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Abstract. Query optimizers in object-relational database management
systems require users to provide the execution cost models of user-defined
functions(UDFs). Despite this need, however, there has been little work
done to provide such a model. Furthermore, none of the existing work
is self-tuning and, therefore, cannot adapt to changing UDF execution
patterns. This paper addresses this problem by introducing a self-tuning
cost modeling approach based on the quadtree. The quadtree has the
inherent desirable properties to (1) perform fast retrievals, (2) allow for
fast incremental updates (without storing individual data points), and
(3) store information at different resolutions. We take advantage of these
properties of the quadtree and add the following in order to make the
quadtree useful for UDF cost modeling: the abilities to (1) adapt to
changing UDF execution patterns and (2) use limited memory. To this
end, we have developed a novel technique we call the memory-limited
quadtree(MLQ). In MLQ, each instance of UDF execution is mapped to
a query point in a multi-dimensional space. Then, a prediction is made
at the query point, and the actual value at the point is inserted as a new
data point. The quadtree is then used to store summary information of
the data points at different resolutions based on the distribution of the
data points. This information is used to make predictions, guide the in-
sertion of new data points, and guide the compression of the quadtree
when the memory limit is reached. We have conducted extensive perfor-
mance evaluations comparing MLQ with the existing (static) approach.

1 Introduction

A new generation of object-relational database applications, including multime-
dia and web-based applications, often make extensive use of user-defined func-
tions(UDFs) within the database. Incorporating those UDFs into ORDBMSs
entails query optimizers should consider the UDF execution costs when gener-
ating query execution plans. In particular, when UDFs are used in the ‘where’
clause of SQL select statements, the traditional heuristic of evaluating predicates
as early as possible is no longer valid [1]. Moreover, when faced with multiple
UDFs in the ‘where’ clause, the order in which the UDF predicates are evaluated
can make a significant difference to the execution time of the query.
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Consider the following examples taken from [2,3].

select Extract(roads, m.SatelliteImg) from Map m
where Contained(m.satelliteImg, Circle(point, radius))
and SnowCoverage(m.satelliteImg) < 20%;

select d.name, d.location from Document d
where Contains(d.text, string)
and SimilarityDistance(d.image, shape) < 10;

select p.name, p.street_address, p.zip from Person p, Sales s
where HighCreditRating(p.ss_no) and p.age in [30,40]
and Zone(p.zip) = ‘‘bay area’’ and p.name = s.buyer_name

group by p.name, p.street_address, p.zip
having sum(s.amount) > 1000;

In the above examples, the decision as to which UDF (e.g., Contains(),
SimilarityDistance()) to execute first or whether a join should be performed
before UDF execution depends on the cost of the UDFs and the selectivity of
the UDF predicates. This paper is concerned with the former.

Although cost modeling of UDFs is important to the performance of query
optimization, only two existing papers address this issue [3,4]. The other existing
works are centered on the generation of optimal query execution plans for query
optimizers catering for UDFs [1,2,5]. They assume UDF execution cost models
are provided by the UDF developer. This assumption is naive since functions
can often have complex relationships between input arguments and execution
costs. In this regard, this paper aims to develop automated means of predicting
the execution costs of UDFs in an ORDBMS.

No existing approach[4,3] for automatically modeling the costs of UDFs
is self-tuning. One existing approach is the static histogram(SH)-based cost
modeling approach[3]. The other approach uses curve-fitting based on neural
networks[4]. Both approaches require users to train the model a-priori with pre-
viously collected data. Approaches that do not self-tune degrade in prediction
accuracy as the pattern of UDF execution varies greatly from the pattern used
to train the model. In contrast, we use a self-tuning query feedback-driven ap-
proach similar to that used in [6,7] for selectivity estimation of range queries and
in [8] for relational database query optimization.

Figure 1 shows how self-tuning cost modeling works. When a query arrives,
the query optimizer generates a query execution plan using the UDF cost esti-
mator as one of its components. The cost estimator makes its prediction using
the cost model. The query is then executed by the execution engine according
to the query plan. When the query is executed, the actual cost of executing the
UDF is used to update the cost model. This allows our approach to adapt to
changing UDF execution patterns.

In this paper, we describe a quadtree-based approach to the cost modeling
of UDFs. The quadtree is widely used in digital image processing and computer
graphics for modeling spatial segmentation of images and surfaces[9,10,11], in the
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Fig. 1. Query feedback-driven UDF cost modeling.

spatial database environment for the indexing and retrieval of spatial objects [12,
13], in the on-line analytic processing context to answer aggregate queries (e.g.,
SUM, COUNT, MIN, MAX, AVG)[14], and so on.

The quadtree has the following inherent desirable properties. It (1) performs
retrievals fast, (2) allows for fast incremental updates (without the need to store
individual data points), and (3) stores information at different resolutions. The
first and second properties are of particular importance to UDF cost modeling
since the final goal of the cost modeling is to improve the query execution speed.
Naturally, the overhead introduced by the cost estimator needs to be very low.

We take advantage of these properties of the quadtree and add the following
in order to make the quadtree more useful for UDF cost modeling: the abilities
to (1) adapt to changing UDF execution patterns and (2) use a limited amount
of memory. The first property is important since UDF execution patterns may
change over time. The second property is important since the cost estimator is
likely to be allocated only a small portion of the memory allocated to the query
optimizer for metadata. Moreover, the query optimizer needs to keep two cost
estimators for each UDF in order to model both CPU and disk IO costs. In this
regard, we call our approach the memory-limited quadtree(MLQ).

In MLQ, each instance of UDF execution is mapped to a data point in a
multi-dimensional space. The summary information of data points is stored in
the nodes of a quadtree. The summary information consists of sum, count, and
sum of squares for data points in the indexed data region. We store the summary
information at every level of the quadtree, with coarser-grained information (over
a larger region) at a higher level. This information is then used to make predic-
tions and to guide the compression of the quadtree when the memory limit it
reached.
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Since MLQ is based on the quadtree which partitions the entire multi-
dimensional space, it can start making predictions immediately after the first
data point is inserted (with no a-priori training data). The prediction accuracy
improves as more data points are inserted. Alternatively, MLQ can be trained
with some a-priori training data before making the first prediction. This improves
its initial prediction accuracy.

The key contributions of this paper are in (1) proposing a self-tuning UDF
cost modeling approach that adapts to changing UDF execution patterns, (2)
proposing a dynamic quadtree-based summary structure that works with limited
memory, (3) conducting an extensive performance evaluation of MLQ against the
existing static SH algorithm. To our knowledge, SH is the only existing UDF cost
modeling algorithm feasibly usable in an ORDBMS.

The remainder of this paper is organized as follows. In Section 2 we outline
related work. In Section 3 we formally define the problem. We then describe our
MLQ approach to solving the problem in Section 4. In Section 5 we detail the
experiments conducted to evaluate the performance of MLQ. Last, in Section 6
we conclude the paper.

2 Related Work

In this section we discuss existing work in two related areas: UDF cost modeling
and self-tuning approaches to query optimization.

2.1 UDF Cost Modeling

As already mentioned, the SH approach in [3] is designed for UDF cost modeling
in ORDBMSs. It is not self-tuning in the sense that it is trained a-priori with
existing data and do not adapt to new query distributions. In SH, users define
a set of variables used to train the cost model. The UDF is then executed using
these variable values to build a multi-dimensional histogram. The histogram is
then used to predict the cost of future UDF executions.

Specifically, two different histogram construction methods are used in [3],
equi-width and equi-height. In the equi-width histogram method, each dimension
is divided into N intervals of equal length. Then, Nd buckets are created, where
d is the number of dimensions. The equi-height histogram method divides each
dimension into intervals so that the same number of data points are kept in
each interval. In order to improve storage efficiency, they propose reducing the
number of intervals assigned to variables that have low influence on the cost.
However, they do not specify how to find the amount of influence a variable has.
It is left as future work.

In [4] Boulos proposes a curve-fitting approach based on neural networks.
Their approach is not self-tuning either and, therefore, does not adapt to chang-
ing query distributions. Moreover, neural networks techniques are complex to
implement and very slow to train[15], therefore inappropriate for query opti-
mization in ORDBMSs[3]. This is the reason we do not compare MLQ with this
neural networks approach.
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2.2 Self-Tuning Approaches to Query Optimization

Histogram-based techniques have been used extensively in selectivity estima-
tion of range queries in the query optimizers of relational databases [6,7,16].
STGrid[6] and STHoles[7] are two recent techniques that use a query feed-back-
driven, self-tuning, multi-dimensional histogram-based approach. The idea be-
hind both STGrid and STHoles is to spend more modeling resources in areas
where there is more workload activity. This is similar to our aim of adapting to
changing query distributions. However, there is a fundamental difference. Their
feedback information is the actual number of tuples selected for a range query
whereas our feedback information is the actual cost values of individual UDF
executions. This difference presents a number of problems when trying to apply
their approach to solve our problem. For example, STHoles creates a “hole” in a
histogram bucket for the region defined by a range query. This notion of a region
does not make sense for a point query used in UDF cost modeling.

DB2’s LEarning Optimizer(LEO) offers a comprehensive way of repairing
incorrect statistics and cardinality estimates of a query execution plan by using
feedback information from recent query executions. It is general and can be ap-
plied to any operation – including the UDFs – in a query execution plan. It works
by logging the following information of past query executions: execution plan,
estimated statistics, and actual observed statistics. Then, in the background, it
compares the difference between the estimated statistics and the actual statistics
and stores the difference in an adjustment table. Then, it looks up the adjust-
ment table during query execution and apply necessary adjustments. MLQ is
more storage efficient than LEO since it uses a quadtree to store summary in-
formation of UDF executions and applies the feedback information directly on
the statistics stored in the quadtree.

3 Problem Formulation

In this section we formally define UDF cost modeling and define our problem.

UDF Cost Modeling

Let f(a1, a2, ..., an) be a UDF that can be executed within an ORDBMS with a
set of input arguments a1, a2, ..., an. We assume the input arguments are ordinal
and their ranges are given, while leaving it to future work to incorporate nominal
arguments and ordinal arguments with unknown ranges. Let T (a1, a2, ..., an) be
a transformation function that maps some or all of a1, a2, ..., an to a set of
‘cost variables’ c1, c2, ..., ck, where k ≤ n. The transformation T is optional.
T allows the users to use their knowledge of the relationship between input
arguments and the execution costs ecIO (e.g., the number of disk pages fetched)
and ecCPU (e.g., CPU time) to produce cost variables that can be used in the
model more efficiently than the input arguments themselves. An example of such
a transformation is for a UDF that has the input arguments start time and
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end time which are mapped to the cost variable elapsed time as elapsed time
= end time − start time.

Let us define model variables m1, m2, .., mk as either input arguments a1, a2,
..., an or cost variables c1, c2, ..., ck depending on whether the transformation
T exists or not. Then, we define cost modeling as the process for finding the
relationship between the model variables m1, m2, ..., mk and ecIO, ecCPU for a
given UDF f(a1, a2, ..., an). In this regard, a cost model provides a mapping from
a k-dimensional data space defined by the k model variables to a 2-dimensional
space defined by ecIO and ecCPU . Each point in the data space has the model
variables as its coordinates.

Problem Definition

Our goal is to provide a self-tuning technique for UDF cost modeling with a
strict memory limit and the following performance considerations: prediction
accuracy, average prediction cost(APC), and average model update costs(AUC).
The AUC includes insertion costs and compression costs.

APC is defined as:

APC =
∑NP −1

i=0 P (i)
NP

(1)

where P (i) is the time it takes to make the ith prediction using the model and
NP is the total number of predictions made.

AUC is defined as:

AUC =
∑NI−1

i=0 I(i) +
∑NC−1

i=0 C(i)
NP

(2)

where I(i) is the time it takes to insert the ith data point into the model and
NI is the total number of insertions, and C(i) is the time it takes for the ith

compression and NC is the total number of compressions.

4 The Memory-Limited Quadtree

Section 4.1 describes the data structure of the memory-limited quadtree, Sec-
tion 4.2 describes the properties that an optimal quadtree has in our problem
setting, and Sections 4.3 and 4.4 elaborate on MLQ cost prediction and model
update, respectively.

4.1 Data Structure

MLQ uses the conventional quadtree as its data structure to store summary
information of past UDF executions. The quadtree fully partitions the multi-
dimensional space by recursively partitioning it into 2d equal sized blocks (or,
partitions), where d is the number of dimensions. In the quadtree structure, a
child node is allocated for each non-empty block and its parent has a pointer to
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Fig. 2. The quadtree data structure.

it. Empty blocks are represented by null pointers. Figure 2 illustrates different
node types of the quadtree using a two dimensional example. We call a node
that has exactly 2d children a full node, and a node with fewer than 2d children
a non-full node. Note that a leaf node is a non-full node.

Each node —internal or leaf— of the quadtree stores the summary informa-
tion of the data points stored in a block represented by the node. The summary
information for a block b consists of the sum S(b), the count C(b), the sum of
squares SS(b) of the values of the data points that map into the block. There
is little overhead in updating these summary values incrementally as new data
points are added. At prediction time, MLQ uses these summary values to com-
pute the average value as follows.

AV G(b) =
S(b)
C(b)

(3)

During data point insertion and model compression, the summary informa-
tion stored in quadtree nodes are used to compute the sum of squared errors
(SSE(b)) as follows.

SSE(b) =
C(b)∑

i=0

(Vi − AV G(b))2

= SS(b) − C(b)(AV G(b))2 (4)

where Vi is the value of the ith data point that maps into the block b.

4.2 Optimal Quadtree

Given the problem definition in Section 3, we now define the optimality criterion
of the quadtree used in MLQ. Let Mmax denote the maximum memory available
for use by the quadtree and DS denote a set of data points for training. Then,
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using Mmax and DS, we now define QT (Mmax, DS) as the set of all possible
quadtrees that can model DS using no more than Mmax.

Let us define SSENC as the sum of squared errors of the data points in
block b excluding those in its children. That is,

SSENC(b) =
C(bnc)∑

i=1

(Vi − AV G(b))2 (5)

where bnc is the set of data points in b that do not map into any of its children
and Vi is the value of the ith data point in bnc.

SSENC(b) is a measure of the expected error for making a prediction using a
non-full block b. This is a well-accepted error metric used for the compression of
a data array[17]. It is used in [17] to define the optimal quadtree for the purpose
of building the optimal static two-dimensional quadtree. We can use it for our
purpose of building the optimal dynamic multi-dimensional quadtree, where the
number of dimensions can be more than two.

Then, we define the optimal quadtree as one that minimizes the total SSENC
(TSSENC) defined as follows.

TSSENC(qt) =
∑

b∈NFB(qt)

(SSENC(b)) (6)

where qt is the quadtree such that qt ∈ QT (Mmax, DS) and NFB(qt) is defined
as the set of the blocks of non-full nodes of qt. We use TSSENC(qt) to guide the
compression of the quadtree qt so that the resultant quadtree has the smallest
increase in the expected prediction error. Further details of this will appear in
Section 4.4.

4.3 Cost Prediction

The quadtree data structure allows cost prediction to be fast, simple, and
straightforward. Figure 3 shows MLQ’s prediction algorithm. The parameter
β allows MLQ to be tuned based on the expected level of noise in the cost data.
(We define noise as the magnitude by which the cost fluctuates at the same
data point coordinate.) This is particularly useful for UDF cost modeling since
disk IO costs (which is affected by many factors related to the database buffer
cache) fluctuate more sharply at the same coordinates than CPU costs do. A
larger value of β allows for averaging over more data points when a higher level
of noise is expected.

4.4 Model Update

Model update in MLQ consists of data point insertion and compression. In this
subsection we first describe how the quadtree is updated when a new data point
is inserted and, then, describe the compression algorithm.
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Predict Cost (QT: quadtree, QP: query point, β: minimum number of points)

1. Find the lowest level node of QT such that QP maps into the block b of
the node and the count in the node ≥ β.

2. Return sum/count (= S(b)/C(b)) from the node found.

Fig. 3. Cost prediction algorithm of MLQ.

Data point insertion: When a new data point is inserted into the quadtree,
MLQ updates the summary information in each of the existing blocks that the
new data point maps into. It then decides whether the quadtree should be par-
titioned further in order to store the summary information for the new data
point at a higher resolution. An approach that partitions more eagerly will lead
to higher prediction accuracy but more frequent compressions since the memory
limit will be reached earlier. Thus, there exists a trade-off between the prediction
accuracy and the compression overhead.

In MLQ, we let the user choose what is more important by proposing two
alternative insertion strategies: eager and lazy. In the eager strategy, the quadtree
is partitioned to a maximum depth (λ) during the insertion of every new data
point. In contrast, the lazy strategy delays partitioning by partitioning a block
only when its SSE reaches a threshold (thSSE). This has the effect of delaying
the time of reaching the memory limit and, consequently, reducing the frequency
of compression.

The thSSE , used in the lazy insertion strategy, is defined as follows.

thSSE = α SSE(r) (7)

where r is the root block and the parameter α is a scaling factor that helps
users to set the thSSE . The SSE in the root node indicates the degree of cost
variations in the entire data space. In this regard, thSSE can be determined
relative to SSE(r). If α is smaller, new data points are stored in a block at
a higher depth and, as a result, prediction accuracy is higher. At the same
time, however, the quadtree size is larger and, consequently, the memory limit is
reached earlier, thus causing more frequent compressions. Thus, the α parameter
is another mechanism for adjusting the trade-off between the prediction accuracy
and the compression overhead.

Figure 4 shows the insertion algorithm. The same algorithm is used for both
eager and lazy stategies. The only difference is that in the eager approach the
thSSE is set to zero whereas, in the lazy approach, it is set using Equation 7
(after the first compression). The algorithm traverses the quadtree top down
while updating the summary information stored in every node it passes. If the
child node that the data point maps into does not exist, a new child node is
created (line 6-7). The traversal ends when the maximum depth λ is reached
or the currently processed node is a leaf node with the SSE greater than the
thSSE .

Figure 5 illustrates how the quadtree is changed as two new data points
P1 and P2 are inserted. In this example, we are using lazy insertion with the
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Insert point ( DP: data point, QT: quadtree, thSSE : SSE threshold, λ: maximum
depth )

1. cn = the current node being processed, its initialized to be the root node of QT.
2. update sum, count, and sum of squares stored in cn.
3. while ( (SSE(cn) ≥ thSSE) and (λ has not been reached) ) or
4. (cn is not a leaf node) {
5.. if DP does not map into any existing child of cn {
6. create the child in cn that DP maps into.
7. initialize sum, count, and sum of squares of the created child to zero.
8. }
9. cn = child of cn that DP maps into.
10. update sum, count, and sum of squares of cn.
11. }

Fig. 4. Insertion algorithm of MLQ.
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P(v), B(s,c,ss,sse): v = value, s = sum, c = count, ss = sum of squares,
sse = sum of squared errors

Fig. 5. An example of data point lazy insertion in MLQ.

thSSE of 8 and λ of 5. When P1 is inserted, a new node is created for the block
B13. Then, B13’s summary information in the node is initialized to 5 for sum,
1 for the count, 25 for the sum of squares, and 0 for SSE. B13 is not further
partitioned since its SSE is less than the thSSE . Next, when P2 is inserted, B14
is partitioned since its updated SSE of 67 becomes greater than the thSSE .

Model compression: As mentioned in the Introduction, compression is trig-
gered when the memory limit is reached. Let us first give an intuitive descrip-
tion of MLQ’s compression algorithm. It aims to minimize the expected loss in
prediction accuracy after compression. This is done by incrementally removing
quadtree nodes in a bottom up fashion. The nodes that are more likely to be
removed have the following properties: a low probability of future access and an
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average cost similar to its parent. Removing these nodes is least likely to degrade
the future prediction accuracy.

Formally, the goal of compression is to free up memory by deleting a set
of nodes such that the increase in TSSENC (see definition in Equation 6) is
minimized and a certain factor (γ) of the memory allocated for cost modeling is
freed. γ allows the user to control the trade-off between compression frequency
and prediction accuracy.

In order to achieve the goal, all leaf nodes are placed into a priority queue
based on the sum of squared error gain (SSEG) of each node. The SSEG of
block b is defined as follows.

SSEG(b) = SSENC(pac) − (SSENC(b) + SSENC(pbc)) (8)

where pbc refers to the state of the parent block of b before the removal of b and
pac refers to that after the removal of b. SSEG(b) is a measure of the increase
in the TSSENC of the quadtree after block b is removed. Here, leaf nodes are
removed before internal nodes to make the algorithm incremental since removing
an internal node automatically removes all its children nodes as well.

Equation 8 can be simplified to the following equation. (Due to space con-
straints, we omit the details of the derivation and ask the readers to refer to
[18].)

SSEG(b) = C(b)(AV G(p) − AV G(b))2 (9)

where p is the parent block of b. Equation 9 has three desirable properties. First,
it favors the removal of leaf nodes that have fewer data points (i.e. smaller C(b)).
This is desirable since a leaf node with fewer data points has a lower probability
of being accessed in the future under the assumption that frequently queried
regions are more likely to be queried again. Second, it favors the removal of
leaf nodes that show a smaller difference between the average cost for the node
and that for its parent. This is desirable since there is little value in keeping a
leaf node that returns a predicted value similar to that from its parent. Third,
computation of SSEG(b) is efficient as it can be done using the sum and count
values already stored in the quadtree nodes.

Figure 6 shows the compression algorithm. First, all leaf nodes are placed into
the priority query PQ based on the SSEG value (line 1). Then, the algorithm
iterates through PQ while removing the nodes from the top, that is, from the
node with the smallest SSEG first (line 2 - 10). If the removal of a leaf node
results in its parent’s becoming a leaf node, then the parent node is inserted into
PQ (line 5 - 7). The algorithm stops removing nodes when either PQ becomes
empty or at least γ fraction of memory has been freed.

Figure 7 illustrates how MLQ performs compression. Figure 7(a) shows the
state of the quadtree before the compression. Either B141 or B144 can be re-
moved first since they both have the lowest SSEG value of 1. The tie is arbitrarily
broken, resulting in, for example, the removal of B141 first and B144 next. We
can see that removing both B141 and B144 results in an increase of only 2 in
the TSSENC. If we removed B11 instead of B141 and B144, we would increase
the TSSENC by 2 after removing only one node.



524 Z. He, B.S. Lee, and R.R. Snapp

Compress tree (QT: quadtree, γ: minimum amount memory to be freed,
total mem: the total amount of memory allocated)

1. Traverse QT and place every leaf node into a priority queue PQ with the
node with the smallest SSEG at its top.

2. while (PQ is not empty) and (memory freed / total mem < γ) {
3. remove the top element from PQ and put it in current leaf
4. parent node = the parent of current leaf.
5. if (parent node is not the root node) and (parent node is now a leaf node) {
6. insert parent node into PQ based on its SSEG.
7. }
8. deallocate memory used by current leaf
9. memory freed = memory freed + size of current leaf
10. }

Fig. 6. Compression algorithm of MLQ.
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(a) Before compression.
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B144(8, 1, 64, 0, 1)
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B11(10, 2, 52, 2, 4)

(b) After removing block B141.

B11(10, 2, 52, 2, 4)
B14(14, 2, 100, 2, 2)

B1(24, 4, 152, 0, −)

(c) After removing block B144.

P(e), B(s,c,ss,ssenc,sseg): e = execution cost, s = sum, c = count, ss = sum of square,
ssenc = sum of squared error of data points not associated with any of its children,

sseg = sum of squared error gain.
Fig. 7. An example of MLQ compression.
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5 Experimental Evaluation

In this section we describe the experimental setup used to evaluate MLQ against
existing algorithms and present the results of experiments.

5.1 Experimental Setup

Modeling methods and model training methods: We compare the per-
formance of two MLQ variants against two variants of SH: (1) MLQ-E, our
method using eager insertions, (2) MLQ-L, our method using lazy insertions,
(3) SH-H[3] using equi-height histograms, and (4) SH-W[3] using equi-width
histograms.

In these methods, models are trained differently depending on whether the
method is self-tuning or not. The two MLQ methods, which are self-tuning, start
with no data point and train the model incrementally (i.e., one data point at a
time) while the model is being used to make predictions. In contrast, the two
SH methods, which are not self-tuning, train the model a-priori with a set of
queries that has the same distribution as the set of queries used for testing.

We limit the amount of memory allocated in each method to 1.8 Kbytes.
This is similar to the amount of memory allocated in existing work[7,16,19] for
selectivity estimation of range queries. All experiments allocate the same amount
of memory in all methods. We have extensively tuned MLQ to achieve its best
performance and used the resulting parameters values. In the case of the SH
methods, there are no tuning parameters except the number of buckets used,
which is determined by the memory size. The following is a specification of the
MLQ parameters used in this paper: β = 1 for CPU cost experiments and 10 for
disk IO cost experiments, α = 0.05, γ = 0.1%, and λ = 6. We show the effect of
varying the MLQ parameters in [18] due to space constraints.

Synthetic UDFs/datasets: We generate synthetic UDFs/datasets in two
steps. In the first step, we randomly generate a number (N) of peaks (i.e. extreme
points within confined regions) in the multi-dimensional space. The coordinates
of the peaks have the uniform distribution, and the heights (i.e. execution costs)
of the peak have the Zipf distribution[20]. In the second step, we assign a ran-
domly selected decay function to each peak. Here, a decay function specifies how
the execution cost decreases as a function of the Euclidean distance from the
peak. The decay functions we use are uniform, linear, Gaussian, log of base 2,
and quadratic. They are defined so that the maximum point is at the peak and
the height decreases to zero at a certain distance (D) from the peak. This suite
of decay functions reflect the various computational complexities common to
UDFs.

This setup allows us to vary the complexity of the data distribution by vary-
ing N and D. As N and D increase, we see more overlaps among the resulting
decay regions (i.e., regions covered by the decay functions).

The following is a specification of the parameters we have used: the number
of dimensions d set to 4, the range of values in each dimension set to 0 - 1000,
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the maximum cost of 10000 at the highest peak, the Zipf parameter (z) value of
1 for the Zipf distribution, a standard deviation of 0.2 for the Gaussian decay
function, and the distance D equal to 10% of the Euclidean distance between
two extreme corners of the multi-dimensional space.

Real UDFs/datasets: Two different kinds of real UDFs are used: three
keyword-based text search functions (simple, threshold, proximity) and three
spatial search functions (K-nearest neighbors, window, range). All six UDFs are
implemented in Oracle PL/SQL using built-in Oracle Data Cartridge functions.
The dataset used for the keyword-based text search functions is 36422 XML
documents of news articles acquired from the Reuters. The dataset used for the
spatial search functions is the maps of urban areas in all counties of Pennsylvania
State [21]. We ask the readers to see [18] for a more detailed description.

Query distributions: Query points are generated using three different ran-
dom distributions of their coordinates: (1) uniform, (2) Gaussian-random, and
(3) Gaussian-sequential. In the uniform distribution, we generate query points
uniformly in the entire multi-dimensional space. In the case of Gaussian-random,
we first generate c Gaussian centroids using the uniform distribution. Then, we
randomly choose one of the c centroids and generate one query point using the
Gaussian distribution whose peak is at the chosen centroid. This is repeated n
times to generate n query points. In the Gaussian-sequential case, we generate a
centroid using the uniform distribution and generate n/c query points using the
Gaussian distribution whose peak is at the centroid. This is repeated c times to
generate n query points.

We use the Gaussian distribution to simulate skewed query distribution in
contrast to the uniform query distribution. For this purpose, we set c to 3 and
the standard deviation to 0.05. In addition, we set n to 5000 for the synthetic
datasets and 2500 for the real datasets.

Error Metric: We use the normalized absolute error(NAE) to compare the
prediction accuracy of different methods. Here, the NAE of a set of query points
Q is defined as:

NAE(Q) =

∑
q∈Q |PC(q) − AC(q)|

∑
q∈Q AC(q)

(10)

where PC(q) denotes the predicted cost and AC(q) denotes the actual cost at
a query point q. This is similar to the normalized absolute error used in [7].

Note that we do not use the relative error because it is not robust to situations
where the execution costs are low. We do not use the (unnormalized) absolute
error either because it varies greatly across different UDFs/datasets while, in
our experiments, we do compare errors across different UDFs/datasets.
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Fig. 8. Prediction accuracy for a varying number of peaks (for synthetic data).

Computing platform: In the experiments involving real datasets, we use Or-
acle 9i on SunOS 5.8, installed on Sun Ultra Enterprise 450 with four 300 MHz
CPUs, 16 KB level 1 I-cache, 16 KB level 1 D-cache, and 2 MB of level 2 cache
per processor, 1024 MB RAM, and 85 GB of hard disk. Oracle is configured
to use a 16 MB data buffer cache with direct IO. In the experiments involving
synthetic datasets, we use Red Hat Linux 8 installed on a single 2.00 GHz Intel
Celeron laptop with 256 KB level 2 cache, 512 MB RAM, and 40 GB hard disk.

5.2 Experimental Results

We have conducted four different sets of experiments (1) to compare the
prediction accuracy of the algorithms for various query distributions and
UDFs/datasets, (2) to compare the prediction, insertion, and compression costs
of the algorithms, (3) to compare the effect of noise on the prediction accu-
racy of the algorithms, and (4) to compare the prediction accuracy of the MLQ
algorithms as the number of query points processed increases.

Experiment 1 (prediction accuracy): Figure 9 shows the results of predict-
ing the CPU costs of the real UDFs. The results for the disk IO costs will appear
in Experiment 3.The results in Figure 9 show MLQ algorithms give lower error
(or within 0.02 absolute error) when compared with SH-H in 10 out of 12 test
cases. This demonstrates MLQ’s ability to retain high prediction accuracy while
dynamically ‘learning’ and predicting UDF execution costs.

Figure 8 shows the results obtained using the synthetic UDFs/datasets. The
results show MLQ-E performs the same as or better than SH in all cases. How-
ever, the margin between MLQ-E and SH algorithms is smaller than that for the
real UDFs/datasets. This is because the costs in the synthetic UDFs/datasets
fluctuate less steeply than those in the real UDFs/datasets. Naturally, this causes
the difference in the prediction errors of all the different methods to be smaller.
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Fig. 9. Prediction accuracy for various real UDFs/datasets.
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Fig. 10. Modeling costs (using uniform query distribution).

Experiment 2 (modeling costs): In this experiment we compare the mod-
eling costs (prediction, insertion, and compression cost) of the cost modeling
algorithms. This experiment is not applicable to SH due to its static nature and,
therefore, we compare only among the MLQ algorithms. Figure 10(a) shows the
results from the real UDFs/datasets. It shows the breakdown of the modeling
costs into the prediction cost(PC), insertion cost(IC), compression cost(CC),
and model update cost(MUC). MUC is the sum of IC and CC. All costs are
normalized against the total UDF execution cost. Due to space constraints, we
show only the results for WIN. The other UDFs show similar trends. The pre-
diction costs of both MLQ-E and MLQ-L are only around 0.02% of the total
UDF execution cost. In terms of the model update costs, even MLQ-E, which is
slower than MLQ-L, imposes only between 0.04% and 1.2% overhead. MLQ-L
outperforms MLQ-E for model update since MLQ-L delays the time the memory
limit is reached and, as a result, performs compression less frequently.

Figure 10(b) shows the results from the synthetic UDFs/datasets. The results
show similar trends as the real UDFs/datasets, namely MLQ-L outperforms
MLQ-E for model update.
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Fig. 11. Prediction accuracy for varying noise effect (using uniform query distribution).

Experiment 3 (noise effect on prediction accuracy): As mentioned in
Section 4.3, the database buffer caching has a noise-like effect on the disk IO
cost. In this experiment, we compare the accuracy of the algorithms at predicting
the disk IO cost while introducing noise.

Figure 11(a) shows the results for the real UDFs/datasets. The results show
MLQ-E outperforms MLQ-L. This is because MLQ-E does not delay partitioning
and, thus, stores data at a higher resolution eariler than MLQ-L, thereby allowing
prediction to be made using the summary information of closer data points.
MLQ-E performs within around 0.1 normalized absolute error from SH-H in five
out of the six cases. This is a good result, considering that SH-H is expected to
perform better because it can absorb more noise by averaging over more data
points and is trained a-prior with a complete set of UDF execution costs.

For the synthetic UDFs/datasets, we simulate the noise by varying noise
probability, that is, the probability that a query point returns a random value
instead of the true value. Due to space constraints, we omit the details of how
noise is simulated and refer the readers to [18]. Figure 11(b) shows the results
for the synthetic UDFs/datasets. The results show SH-H outperforms the MLQ
algorithms by about 0.7 normalized absolute error irrespective of the amount of
noise simulated.

Experiment 4 (prediction accuracy for an increasing number of query
points processed): In this experiment we observe how fast the prediction
error decreases as the number of query points processed increases in the MLQ
algorithms. This experiment is not applicable to SH because it is not dynamic.

Figure 12 shows the results obtained using the same set of UDFs/datasets
and query distribution as in Experiment 2. In all the results, MLQ-L reaches its
minimum prediction error much earlier than MLQ-E. This is because of MLQ-L’s
strategy of delaying the node partitioning limits the resolution of the summary
information in the quadtree and, as a result, causes the highest possible accuracy
to be reached faster.
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Fig. 12. Prediction error with an increasing number of data points processed (uniform
query distribution).

6 Conclusions

In this paper we have presented a memory-limited quadtree-based approach
(called MLQ) to self-tuning cost modeling with a focus on the prediction accu-
racy and the costs for prediction and model updates. MLQ stores and manages
summary information in the blocks (or partitions) of a dynamic multi-resolution
quadtree while limiting its memory usage to a predefined amount. Predictions
are made using the summary information stored in the quadtree, and the actual
costs are inserted as the values of new data points. MLQ offers two alternative
insertion strategies: eager and lazy. Each strategy has its own merits. The ea-
ger strategy is more accurate in most cases but incurs higher compression cost
(up to 50 times). When the memory limit is reached, the tree is compressed in
such a way as to minimize the increase in the total expected error in subsequent
predictions.

We have performed extensive experimental evaluations using both real and
synthetic UDFs/datasets. The results show that the MLQ method gives higher
or similar prediction accuracy compared with the SH method despite that the
SH method is not self-tuning and, thus, trains the model using a complete set of
training data collected a-priori. The results also show that the overhead for being
self-tuning is negligible compared with the execution cost of the real UDFs.
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