l (see Equation 7). The fig-
ure shows that the increase of size is larger for larger values
of l. The effect saturates for relatively large values of l.

5.3. Reservoir sample uniformity

The purpose of this set of experiments is to test the uni-
formity of the sample in the reservoir. We use χ2 statistic
[18] [23] as a metric of the sample uniformity. Higher χ2

indicates lower uniformity and vice versa. χ2 statistic mea-
sures, for each value v in a domain D, the relative difference
between the observed number of tuples (o(v)) and the ex-
pected number of tuples (e(v)) that contain the value. That
is:

χ2 =
∑

∀v∈D

(e(v) − o(v))2

e(v)
(9)

Figure 8 shows χ2 statistic over time for both algo-
rithms, at the interval of 100 time units. The underlying
assumption is that the input stream is randomly sorted on
the join attribute value. The results in the figure show that
for PRJS the uniformity is decreased after the reservoir size

Figure 7. Effect of l on the reservoir size.

Reservoir size increase time is marked with a diamond
and sample-use time is marked with a circle.

Figure 8. Change in sample uniformity over
time.

.is increased, but it starts recovering before the sample-use
time. As expected, the sample uniformity for RJS is better
and is almost stable over time.

Since PRJS evicts some tuples from the reservoir in or-
der to refill the reservoir with the incoming tuples, the uni-
formity can be damaged more if there is some sort of de-
pendence in the arrival of join attribute values on the input
streams. Therefore, we conduct an experiment to test the
effect of the ordering of tuples in the input streams by the
join attribute. For this, we generate partially sorted streams.
This is done by configuring the values in the domain of the
attribute into a tree structure. In the tree, the value in a par-
ent node has a precedence in appearing in the input stream
over the values in the children nodes. Between siblings
there is no precedence conditions. The number of children
of each node is fixed and is parameterized as fanout. As
the value of fanout decreases, the stream becomes more
sorted. That is, if fanout = 1, the stream is totally sorted.
We set the value of fanout to 2, 3, and 4 as shown in Fig-
ure 9. The figure shows that, for PRJS, there is more dam-
age on the uniformity when the degree of the input stream
ordering is higher. On the other hand, RJS is not sensitive
for any kind of ordering in the input stream. This is evident
for RJS and, thus, we omit the graph.

5.4. Aggregation on a reservoir sample

In this set of experiments, we compare RJS and PRJS in
terms of the accuracy of aggregation (AVG) query results.
We report the average absolute error (AE), at the interval

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

Figure 9. Sample Uniformity for partially-
sorted streams.

of 500 time units, for each algorithm. Absolute error (AE)
is defined as follows:

AE =
n∑

i=1

| Âi − Ai |
n

(10)

where Ai (i = 1, 2, ..., n) is the exact aggregation result
computed from the original join result and Âi is the aggre-
gation result computed from a sample in the reservoir, and
n is number of runs.

The results shown in Figure 10 demonstrate that right
after the reservoir size increases, PRJS gives a larger aggre-
gation error but, after that, as the sample size increases the
aggregation errors decreases. The curve of PRJS crosses
over the curve of RJS even before reaching the sample-use
time (marked as a circle on the PRJS curve). This happens
because the benefit of the enlarged reservoir size dominates
over the damage in the uniformity. As the uniformity recov-
ers more, the aggregation error decreases more.

6. Related Work
The problem addressed in this paper combines three

main research topics: sampling from data streams, uniform
random sampling over joins, and memory-limited stream
joins. We briefly review related work to each topic and then
point out current research combining them.

In addition to the reservoir sampling [25] [33], there are
special-purpose algorithms for sampling over data streams,
such as heavy hitters [24] and distinct counts [14]. Heavy
hitters find the elements that appear in a data stream for
at least a certain fraction of all tuples, and distinct counts
estimate the number of distinct values for a given target at-
tribute over an input stream. In [7] Babcock et al. present
memory-efficient algorithms for maintaining a uniform ran-
dom sample of a specified size from a moving window over
a data stream. In [20], Johnson et al. abstract the process
of sampling from a stream and design a generic sampling
operator which can be specialized to implement a wide va-
riety of stream sampling algorithms. In [3], we theoretically
study the effects of increasing and decreasing the reservoir
size in the middle of sampling on the sample uniformity.
We present an adaptive-size reservoir sampling algorithm
and apply it to an application in which samples are collected
from wireless sensor networks using a mobile sink.

Figure 10. Absolute error in AVG aggregation
query over time.
Uniform random sampling over joins has been addressed

in the context of relational databases. Olken et al. [28] [27]
assume that the relations being operated on should be base
relations and have indexes. They consider both the case in
which the join attribute is a key in one or more base relations
and the case in which the join attribute is not a key in any of
the base relations. Chaudhuri et al. [10] improve on Olken’s
results by considering more general settings in which inter-
mediate relations in a query tree are typically not material-
ized and indexed. Acharya et al. [2] focus on computing
approximate aggregation on multi-way joins by making use
of pre-computed samples (known as join-synopses).

Memory-limited stream processing [26] has been con-
sidered in the context of stream joins. In [12], [22], and
[34] this problem has been addressed by dropping tuples
from input streams randomly [22] or based on the tuple con-
tent [12]. Xie et al. [34] present a stochastic process for
load shedding by observing and exploiting statistical prop-
erties of input streams. Sketching techniques are proposed
by Dobra et al. in [13] and by Alon et al. [4] for evaluating
multi-join aggregate queries over data streams with limited
memory.

There are a few research works combining some of these
topics. With the of objective of minimizing answers inac-
curacy in sliding-window aggregation queries where pro-
cessing power is limited, Babcock et al. [6] propose a load
shedding technique which includes random sampling oper-
ators in a query plan. Their work is different from ours as
they assume a streaming environment in which the process-
ing power, not the memory, is limited. In [31], the prob-
lems of sampling from data streams, uniform random sam-
pling over joins, and limited memory-limited stream joins
are combined. However, our work is different from theirs as
we have the objective of maintaining the sample in a reser-
voir, instead of streaming out the sample tuples. This makes
the problem we are addressing distinct and challenging.

7. Conclusion
In this paper, we studied reservoir sampling over

memory-limited stream joins, and presented two algorithms
for this problem. One algorithm uses fixed-size reservoir
and always maintains a uniform sample. The other algo-

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

rithm allows the reservoir size to increase during the join-
sampling by releasing memory from the join buffer and al-
locating it to the reservoir. We show theoretically that such
an increase comes with a negative impact on the probabil-
ity of the sample being uniform. We reported experimental
evaluation comparing the two presented algorithms.

Several issues are still open for future work. It is interest-
ing to extend the presented algorithms to support group-by
queries, where a reservoir may naturally keep tuples from
multiple groups. In this case, we may need to bias the
sampling in order to collect as equal number of tuples as
possible from each group, which results in an accurate ap-
proximation of the query results [1]. It is also challenging
to study the addressed problem when resources are shared
among multiple queries. In this case, the developed algo-
rithm should optimally allocate the memory between reser-
voirs and join buffers of all participating queries.

Acknowledgment
This research is based upon work supported by the Na-

tional Science Foundation under Grant No. IIS-0415023

References

[1] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional
samples for approximate answering of group-by queries. In
SIGMOD ’00, pages 487–498.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
Join synopses for approximate query answering. In SIGMOD
’99, pages 275–286.

[3] M. Al-Kateb, B. S. Lee, and X. S. Wang. Adaptive-size reser-
voir sampling over data streams. In SSDBM ’07.

[4] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Track-
ing join and self-join sizes in limited storage. In PODS ’99,
pages 10–20.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS ’02,
pages 1–16.

[6] B. Babcock, M. Datar, and R. Motwani. Load shedding for
aggregation queries over data streams. In ICDE ’04, pages
350–361.

[7] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data. In SODA ’02, pages
633–634.

[8] M. M. Cecilia Mascolo and B. Pasztor. Data collection in de-
lay tolerant mobile sensor networks using SCAR. In SenSys
’06.

[9] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Sink mo-
bility protocols for data collection in wireless sensor net-
works. In MobiWac ’06, pages 52–59.

[10] S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In SIGMOD ’99, pages 263–274.

[11] A. S. D. Jea and M. Srivastava. Multiple controlled mobile
elements (data mules) for data collection in sensor networks.
In DCOSS ’05, pages pages 244–257.

[12] A. Das, J. Gehrke, and M. Riedewald. Approximate join
processing over data streams. In SIGMOD ’03, pages 40–51.

[13] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Pro-
cessing complex aggregate queries over data streams. In SIG-
MOD ’02, pages 61–72.

[14] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In VLDB ’01,
pages 541–550.

[15] P. B. Gibbons and Y. Matias. New sampling-based summary
statistics for improving approximate query answers. In SIG-
MOD ’98, pages 331–342.

[16] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB ’97, pages
466–475.

[17] L. Golab and M. T. Ozsu. Issues in data stream management.
SIGMOD Rec., 32(2):5–14, 2003.

[18] N. M. Greenwood, P.E. A Guide to Chi-Squared Testing.
John Wiley and sons, New York., 1996.

[19] S. Jain, R. C. Shah, W. Brunette, G. Borriello, and S. Roy.
Exploiting mobility for energy efficient data collection in
wireless sensor networks. Mob. Netw. Appl., 11(3):327–339,
2006.

[20] T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Sampling
algorithms in a stream operator. In SIGMOD ’05, pages 1–
12.

[21] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with ze-
branet. In ASPLOS-X ’02, pages 96–107.

[22] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In ICDE ’03, pages 341–352.

[23] S. L. Lohr, editor. Sampling: Design and Analysis. Duxbury
Press, Pacific Grove, 1999.

[24] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB ’02, pages 346–357.

[25] A. McLeod and D. Bellhouse. A convenient algorithm
for drawing a simple random sample. Applied Statistics,
32:182184, 1983.

[26] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation, and resource
management in a data stream management system. In CIDR
’03.

[27] F. Olken. Random Sampling from Databases. PhD thesis,
Mailstop 50B-3238, 1 Cyclotron Road, Berkeley, California
94720, U.S.A., 1993.

[28] F. Olken and D. Rotem. Simple random sampling from rela-
tional databases. In VLDB ’86, pages 160–169.

[29] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs:
Modeling a three-tier architecture for sparse sensor net-
works. In IEEE SNPA Workshop ’03, 2003.

[30] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava.
Mobile element scheduling for efficient data collection in
wireless sensor networks with dynamic deadlines. In RTSS
’04, pages 296–305.

[31] U. Srivastava and J. Widom. Memory-limited execution of
windowed stream joins. In VLDB ’04, pages 324–335.

[32] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke.
Data collection, storage, and retrieval with an underwater
sensor network. In SenSys ’05, pages 154–165.

[33] J. S. Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57, 1985.

[34] J. Xie, J. Yang, and Y. Chen. On joining and caching stochas-
tic streams. In SIGMOD ’05, pages 359–370.

[35] Y. L. Y. Tirta, Z. Li and S. Bagchi. Efficient collection of sen-
sor data in remote fields using mobile collectors. In ICCCN
2004.

[36] D. Yi-Leh Wu, Agrawal and A. El Abbadi. Query estimation
by adaptive sampling. In ICDE ’02, pages 639–648.

19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)
0-7695-2868-6/07 $25.00 © 2007

