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Abstract
There is demand for scalable algorithms capable of clustering and analyzing large 
time series data. The Kohonen self-organizing map (SOM) is an unsupervised 
artificial neural network for clustering, visualizing, and reducing the dimensional-
ity of complex data. Like all clustering methods, it requires a measure of similar-
ity between input data (in this work time series). Dynamic time warping (DTW) is 
one such measure, and a top performer that accommodates distortions when align-
ing time series. Despite its popularity in clustering, DTW is limited in practice 
because the runtime complexity is quadratic with the length of the time series. To 
address this, we present a new a self-organizing map for clustering TIME Series, 
called SOMTimeS, which uses DTW as the distance measure. The method has 
similar accuracy compared with other DTW-based clustering algorithms, yet scales 
better and runs faster. The computational performance stems from the pruning of 
unnecessary DTW computations during the SOM’s training phase. For comparison, 
we implement a similar pruning strategy for K-means, and call the latter K-TimeS. 
SOMTimeS and K-TimeS pruned 43% and 50% of the total DTW computations, 
respectively. Pruning effectiveness, accuracy, execution time and scalability are 
evaluated using 112 benchmark time series datasets from the UC Riverside clas-
sification archive, and show that for similar accuracy, a 1.8× speed-up on average 
for SOMTimeS and K-TimeS, respectively with that rates vary between 1 × and 
18× depending on the dataset. We also apply SOMTimeS to a healthcare study of 
patient-clinician serious illness conversations to demonstrate the algorithm’s utility 
with complex, temporally sequenced natural language.
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1 Introduction

By 2025, it is estimated that more than four hundred and fifty exabytes of data will 
be collected and stored daily (WorldEconomicForum 2019). Much of that data will 
be collected continuously and represent phenomena that change over time. We pro-
pose that fully understanding the meaning of these data will require methods capa-
ble of efficiently visualizing and analyzing large amounts of time series. Examples 
include data mined by the Internet of Things (CRS 2020; Evans 2011), lexicon and 
natural language  (e.g., Bentley et  al. 2018; Ross et  al. 2020; Reagan et  al. 2016; 
Chu et al. 2017), biomonitors (Gharehbaghi and Lindén 2018), streamflow, baromet-
ric pressure and other environmental sensor data (e.g., Hamami and Dahlan 2020; 
Javed et al. 2020a; Ewen 2011), social media interactions (e.g., De Bie et al. 2016; 
Javed and Lee 2018, 2016, 2017), and hourly financial data reported by fluctuating 
world stock and currency markets (Lasfer et al. 2013). In response to the increasing 
amounts of time-oriented data available to analysts, the applications of time-series 
modeling are growing rapidly (e.g., Minaudo et al. 2017; Dupas et al. 2015; Mather 
and Johnson 2015; Bende-Michl et al. 2013; Iorio et al. 2018; Gupta and Chatterjee 
2018; Pirim et al. 2012; Souto et al. 2008; Flanagan et al. 2017).

Time series modeling is computationally “expensive” in terms of processing 
power and speed of analysis. Indeed, as the numbers of observations or measure-
ment dimensions for each observation increase, the relative efficiency of time series 
modeling diminishes, creating an exponential deterioration in computational speed. 
Under conditions where computing power is in excess or when the speed for gener-
ating results is not of concern, these challenges would be less pressing. Currently, 
however, these conditions are rarely met, and the accelerating rate of data collection 
promises to outpace the computational infrastructure available to most analysts.

In this work, we embed distance-pruning into a new artificial neural network—
Self-Organizning Map for time series (SOMTimeS) and K-means for time series 
(K-TimeS) to improve the execution time of clustering methods that used Dynamic 
Time Warping (DTW) for large time series applications. The single layered SOM-
TimeS is computationally faster than the deep layered classifiers  (Wang and Jiang 
2021) making it suitable for time series analysis. The popular K-Means clustering 
of K-TimeS is fast, particularly for well-separated clusters, but lacks the outstand-
ing visualization capabilities of SOMTimeS. The computational efficiency of these 
algorithms is attributed to the pruning of unnecessary DTW computations during 
the training phases of each algorithm. When assessed using 112 time series datasets 
from the University of California, Riverside (UCR) classification archive, SOM-
TimeS and K-TimeS prunded 43% and 50% of the DTW computations, respectively. 
While the pruning efficiency and resulting speed-up vary depending on the dataset 
being clustered, on average, there is a 1.8× speed-up over all 112 of the archived 
datasets. To the best of our knowledge, K-TimeS and SOMTimeS are the fastest 
DTW-based clustering algorithms to date.

SOMTimeS is designed for users who wish to leverage DTW (i.e., optimally align 
two time series) as well as the SOM’s visualization capabilities when clustering 
time series data of high complexity. To explore the potential utility of SOMTimeS in 



1 3

SOMTimeS: self organizing maps for time series clustering...

this regard, we show the algorithm’s ability to cluster and visualize time series data 
(i.e., conversational narratives) from highly emotional doctor-family-patient conver-
sations. Understanding and improving serious illness communication is a national 
priority for 21st century healthcare; but, our existing methods for measuring and 
analyzing such data are cumbersome, human intensive, and far too slow to be rel-
evant for large epidemiological studies, communication training, or time-sensitive 
reporting. Here, we use data from an existing multi-site epidemiological study of 
serious illness conversations as one example of how efficient computational methods 
can add to the science of healthcare communication.

The remainder of this paper is organized as follows. Section  2 provides back-
ground information on SOMs and DTW. Section 3 presents the SOMTimeS algo-
rithm. Sections  4 and   5 provide the performance measures for SOMTimeS, 
K-TimeS, and another DTW-based clustering algorithm – TADPole using the UCR 
benchmark datasets, and then show proof-of-concept of the SOMTimeS algorithm 
as an exploratory data analysis tool involving health care conversations. Section 6 
discusses the results. Section 7 concludes the paper and suggests future work.

2  Background

Similar to the work of Silva and Henriques (2020), Li et al. (2020), Parshutin and 
Kuleshova (2008), and Somervuo and Kohonen (1999), SOMTimeS is a new arti-
ficial neural network that embeds a distance-pruning strategy into a DTW-based 
Kohonen self-organizing map. While the original Kohonen SOM (see details in 
Sect. 2.1) is linearly scalable with respect to the number of input data, it often per-
forms hundreds of iterations (i.e., epochs) when self-organizing or clustering the 
training data. Each epoch requires n ×M distance calculations, where n is the num-
ber of observations and M is the number of nodes in the network map. While work 
has been performed to improve the SOM speed using both hardware  (Dias et  al. 
2021; de Abreu de Sousa et  al. 2020) and algorithmic  (Conan-Guez et  al. 2006) 
solutions, the large number of required distance calculations is problematic, particu-
larly when the distance measure is computationally expensive, as is the case with 
DTW (see Sect. 2.2).

Originally introduced in 1970 s for speech recognition (Sakoe and Chiba 1978), 
DTW continues to be one of the more robust, top performing, and consistently cho-
sen learning algorithms for time series data (Xi et al. 2006; Ding et al. 2008; Papar-
rizos and Gravano 2016, 2017; Begum et al. 2015; Javed et al. 2020b). Its ability to 
shift, stretch, and squeeze portions of the time series helps address challenges inher-
ent to time series data (e.g., optimize the alignment of two temporal sequences). 
Unfortunately, the ability to align the temporal dimension comes with increased 
computational overhead that has hindered its use in practical applications involving 
large datasets or long time series clustering  (Javed et  al. 2020b; Zhu et  al. 2012). 
The first subquadratic-time algorithm ( O(m2

∕ log logm) ) for DTW computation was 
proposed by Gold and Sharir (2018), which for comparison is still more computa-
tionally expensive than the simpler Euclidean distance (O(m)).
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To address the computational cost, several studies have presented approximate 
solutions  (Zhu et  al. 2012; Salvador and Chan 2007; Al-Naymat et  al. 2009). To 
the best of our knowledge, TADPole by Begum et al. (2015) is the only clustering 
algorithm (see supplementary material Section 8.1) that speeds up the DTW compu-
tation without using an approximation. It does so by using a bounding mechanism 
to prune the expensive DTW calculations. Yet, when coupled with the clustering 
algorithm (i.e., Density Peaks of Rodriguez and Laio 2014), it still scales quadrati-
cally. Thus, even after decades of research (Zhu et al. 2012; Begum et al. 2015; Lou 
et  al. 2015; Salvador and Chan 2007; Wu and Keogh 2020), the almost quadratic 
time complexity of DTW-based clustering still poses a challenge when clustering 
time series in practice.

2.1  Self organizing maps

The Kohonen self-organizing map  (Kohonen et  al. 2001; Kohonen 2013) may be 
used to either cluster or classify observations, and has advantages when visualizing 
complex, nonlinear data (Alvarez-Guerra et al. 2008; Eshghi et al. 2011) Addition-
ally, it has been shown to outperform other parametric methods on data with outli-
ers or high variance  (Mangiameli et  al. 1996). Similar to methods such as logis-
tic regression and principal component analysis, SOMs may be used for feature 
selection, as well as mapping input data from a high-dimensional space to a lower-
dimensional (typically two-dimensional) space/map. To demonstrate the utility of 
2-D visualization, we used the DTW-based SOM to cluster data from one of the 
UCR archive datasets (InsectEPGRegularTrain) onto a 2-D mesh (see Fig. 1). The 
input time series data represent voltage changes from an electrical circuit designed 
to capture the interaction between insects and their food source (e.g., plants). While 
these data had already been classified into three categories, we show the results from 
the DTW-based SOM clustering in Fig. 1a–c. The self-organized time series may 
also be plotted in 2-D space (see map of Fig. 1d); each gray dot represents a input 
time series. The gray shading represents what is known as a unified distance matrix 
or U-matrix  (Ultsch 1993), and is obtained by calculating the average difference 
between the weights of adjacent nodes in the trained SOM. These differences are 
plotted in a gray scale on the trained 2-D mesh. Darker shading represents higher 
U-matrix values (larger average distance between observations). In this manner, 
the U-matrix may be used to help assess the quality and the number of clusters. In 
Fig.  1e, we color-code the three clustered observations; labels (should they exist) 
could also be superimposed. Finally, any information (i.e, input features or meta-
data) associated with the observations may also be visualized/superimposed in the 
same 2-D space. The latter allows users or domain experts to explore associations 
and the importance of individual input features with the self-clustered results. As an 
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example we visualize the mean voltage value in the background in Fig. 1f. The abil-
ity to visualize individual input features in the same space as the clustered observa-
tions (known as component planes) makes the SOM a powerful tool for exploratory 
data analysis and feature selection.

2.2  Dynamic time warping

DTW is recognized as one of the most accurate similarity measures for time series 
data  (Paparrizos and Gravano 2017; Rakthanmanon et  al. 2012; Johnpaul et  al. 
2020; Javed et al. 2020b). While the most common measure, Euclidean distance, 

Fig. 1  Results of clustering times series from one of the UCR archive datasets—InsectEPGRegularTrain, 
using a Self-Organized Map with DTW as the distance measure (a.k.a. SOMTimeS). a–c Three sets of 
classified time series associated with voltage changes that capture interactions between insects and their 
food source (e.g., plants). In each panel a single observation (time series) is highlighted. d Unified dis-
tance matrix (gray shading) that separates the clustered observations on the 2D grid, e color-codes the 
observations by cluster ID, and f superimposes the mean voltage value in the background

Fig. 2  Alignment between two times series for calculating a Euclidean distance and b DTW distance
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uses a one-to-one alignment between two time series (e.g., labeled candidate and 
query in Fig.  2a), DTW employs a one-to-many alignment that warps the time 
dimension (see Fig. 2b) in order to minimize the sum of distances between time 
series samples. As such, DTW can optimize alignment both globally (by shifting 
the entire time series left or right) and locally (by stretching or squeezing por-
tions of the time series). The optimal alignment should adhere to three rules: 

1. Each point in the query time series must be aligned with one or more points from 
candidate time series, and vice versa.

2. The first and last points of the query and a candidate time series must align with 
each other.

3. No cross-alignment is allowed; that is, the aligned time series indices must 
increase monotonically.

DTW is often restricted to aligning points only within a moving window of a 
fixed size to improve accuracy and reduce computational cost. The window size may 
be optimized using supervised learning on the training data. When supervised learn-
ing is not possible (i.e., clustering), a window size amounting to 10% of the obser-
vation data is usually considered adequate (Ratanamahatana and Keogh 2004). We 
fixed the DTW window constraint at 5% of the length of the observation data as it 
was shown to be the optimal window size for the UCR archive Paparrizos and Gra-
vano (2016, 2017).

2.2.1  Upper and lower bounds for DTW‑based distance

SOMTimeS uses distance bounding to prune the DTW calculations performed dur-
ing the SOM unsupervised learning. This distance bounding involves finding a tight 
upper and lower bound. Because DTW is designed to find a mapping that minimizes 
the sum of the point-to-point distances between two time series, that mapping can 

Fig. 3  Two steps of calculating the LB_Keogh tight lower bound for DTW in linear time: a determine 
the envelope around a query time series, and b sum the point to point distance shown in grey lines 
between the envelope and a candidate time series as LB_Keogh (Eq. 2)
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never result in a summed distance that is greater than the sum of point-to-point 
Euclidean distance. Hence, finding the tight upper bound is straight forward—it is 
the Euclidean distance (Keogh 2002). To find the lower bound, we use a method—
the LB_Keogh method (Keogh 2003), common in similarity searches (Keogh 2003; 
Ratanamahatana et al. 2005; Wei et al. 2005) and clustering  (Begum et al. 2015). 
The LB_Keogh method comprises two steps (see Fig. 3a, b). Given a fixed DTW 
window size, W, one of the two time series (called the query time series, Q) is 
bounded by an envelope having an upper ( Ui ) and lower boundary ( Li ) calculated at 
time step i, respectively, as:

where a = i −W , and b = i +W (see Fig. 3a). In the second step, the LB_Keogh 
lower bound is calculated as the sum of Euclidean distance between the candidate 
time series and the envelope boundaries (see vertical lines of Fig. 3b). Equation 2 
shows the formula for calculating the LB_Keogh lower bound:

where ti , Ui , and Li are the values of a candidate time series, the upper and lower 
envelope boundary, respectively, at time step i.

2.2.2  The UCR archive

The UCR time series classification archive (Dau et al. 2018), with thousands of cita-
tions and downloads, is arguably the most popular archive for benchmarking time 
series clustering algorithms. The archive was born out of frustration, with studies 
on clustering and classification reporting error rates on a single time series dataset, 
and then implying that the results would generalize to other datasets. At the time of 
this writing, the archive has 128 datasets comprising a variety of synthetic, real, raw 
and pre-processed time series data, and has been used extensively for benchmark-
ing the performance of clustering algorithms  (e.g., Paparrizos and Gravano 2016, 
2017; Begum et  al. 2015; Javed et  al. 2020b; Zhu et  al. 2012). We excluded six-
teen of the archive datasets because they contained only a single cluster, or had time 
series lengths that vary, and the latter prohibited a fair comparison of SOMTimeS to 
K-TimeS. Thus, 112 datasets are used to evaluate the accuracy, execution time, and 
scalability of SOMTimeS.

(1)
Ui = max(qa,… , qi,… , qb)

Li = min(qa,… , qi,… , qb),

(2)LB_Keogh =

�������
m�
i=1

⎧⎪⎨⎪⎩

(ti − Ui)
2, if ti > Ui

(ti − Li)
2, if ti < Li

0, otherwise



 A. Javed et al.

1 3

3  The SOMTimeS algorithm

SOMTimeS (see Pseudocode 1) is a variant of the SOM, where each input observa-
tion (i.e., query time series) is compared with the weights (i.e., candidate time series) 
associated with each node in the 2-D SOM mesh (see Fig. 4). During training, the 
comparison (or distance calculation) between these two time series is performed to 
identify the SOM node whose weights are most similar to a given input time series; 
this node is identified as the “Best Matching Unit (BMU)”. Once the nodal weights 
(candidate time series) of the BMU have been identified, these weights (and those 
of the neighborhood nodes) are updated to more closely match the query time series 
(Line 17 of Pseudocode 1). This same process is performed for all query time series 
in the dataset—defined as one iteration. While iterating through some user-defined 
fixed number of iterations, both the neighborhood size and the magnitude of change 
to nodal weights are incrementally reduced. This allows the SOM to converge to a 
solution (stable map of clustered nodes), where the set of weights associated with 
these self-organized nodes now approximate the input time series (i.e., observed 
data). In SOMTimeS, the distance calculation is done using DTW with bounding, 
which helps prune the number of DTW calculations required to identify the BMU.

Fig. 4  Schematic of the Kohonen self-organizing map (after Kohnen, 2001) showing weights (candidate 
time series) of the Best Matching Unit (BMU) in blue surrounded by a user-specified neighborhood ( N

c
)
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3.1  Pruning of DTW computations

Pruning is performed in two steps. First, an upper bound (i.e., Euclidean distance) 
is calculated between the input observation and each weight vector associated with 
the SOM nodes (Line 9 of Pseudocode 1). The minimum of these upper bounds is 
set as the pruning threshold (see dotted line in Fig. 5). Next, for each SOM node, we 
calculate a lower bound (i.e., LB_Keogh; see Line 10). If the calculated lower bound 
is greater than the pruning threshold, that respective node is pruned from being the 
BMU. If the lower bound is less than the pruning threshold, then that SOM node 
lies in what we refer to as the potential BMU region (see Fig. 5, and Line 12). As 
a result, the more expensive DTW calculations are performed only for the nodes in 
this potential BMU region. The node having the minimum summed distance is the 
BMU.

After identifying the BMUs for each input time series, the BMU weights, as well 
as the weights of nodes in some neighborhood of the BMUs, are updated to more 
closely match the respective input time series using a traditional learning algorithm 
based on gradient descent (Line 17 of Pseudocode 1). Both the learning rate and the 
neighborhood size are reduced (see lines 19 and 20) over each epoch until the nodes 
have self-organized (i.e., algorithm has converged). In this work, unless otherwise 
stated, SOMTimeS is trained for 100 epochs. To further reduce the SOM execution 
time, the set of input (i.e., query) time series may be partitioned in a manner similar 
to Wu et al. (1991), Obermayer et al. (1990) and Lawrence et al. (1999) for parallel 
processing (see Line  5). We should also note that after convergence, SOMTimeS 
may be used to classify observations into a given number of clusters should a known 
number of classes exist. This is done by setting the mesh size equal to k (i.e., desired 
number of classes), and using the weights of the BMUs for direct class assignment. 
Python implementation of SOMTimeS is available at Python Package Index (Javed 
2021a) and Github (Javed 2021b).

Fig. 5  Identification of a qualification region in SOMTimeS
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3.2  K‑TimeS: generalization of the pruning strategy to K‑means

For a more equitable comparison of the speed-up and clustering quality, we embed 
DTW with a similar pruning strategy into a K-means clustering algorithm, and call 
this algorithm—K-TimeS. Given some desired number of classes, k, training com-
prises two phases. In phase one, centroids are calculated, and in the phase two, the 
observations (i.e., query time series) are assigned to their closest centroid using 
DTW as the distance measure. This continues until some termination condition is 
met (e.g., number of iterations or convergence). The DTW distance bounding is 
used in the second phase to prune unnecessary DTW computations required in iden-
tifying the closest centriod. Specifically, we assign a centroid to the pruned region 
of Fig.  5 when it’s lower bound (i.e., LB_Keogh ) distance to a given query time 
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series is greater than the minimum of the upper bound (i.e., Euclidean) distances 
between the k centroids and the query time series (see pruning threshold in Fig. 5). 
The pruned centroid cannot be the closest centroid to the given query time series, 
since there exists at least one other centroid whose DTW distance to the query time 
series is less than or equal to the pruned centroid’s. The computational speed-up 
achieved in the K-TimeS algorithm results from avoiding the expensive DTW com-
putation between the pruned centroid and the query time series.

4  Performance evaluations

The performance of SOMTimeS may be quantified in three important ways: (1) 
clustering accuracy (Sect. 4.1), (2) pruning speedup (Sects. 4.2), and (3) scalability 
(Sect. 4.3). Accuracy is reported using the six assessment metrics of Table 1. These 
include the Adjusted Rand Index (ARI)  (Santos and Embrechts 2009), Adjusted 
Mutual Information (AMI)  (Romano et  al. 2016), the Rand Index (RI)  (Hubert 
and Arabie 1985), Homogeneity  (Rosenberg and Hirschberg 2007), Complete-
ness (Rosenberg and Hirschberg 2007), and Fowlkes Mallows index (FMS) (Fowlkes 
and Mallows 1983). We report the speed-up achieved for SOMTimeS and K-TimeS 
using the 112 UCR datasets. For scalability, we report the number of DTW com-
putations and execution time as a function of problem size, defined as 

∑n

i=1
�Q�i , 

where |Q| is the length of times series Q, and n is the total number of time series 
in the dataset. The presence of a few large datasets in the archive makes it more 
informative to visualize problem size as the natural logarithm (see Figure S1 in Sup-
plementary Material). Additionally, we report clustering accuracy in terms of ARI 
for the original Kohonen self-organizing map (i.e., using Euclidean distance); see 
Supplemental Material Table S1.

4.1  Clustering accuracy

The use of DTW distance bounding during pruning does not effect the clustering 
accuracy (see values of the assessment indices in Table  1). When the number of 
iterations (i.e., epochs) through the dataset are fixed at 10, the assessment indices for 
SOMTimeS and K-TimeS algorithms are comparable for the 112 datasets from the 
UCR archive. In practice, however, the SOM typically requires more passes through 
the dataset than K-means to achieve optimal accuracy. Thus, when 100 epochs are 
used, the SOMTimeS achieves a higher accuracy than K-TimeS for 5 of the 6 meas-
ures. Density Peaks, on the other hand, has lower average values for all six assess-
ment indices.

Because the performance (i.e., accuracy measures) for a given clustering algo-
rithm is dependent on the dataset (see Table  1), we use the ARI (Adjusted Rand 
Index) to assess accuracy between the three DTW-based algorithms in this work. 
The latter is recommended as one of the more robust measures for assessing accu-
racy across datasets (Milligan and Cooper 1986; Javed et al. 2020b). The ARI scores 
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for SOMTimeS at 100 epochs is plotted against (a) K-TimeS and (b) TADPole in 
Fig. 6 for each of the 112 URC datasets. The ARI scores shown in green (67 of the 
112 datasets) lying below the 45-degree line of panel (a) represent higher accuracy 
for SOMTimeS; those above the diagonal (in blue) indicate that K-TimeS outper-
forms SOMTimeS for 45 of the 112 datasets. Fig. 6b shows SOMTimeS has higher 
accuracy for 75 of the 112 datasets compared to TADpole (in green), and lower 
accuracy for the remaining 37 datasets (red).

4.2  Pruning speed‑up

While the speed-up times vary by dataset, the DTW distance pruning improves the 
execution time by a factor of 2x (on average over all 112 datasets) for both SOM-
TimeS and K-TimeS (see Fig. 7). K-TimeS is faster because it requires fewer itera-
tions through the data, followed by SOMTimeS and TADPole, respectively. When 
the epochs are fixed at 10, both K-TimeS and SOMTimeS have comparable execu-
tion times. However, because SOMTimeS may achieve higher accuracy with more 
passes through the dataset (see Table 1), the execution time increases sub-linearly 
from ∼ 7 to ∼ 58 h when the number of epochs are increased from 10 to 100 (see 
Table 2). TADPole, with an algorithm complexity of O(n2) , took 1011 h to cluster 
all the 112 datasets. Execution time for Density Peaks is listed as > 1011 h.

Fig. 6  ARI scores for the SOMTimeS (shown in green) vs. a K-TimeS (blue), and b TADPole (red) 
across all 112 of the UCR datasets (Color figure online)

Table 2  Execution time in 
hours for clustering 112 of 
the UC Riverside datasets 
using K-TimeS, SOMTimeS, 
TADPole and their respective 
”no-DTW distance pruning” 
counterparts

Algorithm Iterations Execution time (h)

(with pruning) (without pruning)

K-TimeS 10 6 13
SOMTimeS 10 7 14
SOMTimeS 100 58 148
TADPole Non-iterative 1011 > 1011



 A. Javed et al.

1 3

Total number of pruned DTW computations K-TimeS pruned more than 50% 
of the DTW calculations for 34 of the datasets; whereas, SOMTimeS (with epochs 
set to 10 and 100, respectively) pruned more than 50% of the DTW calculations for 
8 and 21 of the 112 UCR datasets, respectively. TADPole pruned more than 50% of 
the DTW calculations for 40 of the datasets (see Figure S2 in Supplementary Mate-
rial). Despite the pruning advantage of TADPole, its quadratic complexity O(n2 ) 
results in more DTW computations (compared to O(n) in SOMTimeS), particularly 
for larger datasets. As a result, SOMTimeS is 17x faster when clustering the 112 
datasets.

SOMTimeS is particularly well-suited to parallel execution, and when imple-
mented in parallel, the execution time decreases as a function of available CPU. To 
cluster the 112 datasets in the UCR archive, SOMTimeS (at 100 epochs) took 3 h 
using 20 CPUs, and only 20 min when the number of SOM epochs was set to 10.

4.3  Scalability

We studied the scalability of SOMTimeS under two difference scenarios—(1) scal-
ing of DTW computations performed as a function of the number of input time 
series, and (2) change in the SOMTimeS pruning rate as a function of epochs.

Scaling of DTW computations performed as a function of number of input 
time series Because TADPole has complexity O(n2 ), the number of calls to DTW 
increases quadratically with the number (n) of input time series. As a result, there is 
a threshold (in terms of n) at which the number of calls to the DTW function is less 
for SOMTimeS than that of TADPole (see Fig. 8). This threshold depends on the 
number of training epochs, and is empirically observed to be approximately n = 100 
and n = 2500 , for 10 and 100 epochs, respectively. SOMTimeS and K-TimeS have 
similar complexities, both theoretical and empirical, when the mesh size in SOM-
TimeS is equal to k.

Fig. 7  Speed-up factor achieved for the UCR archive datasets
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When clustering over all 112 of the UCR archived datasets, SOMTimeS com-
puted the DTW measure 13 million and 100 million times (at 10 and 100 epochs), 
respectively. K-TimeS computed the DTW measure 8 millions times; while TAD-
Pole by comparison computed DTW 200 million times (see Fig. 8). At the data-
set level, SOMTimeS had fewer calls for only 12 of the datasets (when using 10 
epochs) compared to K-TimeS at 10 iterations. In comparison to TADPole, SOM-
TimeS had fewer calls for 88 of the datasets (when using 10 epochs), and 26 of 
the datasets (for 100 epochs). However, the quality of clustering for SOMTimeS 
at 100 epochs increases for 4 of the six assessment indices compared to K-TimeS, 
and TADPole.

Change in the SOMTimeS pruning rate as a function of epochs When we 
examine the pruning effect as a function of epochs, both the number of DTW 
calls and the execution time decrease as the number of epochs increases. As 
the nodes of the SOM mesh organize, more nodes get pruned; and hence, fewer 
nodes exist in the unpruned region (i.e., potential BMU region of Fig. 5), which 
decreases the need for DTW calls. Figure 9a shows the total number of calls to 
the DTW function made for each dataset, normalized over all epochs. The dashed 

Fig. 8  DTW computations performed as a function of dataset size using linearly scaled axes (a, c) and 
log-log (b, d) for TADPole (200 million DTW computations shown in red) and SOMTimeS (13 million 
computations at 10 epochs shown in gold; and 100 million computations at 100 epochs shown in green) 
(Color figure online)
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line represents the average number of calls over all datasets and the shaded region 
shows the 95% confidence interval. Figure 9b shows the corresponding normal-
ized execution time. Both normalized DTW calls and execution time per epoch 
steadily decrease with increasing number of epochs and iterative updating of 
SOM weights. The elbow point, where further epochs result in a diminishing 
reduction of DTW calculations, is at the 6th epoch. This is called the swapover 
point and occurs when the self-organizing map moves from gross reorganization 
of the SOM weights to fine-tuning of the weights.

Finally, Fig. 10 shows how SOMTimeS execution time scales with the problem 
size ( 

∑n

i=1
�Q�i , where |Q| is the length of times series Q, and n is the total num-

ber of time series in the dataset). It increases at a lower rate than TADPole and 
is similar to K-TimeS. TADPole increases at the highest rate, consistent with its 
O(n2 ) complexity of DTW calculations, followed by K-TimeS with a complex-
ity of O(n × k× number of iterations), where k is the number of clusters. SOM-
TimeS has complexity of O(n × k × e ), where e is the number of epochs. K-TimeS 

Fig. 9  Change in the SOMTimeS pruning effect as the number of epochs increases measured as the nor-
malized a number of calls to the DTW function and b execution time. The dashed line represents the 
mean value for all datasets after individually normalizing each dataset run over all epochs. The shaded 
region corresponds to 95% confidence interval around the mean

Fig. 10  Execution time of SOMTimeS, K-TimeS, and TADPole for the 112 archived UCR datasets on a 
a linear, and b log scaled axes
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(at 10 iterations) is slightly faster per unit problem size than SOMTimeS (at 10 
epochs) because it (1) has pruned slightly more DTW calculations, and (2) does 
not require weight updates.

5  Application to serious illness conversations

We apply SOMTimeS to healthcare communication research in order to demonstrate 
the utility for identifying clinically relevant cluster analysis during complex patient-
clinician interactions. We use direct observation data collected as part of the Pal-
liative Care Communication Research Initiative (PCCRI) cohort study  (Gramling 
et al. 2015) to demonstrate the algorithm’s utility with temporally sequenced natural 
language. The PCCRI is a multisite, epidemiological study that includes verbatim 
transcriptions of audio-recorded palliative care consultations involving 231 hospital-
ized people with advanced cancer, their families, and 54 palliative care clinicians. 
The conversations have been transcribed by human experts for natural language pro-
cessing (NLP) tasks with the goal of incentivizing high-quality communication. In 
order to avoid sparse decile-level data in shorter conversations, we selected 171 of 
the conversations that were longer than 15  min in duration. The average duration 
of conversations was 36 ± 16 minutes, with an average of 327 ± 176 speaker turns 
and 4734 ± 2280 words. All patients completed pre- and post-conversation surveys; 
information gathered included age, gender, personal identity, and a short number of 
questions that ranged from self-rated optimism to satisfaction with the consultation.

5.1  Discovering a clinically meaningful taxonomy of healtcare communication

Understanding and improving healthcare communication requires scalable 
approaches for characterizing what actually happens when patients, families, and 
clinicians interact in samples that are large enough to represent the diverse cultural, 
dialectical, decisional and clinical contexts in which these phenomena occur (Gram-
ling et  al. 2021; Tarbi et  al. 2022; Clarfeld et  al. 2021). Unfortunately, historical 
approaches to conversation analyses are too cumbersome, costly, and time-intensive 
to achieve this scalability, thus limiting our existing empirical knowledge about seri-
ous illness communication  (Tulsky et  al. 2017). Discovering and exploring clini-
cally important patterns (i.e., clusters) of inter-personal communication amid the 
complex, dynamic and relational nature of clinical conversations presents a timely 
opportunity for scalable unsupervised machine learning methods to define a provi-
sional taxonomy of healthcare communication. SOMTimeS is equipped to meet the 
need in two important ways. First, as described above, SOMTimeS offers substantial 
improvement in analytic efficiency necessary for identifying patterns in communica-
tion dynamics and content that unfold naturally over the temporal course of conver-
sations. Second, as we will describe further below, the capacity for SOMTimeS to 
intuitively present results without pre-defining the number of clusters offers scien-
tists of complementary disciplinary training (e.g., linguistics, anthropology, medi-
cine, nursing, epidemiology, computer science) to empirically evaluate the number 
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and clinical meaningfulness of communication types. Here, we use one feature of 
health communication (i.e., temporal ordering of conversation content)  (Jaworski 
2014; Labov 2013, 1980) foundational to narrative medicine (Charon 2001; Charon 
et al. 2016; Charon and Montello 2006, 2002).

Narrative medicine is a robust field of healthcare practice  (Charon et  al. 2016; 
Charon and Montello 2006, 2002), training and science that is grounded in the near 
culturally ubiquitous ways in which people explore, find and share meaning about 
their life experiences through stories, particularly in contexts of serious and life-
threatening illness (Gramling et al. 2021; Labov 2013; Reblin et al. 2022; Barnato 
et  al. 2016; Edlmann et al. 2019). Our previous work demonstrates that computa-
tional narrative analysis is a useful framework for characterizing the complex tem-
poral “story arc” of naturally occurring healthcare conversations between seriously 
ill persons, their clinicians, and their family members (Ross et al. 2020). A central 
feature of narrative analysis is called temporal reference and indicates how conver-
sation participants dynamically order the story “events” (e.g., topics, experiences, 
worries) happening in the past, present or future (Jaworski 2014; Labov 2013, 1980; 
Ross et  al. 2020) Here, we demonstrate how SOMtimeS can be useful to explore 
clinically meaningful clusters of conversation “story arcs” using the tense of verbs 
and verb phrases as lexical markers of temporal reference.

5.2  Data pre‑processing: verb tense as a time series

We used a temporal reference tagger  (Ross et  al. 2020) to assign temporal refer-
ence (past, present, or future) to verbs and verb modifiers in the verbatim transcripts. 
Specifically, the Natural Language Toolkit (www. nltk. org) was used to classify each 
word in the transcripts into a part of speech and for any word classified as a verb, 
the preceding context is used to assign that verb (and any modifiers) to a given tem-
poral reference. Then, each conversation was stratified into deciles of “narrative 
time” based on the total word count for each conversation, and a temporal reference 
(i.e., verb tense) time series was generated for each conversation as the proportion 
of all future tense verbs relative to the total number of past and future tense verbs 

Fig. 11  Temporal plot showing the a raw time series, and b smoothed time series for all conversations 
superimposed in brown; the red line represents the mean values, and the shaded region around the red 
lines represents 95% confidence interval (Color figure online)

http://www.nltk.org
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(see Supplemental Material Figure S3a). The vertical axis in Fig. 11 represents the 
proportion of future vs. past talk on a per decile basis, where any value above the 
threshold (dashed line = 0.5) represents more future talk. Each of the 171 temporal 
reference time series (see Fig. 11a) were then smoothed using a 2nd-order, 9-step 
Savitzky-Golay filter  (Savitzky and Golay 1964) (see Fig.  11b and Supplemental 
Material  S3b). The latter smooths the time series by fitting a polynomial to data 
within a moving window and then uses the polynomial to replace data values. Visual 
inspection of the time series plots (e.g. Figure 11) showed that a DTW window size 
of 10% (or 1 decile) to be adequate for aligning the future vs. past talk time series.

5.3  SOM clustering and graphical representation of temporal reference “arcs”

The SOMTimeS graphical user interface (GUI) offers important methodological 
advantages for conversation scientists to directly evaluate the potential number and 
meaningfulness of clusters. SOMTimeS maps the temporal reference time series 
for each conversation onto a standard SOM two-dimensional graph (Fig. 12a), thus 
allowing human analysts to “see” multi-dimensional relationships in two-dimen-
sional space. Because the absolute graphical distance between observations is not 
a direct measure of temporal reference arc similarity, adding a U-matrix (Fig. 12b) 
offers “topographical” boundaries marking prominent differences in time-series 
patterns. When considering a two-cluster solution (Fig.  12c), we observe that the 

Fig. 12  Temporal reference time series data from 171 serious illness conversations a self-organized on a 
trained 2-D map, b with U-matrix added, c color-coded into two clusters. d, e Input time series clustered 
as future and past talk, respectively, and f a heatmap of trait optimism superimposed on the self-organ-
ized map
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peripheral region of the toroidal SOM mesh is characterized by one cluster; while 
a second cluster is observed in the central region. This GUI offers analysts visually 
intuitive access to evaluate the observations in two important and complementary 
ways. The first uses qualitative methods, such as those used in linguistic and anthro-
pological sciences, to systematically sample conversations from seemingly discrete 
“geographic regions” of the map to explore whether and how conversation dynamics 
(e.g., turn-taking etiquette, power dynamics of voice and topics, empathic expres-
sions) indicate clinically meaningful sub-types of interactions.

The second advantage of the SOMTimeS GUI is the ability to overlay onto the 
same map information about each observation that was not used for clustering, but 
that may be conceptually relevant to evaluating the clinical relevance of the SOM 
regions. For example, other work identifies that an important personality trait - 
the tendency for how optimistically or pessimistically seriously ill people react to 
uncertainty—has important clinical implications for the process and outcomes of 
how clinicians, patients and families discuss the future (Robinson et al. 2008; Inger-
soll et al. 2019). At the time of study enrollment, patient participants in the PCCRI 
self-reported their degree of trait optimism on an ordinal scale from high to low. 
Figure 12f shows a heatmap of trait optimism scores that visually indicate a poten-
tially strong association with regions of the SOM. When considering the two-cluster 
solution, we observe that the peripheral region is characterized by relatively higher 
optimism and more future-oriented temporal reference “story arcs” (Fig. 12d) versus 
a central region with lower optimism and less future-orientated shapes of conversa-
tions (Fig. 12e). When considered statistically, trait optimism is significantly associ-
ated with peripheral versus central cluster assignment (chi square p < 0.05).

We propose that the scalability of SOMTimeS for efficiently evaluating time-
series phenomena in dynamic clinical conversations, such as story arcs, and 
the intuitive GUI offers an exceptional opportunity for multi-method research 
focused on discovering and evaluating clinically meaningful types of healthcare 
communication.

6  Discussion

We present SOMTimeS as a clustering algorithm for time series that exploits the 
competitive learning of the Kohonen self-organizing map, a pruning strategy and 
the distance bounds of DTW to improve execution time. SOMTimeS contrasts with 
other DTW-based clustering algorithms in both its ability to both reduce the dimen-
sionality of, and visualize input features associated with clustering temporal data. 
We also implemented a similar DTW-distance pruning strategy in K-means for the 
first time to demonstrate performance gains achieved for what is likely the most pop-
ular clustering algorithm to date. The resulting algorithm, K-TimeS, is faster than 
SOMTimeS because it requires fewer iterations through the data. In terms of accu-
racy, SOMTimeS has higher assessment indices compared to TADPole, and while 
the assessment indices are statistically similar with K-TimeS, the additional func-
tionality of the SOM comes with a higher computational cost.
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The benchmark experiments in this work are intended to put SOMTimeS in con-
text with state-of-the-art time series clustering algorithms. Keeping the study objec-
tives in mind, execution times are used to demonstrate scalability, and highlight the 
feasibility of analyzing large time series datasets using SOMTimeS. K-means is per-
haps the most popular clustering algorithm and has been proven time and again to 
outperform state-of-the-art algorithms; however, because of its simplicity, it lacks 
the interpretability and visualization capabilities of the SOM. TADPole on the other 
hand, is a state-of-the-art clustering algorithm that organizes data differently from 
SOMTimeS (and by extension K-TimeS), as evident from the difference in ARI 
scores (see Fig. 6a), and choice of centroids (i.e., density peaks; see Supplementary 
Material Section 8.1). For these reasons, the algorithms tested are not direct com-
petitors of one another and each has advantages in their own right.

SOMTimeS learns (i.e., self-organizes) in an iterative manner such that as the 
number of SOM epochs increase, the execution time per epoch decreases (see 
Fig.  9b), making higher number of epochs (and thus, corresponding assessment 
indices) feasible. This reduction in time is also directly proportional to the number 
of calls to the DTW function at each epoch. The elbow point (at 6 for SOMTimeS 
with 100 epochs) indicates quick gains in pruning DTW calculations. This same 
gain is observed when the total number of epochs is set to 10 or 50 (see Supplemen-
tary Material Figure S4). SOMTimeS took 40 min to cluster the entire UCR archive 
using 10 epochs, and less than 300 min when the number of epochs was increased 
10-fold. Similarly, the largest dataset in terms of problem size took 5 min to cluster 
using 10 epochs, and 35  min to cluster at 100 epochs. SOMTimeS demonstrates 
sub-linear scalability when it comes to increasing the number of epochs. The scal-
ability, fast execution times, and the ease of saving the state (weights) of a SOM 
make SOMTimeS a potential candidate for an anytime algorithm. It possesses the 
five most desirable properties of anytime algorithms (Zilberstein and Russell 1995; 
Zhu et al. 2012).

Concluding remarks This paper presents a computationally efficient variant of 
the SOM that uses DTW as a distance measure and a DTW-distance pruning strat-
egy. For comparison purposes, we also implement a similar pruning strategy for 
K-means, called K-TimeS, and to put its performance in context, we present another 
state-of-the-art algorithm, TADPole. All three use DTW-distance pruning, and each 
has their own strengths and weaknesses. They each organize data differently, and the 
SOM is known for data visualization, dimensionality reduction, and feature selec-
tion. For these reasons a direct comparison of the advantages and disadvantages of 
each algorithm is not possible. SOMTimeS has unique data visualization abilities 
that require the mesh size to be increased to a value higher then k. The pruning 
strategy presented in this work makes the latter feasible. However, if only classifica-
tion (or hard clusters) are required, then K − TimeS is the faster and equally accurate 
clustering algorithm.
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7  Conclusion and future work

The explosion in volume of time series data has resulted in the availability of large 
unlabeled time datasets. In this work, we introduce Self-Organizing Maps for time 
series (SOMTimeS). SOMTimeS is a self-organizing map for clustering and clas-
sifying time series data that uses DTW as a distance measure of similarity between 
time series. To reduce run time and improve scalability, SOMTimeS prunes DTW 
calculations by using distance bounding during the SOM training phase. This prun-
ing results in a computationally efficient and fast time series clustering algorithm 
that is linearly scalable with respect to increasing number of observations. SOM-
TimeS clustered 112 datasets from the UCR time series classification archive in 
7 hours with state-of-art accuracy. We also implemented a similar pruning strategy 
in K-means for the first time to demonstrate performance gains achieved for what is 
likely the most popular clustering algorithm to date. K-TimeS clustered all the 112 
datasets in 6 hours with accuracy scores comparable to SOMTimeS; however, the 
former lacks the visualization capabilities of the SOM. We applied SOMTimeS to 
171 conversations from the PCCRI dataset. The resulting clusters showed two fun-
damental shapes of conversational stories.

To further improve computational efficiency and clustering accuracy, newer and 
state-of-the-art variations of SOMs may be used that leverage the same pruning 
strategy in this work. Improving computational time of DTW-based algorithms is 
an active area of research, and any improvement in computational speed of DTW 
can be incorporated in SOMTimeS for the unpruned DTW computations. Finally, 
SOMTimeS is a uni-variate time series clustering algorithm. To create a multivari-
ate time series clustering algorithm, the pruning strategy will have to be revisited to 
accommodate the variations of DTW for multi-variate time series. SOMTimeS is a 
fast and linearly scalable algorithm that recasts DTW as a computationally efficient 
distance measure for time series data clustering.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10618- 023- 00979-9.
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