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Query optimizers in object-relational database management systems typically require users to

provide the execution cost models of user-defined functions (UDFs). Despite this need, however,
there has been little work done to provide such a model. The existing approaches are static in that
they require users to train the model a-priori with pre-generated UDF execution cost data. Static
approaches can not adapt to changing UDF execution patterns and thus degrade in accuracy
when the UDF executions used for generating training data do not reflect the patterns of those
performed during operation. This paper proposes a new approach based on the recent trend of
self-tuning DBMS, by which the cost model is maintained dynamically and incrementally as UDFs
are being executed online. In the context of UDF cost modeling, our approach faces a number
of challenges, that is, it should work with limited memory, work with limited computation time,
and adjust to the fluctuations in the execution costs (e.g., caching effect). In this paper we first
provide a set of guidelines for developing techniques that meet these challenges while achieving
accurate and fast cost prediction with small overheads. Then, we present two concrete techniques
developed under the guidelines. One is an instance-based technique based on the conventional
k-nearest neighbor (KNN) technique which uses a multi-dimensional index like the R*-tree. The
other is a summary-based technique which uses the quadtree to store summary values at multiple
resolutions. We have performed extensive performance evaluations comparing these two techniques
against existing histogram-based techniques and the KNN technique, using both real and synthetic
UDFs/data sets. The results show our techniques provide better performance in most situations
considered.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing

General Terms: cost modeling, object relational DBMS, query optimization, self-tuning

Additional Key Words and Phrases: K-nearest neighbors, quadtree, self-tuning

1. INTRODUCTION

1.1 Motivation

A new generation of object-relational database applications, including multimedia and web-based appli-
cations, often make extensive use of user-defined functions (UDFs) within the database. Algorithms for
compression, text search, time-series manipulation and analysis, similarity search (e.g., DNA sequences, fin-
gerprints, images), and audio and video manipulations are being aggressively investigated and added as new
UDFs in database systems. These UDFs are typically created by application developers as stored procedures
in an object-relational database management system (ORDBMS).

Incorporating UDFs into ORDBMSs entails query optimizers should consider the UDF execution costs (or
“costs” in short) when generating query execution plans. In particular, when UDFs are used in the ‘where’
clause of SQL select statements, the traditional heuristic of evaluating predicates as early as possible is no

1This work was partially done while the author was at the Department of Computer Science, University of Vermont.
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longer valid [Hellerstein and Stonebraker 1993]. Moreover, when faced with multiple UDFs in the ‘where’
clause, the order in which the UDF predicates are evaluated can make a significant difference in the execution
time of the query.

Consider the queries shown in Figure 1. The decision as to which UDF (e.g., Contains(), SimilarityDis-
tance()) to execute first or whether a join should be performed before UDF execution depends on the cost
of the UDFs and the selectivity of the UDF predicates. This paper is concerned with the former.

select Extract(roads, m.SatelliteImg)
from Map m
where Contained(m.satelliteImg, Circle(point, radius))

and SnowCoverage(m.satelliteImg) < 20;

select d.name, d.location
from Document d
where Contains(d.text, string)

and SimilarityDistance(d.image, shape) < 10;

select p.name, p.street address, p.zip
from Person p, Sales s
where HighCreditRating(p.ss no)

and p.age in [30,40]
and Zone(p.zip) = “bay area”
and p.name = s.buyer name

group by p.name, p.street address, p.zip
having sum(s.amount) > 1000;

(Sources: [Chaudhuri and Shim 1999; Boulos and Ono 1999])

Fig. 1. Example queries with UDFs.

There has been some work done on the generation of optimal query execution plans by query optimizers
catering for UDFs [Chaudhuri and Shim 1999; Hellerstein 1998; 1994; Hellerstein and Stonebraker 1993].
Since a UDF is called per tuple, they introduce the notion of a “differential” (i.e., per-tuple) cost for join and
selection (involving UDFs) and, then, estimate the per-tuple cost to be the same for every tuple in the same
table [Hellerstein 1998]. They, however, do not discuss a method for generating the cost model of a UDF
and, instead, assume the UDF cost models are manually provided by the UDF developer. This assumption is
naive since functions often have complex relationships between input arguments and execution costs, which
makes it difficult for UDF developers to develop their own models manually. We thus need an automatic
means to develop the cost model of a UDF.

We have found only two existing papers addressing the automatic cost modeling problem [Boulos et al.
1997; Boulos and Ono 1999]. One uses a histogram-based approach [Boulos and Ono 1999], and the other
uses a neural network-based curve-fitting approach [Boulos et al. 1997]. Both approaches are static in
that they require users to train the model (i.e., histogram or neural network) a-priori with pre-generated
UDF execution cost data. These static approaches rapidly degrade in their prediction accuracies when the
patterns of UDF executions used for generating training data do not reflect the patterns of those performed
during operation. We thus need a dynamic technique. For this purpose, we adopt the notion of self-tuning
[Chaudhuri 1999] into our cost modeling.
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1.2 Self-tuning cost modeling concepts

Figure 2 illustrates the self-tuning cost modeling process. When a query arrives, the query optimizer gen-
erates a query execution plan using the UDF cost estimator as one of its components. The cost estimator
makes its prediction using the cost model. The query is then executed by the execution engine according
to the query execution plan. When the query is executed, the actual cost of executing the UDF is used to
update the cost model. This query feedback-based approach allows the cost model to adapt to changing
UDF execution patterns. In this case, the query feedback information is the actual cost of executing the
UDF. This self-tuning approach is similar to that used in [Aboulnaga and Chaudhuri 1999; Bruno et al.
2001] for selectivity estimation of range queries and in [Stillger et al. 2001] for relational database query
optimization.

Query

Execution
Engine

Cost Model Cost Model Update

Plan Enumerator

UDF Cost Estimator

Actual UDF
Execution Cost

Query Execution Plan

Query Optimizer

Fig. 2. Self-tuning UDF cost modeling.

The self-tuning modeling of UDF costs can be conceptualized as feedback-based incremental modeling of
data values in a multidimensional model space. Specifically, each instance of UDF execution is mapped to a
query point in a multi-dimensional space defined by model variables, i.e., variables identified or determined to
influence the cost significantly. The data values predicted at a query point are the CPU cost and the disk IO
cost. Query feedback is then provided based on the difference between the predicted cost and the actual cost.
Then, some or all of the actual costs are inserted as data points into the model. This query-feedback-insertion
cycle repeats to update the model incrementally as query points “arrive”.

1.3 Challenges

Self-tuning UDF cost modeling described above bears the technical challenges of making accurate predictions
despite limited memory, limited computation time, and cost fluctuations present in the system, as described
below.

1.3.1 Limited memory. Only a limited portion of the memory used by the ORDBMS is available for
query optimization and the related activities like UDF cost modeling, and even this limited memory is used
to store the cost models of multiple UDFs. Therefore, the memory available for storing the cost models (i.e.,
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CPU cost model, disk IO cost model) of a single UDF is very limited. However, the cost model in general
grows in size as more data points from query feedback are inserted into it, thus eventually exhausting the
allocated memory.

Once the memory runs out, the only way to insert more data points is to compress the cost model. This,
however, causes the prediction accuracy to degrade. Thus, in order to achieve adequate prediction accuracy
despite the memory limit, the frequency of compression should be kept small. This can be done by slowing
down the frequency of inserting data points and achieving a high compression ratio (in order to free a large
amount of memory) with the minimum loss of prediction accuracy.

1.3.2 Limited computation time. Query optimization should be done fast, i.e., within very limited com-
putation time. (This would be more important in interactive query processing in which queries are compiled
at execution time.) Since predicting the UDF cost using the model is only one small step in query optimiza-
tion, it should be done even faster. In order to achieve this, we need to use an efficient data structure and
access method for the model.

In addition, data point insertions and subsequent compressions should incur small overheads because,
although they are not part of the query optimization itself, they consume computation time that would
otherwise be available for query optimization. In order to keep the insertion overhead small, data points
should be inserted conservatively (only inserting data points that are likely to significantly increase future
prediction accuracy) into the model and the model data structure should support efficient insertion methods.
In order to keep the compression overhead small, the frequency of data point insertion should be low and
the compression ratio should be high.

1.3.3 Cost fluctuations. We have observed that UDF cost at the same query point in the model space
fluctuates over time. The main causes are the caching effects in CPU caches (e.g., level 1 cache, level 2
cache) and disk I/O caches (e.g., database buffer cache, operating system buffer cache). The total caching
effect amounts to “noise” in the data values, which refers to the magnitude by which the data value changes
at a particular point in the model space.

Noisy data render the prediction unreliable. One way of handling this is the common statistical technique
of averaging over a sufficient number of data points in a region. The optimal number of data points and the
size of the region vary depending on the level of noise. In the case of UDF cost modeling, however, the noise
level changes over time. Therefore, the prediction needs to automatically tune the number of data points
and the region size according to the current level of noise.

1.4 Outline

In this paper, we first propose a set of guidelines for meeting the challenges described above. The guidelines,
when applied, can produce different possible techniques by using different data structures for the cost model
and different corresponding algorithms for querying, updating, and compressing the model.

We then present two concrete cost modeling techniques developed to embody the guidelines. One is called
the memory-limited K-nearest neighbors (MLKNN), and the other is called the memory-limited quadtree
(MLQ)[He et al. 2004]. MLKNN is an instance-based technique based on KNN, whereas MLQ is a summary-
based technique using the quadtree. The traditional KNN is known to incur high computational and storage
overheads for making predictions but achieve high prediction accuracy and efficient incremental model up-
dates[Han and Kamber 2001]. MLKNN preserves these merits and overcome the limitations while meeting
the challenges described in Section 1.3. For MLQ, the quadtree has the inherent desirable properties of fast
retrievals (in response to queries), fast incremental updates (without storing individual data points), and
multi-resolution model (stored at different resolutions). MLQ preserves these properties while meeting the
challenges described in Section 1.3.
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We have performed extensive performance evaluations, using both real and synthetic UDFs/datasets, to
compare MLKNN and MLQ against the existing static histogram(SH) techniques[Boulos and Ono 1999] and
KNN (which keeps all data points). We have made three key observations from the experiments. First,
both MLKNN and MLQ give higher prediction accuracy than SH in most situations considered. The reason
is both MLKNN and MLQ adapt to the query and data distributions and thus make more efficient use of
the limited memory. Second, the modeling costs (i.e., the sum of the prediction, insertion, and compression
costs) of both MLKNN and MLQ are within acceptable limits – specifically, less than 8% of the execution
costs of the real UDFs. Third, MLKNN and MLQ are comparable with different strengths and weaknesses;
For instance, overall, MLKNN achieves higher prediction accuracy while MLQ incurs smaller modeling costs.

1.5 Contributions

This paper makes the following main contributions. First, it proposes guidelines for self-tuning UDF cost
modeling within a resource(i.e., memory and computation time)-limited environment with noisy data. Sec-
ond, it presents two concrete techniques, MLKNN and MLQ, developed according to the guidelines. Third,
it demonstrates the merits of the two techniques by comparing them against existing methods through
extensive performance evaluations.

Although the focus of this paper is on the UDF cost modeling, the techniques proposed can be used in
other application areas such as estimating program execution costs for job scheduling in parallel and/or
distributed systems. It can also be used in other environments where resources are limited and dynamic
value predictions are required at particular points in the data space.

1.6 Organization

The remainder of this paper is organized as follows. In Section 2 we outline related work. In Section 3
we formally define the problem. We then describe our guidelines for developing self-tuning cost modeling
techniques in Section 4. In Section 5 we describe the MLKNN technique developed using the guidelines.
In Section 6 we describe the MLQ method developed using the guidelines. In Section 7 we present the
experiments conducted to evaluate the performances of MLKNN and MLQ against SH and KNN. Last, in
Section 8 we conclude the paper and provide directions for further work.

2. RELATED WORK

We discuss related work in two areas: UDF cost modeling and self-tuning modeling.

2.1 UDF cost modeling

As already mentioned, the static histogram(SH) approach in [Boulos and Ono 1999] is designed for UDF
cost modeling in ORDBMSs. It is not self-tuning in the sense that it is trained a-priori with existing data
and do not adapt to new query distributions. Specifically, the UDF is executed for preset values of model
variables to build a multi-dimensional histogram. The histogram is then used to predict the costs of future
UDF executions.

Specifically, two different histogram construction methods are used in [Boulos and Ono 1999]: equi-width
and equi-height. In the equi-width histogram method, each dimension is divided into N intervals of equal
length. Then, Nd buckets are created, where d is the number of dimensions. The equi-height histogram
method divides each dimension into intervals so that the same number of data points are kept in each interval.
In order to improve storage efficiency, they propose reducing the number of intervals assigned to variables
with lower influence on the cost. However, they do not specify how to find the amount of influence a variable
has. It is left as future work.

In [Boulos et al. 1997] Boulos et al. proposes a curve-fitting approach based on neural networks. Their
approach is not self-tuning either and, therefore, does not adapt to changing query distributions. Moreover,
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neural networks techniques are complex to implement and very slow to train[Han and Kamber 2001], therefore
inappropriate for query optimization in ORDBMSs [Boulos and Ono 1999]. For this reason, we do not
compare our MLKNN and MLQ techniques with this approach in our experiments (Section 7).

2.2 Self-tuning modeling

Recently there have been efforts for building a self-tuning DBMS [Chaudhuri 1999], as exemplified by the
automin project [Chaudhuri et al. 1999] at Microsoft Corporation. Self-tuning DBMSs are able to auto-
matically tune themselves to application needs and hardware capabilities, thus significantly reducing the
administration overhead. In this subsection we provide a brief survey of existing works that are using
self-tuning techniques and distinguish them from our work.

Chaudhuri et al. in [Chaudhuri et al. 1999] discuss feedback-based self-tuning in the following four system
issues: index selection for a given workload, memory management among concurrent queries, distribution
statistics creation and updating, and dynamic storage allocation. Our work is also feedback-based, but it
addresses a different system issue.

In [Lee et al. 2004], Lee et al. present a self-tuning technique for UDF cost modeling. It uses the same query
feedback mechanism as that presented in this paper. The main difference is that multiple regression is used
as the modeling technique. The regression coefficients are tuned incrementally based on the feedback from
a batch of UDF executions. Limited memory is not a concern in their work because regression coefficients
take very small amount of memory. However, although it has proven to be very feasible and achieving fairly
accurate cost estimation for UDFs showing “smooth” cost variations, it is not generally applicable to UDFs
with arbitrary cost variations.

There have been several papers presenting a self-tuning approach to estimating the selectivity of simple
predicates (i.e., predicates on relational attributes) [Chen and Roussopoulos 1994; Aboulnaga and Chaudhuri
1999; Bruno et al. 2001]. As in our approach, their models are updated incrementally using query feedback.
However, their works are for selectivity estimation instead of UDF cost estimation. Chen and Roussopoulos
in [Chen and Roussopoulos 1994] use a curve fitting technique whereby a cumulative data distribution
of the selection attribute value is updated based on query feedback. The selectivity is estimated from
the distribution by computing the difference between the values at the two extreme points of the query
range. Both STGrid[Aboulnaga and Chaudhuri 1999] and STHoles[Bruno et al. 2001] use multi-dimensional
histograms as the modeling technique. STGrid uses a rectangular grid-based histogram that is dynamically
split and merged based on the query feedback. STHoles improves on STGrid by allowing some buckets to be
completely included inside others. In this way, the requirement that each bucket is rectangular is implicitly
relaxed, and this results in buckets that more efficiently model complex regions of uniform tuple density.
The idea behind both STGrid and STHoles is to allocate more memory in regions queried more frequently.
This is similar to our aim of adapting to query distributions. However, there is a fundamental difference in
that their feedback information is the actual number of tuples selected from the range query whereas our
feedback information is the actual costs of the individual UDF executions. It is not obvious how to adapt
their approaches[Aboulnaga and Chaudhuri 1999; Bruno et al. 2001] to work with UDF cost modeling.

In [Rahal et al. 2004], Rahal et al. present a technique that continuously updates the local query cost
model in a dynamic multidatabase environment. They use multiple regression as the modeling technique.
It periodically rebuilds the cost model after either one or a batch of query executions. (The batch approach
is similar to the incremental update approach used in [Lee et al. 2004].) Their approach, however, is not
self-tuning because there is no feedback loop that drives the update of a cost model. We may call it “self-
managing” instead, as indicated in their paper.

In [Stillger et al. 2001], Stillger et al. presents a self-tuning approach to “repairing” an incorrect query
execution plan. Each time a query is executed, the query execution plan used is analyzed based on the cost
estimation errors to determine where in the plan the significant error occurred. The analysis results are
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then used to adjust the data statistics and the estimation models of selectivity and cardinality. Unlike our
approach which performs tuning at the level of a UDF, which is executed as only one step within a query,
their approach performs tuning at the entire query level and, therefore, incurs higher overhead to collect the
statistics need for the tuning. Moreover, different types of query predicates need separate tuning processes.

In [Lee et al. 2000], Lee et al. presents a self-tuning approach to data placement in a shared-nothing
parallel database systems. If a load imbalance happens, it determines the amount of data to be moved
from the overloaded node and integrate the moved data into selected destination nodes. Although called
“self-tuning”, this work is about dynamic resource allocations and is closer to a trigger-action mechanism.

3. PROBLEM FORMULATION

In this section, we formally define the general UDF cost modeling problem and the specific problem addressed
in this paper.

3.1 UDF cost modeling

Let f(a1, a2, ..., an) be a UDF that can be executed within an ORDBMS with a set of input arguments
a1, a2, ..., an. Let T (a1, a2, ..., an) be a transformation function that maps some or all of a1, a2, ..., an to a
set of “cost variables” c1, c2, ..., ck, where k ≤ n. The transformation T is optional. T allows the users to
use their knowledge of the relationship between input arguments and the execution costs, ecIO (e.g., the
number of disk pages fetched) and ecCPU (e.g., CPU time), to produce cost variables that can be used in
the model more efficiently than the input arguments themselves. An example of such a transformation is
for a UDF that has the input arguments start time and end time which are mapped to the cost variable
elapsed time calculated as elapsed time = end time − start time.

Let us define model variables m1, m2, .., mk as either input arguments a1, a2, ..., an or cost variables
c1, c2, ..., ck, depending on whether the transformation T exists or not. Then, we define cost modeling
as the process for finding the relationship between the model variables m1, m2, ..., mk and ecIO, ecCPU for a
given UDF f(a1, a2, ..., an). Each point in the model space has the model variables as its coordinates.

3.2 Problem definition

Let Q be a set of query points arriving in sequence. Then, given limited memory and computation time
available and with cost fluctuating over time, the self-tuning UDF cost modeling technique aims to minimize
the prediction error, prediction cost, and model update cost, measured considering all the queries in Q.

The prediction error is measured as the normalized absolute error (NAE) defined as

NAE(Q) =

∑

q∈Q |PC(q) − AC(q)|
∑

q∈Q AC(q)
(1)

where PC(q) denotes the predicted (i.e., estimated) cost and AC(q) denotes the actual cost at a query point
q ∈ Q. This metric is similar to the normalized absolute error used in [Bruno et al. 2001] for selectivity
modeling2.

The prediction cost and the model update cost are averaged over the queries in Q. Thus, the average
prediction cost (APC) is measured as

APC =

∑

q costpred(q)

|Q|
(2)

2We do not use the relative error because it is biased by a small number of query points with very low actual costs. We do not
use the unnormalized absolute error either because it varies greatly across different UDFs/datasets, while in our experiments
we do compare the errors across different UDFs/datasets.
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where costpred(q) is the cost of making a prediction at query point q ∈ Q and |Q| denotes the cardinality
of Q, and the average model update cost (AUC) is the summation of the average insertion cost (AIC) and
the average compression cost (ACC). That is,

AUC = AIC + ACC (3)

where AIC and ACC are defined as follows.

AIC =

∑

d∈D costins(d)

|Q|
(4)

where D is the set of data points inserted from the query points in Q and costins(d) is the cost of inserting
a data point d ∈ D.

ACC =

∑

c∈C costcomp(c)

|Q|
(5)

where C is the set of compressions performed while predictions are made at the query points in Q and
costcomp(c) is the cost of a compression c ∈ C.

Additionally, we define the average modeling cost (AMC) as the average cost of processing a set of queries
– predictions and model updates (i.e., insertions, compressions). That is,

AMC = APC + AUC (6)

4. GUIDELINES

The guidelines presented in this section are designed to address the problem defined in Section 3.2 while meet-
ing the challenges described in Section 1.3. The guidelines are organized by the key operations: prediction,
insertion, and compression.

4.1 Prediction guidelines

Since prediction is done using a model refined as a result of data point insertions, we can state this guideline
in terms of the number of data points “used” for making the prediction.

Guideline P: Use more data points for prediction in a region with higher noise level.
This guideline is based on the common statistical technique for reducing the prediction error caused by
noisy data, mentioned in Section 1.3.3. A prediction error consists of a variance error and a bias error
[Bogartz 1994]. The former is caused by the variation of data value at one particular coordinate in the
multi-dimensional space, and the latter is caused by the variation of data value across different coordinates.
As the noise level increases, the variance error has more influence on the prediction error than the bias
error. Therefore, more data points should be considered in order to reduce the prediction error in this case
(even though it means using data points from a larger region). Conversely, as the noise level decreases,
the bias error has more influence, and, therefore, data points in a smaller region should be used (which
often leads to using fewer data points).

Figure 3(a) illustrates the guideline P. Suppose a prediction is to be made at a query point in the region
1-2. By Guideline P, the data points in the surrounding memory blocks A and C are used as well as those
in B if the noise level in the region is significantly high, otherwise only block B is used.

4.2 Insertion (memory allocation) guidelines

The first insertion guideline has to do with the “pace” of inserting new data points.

ACM Transactions on Database Systems, Vol. 30, No. 3, September 2005.
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Guideline I: Insert data points conservatively.
A conservative insertion strategy contributes to reducing the frequency of data point insertion. This slows
down the growth rate of the model and, consequently, reduces the frequency of compression as well. Thus,
it leads to reducing both the average insertion cost (see Equation 4) and the average compression cost (see
Equation 5).

Data point insertions lead to the refinement of a model one way or another, and this typically leads to
consuming more memory. In this regard, the next two guidelines below are better stated in terms of memory
allocation.

Guideline I1: Allocate more memory to model regions with more complex cost variations.
This allows for using a more refined model to predict values in those regions, thereby reducing the prediction
errors.

Guideline I2: Allocate more memory to model regions with more frequent queries.
Assuming query patterns do not change rapidly, the regions recently queried frequently are likely to be
queried more frequently in the near future. Thus, higher prediction accuracy can be achieved by refining
the model in those regions; Refining the model calls for allocating more memory.

Figure 3(b) illustrates the guidelines I1 and I2 in light of the UDF cost modeling. (We use a one-dimensional
model for ease of illustration, but it generalizes to any higher dimensional model.) Each point in the figure
represents a previous query point. Some of the query points are inserted as data points, and others are not.
Assume the resulting model is stored in five memory blocks (A, B, C, D, E) of the same size. Then, by
the guidelines I1, more memory blocks are allocated to model the region 7-10 (blocks C, D, and E) than
0-7 (blocks A and B) because the UDF cost fluctuates more sharply in the region 7-10. Besides, by the
guideline I2, no memory is allocated to model the region 10-12 because no query point has appeared there.

Model Variable0 1 2 3

Cost
20

15

10

5

BA C D E

4 5 86 7 9 10 11

(a) Prediction.

E

Cost

0 1 2 3 4 5 6 7 8 9 10 11 12 Model Variable
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(b) Memory allocation.
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(c) Compression.

Fig. 3. Illustrations of the guidelines.

4.3 Compression (memory deallocation) guidelines

Since model compression is to deallocate memory allocated to the model as a result of data point insertion,
its guidelines are contrasted with those of data point insertion.

Guideline C1: Compress the model more aggressively in regions with less complex data distributions.
This is because these regions can be modeled with similar accuracy as more complex regions without using
as much memory.
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Parameter Description

K the number of nearest neighbors used to make predictions.
Tpe the prediction error threshold used to determine if data point should be inserted into the

model.
MCR the model compression ratio used as measure of how aggressively the model as a

whole should be compressed.

Table I. Summary of parameters used in MLKNN.

Guideline C2: Compress the model more aggressively in regions with less frequent queries.
Assuming query patterns do not change rapidly, the regions recently queried less frequently are likely to
be queried less frequently now. It is thus not an efficient use of computational time and memory to keep
the models of these regions as refined as more frequently queried regions.

Figure 3(b)-(c) illustrates the guidelines C1 and C2. By the guideline C1, the memory blocks A and B of
Figure 3(b) are compressed into the memory block A’ because the UDF cost variation is smaller in the region
0-7 (blocks A and B) than the other regions. Besides, by the guideline C2, the memory blocks D and E of
Figure 3(b) are compressed into the memory block D’ because the number of query points in the region 8-9
(block D) and that in the region 9-10 (block E) are smaller (only one each) than those in the other regions.
Furthermore, using a discerning strategy like the guidelines C1 and C2 contributes to reducing the frequency
of compression compared with not using such a strategy, thereby contributing to reducing the average model
compression cost (see Equation 5).

5. MEMORY-LIMITED K NEAREST NEIGHBORS (MLKNN)

As mentioned in Section 1.4, MLKNN is modified from KNN to be efficient in both computation and storage
while preserving much of its merits – the prediction accuracy and cheap incremental training inherent in
KNN. The efficiencies are achieved by limiting the number of data points stored, and the merits are preserved
by keeping only the data points that are likely to increase the future prediction accuracy.

The idea of limiting the number of data points stored to improve KNN performance has already been
extensively studied in the pattern classification literature[Chang 1974; Hart 1968; Wilson 1972] in the form
of edited K nearest neighbors (EKNN). They, however, use computationally expensive off-line methods to
reduce the training dataset size by compressing the initial dataset. There are two important distinctions
between that group of work and our work. First, their goal is to improve prediction speed at no cost to
accuracy[Chang 1974; Hart 1968] or, sometimes, to improve the accuracy [Wilson 1972]. Naturally, they
can not work with a memory limit. In contrast, we are willing to compromise accuracy in order to ensure
that memory usage stays within a limit. Second, their approaches are static and, therefore, do not allow for
incremental training. In contrast, our approach is dynamic and allows for low-cost incremental training.

In this section, we show the utility of the guidelines by presenting an instance-based cost modeling tech-
nique developed from it. We first describe the data structures used by MLKNN in Section 5.1. In Sections 5.2,
5.3, and 5.4, we elaborate on MLKNN’s cost prediction, data point insertion, and model compression, re-
spectively. Table I provides a summary of the parameters used in MLKNN.

5.1 Data structures

MLKNN makes use of two data structures: point data structure (PData) and a multi-dimensional index.
PData stores the following information per data point: the coordinates, the UDF execution cost (either
CPU or IO cost), and the utility value (to be defined formally in Equation 11).
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The multi-dimensional index is used for fast retrieval of the PData of the K nearest neighbors and fast
insertion of new PData. We can use any of the existing index structures designed for efficient KNN search
[Beckmann et al. 1990; Cheung and chee Fu 1998; Kim et al. 2001; Yu et al. 2001]. Note that all those
indexes will benefit from reduced retrieval and insertion costs and reduced memory usage when the number
of data points stored is reduced. We have used the R*-tree[Beckmann et al. 1990] enhanced with Cheung
and Fu’s improved KNN search algorithm[Cheung and chee Fu 1998] in the experiments of this paper. The
reasons for this choice are given in Section 7.1.1.

5.2 Cost prediction

For MLKNN, the prediction guideline P translates into automatically determining the number (K) of nearest
neighbors to use depending on the noise-level, that is, setting K higher if the noise-level is higher. For this
purpose, we maintain a set of the running sums of absolute prediction errors ({eK1

, eK2
, · · · , eKN

}) for a set
of distinct values of K (K1 < K2 < · · · < KN ) and, when making a cost prediction, use the Ks for which the
eKs

(1 ≤ s ≤ N) is the minimum among eK1
, eK2

, · · · , eKN
. This method is based on the assumption that

the optimal K (among those considered) in the past is likely to be optimal now. Maintaining the multiple
running sums incurs little additional run-time overhead compared with maintaining one running sum for KN

because, to compute each of the other running sums, we can simply reuse a subset of the KN data points.
Given a particular K, the algorithm for predicting the cost is simple and straightforward, as outlined in

Figure 4. Given a query point, the algorithm first finds its K nearest neighbors through the multidimensional
index based on the Euclidean distance. Then, it calculates the weighted average of their costs (using Equa-
tion 7) and returns the result as the predicted costs. Most KNN searches using multi-dimensional indexes
require the calculation of the distances between the query point and its neighbors. We reuse these distances
(already calculated) to compute the weights.

MLKNN Predict Cost (K: number of nearest neighbors, MI : multi-dimensional index,
q: query point )

1. Find the K nearest neighbors p1,p2, ...,pK of query point q using the multi-dimensional index MI .
2. Return the weighted average of the costs for p1,p2, ...,pK. (See Equation 7.)

Fig. 4. Cost prediction algorithm of MLKNN.

We now give a more formal description of how the predicted cost is calculated for a given K. Let
p1,p2, · · · ,pK be the K nearest neighbors of a query point q, and let their corresponding UDF execu-
tion costs and the Euclidean distances from q be C(p1), C(p2), · · · , C(pK) and D(p1), D(p2), · · · , D(pK),
respectively. Then, the predicted cost, PC, at the query point q is calculated as

PC(q) =

K
∑

i=1

w(pi)
∑K

i=1 w(pi)
C(pi) (7)

where w(pi) is the weight assigned to pi; weights are normalized by the total weight (in the denominator)
so the sum of all weights equals 1. To compute the weight we use the kernel smoothing method, particularly
the one based on the popular Epanechnikov kernel[Wand and Jones 1995], given as

Φ(u) =
3

4
(1 − u2) (8)

where u is a real number between 0 and 1 (inclusive).
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Using Φ(u), the weight w(pi) is expressed as

w(pi) = Φ(
‖q − pi‖

D(pK)
) (9)

There are a number of other weighting methods that can be used, such as uniform, triangular rank-based,
and quadratic rank-based weights [Stone 1977]. We have chosen to use the Epanechnikov kernel smoothing
method for its popularity[Wand and Jones 1995].

5.3 Data point insertion

The insertion algorithm follows the guideline I by inserting data points into the model only if prediction
error (Mpe) exceeds a certain threshold Tpe. We call this selective insertion. Figure 5 outlines the algorithm.
It first decides whether the query point should be inserted as a data point into the multi-dimensional index
(Line 1). This is done by checking if the prediction error (defined in Equation 10) is above Tpe. Then, it
updates the utility values of the data points used to make the prediction (i.e., the K nearest neighbors of
the query point) using Equation 11.

MLKNN Insert Data Point ( q: query point, p1,p2, ...,pK: K nearest neighbors of q,
MI: multi-dimensional index, Tpe: prediction error threshold )

1. if (Mpe(q) > Tpe) then begin
2. Insert q as a data point into MI .
3. end if.
4. Update the utility values of p1,p2, ....,pK. (See Equation 11.)

Fig. 5. Insertion algorithm of MLKNN.

Mpe is measured as follows.

Mpe(q) =
|AC(q) − PC(q)|

max(AC(q), PC(q))
(10)

where AC(q) is the actual cost at a query point q and PC(q) is the predicted cost at the same query point.
The query point q is inserted into the model only if its Mpe(q) > Tpe. Equation 10 allows Tpe to be set
using a fraction, which is more intuitive for users than the absolute difference.

This selective insertion algorithm fulfills the guideline I1 because Mpe is more likely to exceed Tpe in regions
with more complex cost variations and, consequently, more data points are inserted into these regions. This
leads to more memory allocated to model these regions. The same algorithm fulfills the guideline I2 as
well because more frequently queried regions are more likely to have their sub-regions with complex cost
variations discovered and, thus, more data points are inserted into these regions.

Figure 6(a)-(b) illustrates the effect of selective insertion performed on an original dataset (Figure 6(a))
containing 2000 data points. After selectively inserting the first 1086 data points, only 200 are kept in the
model. Figure 6(b) shows that this small set of 200 data points models quite precisely the complex shape
formed by the original data points.

After each time a prediction is made, MLKNN updates the utility value of each of the K nearest neighbors
of the query point. (These utility values are used by the compression algorithm in Section 5.4 to decide how
aggressively each data points should be compressed.) Formally, the utility value of a given data point pi,
denoted by U(pi), is defined as
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(c) After RR compression.

Fig. 6. Example of the effect of model update.

U(pi) =
∑

q∈Q(pi)

UI(pi,q) (11)

where Q(pi) is the set of query points for which pi has been used to make predictions and UI(pi,q) is an
increment of U(pi) at the data point pi used for prediction at the query point q.

UI(pi,q) is calculated as

UI(pi,q) = w(pi) × Mpe(q) (12)

If the query point (q) is inserted into the model as a new data point, then its utility value is initialized
to Mpe(q). Note that the utility value U(pi) is high if: (1) the frequency (|Q(pi)|) of using pi to make
predictions is high, since U(pi) is increased every time pi is used to make a prediction, (2) pi is in a region
in which there is highly complex cost variations, since points in these regions are more likely to give larger
prediction errors (Mpe(q)), and (3) the distance between the data point pi and the query point q is small,
since w(pi) gives higher weight to data points closer to the query point q (Equation 9). This property allows
the utility value to be used as a metric for determining how aggressively the model should be compressed
(see Section 5.4).

Figure 7 illustrates the selective insertion of two new query points q1 and q2. Suppose the number (K)
of nearest neighbors used for prediction is 2. Further suppose Mpe(q1) is below the threshold for insertion
whereas Mpe(q2) is above the threshold. Then, q2 is inserted (with the utility value initialized to Mpe(q2),
which equals 0.667 by Equation 10), but q1 is not inserted. The utility values of p1, p2, p4, and p5 (data
points used to make the predictions) are increased according to Equation 12.

5.4 Model compression

The key idea behind MLKNN’s compression algorithm is to compress data points with higher utility value
less aggressively. This approach follows guideline C1 since data points with higher utility values are those
that are in regions of higher cost variation complexity (as explained in Section 5.3). It also follows guideline
C2 since data points that have higher utility values are those that have been frequently used for predictions.
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Fig. 7. Selective insertion of query points.

During compression, existing data points are compressed to a smaller number of ‘representative’ points.
The multi-dimensional index is then rebuilt3 using only the representative points. The representative points
are then treated in the same way as new data points inserted into the multi-dimensional index.

We consider two new compression algorithms of contrasting characteristics. The first algorithm is called
rank and remove(RR) and the second algorithm is called partition and merge(PM).

5.4.1 Rank and remove(RR). This algorithm is designed to be very computationally efficient by com-
pletely ignoring where the data points are located when performing the compression. Compression is only
guided by the utility value. Figure 8 outlines the algorithm. It first sorts all existing data points in the
decreasing order of the utility value. Then, it removes the data points in the bottom fraction, and selects
the remaining data points as the representative points. The size of the removed fraction is determined by
the model compression ratio (MCR).

MLKNN RR Compress (MI : multi-dimensional index, DP : the set of all data points inserted,
MCR: model compression ratio)

1. Sort all data points DP in the decreasing order of the utility value.
2. Remove the bottom MCR fraction of the data points.
3. Select the remaining data points as representative data points.
4. Rebuild multi-dimensional index MI with representative data points.

Fig. 8. RR Compression algorithm of MLKNN.

3Typically, rebuilding is much more efficient than replacing the existing points through a sequence of deletions and insertions.
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The complexity of this compression algorithm is dominated by the initial sorting of the data points
(required to rank the data points by the utility value), which has the complexity of O(n log n) where n is
the number of data points.

Figure 6(b)-(c) illustrates the effect of RR compression for MCR 50%. Figure 6(b) shows the 200 data
points kept in the model before the compression, and Figure 6(c) shows the 100 data points retained after
the compression. From the figures we can see the complex shape formed by the uncompressed data points
are kept after RR compression.

5.4.2 Partition and merge(PM). This algorithm contrasts from RR by taking the spatial proximity of
data points into consideration when deciding how to compress them. This algorithm aims to ensure that
every region of the multi-dimensional space has a data point. Figure 9 outlines the algorithm. It first
partitions the data points using a histogram approach and, then, merges the points in the same partition to
a single representative point.

MLKNN PM Compress (MI : multi-dimensional index, DP : the set of all data points inserted,
MCR: model compression ratio)

1. Let |DP | be the number of data points in DP .
2. Partition all data points in DP into partitions of (1 − MCR)|DP | points using a histogram

approach.
3. For each partition p created begin
4. merge all data points in p to a representative point.
5. end for
6. Rebuild the multi-dimensional index MI with the representative data points.

Fig. 9. PM Compression algorithm of MLKNN.

In the partitioning step, it uses a simple extension of the equi-height histogram approach used in [Boulos
and Ono 1999]. In [Boulos and Ono 1999], the height of a partition is defined as the number of data points
in each partition. In our case, it is defined as the total utility value of all data points in the partition. The
algorithm sorts the data points separately in each dimension based on the coordinate of the data points,
generating d lists, where d is the number of dimensions. Then each list is partitioned into P partitions of
equal height, thus creating P d multi-dimensional partitions. The parameter P is determined by MCR as
P = d

√

MCR × |DP |. The complexity of the algorithm in a d-dimensional model space is O(d|DP | log |DP |).
The complexity is dominated by the need to sort the data points by the coordinate in each dimension.

In the merge step, the coordinate of each representative point is computed as a weighted average of the
coordinates of the data points in the same partition. The utility value of the data points are used as the
weights. Formally, let COi(p) be the value of the ith component of point p’s coordinate, let p1,p2, ...,pn

be the points in the partition merged to a representative point r, and let U(pj) be the utility value of the
point pj for j = 1, 2, ..., n. Then, COi(r) is computed as

COi(r) =

n
∑

j=1

U(pj)
∑n

a=1 U(pa)
COi(pj) (13)

Let C(r) be the execution cost associated with a representative point r. Then, C(r) is computed as a
weighted average of the execution costs of the data points contained in the partition, i.e., C(p1), C(p2), ..., C(pn),
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as

C(r) =

n
∑

i=1

w(pi)
∑K

i=1 w(pi)
C(pi) (14)

where w(pi) is determined by Equation 9.
The utility value of the representative point r, U(r), is computed as a weighted average of the utility

values of the data points contained in the partition, i.e., U(p1), U(p2), · · · , U(pn), as

U(r) =

n
∑

i=1

w(pi)
∑K

i=1 w(pi)
U(pi) (15)

Using Equation 13 causes the coordinate of the representative point to be skewed toward data points with
high utility values, and using Equation 14 causes data points with a smaller Euclidean distance from the
representative point to have a larger influence on its cost.

Figure 10 shows how the data points in Figure 7(b) are compressed using RR and PM compression
algorithms. It can be observed that PM creates representative points that are more uniformly spaced across
the indexed model space. This is because RR does not take spatial proximity into consideration, whereas
PM does.
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Fig. 10. Model compression of data points in Figure 7 (b).

6. MEMORY-LIMITED QUADTREE (MLQ)

As mentioned in Section 1.4, MLQ is a summary-based technique as opposed to an instance-based technique
like MLKNN. In MLQ, the quadtree is used to store summary information at different resolutions based on
the complexity of UDF execution costs and the distribution of query points. The summary information is
updated incrementally each time a new data point is inserted, and is used to calculate the predicted cost
and to guide the compression of the quadtree when the memory limit is reached.

The quadtree is used as a summarization structure used in many application areas including approximate
query processing[Lazaridis and Mehrotra 2001], selectivity estimation[Buccafurri et al. 2003], and image
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processing[Tousidou and Manolopoulos 2000; Nardelli and Proietti 1994]. There are other summarization
structures as well, such as other types of trees (e.g., dynamic KD-trees [Robinson 1981; Procopiuc et al.
2003], hB-trees [Evangelidis et al. 1997; Lomet and Salzberg 1990], R-trees [Beckmann et al. 1990; Guttman
1984]) and histograms [Aboulnaga and Chaudhuri 1999; Bruno et al. 2001; Poosala and Ioannidis 1997]. We
have chosen the quadtree because of its support for fast retrieval and fast incremental update, as well as the
multi-resolution model described next.

In this section, we describe the quadtree structures used by MLQ in Section 6.1, define the optimality
criterion of the quadtree in Section 6.2, and elaborate on MLQ’s cost prediction, data point insertion, and
compression algorithms in Sections 6.3, 6.4, and 6.5, respectively. Table II summarizes the MLQ parameters,
and Table III lists the statistics used by MLQ.

Parameter Description

Tms the minimum support threshold, used to determine the minimum count (i.e., number
of data points) needed to make a prediction

α the scaling factor (0 ≤ α ≤ 1) used to determine TSSE, the SSE threshold used
to decide when to split a quadtree node.

MCR the model compression ratio, used as measure of how aggressively the model as
a whole should be compressed.

λ the maximum quadtree depth.

Table II. Summary of MLQ parameters.

Term Description

C(b) number of data points in block b.
S(b) sum of the values of data points in block b.
AV G(b) average of the values of data points in block b.
SS(b) sum of squares of the values of data points in block b.
SSE(b) sum of squared errors of the values of data points in block b.
SSENC(b) SSE of the values of data points in block b excluding those in its children.
TSSENC(qt) total SSENC for all non-full blocks of quadtree qt.
TSSENCG(b) TSSENC gained as a result of removing a block b from the quadtree.

Table III. Summary of statistics used in MLQ.

6.1 Quadtree structure

MLQ uses the conventional quadtree structure. The quadtree fully partitions the multi-dimensional space
by recursively partitioning it into 2d equal sized blocks (or partitions), where d is the number of dimensions.
A child node is allocated for each non-empty block and its parent has a pointer to it. Empty blocks are
represented by null pointers. Figure 11 illustrates different node types of the quadtree using a two dimensional
example. We call a node that has exactly 2d children a full node, and a node with fewer than 2d children a
non-full node. Note that a leaf node is a non-full node.

Each node —internal or leaf— of the quadtree stores the summary information of the data points stored
in a block represented by the node. The summary information for a block b consists of the sum S(b), the
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Fig. 11. The quadtree data structure.

count C(b), the sum of squares SS(b) of the values of the data points that map into the block. There is
little overhead in updating these summary values incrementally as new data points are added. At prediction
time, MLQ uses these summary values to compute the average value as follows.

AV G(b) =
S(b)

C(b)
(16)

During data point insertion and model compression, the summary values stored in quadtree nodes are
used to compute the sum of squared errors (SSE(b)) as follows.

SSE(b) =

C(b)
∑

i=0

(Vi − AV G(b))2

= SS(b) − C(b)(AV G(b))2 (17)

where Vi is the value of the ith data point among those that map into the block b.

6.2 Optimal quadtree

We now define the optimality criterion of the quadtree used in MLQ. Let Mmax denote the maximum memory
available for use by the quadtree and DS denote a set of data points used for training. Then, using Mmax

and DS, we now define QT (Mmax, DS) as the set of all possible quadtrees that can model DS using no
more than Mmax.

Let us define SSENC as the sum of squared errors of the values of data points in block b, excluding those
in its children. That is,

SSENC(b) =

C(bnc)
∑

i=1

(Vi − AV G(b))2 (18)
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where bnc is the set of data points in b that do not map into any of its children and Vi is the value of the
ith data point in bnc. Then, we define the optimal quadtree as the one that minimizes the total SSENC
(TSSENC) defined as follows.

TSSENC(qt) =
∑

b∈NFB(qt)

(SSENC(b)) (19)

where qt is the quadtree such that qt ∈ QT (Mmax, DS) and NFB(qt) is defined as the set of the blocks of
non-full nodes of qt.

SSENC(b) is a measure of the expected error for making a prediction using a non-full block b. This is
a well-accepted error metric used for the compression of a data array[Buccafurri et al. 2003]. It is used in
[Buccafurri et al. 2003] to define the optimal quadtree for the purpose of building the optimal static two-
dimensional quadtree. We can use it for our purpose of building the optimal dynamic multi-dimensional
quadtree, where the number of dimensions can be more than two.

6.3 Cost prediction

For MLQ, the prediction guideline P translates into automatically determining the value of Tms for finding
the quadtree node whose summary values are to be used for prediction. Since, by definition, Tms is the
minimum count value of the node to use for making a prediction, its value can be adjusted depending on
the level of noise, that is, set higher if the noise-level is higher. Like MLKNN, MLQ maintains a set of
running sums of absolute prediction errors ({eTms1

, eTms2
, · · · , eTmsN

}) for N different Tmsi
values (Tms1

<
Tms2

< · · · < TmsN
) and, when making a cost prediction, use the Tmss

for which the eTmss
(1 ≤ s ≤ N) is

the minimum among eTms1
, eTms2

, · · · , eTmsN
. As in MLKNN, this method is based on the assumption that

the optimal Tms (among those considered) in the past is likely to be optimal now. Maintaining the multiple
running sums incurs little additional run-time overhead compared with maintaining one running sum for
eTms1

because, to compute each of the other running sums, we can simply reuse one of the nodes traversed
on the way to the node for eTms1

.
Given a particular Tms, the algorithm for predicting the cost (using the quadtree structure) is simple and

straightforward, as outline in Figure 12. The algorithm first finds the lowest level node that the query point
maps into and that has the count value of at least Tms. It then returns the average calculated using the
summary values S(b) and C(b) stored in the node.

MLQ Predict Cost (QT: quadtree, q: query point, Tms: minimum support threshold)

1. Find the lowest level node of QT such that q maps into the block of the node and the count
in the node ≥ Tms.

2. Return sum/count from the node found.

Fig. 12. Cost prediction algorithm of MLQ.

Figure 13 illustrates cost prediction in MLQ. It shows three query points q1, q2, and q3. If Tms = 3,
then q1 returns a predicted cost of 100 (= 300/3) from B14, q2 returns 40 (= 200/5) from B12, and q3 also
returns 40 from B12. Note that q3 does not return the average from B124 because the leaf node that q3

maps into has a count less than 3.
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Fig. 13. An example of cost prediction in MLQ (Tms = 3).

6.4 Data point insertion

The insertion algorithm follows the insertion guideline I provided in Section 4.2 by partitioning a quadtree
block only if its SSE reaches a certain threshold (TSSE) as a result of inserting a data point. Figure 14
shows the algorithm. First, it traverses the quadtree top down to a leaf node while updating the summary
values stored in every node the data point maps into (Lines 1 ∼ 6). Then, if the SSE value stored in the leaf
node is larger than TSSE and if the depth of the leaf node is smaller than the maximum allowed quadtree
height (λ), then it creates a new child node that the data point maps into and initializes the summary values
to all zeros (Lines 7 ∼ 10).

Insert point ( DP: data point, QT: quadtree, TSSE : SSE threshold, λ: maximum depth )

1. cn = the current node being processed, initialized to be the root node of QT.
2. update sum, count, and sum of squares stored in cn.
3. while (cn is not a leaf node) begin
4. cn = the child of cn that DP maps into.
5. update sum, count, and sum of squares in cn.
6. end while
7. if ((SSE(cn) ≥ TSSE) and (depth of cn < λ)) then begin
8. cn new = create the child in cn that DP maps into.
9. initialize sum, count, and sum of squares in cn new to zeros.
10. end if

Fig. 14. Insertion algorithm of MLQ.
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TSSE is defined as follows.

TSSE = α SSE(r) (20)

where r is the root block and the parameter α is a scaling factor provided by users to set the value of TSSE .
The value of SSE in the root node indicates the degree of cost variations in the entire data space. For
this reason, the value of TSSE can be set relative to the value of SSE(r). As a slight variation, MLQ sets
TSSE to zero initially until the memory limit is reached (and the first compression occurs), before it starts
updating TSSE according to Equation 20. Setting TSSE to zero makes the quadtree blocks to partition to the
maximum depth at every data point insertion. This enables the algorithm to achieve adequate prediction
accuracy during the initial period of inserting data points while the data space is sparsely populated.

In MLQ, it is through the partitioning of quadtree blocks (following the guideline I) that more memory is
allocated in regions where data points are inserted. Therefore, the insertion algorithm fulfills the guideline I1
because SSE values are higher in the blocks located in regions with more complex cost variations. The same
algorithm fulfills the guideline I2 as well because SSE values are higher in the blocks located in regions into
which more data points are inserted.

Figure 15 illustrates how the quadtree is changed as two new data points p1 and p2 are inserted. In this
example, we use TSSE = 8 and λ = 5. When p1 is inserted, a new node is created for the block B13. Then,
B13’s summary information in the node is initialized to 5 for sum, 1 for the count, 25 for the sum of squares,
and 0 for SSE. B13 is not further partitioned since its SSE is less than the TSSE . Next, when p2 is inserted,
B14 is partitioned since its updated SSE of 52.67 becomes greater than the TSSE.

6.5 Model compression

The key idea of compression in MLQ is to remove some nodes of the quadtree so that the removal results in
the minimum increase of the quadtree’s TSSENC while freeing at least the memory amounting to MCR.
Here, removing the leaf nodes before the internal nodes allows the compression to be done incrementally,
since removing an internal node automatically removes all its children nodes as well. To implement this idea,
we insert all leaf nodes into a priority queue, keyed by the TSSENC gain (TSSENCG) defined as follows.

TSSENCG(b) = SSENC(pac) − (SSENC(b) + SSENC(pbc)) (21)

where b is a quadtree block, pbc and pac refer to the states of the parent block of b before and after the
removal of b, respectively. Thus, TSSENCG(b) is the TSSENC gain resulting from removing the block b.

Using the derivation shown in Appendix A, Equation 21 can be simplified to the following equation.

TSSENCG(b) = C(b)(AV G(p) − AV G(b))2 (22)

where p is the parent block of b. Using Equation 22 as the basis of compression offers three desirable
properties, two of which fulfills the guidelines C1 and C2. First, it favors the removal of a leaf node that
shows a smaller difference between the average cost for the node and the average cost for its parent (i.e.,
smaller (AV G(p) − AV G(b))2). This fulfills the guideline C1 because regions with lower complexity of cost
variations have leaf nodes with smaller differences in the average costs from those for their parents. Second,
it favors the removal of a leaf node that had fewer data points inserted into (i.e. smaller C(b)). This fulfills
the guideline C2. Third, the computation of TSSENCG(b) is efficient as it can be done using the sum and
count values already stored in the quadtree nodes.

Figure 16 outlines the compression algorithm. First, it inserts all the leaf nodes into the priority query
(PQ) keyed by their TSSENCG values (Line 1). Then, it removes the leaf nodes from the PQ, the one with
the smallest TSSENCG first (Lines 2 - 10). If the removal of a leaf node results in its parent becoming a
leaf node, then the parent node is inserted into the PQ (Lines 5 - 7). The algorithm stops removing the leaf
nodes when either the PQ becomes empty or the fraction of freed memory reaches at least MCR.
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Fig. 15. An example of data point insertion in MLQ.
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MLQ Compress Model (QT: quadtree, MCR: model compression ratio,
total mem: the total amount of memory allocated)

1. Traverse QT and insert every leaf node into a priority queue PQ keyed by its TSSENCG.
2. while (PQ is not empty) and (memory freed / total mem < MCR) begin
3. remove the minimum-TSSENCG lead node from PQ and return it as current leaf.
4. parent node = the parent of current leaf.
5. if (parent node is not the root node) and (parent node is now a leaf node) then begin
6. insert parent node into PQ keyed by its TSSENCG.
7. end if
8. deallocate memory used by current leaf.
9. memory freed = memory freed + size of current leaf
10. end while

Fig. 16. Compression algorithm of MLQ.

Figure 17 illustrates how MLQ performs compression. Figure 17(a) shows the state of the quadtree before
the compression. Either B141 or B144 can be removed first since they both have the lowest TSSENCG
value of 1. The tie is arbitrarily broken, resulting in the removal of B141 first and B144 next. We can see
that removing both B141 and B144 results in an increase of only 2 in the TSSENC. If we removed B11
instead of B141 and B144, we would increase the TSSENC by 2 after removing only one node.

7. EXPERIMENTAL EVALUATION

We evaluate the performances of MLKNN, MLQ, and KNN against the existing technique SH. In this
section, we first describe the experimental setup in Section 7.1 and, then, present the experimental results
in Section 7.2.

7.1 Experimental setup

7.1.1 Modeling techniques. We compare the performances of two MLKNN variants and MLQ against two
variants of SH and the KNN technique. Specifically, the following techniques are compared: (1) MLKNN-

SRR, MLKNN using selective insertion and RR compression, (2) MLKNN-SPM, MLKNN using selective
insertion and PM compression, (3) MLQ, (4) SH-H[Boulos and Ono 1999] using equi-height histograms, (5)
SH-W[Boulos and Ono 1999] using equi-width histograms, and (6) KNN, the K nearest neighbor technique
storing all data points.

For the techniques listed above, we train and test the models in different manners depending on whether
the techniques are static or dynamic. The SH techniques are static. We build a model (i.e., histogram)
a priori using training queries. Then, we use the model to make predictions during testing using testing
queries. In contrast, the KNN-based and MLQ techniques are dynamic. We build a model incrementally
(i.e., one query point at a time) during testing. Since a dynamic technique can be effective only after the
model has been trained adequately, we first build an initial model statically using training queries and, then,
update it during testing using test queries. For both the static and dynamic algorithms the test queries have
the same distribution as the training queries. More specifics of query generation will appear in Section 7.1.4.

The multi-dimensional index used for the KNN-based techniques is the R*-tree[Beckmann et al. 1990]
enhanced with Cheung and Fu’s improved KNN search algorithm[Cheung and chee Fu 1998]. This algorithm
aggressively prunes the search space, thereby resulting in fewer R*-tree node accesses. Moreover, the R*-tree
allows for incremental insertions without the need for periodic rebuilding unlike other index structures (e.g.,
∆-tree [Cui et al. 2003]) that require periodic rebuilding after many insertions.
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p(e), B(s,c,ss,ssenc,sseg): e = execution cost, s = sum, c = count, ss = sum of square,
ssenc = sum of squared error of data points not associated with any of its children,

sseg = sum of squared error gain.

Fig. 17. An example of MLQ compression.

In all the experiments except the one with varying memory limit, we have limited the amount of allocated
memory to 10 KB (with the exception of KNN, which retains all data points). This amount is similar to
that allocated in existing work for selectivity estimation of range queries [Bruno et al. 2001; Deshpande et al.
2001; Poosala and Ioannidis 1997].

We have tuned the KNN-based and MLQ techniques to achieve the best overall performance, and used the
resulting parameter values. In the case of the SH methods, there is no tuning parameter except the number
of buckets used, which is determined by the given allocated memory size. The following is a specification of
the parameters used for the KNN-based techniques (including MLKNN parameters in Table I): K = 1 ∼ 10
(automatically adjusted to the noise-level), Tpe = 0.1, and MCR = 0.5. In addition, R*-tree fanout is set
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to 20 for MLKNN techniques and 10 for KNN, and R*-tree fill factor is set to 0.9 for MLKNN techniques
and 0.7 for KNN. The following is a specification of the parameters used for MLQ (in Table II): Tms = 1 ∼
10 (automatically adjusted to the noise-level), α = 0.05, MCR = 0.1, and λ = 6.

7.1.2 Synthetic UDFs/datasets. We generate synthetic UDFs/datasets in two steps. In the first step,
we randomly generate a number (N) of peaks (i.e., extreme points within confined regions) in the multi-
dimensional model space. The coordinates of the peaks have the uniform distribution, and the heights (i.e.,
execution costs) of the peak have the Zipf distribution[Zipf 1949]. In the second step, we assign a randomly
selected decay function to each peak. Here, a decay function specifies how the execution cost decreases as a
function of the Euclidean distance from the peak. The decay functions we use are, uniform, linear, Gaussian,
log of base 2, and quadratic. They are defined so that the maximum point is at the peak and the height
decreases to zero at a certain distance (D) from the peak. This suite of decay functions reflect the various
computational complexities common to UDFs.

The following is a specification of the parameters used to generate the data sets: the number of dimensions
d = 3, the range of values in each dimension = 0 ∼ 1000, the maximum cost at the highest peak = 10000,
the Zipf parameter (z) value = 1, the standard deviation for the Gaussian decay function = 0.2, and the
distance D = 10% of the Euclidean distance between two extreme corners of the multi-dimensional model
space.

7.1.3 Real UDFs/datasets. In this subsection, we introduce the real UDFs used in the experiment and
outline determining their model variables. We use two kinds of real UDFs: three keyword-based text search
functions and three spatial search functions. All six UDFs are implemented in Oracle PL/SQL, using built-
in Oracle Data Cartridge functions. The dataset used for the keyword-based text search functions is 36422
XML documents of news articles acquired from the Reuters. The dataset used for the spatial search functions
is the maps of urban areas in all counties of Pennsylvania State [Pennsylvania 2003].

Table IV lists the prototypes, model variables, and the dimensionality (i.e. the number of model variables)
of the real UDFs. The first three UDFs are keyword-based text search functions, and the last three are spatial
search functions. Simple Text Search (STS) retrieves documents that contain all the keywords on the list.
Threshold Text Search (TTS) retrieves documents that have the keywords appearing at least the threshold
number of time; The retrieved documents do not need to contain all the keywords on the list. Proximity
Text Search (PTS) retrieves documents in which all the keywords on the list appear at least once and at
most max span words apart. K-Nearest Neighbors (KNN) takes a two-dimensional reference point and the
number (K) of neighbors and, then, retrieves the K nearest neighbors. Window (WIN) retrieves all objects
contained in or overlapping a query window; The window is specified as the two-dimensional coordinates of
the bottom left (x1, y1)and the top right (x2, y2) corners of the window. Range (RAN) retrieves all objects
within a specified distance from a given two-dimensional reference point. Each of these UDFs accesses the
entire table of tuples containing queried texts or geometric objects. The resulting cost, therefore, should be
divided by the number of tuples in the table to obtain the differential cost as needed in [Hellerstein 1998;
1994; Chaudhuri and Shim 1999].

Determining the model variables of a UDF appears complicated. The complexity may come from the
input arguments unsuitable for direct transformation to model variables, the underlying data structures
(e.g., indexes), etc. We believe, however, the task is simpler that it appears because it is the semantics, not
the syntax (e.g., input arguments), of a UDF that determines the model variables. Moreover, usually only
a few model variables influence the costs predominantly4[Lee et al. 2003; VanHorn et al. 2003; Jiang et al.
2003]. This often renders the task of determining model variables feasible. After all, the users, who write
UDFs, are likely to understand the semantics of their UDFs well.

4This is consistent with the principle of Occam’s razor [Thorburn 1915].
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UDF Function Prototype Model Variables d

STS STS(<list of keywords>) num docs, num keywords 2
TTS TTS(<list of keywords>, int threshold) num docs, num keywords, threshold 3
PTS PTS(<list of keywords>, int max span) num docs, num keywords, max span 3
KNN KNN(reference point, int K) reference x, reference y, K 3
WIN WIN(float x1, float y1, float x2, float y2) x1, y1, x2, y2 4
RAN RAN(reference point, float distance) reference x, reference y, distance 3

Table IV. Real UDF prototypes, model variables, and dimensionality (d).
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For each keyword, the index stores the document frequency (i.e., the number of documents in which the
keyword appears) and a postings list. Each element in the postings list is a posting record consisting of
the identifier of the document, the number of occurrences of the keyword within the document, and a
list of the positions of those occurrences. In this example, the document frequency of the keyword user

is 3; this keyword occurs twice in the document with ID 100, once in the document with ID 200, and
three times in the document with ID 300.

Fig. 18. An example text search index.

A good example is the text search functions shown in Table IV. For instance, a text query STS(“cat dog
fight”) takes a sequence of token words, all nominal, as the input argument. It may seem impossible to
derive any numeric model variable from them. However, users with the basic understanding of a text search
index (see Figure 18) would be able to figure out what influences the execution cost most – the number of
documents retrieved (num docs).

Given the search keywords of a text search function, it is straightforward to obtain the value of num docs
from the postings list.5 In the interest of space, we do not describe the details here, and refer interested
readers to [VanHorn et al. 2003].

The spatial search functions are another example. The model variables are determined straightforward
from the semantics of the functions with little or no transformation of the input arguments. The underlying
spatial index structures (e.g., R-tree, quadtree) have relatively insignificant effect on the costs. For example,
the first two model variables of KNN, reference x and reference y, come directly from the input argument
reference point as its coordinates, and the other variable, K, is the input argument K itself. Likewise, the
model variables of WIN come directly from the input arguments. Interested readers are referred to [Jiang
et al. 2003] for details.

5We have added a few more model variables (e.g., num keywords, threshold, max span) for different text search functions. All
of them have much less effects on the costs than num docs.
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7.1.4 Query distributions. Query points are generated using three different random distributions of their
coordinates: uniform, Gaussian-random, and Gaussian-sequential. In the uniform distribution, we generate
query points uniformly in the entire multi-dimensional model space. We need two parameters for the Gaussian
distribution: the number (c) of centroids and the number (n) of query points. In the case of Gaussian-random,
we first generate the c Gaussian centroids with the uniform distribution. Then, we randomly choose one of
the c centroids and generate one query point using the Gaussian distribution whose peak is at the chosen
centroid. This is repeated n times to generate n query points. In the Gaussian-sequential case, we pick
each c centroid using the uniform distribution and generate n/c query points using the Gaussian distribution
whose peak is at the centroid. This is repeated c times for the n query points.

The following is a specification of the parameters used to generate the query points with the Gaussian
distributions: c = 3 and standard deviation = 0.05, and n = 2500.6 Half the query points are used for
training and the other half for testing. We repeat each experiment five times using different random seeds
(for creating different queries that follow the same distribution) and report the average result. We have used
the same query distribution for training and testing because typically query distribution does not change
so fast. The same assumption has been used in [Aboulnaga and Chaudhuri 1999; Bruno et al. 2001] for
self-tuning histograms for selectivity estimation.

7.1.5 Computing platform. In the experiments involving real datasets, we use Oracle9i on SunOS5.8,
installed on Sun Ultra Enterprise 450 with four 300 MHz CPUs, 16 KB level 1 I-cache, 16 KB level 1 D-
cache, and 2 MB of level 2 cache per processor, 1024 MB RAM, and 85 GB of hard disk. Oracle is configured
to use a 16 MB data buffer cache. We set up Oracle to use direct IO and thus bypass the operating system
cache. This is often recommended for higher system performance and also allows us to perform controlled
flushing of database pages from memory.

In the experiments involving synthetic datasets, we use Red Hat Linux 8 installed on a single 2.00 GHz
Intel Celeron laptop with 256 KB level 2 cache, with 512 MB RAM, and 40 GB hard disk.

7.2 Experimental results

We have conducted seven different sets of experiments to compare (1) the prediction accuracies for various
query distributions and UDFs/datasets, (2) the prediction accuracies for varying memory size, (3) the
modeling costs, (4) the prediction accuracies in the presence of noises, (5) the prediction accuracies for
varying K (for KNN-based techniques) and Tms (for MLQ), (6) the prediction accuracies for an increasing
number of query points processed starting from a cold start (i.e., without training the model a-priori), and
(7) the prediction accuracies for an increasing number of query points processed over changing costs. For
the real UDFs, we consider two cost metrics: CPU cost, measured as the time spent on the CPU, and disk
IO cost, measured as the number of physical disk pages fetched into the buffer. Cost metrics are irrelevant
for synthetic UDFs.

7.2.1 Experiment 1: prediction accuracy for various query distributions and UDFs/datasets. In this ex-
periment, we compare the prediction accuracies across different UDFs/datasets and query distributions.
Figure 19 shows the prediction errors for the CPU costs of the real UDFs/datasets. (The results for the disk
IO costs will appear in Section 7.2.4.) From the figure, we make three observations. First, both MLQ and
MLKNN outperform both SH techniques in a majority (15 out of 18) of the test cases of query distributions
and real UDFs/datasets. Second, both MLQ and MLKNN perform close to KNN in a majority (14 out of 18)
of the test cases. This is impressive, considering that KNN retains all the data points that have been inserted
into the model. Third, between MLKNN and MLQ, MLKNN outperforms MLQ in a majority (13 out 18)

62500 query points are sufficient in our experiments because, as will be shown in Figure 25, the prediction error reaches its
minimum well before the 2500th query point (except for KNN which does not compress the model).
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of cases. This indicates the advantage of an instance-based technique over a summary-based technique for
prediction accuracy.
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(c) Gaussian-sequential query
distribution

Fig. 19. Prediction accuracy for various real UDFs/datasets.

Figure 20 shows the prediction errors for the CPU costs of the synthetic UDFS/datasets. The UDFs/datasets
are generated using the following decay functions: linear (LIN), Gaussian (GAU), log of base 2 (LOG),
quadratic(QUAD), and a random mixture of them (MIX). From the figure, we make observations similar to
those for the real UDFs/datasets, except that KNN outperforms the other techniques by a larger margin.
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Fig. 20. Prediction accuracy for varying decay functions (for synthetic data).
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7.2.2 Experiment 2: prediction accuracy for varying memory size. In this experiment, we compare the
influences of memory limitation on the prediction accuracies. Figure 21 shows the prediction errors for the
costs of the synthetic UDF/dataset as the memory size increases from 1 KB to 128 KB. This experiment
does not apply to KNN, which does not limit the amount of memory; We thus show the normalized absolute
error of KNN as a flat line in the figure.
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Fig. 21. Prediction accuracy for a varying memory size (for synthetic data).

In the figure, we see that, initially, the performances of both SH techniques stay the same or improve
slightly as memory size increases, but then starts deteriorating after a certain point. In order to explain the
reason for this trend, we need to first describe the relationship between the memory size (m) and the grid
resolution (r) of the two types (i.e., SH-W, SH-W) of histograms. That is,

m =

{

d(r − 1)f + rdf for SH-H
rdf for SH-W

(23)

where d is the dimensionality of the model space, r is the grid resolution (i.e., the number of partitions in
each dimension), and f is the size of a floating point number. The first term of Equation 23 (for SH-H)
refers to the size of memory for storing the coordinates of grid partition boundaries, and the second term
of Equation 23 (for SH-H) refers to that for storing the average cost in each bucket of the histogram. Note
that SH-H needs both terms, whereas SH-W needs only the second term because its bucket width is fixed.
(Equation 23 for SH-H and SH-W are the same as those used in Bruno et al. [2001] to determine the grid
resolution for a given a memory size in a static grid-based histogram.)

Now, we can explain the reason for the trend. From Equations 23 for SH-H and SH-W we see that an
increase of the memory size (m) leads to an increase of in the grid resolution (r). This in turn leads to
an increase in the number of empty buckets in the histogram. In the SH techniques, when a query point
maps into an empty bucket, the cost is estimated using the average cost of all data points in the training
data set. This obviously causes a significant prediction error once the number of empty buckets exceeds a
certain value. In contrast, KNN-based techniques and MLQ do not have such a problem. In the case of the
KNN-based techniques, as the memory size increases, they can store more data points and, consequently,
find closer neighbors. This improves the prediction accuracy. In the case of MLQ, if a query point maps into
an empty node, then it can predict the cost using the immediate parent node or an ancestor node at only a
few level higher than the empty node and, consequently, avoid such a significant prediction error as in the
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SH techniques. Thus, the prediction errors decrease consistently with increasing memory size for both the
KNN-based techniques and MLQ.

7.2.3 Experiment 3: modeling costs. In this experiment, we compare the overheads of cost modeling. We
show the overheads as the ratio of the modeling costs to the execution costs of a real UDF. We use this metric
since it allows us to view the overhead in terms of the amount of time spent executing the real UDF. (We
do not show the results for the synthetic UDFs/datasets because they have no notion of execution costs.)
This experiment is not applicable to SH due to its static nature and, therefore, we compare only among the
KNN-based and MLQ techniques.

Figure 22 shows the modeling costs. The results are similar between the CPU costs and the disk I/O
costs, and the figure is for the CPU costs. The modeling costs shown are those accumulated over all test
query points separately for the prediction costs, insertion costs, and compression costs. Results from the
other real UDFs/datasets and results from the other query distributions show similar trends.
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Fig. 22. Total modeling cost (using uniform query distribution).

We make three observations from the figure. First, the total modeling costs (prediction + insertion +
compression) of the MLKNN and MLQ techniques are between 0.1% and 8% of the execution costs of the
real UDFs/datasets. We believe these overheads are within acceptable limits. Second, the prediction costs
of both MLKNN techniques are significantly lower than that of KNN. This is because MLKNN stores much
fewer data points and, thus, incurs much fewer distance computations when searching for the K nearest
neighbors.

Third, the prediction costs of MLQ are much lower than those of both MLKNN techniques. This comes
from the inherently lower cost of a quadtree search compared with the cost of a K-nearest neighbor search.

7.2.4 Experiment 4: prediction accuracy in the presence of noise. In this experiment, we compare the
prediction accuracies after deliberately “injecting noise” simulating the caching effects. We focus on the disk
I/O costs because they are more susceptible to the caching effect than the CPU costs.

Noises are injected in the following manner. For the synthetic UDFs/datasets, we return a random value
instead of the true value with 80% probability for each query point. (Results from using other probabilities
show similar relative performances among the different techniques. ) The true value is calculated by adding
the contributions from the decay functions, and the random value is generated using the uniform distribution
in the range between 0.0 and the true value (inclusive). Here, the true value simulates the number of disk
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pages accessed, and the random value simulates the number of disk pages actually fetched into main memory.
For the real UDFs/datasets, we flush a random portion of the database buffer cache with 20% probability.
(Results from using other probabilities show the same relative performances.)

Figures 23(a) and 23(b) show the results from using the real UDFs/datasets and synthetic UDFs/datasets,
respectively, for query points with the uniform distribution. (Results for the query points of other distribu-
tions show similar relative performances.) We see that the normalized absolute errors of the two MLKNN
techniques and MLQ are lower than or similar (within 0.1) to those of the two SH techniques in a majority
of UDFs/datasets, specifically, five out of six real UDFs/datasets and all six synthetic UDFs/datasets. This
indicates the merit of automatically adjusting the values of K (in MLKNN) and Tms (in MLQ) to the level
of noise (as described in Section 5.2 and Section 6.3).
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Fig. 23. Prediction accuracy in the presence of noise (using uniform query distribution).

7.2.5 Experiment 5: prediction accuracy for varying K and Tms. As described in Section 5.2 and Sec-
tion 6.3, the parameters K (for MLKNN) and Tms (for MLQ) are used to adjust to a varying level of noise,
namely, they are “noise-tuning parameters”. In this experiment, we examine the effects of varying the values
of these parameters on the prediction accuracy and observe how effective the cost prediction algorithms are
in automatically finding the optimal values of the parameters.

Figure 24 shows the results obtained using the synthetic UDFs/data sets – specifically, Figures 24(a) and
24(b) when there is no noise and Figures 24(c) and 24(d) when there is noise. (The results from using the
real UDFs/datasets show similar trends.) The noise is injected in the same manner as in Section 7.2.4. In
the figure, the techniques with “-NA” in their labels do not adjust the parameters (i.e., K, Tms) to the
noise level but use fixed values. Note that the values of the parameters are irrelevant to the performances of
techniques that do the adjustment (i.e., with no “NA” in the label). We, thus, show their prediction errors
as flat lines7. We observe from the figure that the prediction accuracies of both MLKNN and MLQ with
noise tuning are (nearly) the minimum among those achieved for different values of parameters without noise
tuning. This indicates that the automatic noise tuning works well.

7In the actual measurements, the results show slight fluctuations because they are obtained as an average from using five
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Fig. 24. Prediction accuracy for varying K and Tms (using uniform query distribution).

7.2.6 Experiment 6: prediction accuracy for an increasing number of query points processed from a cold
start. The objective of this experiment is to see how the prediction error changes as the number of query
points processed increases (from a cold start). This experiment is not applicable to SH because it is not
dynamic.

Figure 25 shows the prediction accuracy for the synthetic UDFs/datasets using query points with the
uniform, Gaussian-random, and Gaussian-sequential distributions. ¿From the figure, we make three ob-
servations. First, the prediction accuracies of all the memory limited algorithms converge to the highest
values before or by around the 1000th query. Second, the prediction errors for the MLKNN algorithms stay
relatively constant with the number of query points processed, whereas the prediction error for MLQ tends
to decrease continuously. This indicates that the MLKNN algorithms, being instance-based, consume the
available memory quicker than the summary-based MLQ; This in turn causes the MLKNN algorithms to
compress the model earlier than MLQ, after which the prediction accuracy stays relatively constant. Third,

different training and testing query sets (randomly generated using the same distribution).
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for KNN, the prediction error keeps decreasing as the number of query points processed increases. This is
because KNN inserts all query points as new data points and never compresses the model; Therefore, KNN
always finds closer K nearest neighbors as more data points are inserted, which results in a lower prediction
error.
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Fig. 25. Prediction error with an increasing number of query points processed from a cold start (using
synthetic UDFs/datasets).

7.2.7 Experiment 7: prediction accuracy for an increasing number of query points processed over a change
of cost. The objective of this experiment is to see how the prediction error changes as the UDF cost changes.
As in Experiment 6, this experiment is not applicable to SH because it is not dynamic. We simulate the
change of costs by adding some random variations to the true costs of data points (calculated by adding
the contributions from the decay functions). The range of variations used is 50% to 150% of the true costs.
Specifically, we first train the model a-priori with queries against the randomly varied costs and, then, test
the model using queries against the true costs.

Figure 26 shows the prediction accuracy for the synthetic UDFs/datasets using query points with the
uniform, Gaussian-random, and Gaussian-sequential distributions. The results are very similar to those
obtained in Experiment 6. That is, the prediction accuracies of all the memory limited algorithms converge
to the highest values in about the same number of queries (between 500 and 1000 queries) and the relative
prediction errors among different memory limited algorithms look the same.

8. CONCLUSIONS

8.1 Summary

In this paper, we have addressed modeling the executions costs of user-defined functions using self-tuning
techniques, with the ORDBMS query optimizer as the main application. For this purpose, first we have
proposed a set of guidelines designed to develop the techniques that make fast and accurate predictions
while incurring small model update costs under the constraints of limited memory, limited computation
time, and fluctuating costs.

Then, we have presented two concrete techniques, MLKNN and MLQ, developed following the guidelines.
MLKNN is an instance-based technique. It stores selected query points as data points into a model. The
model used in MLKNN consists of a multi-dimensional index tree (particularly the R*-tree) and a data
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Fig. 26. Prediction error with an increasing number of query points processed over a change of costs (using
synthetic UDFs/datasets).

structure containing information about the data points stored. MLQ is a summary-based technique. It uses
the quadtree for maintaining a summary of inserted data points at multiple resolution levels. The model
used in MLQ consists of the quadtree and the summary values (i.e., count, sum, sum of squares) stored in
each node of the quadtree. For each of these two techniques, we have presented algorithms for predicting
the cost at a query point while adjusting to the level of noise (i.e., cost fluctuation), inserting a query point
into the model as a new data point, and compressing the model when the memory limit is reached.

We have demonstrated the merits of MLKNN and MLQ through experiments conducted using both various
real and synthetic UDFs/datasets and using query points with various distributions. The results show that,
first, MLKNN and MLQ techniques achieve higher prediction accuracies than SH – the only existing UDF
cost modeling techniques usable in a query optimizer – in most test cases; Second, both MLKNN and MLQ
incur modeling costs amounting to only 0.1% to 8% of the execution costs of the real UDFs/datasets; Third,
between MLKNN and MLQ, MLKNN is more accurate but MLQ incurs lower modeling costs while it appears
MLQ shows relatively better performance overall.

8.2 Open issues for practical applicability

The framework proposed in this paper leaves some open issues to enhance the practical applicability. We
summarize them here.

Currently, users are required to identify the model variables of a UDF. As mentioned in Section 1.2, model
variables are those that predominantly influence the UDF execution costs. Moreover, sometimes they are
not input arguments of the UDF but variables resulting from user-defined transformations. Thus, in order to
find appropriate model variables, users need to know the semantics of the UDF, and in some cases high-level
understanding of an internal structure used (e.g., text inverted index), as discussed using example real UDFs
in Section 7.1.3. It will be useful to provide users with a tool that facilitates this process.

If the cost fluctuates (e.g., due to caching) too quickly, the techniques may not adapt to the change fast
enough. (As shown in the experiment in Section 7.2.7, it took 500 to 1000 queries for the tested algorithms
to adapt to changes in costs.) It will be interesting to improve the techniques to be more agile to a rapid
change of cost.

Currently the techniques proposed in this paper do not support model variables that are nominal (or
categorical). It would be useful to extend the techniques to support nominal variables. One (somewhat
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naive) approach is to build separate models, each involving ordinal model variables only, for different values
of such nominal variables. If the cardinality of a nominal variable is too high, then only the models for
recently-used values can be kept. This simple idea has proved adequate in our previous work [Lee et al.
2003] for the UDFs used. Further study will be needed in a more general case.

The “curse of high dimensionality” will not be so forgiving to either KNN-based methods or quadtree-
based methods; both run-time overhead and storage space overhead may become very high as the dimen-
sionality of model space increases. It will be thus worthwhile to address this issue using dimensionality
reduction techniques, such as principal component analysis(PCA)[Jolliffe 1986] and multidimensional scal-
ing(MDS)[Morrison et al. 2003]. The challenge in this case will lie in adapting the existing techniques to a
dynamic modeling environment.

8.3 Future work

For our immediate further work, we plan to extend MLKNN and MLQ to use the same model data structure
(e.g., R*-tree, quadtree) for multiple UDFs instead of one. This is likely to improve the efficiency of utilizing
the system resources. Additionally, we have identified two areas for future work. The first one is to use
the guidelines to develop additional cost modeling techniques. This may produce techniques more effective
under the constraints mentioned above. The second one is to apply MLKNN and MLQ to other applications
like estimating program execution costs for job scheduling in parallel and distributed systems.

As mentioned in the Introduction, query optimization involves selectivity estimation of a UDF predicate
as well as cost estimation. In this regard, a framework for selectivity estimation would be useful. Better yet,
a unified framework for both selectivity and cost estimations of UDF predicates would be desirable. This
also remains as our future work.

It would be interesting to see the impact of our cost modeling techniques on actual query execution costs.
This can be done by comparing the query execution times measured with and without using our cost model.
Conducting these experiments is another important future work.
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Appendix A

Here we show the derivation of Equation 22 from Equation 21. We first give an equation needed for the
derivation.

SSENC(pac) = SSENC(pbc) +

C(b)
∑

i=0

(Vi − AV G(p))2 (24)

where p is the parent block of b (the block being removed) and Vi is the ith data point that maps into block
b. Equation 24 is interpreted as that the SSENC of block p after the compression equals the sum of the
SSENC before the compression and the new SSE introduced by the compression.
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We now show the derivation of Equations 22 from Equation 21 and 24. Note that, AV G(p) is the same
before and after the compression.

TSSENCG(b) = SSENC(pac) − (SSENC(b) + SSENC(pbc))

Using Equation 24, this can be written as

SSENC(pac) − (SSENC(b) + SSENC(pbc)) =

C(b)
∑

i=0

(Vi − AV G(p))2 − SSENC(b) (25)

Since block b is for a leaf node, which has no child node, bac = b. Hence, using Equation 18, Equation 25
can be rewritten as:

TSSENCG(b) =

C(b)
∑

i=0

(Vi − AV G(p))2 −

C(b)
∑

i=0

(Vi − AV G(b))2 (26)

It is straightforward to derive Equation 22 from Equation 26. We show some intermediate steps here.

TSSENCG(b) = C(b)SS(b) − 2S(b)AV G(p) + C(b)(AV G(p))2 − C(b)SS(b) + 2S(b)AV G(b) − C(b)(AV G(b))2

= C(b)(AV G(p))2 − 2AV G(b)C(b)((AV G(p) − AV G(b)) − C(b)(AV G(b))2

= C(b)((AV G(p))2 − 2AV G(b)AV G(p) + (AV G(b))2)

= C(b)(AV G(p) − AV G(b))2 (27)
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