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We present a new approach to modeling the execution costs of user-defined functions (UDFs) for the
query optimizer of an object-relational DBMS (ORDBMS). Our approach self-tunes a cost model
incrementally based on the costs of the recent executions of a UDF. The approach is centered on
a feedback loop in which the feedback information comprises individual UDF execution records.
Each execution record contains the cost variable values used in the execution and the resulting CPU
and disk I/O costs. This feedback information is saved in the execution log and used in a batch to
update the cost model. Furthermore, our approach handles nominal cost variables by maintaining
separate cost models for recently used values of the variables. We have built a framework that
implements the feedback loop in a commercial ORDBMS. Then, we have performed experiments
using common database UDFs with smooth cost variations and incrementally modeling the data
using multiple regression. The experimental results demonstrate the adaptive accuracy that makes
the cost model stabilize quickly while incurring small errors in cost estimations. Our approach has
the advantages of incurring little overhead while tuning the cost model continuously throughout the

UDF executions.
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1. INTRODUCTION

1.1. Motivation

The objective of a cost-based query optimization is to
choose an efficient query execution plan, which involves
systematically estimating the costs of alternative execution
strategies using predefined cost functions and selectivity
functions. In this regard, the availability and accuracy
of these two functions are crucial to an efficient query
processing. This paper concerns the cost function.

Today’s object-relational database management systems
(ORDBMSs) support complex database applications by
allowing users to define their own functions, or user-defined
functions (UDFs), and use them as if they were built-in
functions. If these UDFs are specified in the query condition
(e.g. ‘where UDF1(args1) op1 const1 AND UDF2(args2)
op2 const2’), the cost-based query optimizer needs the cost
functions of the UDFs (as well as the selectivity functions of

the predicates involving the UDFs) to determine the order of
predicate evaluations. Besides, in some ORDBMS research
prototypes [1], the query optimizer needs the cost functions
to order multiple UDFs invoked in combination (e.g.
select UDF1(UDF2(UDF3(args))) from . . .). Unfortunately,
however, those functions cannot be known at the time the
DBMS is developed. Therefore, the responsibility is passed
on to the users who develop the UDFs.

Traditionally, cost functions are defined for individual
algebraic operations (e.g. scans, joins, selections, projec-
tions) of query processing. Then, at the time of gener-
ating a query execution plan, the cost of executing each
alternative plan is calculated as the summation of the costs
of executing the algebraic operations that constitute the
plan. Each such cost function is defined as a function of
parameters such as data profile parameters (e.g. table car-
dinality, column selectivity, index height, join selectivity),
hardware parameters (e.g. disk page size, main memory
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buffer size) and derived parameters (e.g. disk page blocking
factor). We call this approach the analytic approach in
this paper. In order to build a cost function using this
approach, the user must have thorough knowledge of the
query processing mechanism inside the DBMS. This burden
is overwhelming for most users. Furthermore, it is a nearly
impossible task to build the cost function of a UDF using the
analytic approach. We will explain the reason in detail in
Section 2.2.

1.2. Problem formulation

This paper concerns generating the cost functions of database
UDFs created as stored procedures (or functions). This
problem has not been addressed actively, although several
researchers addressed ordering predicates involving UDFs
(i.e. UDF predicates) [2, 3, 4] or ordering multiple UDFs
invoked in combination [5, 6] assuming their cost functions
are provided. Presumably, this is because of the complexity
of the problem inherent in the analytic approach.

The only published ones we find are works by Boulos
and Ono [7, 8]. We have done some works as
well [9, 10]. These works, except [8], use statistical
approaches. These approaches execute a UDF repeatedly for
different combinations of the sample values of the variables
influencing the cost (called ‘cost variables’) and generate
cost data coupled with the cost variable values used. Then,
a data analysis builds a cost function by applying a data
reduction technique [11] to the generated cost data sets. For
this purpose, a regression model is used in [9, 10] whereas
a multi-dimensional histogram is used in [7]. In [7], this
approach is called the ‘parade-of-runs’ (PoR) approach based
on the cost data set collection method. We use the same term
in this paper as well.

This PoR approach is simple, thus easy to implement.
Besides, it requires very little from the user compared with
the analytic approach. That is, users need only to provide the
cost variables and the specification for sampling the values of
cost variables. The resulting cost function (or cost model) is
fairly precise provided with a suitable modeling technique
and a sufficiently large cost data set. However, the PoR
approach has a number of problems. First, the computational
overhead increases exponentially with the number of cost
variables because a UDF is typically executed for every
combination of the values of all cost variables. This overhead
may be significant enough to render the approach impractical.
Second, the generated cost function is fixed and, therefore,
does not adapt to the changes of the environments like data
statistics (e.g. the number of tuples, the number of distinct
column values, index height) and system configurations (e.g.
buffer size, blocking factor). Third, it assumes that there
exists a finite range of the values of each cost variable. This
assumption is not always valid. Moreover, the generated
cost function is not valid outside the range chosen by a user.
Last, nominal variables are excluded from consideration. In
theory we can build separate cost functions for different
values of a nominal variable. However, this is infeasible
in practice unless the cardinality is of a manageable size.

In this paper we propose a novel approach that resolves these
problems.

1.3. Objective and our approach

The objective of our approach is two-fold: (i) to dispense
with the parade of runs and (ii) to facilitate handling nominal
cost variables. The first objective is met by updating a
cost function incrementally based on the actual costs of
recent UDF executions, and the second objective is met by
building separate models for only the recently used values of
a nominal variable. Thus, our approach accomplishes self-
tuning modeling (STM) of the costs.

First, we build a cost function as a statistical regression
model as in [9, 10]. Initially, no cost model is available
for a new UDF and, therefore, default values are used for
cost estimation by the query optimizer. Then, each time the
UDF is executed, its costs—the CPU time and the number
of fetched disk pages (or, disk I/O count)—are captured
and written to an execution log. (The logging overhead is
typically insignificant relative to the costs of database UDFs.
Besides, the logging can be done in the background.) The
logged cost data are then used to build a new cost model or
refine an existing cost model. Thus, the cost model adapts to
the recently logged cost data. This adaptive model building
progresses incrementally as illustrated in Figure 1. As a new
batch of data is added, a cost model is adjusted incrementally
based on the entire data set from the past. The effects of old
data diminish as the iteration progresses, and eventually the
model becomes stable as sufficient data are considered. If a
change occurs in the costs afterwards, the model adapts again
incrementally.

1.4. Scope of the work

In this paper we focus on those UDFs whose costs vary
smoothly with respect to cost variables. We have used
built-in Oracle Data Cartridge functions such as financial
time series functions [12], text search functions [13], and
spatial search functions [14]. Despite unpredictable cost
variations apparent from the semantics of the UDFs, the
actual cost variations proved to be smooth enough given the
cost variables. Our experiences with these UDFs suggest
that a non-trivial number of common database UDFs show
smooth cost variations. It is also indicated in [6] that many
simple UDFs are added by database users.

For these UDFs, regression suits well as the modeling
technique. Compared with the analytic approach, regression
achieves more accurate cost estimation due to its ability of
fitting complex and often erroneous data to minimize the
overall estimation error. We use parametric regression in
this paper. Parametric regression achieves precise fitting
efficiently provided with an appropriate modeling function.
We particularly use multiple regression for the two types
(time series and text search) of UDFs used in our experiments.
Multiple regression is simple and yet adequately precise
for data varying reasonably smoothly. More importantly, it
allows for an incremental update of the model with additional
data, thus allowing for discarding the data while keeping
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FIGURE 1. Incrementally adaptive model building.

only the new model. Its disadvantage could be the risk of
overfitting or underfitting the data, but this is not a serious
problem in our case because query predicate ordering is quite
tolerant of UDF cost estimation errors.

In case a modeling function cannot be provided, non-
parametric regression may be used instead. The spatial search
functions fit this case. For these UDFs, it is hard for users
to provide a parametric modeling function because the cost
variation depends heavily on the distributions of spatial data,
which can be quite arbitrary. Currently we do not consider
non-parametric regression because, as far as we know, they
do not allow for an incremental model update. Besides, non-
parametric techniques are computationally more expensive
than parametric techniques and perform poorly as the number
of cost variables (or the dimensionality of the data set)
increases.

1.5. Experimental summary

We have built a framework that implements the STM
approach. It has been built using a commercial ORDBMS
Oracle1 while leveraging the extensible query optimization
capabilities available through its Data Cartridge2 interfaces.
We have selected two kinds of experimental UDFs: aggregate
financial time-series functions and keyword-based text-
search functions. A full quadratic regression model suffices
for these UDFs because their costs vary smoothly and
monotonously with the values of cost variables. To
reflect a realistic system environment, we have deliberately
included a database buffer caching effect in the experiments,
although even the state-of-the-art query optimizers do not
consider it [15].

The experimental results show that the median relative
error of cost estimation is within 20% for the time-series
UDFs and within 40% for the text-search UDFs on average.
These are quite accurate considering the adverse effects
of data caching in the buffer. Typically the CPU time is
estimated more accurately than the disk I/O counts because
the CPU time is not affected by data caching. The cost models

1 Oracle is a trademark of Oracle, Inc.
2 Data Cartridge is a trademark of Oracle, Inc.

become stable quickly in a few feedback cycles with 50 data
points in each batch of the logged cost data set.

1.6. Contributions

This paper makes three main contributions. First, it proposes
a new method for providing the cost functions of database
UDFs. As far as we know, this paper is the first one addressing
incremental and adaptive cost modeling of UDFs. Second,
it demonstrates the practicality of the proposed approach
by incorporating it into a commercial ORDBMS and using
real UDFs supported by the ORDBMS. Third, it presents an
approach to incrementally updating a model (using multiple
regression) without saving the entire cost data set. This
enables the ORDBMS to maintain the cost models of many
UDFs with only the memory needed for storing the regression
coefficients.

1.7. Organization of the paper

The rest of the paper is organized as follows. Section 2
provides some background information. Section 3 describes
the specifics of our approach. Section 4 presents the experi-
ments and their results. Section 5 discusses related work and
Section 6 concludes the paper.

2. BACKGROUND

In this section, we provide an overview of an extensible query
optimizer in an ORDBMS, show the difficulty of generating a
UDF cost function using the analytic approach, and describe
the PoR approach to UDF cost modeling used in the previous
work [9, 10].

2.1. ORDBMS’s extensible query optimizers

In a database system, a query typically has many possible
execution strategies and a query optimizer chooses the most
efficient one. There are two kinds of query optimizers: the
rule-based and the cost-based. The rule-based one alone
is not sufficient in most database systems. The cost-based
query optimizer uses a traditional optimization technique
that searches the space of alternative execution plans for one
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Input:
Func: an object of type ODCIFuncInfo used by Oracle (for an internal processing)
Ticker, StartDate, EndDate and WindowSize: input arguments of MinMavg

Output:
Cost: an object of type ODCICost, consisting of CPU cost, I/O cost, and network cost
Success:  a flag indicating a successful completion ( function of package ODCIConst)

Procedure ODCIStatsFunctionCost:
{

Initialize Cost to null;
range = select (EndDate – StartDate) from dual;
Cost.CPUCost = a function of cost variables Range and WindowSize;
Cost.IOCost = a function of cost variables Range and WindowSize;
Cost.NetworkCost = –1;
return(Success, Cost);

}

FIGURE 2. Registering the cost functions of a UDF MinMavg through ODCIStatsFunctionCost.

that minimizes the estimated query execution cost. The cost
typically consists of the CPU cost, disk I/O cost and network
I/O cost.

If a query specifies UDF predicates, the query optimizer
determines the order of evaluating them based on the costs
of executing the UDFs and the resulting selectivity of the
predicates. The following example query specifies one UDF
predicate on the financial time series function ‘MinMavg’
and another on the text search function ‘Contains’. Users
are required to provide the cost functions of MinMavg and
Contains (as well as selectivity functions).

select c.name, e.name

from Employee e, Company c

where e.work-for = c.id

and MinMavg(c.ticker, ‘JAN-01-1902’,

‘DEC-31-2002’, 30)>50

and Contains(e.resume, ‘‘UNIX and NT’’, l)>0;

In order to incorporate the cost functions into its query
optimizer, an ORDBMS provides an extensible framework
such as Oracle Data Cartridge and DB2 Extender. Three
cost functions are needed for each UDF, one for each of
the CPU cost, the disk I/O cost and the network I/O cost.
Their cost metrics are generic so the estimated costs are
immune to the changes of system workload and environment.
For example, Oracle’s extensible query optimizer uses the
following metrics: (i) CPU cost as the number of machine
instructions executed by the CPU, (ii) disk I/O cost as the
number of data pages fetched from disk to main memory
buffer and (iii) network I/O cost as the number of data packets
transmitted via the network. We use the first two cost metrics
in our work. The third metric is not considered here because
it is not used by any ORDBMS yet.

Provided with cost functions, the extensible query
optimizer orders the UDF predicates based on their estimated
execution costs. Oracle facilitates it by providing Oracle Data
Cartridge Interface (ODCI) through which users can register
cost functions as the components of a ‘statistics object’.
Figure 2 sketches registering the CPU and disk I/O cost
functions of MinMavg. Its PL/SQL implementation is shown

in Appendix B, where the cost functions are hard-coded as
regression equations.3 In the figure, ODCIStatsFunctionCost
is an ODCI function. If no cost function is registered, Oracle
uses its own default costs.

In [16] it is stated that Oracle query optimizer evaluates
the predicates specified in the ‘where’ clause in the following
order.

(i) Non-UDF predicates, in the order specified in the
clause.

(ii) UDF predicates with associated cost functions, in an
increasing order of the costs.

(iii) UDF predicates without associated cost functions, in
the order specified in the clause.

(iv) Predicates not specified in the clause but transitively
generated by the optimizer.

(v) Predicates with sub-queries, in the order specified in
the clause.

2.2. Analytic approach to building a cost function

As mentioned in Section 1.1, it is very hard for common users
to build a cost function of a UDF in the form of an analytic
function of parameters acquired from database profiles and
system configurations. The following example is from [17],
and is intended to demonstrate the complexity of the analytic
approach.

Example 2.1. Consider a single loop equijoin R��R.A=S.B

S between two relations R and S. There are different cost
functions for this equijoin operation depending on the index
structure used for accessing the tuples of the table S. For
instance, if a clustering index is used, the cost function is

Costclustering_index = bR + (|R| × (xB + sB/bfrS))

+ (( js × |R| × |S|)/bfrO)

3In STM, the cost function is not hard-coded but is stored in relational
tables.
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and, if a hash index is used, then the cost function is

Costhash_index = bR + (|R|×h)+ (( js×|R|× |S|)/bfrO)

Here, bR denotes the number of disk pages needed to store the
relation R and bS denotes that for the relation S; xB denotes
the height of the index on the column B of the relation S;
sB denotes the selection cardinality of B, i.e. the average
number of records of S that satisfy the equality condition on
the attribute B; js denotes the join selectivity of the equijoin
between R and S; h denotes the average number of pages
accessed to retrieve a record given its hash value; |R| and |S|
respectively denote the cardinalities of the relations R and S;
bfrS denotes the blocking factor (i.e. the number of records
in one disk page) of the data file storing the relation S; bfrO
denotes the blocking factor of the output file storing the join
result.

This example shows only two of several possible cost
functions for the same operation. Building the cost function
this way is difficult for most naive users. Furthermore, this
operation is only one step in executing a query statement as
explained in the following example.

Example 2.2. Consider the following SQL query
statement for finding the employees working for the Research
department and working on projects run by the same
department with the project budget more than one million
dollars.

select Employee.name, Project.budget

from Employee, Department, Project

where Employee.workfor = Department.dnumber

and Project.runby = Department.dnumber

and Employee.workon = Project.pnumber

and Project.budget >1000000

and Department.deptname = ‘‘Research’’;

Executing this query involves the following algebraic
operations:

• Equijoin between the Employee table and the
Department table by the join condition
Employee.dno = Department.dnumber.

• Equijoin between the Project table and the
Department table by the join condition
Project.runby = Department.dnumber.

• Equijoin between the Employee table and the
Project table by the join condition
Employee.workon = Project.pnumber.

• Selection from the Project table by the column
selection condition
Project.budget > 1000000.

• Selection from the Department table by the column
selection condition
Department.deptname = ‘‘Research’’.

• Projection of the column name from the
Employee table and the column budget from the
Project table.

Additionally, there are other operations for processing the
intermediate results during the query execution.

To make it worse, a UDF like the one shown in Appendix A
involves one or more SQL statements embedded in a stored
function. The internal operation of such a UDF is far too
complicated to allow for generating the cost model in the
form of an analytic function. Note that the query optimizer
can only use the cost function of the entire UDF treated as
one atomic operator. That is, it cannot make use of the cost
functions of individual algebraic operations constituting the
SQL statements within the UDF.

2.3. The parade-of-runs approach

In the PoR approach used in [9, 10], a user determines the
cost variables, and either provides a model based on one’s
understanding of the UDF or lets the system build a default
regression model using the variables. Then, the system
calibrates the regression coefficients by fitting the model to
a cost data set generated through a parade of runs. In this
section we present the results from using two kinds of UDFs:
aggregate financial time series functions and keyword-based
text search functions.

The former UDFs include NthGrpMavg (groupsymbol,
startdate, enddate, windowsize, n). An example is
NthGrpMavg(NASIND1, ‘JAN-1-1980’, ‘DEC-31-2002’,
30, 2). Given the group symbol NASIND1, NthGrpMavg
returns the 2nd minimum moving 30-day window average of
the group average time series calculated within the range
of dates JAN-1-1980 ∼ DEC-31-2002. Here, a group
average time series is generated by taking the average of
all ticker prices in the same group on each day. The UDF is
implemented in Oracle PL/SQL. (A simplified code is shown
in Appendix A.2.)

The latter UDFs include SimpleTextSearch(text-
documents, query). An example is SimpleTextSearch
(news_articles, ‘election AND poll AND candidates’).
Given the multi-keyword Boolean query ‘election AND
poll AND candidates’, the SimpleTextSearch returns all
documents containing all three keywords ‘election’, ‘poll’
and ‘candidates’ from the news_articles document set. The
UDF is implemented in PL/SQL and calls a built-in Oracle
Text function ‘Contains’, which is a black box to the user.

The cost variables of the times series UDFs are determined
directly from the input arguments based on the semantics of
the UDFs. Those of the text search UDFs are determined
straightforwardly from the inverted text index structure
[18] well known in the information retrieval area. We
will present the details of determining the cost variables
in Section 4.3. For both kinds of UDFs, their costs
vary smoothly and monotonously with respect to the cost
variables, and are modeled quite precisely using a quadratic
regression model.

Figure 3 illustrates the process of generating the cost
function using the PoR approach, using NthGrpMavg as an
example UDF. It first derives three cost variables: groupsize
as the number of ticker symbols belonging to the group
denoted by groupsymbol, daterange as the interval between
startdate and enddate, and windowsize as provided. The
input argument ‘n’ has no effect on the execution cost and,

The Computer Journal, Vol. 47, No. 6, 2004



678 B. S. Lee et al.

FIGURE 3. Cost modeling using the parade-of-runs approach.

therefore, does not derive any cost variable. Then, a parade
of runs is performed using the three cost variables to generate
a cost data set. In parallel, the cost variables are centered4

to become the model variables X1, X2 and X3. Then, by
performing a regression analysis on the cost data set, we
obtain the values of the model parameters, i.e. the regression
coefficients a0 through a9.

The experimental results show very small errors for the
time series UDFs. Specifically, the mean and median relative
errors are lower than 1.5% for both the CPU cost and the disk
I/O cost. In the case of the text search UDFs, the value of the
cost variable should be estimated due to the lack of access
to Oracle Text index structure. Overall the resulting mean
relative errors are 5–21% for the CPU cost and 9–62% for the
disk I/O cost. These errors are acceptable considering several
causes of errors including the OS buffer caching effects and
the cost variable estimation errors.

Besides, the resulting cost functions are easily incor-
porated into the Oracle query optimizer. However, the
overhead of parades of runs is significant, especially for
NthGrpMavg because it is an expensive UDF that involves
mergesort. In addition, the experiment does not consider the
database buffer caching effect on the disk I/O cost. Since a
disk page access does not incur a physical page fetch from
disk if the page is already cached in the database buffer, the

4Centered data reduces the fitting error by reducing the collinearity
between power terms (e.g. X and X2) [19].

actual disk I/O cost varies depending on which pages are
cached in the database buffer. Therefore, the accuracy of the
disk I/O cost estimation is misleading unless the effect of
caching is taken into consideration.

3. SELF-TUNING MODELING APPROACH

As mentioned in Section 1.3, the self-tuning modeling (STM)
approach replaces the one-time process of parade of runs with
a continuous, incremental tuning process based on the most
recent runs, and this incremental approach also allows for
handling nominal cost variables by building separate models
for the most recently used values. In this section, we describe
the STM framework with a focus on its feedback loop and
elaborate on important modeling issues.

3.1. Overview of the STM framework

Figure 4 shows an overview of the STM framework. The
rectangles depict executable modules, the ovals depict data
generated and used in main memory, and the drums depict
data stored in and retrieved from tables in the database.
The XOR in the upper left corner denotes an exclusive-
or, meaning ‘use either the estimated costs or the default
costs’.

The STM framework is centered on a feedback loop in
which the feedback information comprises individual UDF
execution records. Each execution record contains the cost
variable values used in the execution and the resulting CPU
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FIGURE 4. The STM framework.

and disk I/O costs. This feedback information is saved in the
execution log and used in a batch to update the cost model
parameters. The resulting cost model is then used by the
query optimizer to estimate the execution cost.

Formally, let Bi be a set of UDF execution records
{〈v1, v2, . . . , vk, c, d〉} used in the i-th batch, where
v1, v2, . . . , vk denote the values of cost variables and c and
d respectively denote the CPU cost and the disk I/O cost.
Additionally let βC

i and βD
i denote the vectors of regression

coefficients for estimating the CPU and disk I/O costs in the
(i+1)-th batch, respectively. Then, these costs are calculated
as Ĉi+1 = Vi+1β̂

C
i and D̂i+1 = Vi+1β̂

D
i , where Vi+1, Ĉi+1,

and D̂i+1 denote the vectors of, respectively, 〈v1, v2, . . . , vk〉
records used, the estimated CPU costs, and the estimated disk
I/O costs in the (i + 1)-th batch. Each row of Vi+1, Ĉi+1,
D̂i+1 is stored in a log side by side, and the resulting set of
records Bi+1 is feedback to upgrade βC

i and βD
i to βC

i+1 and
βD
i+1, respectively.

We have built the STM framework using a commercial
ORDBMS. In the remainder of this section, we describe its
functional components and modeling capabilities.

3.2. Functional components of the STM

The STM has three functional components: UDF cost
model registration, UDF execution cost recording and UDF
cost model update. We describe each component in this
section.

3.2.1. UDF cost model registration
Figure 5 shows the steps involved in registering a UDF and
its cost model.

FIGURE 5. Registering a cost model.

Parsing the XML script. In our implementation, XML is
used as the interface language for registering a cost model.
Figure 6 shows an example XML script, which contains
the same information as in Figure 3 except the parade-of-
runs part. That is, it contains general information such as
the UDF’s name (e.g. NthGrpMavg), modeling method (e.g.
multiple regression), cost metrics (e.g. CPU time, disk I/O
page count) and their default values, as well as model-specific
information such as the regression variable (e.g. X2) of each
ordinal cost variable (e.g. daterange) and how the variable
is determined (e.g. enddate−startdate), model parameters
(e.g. regression coefficients a1, a2, etc.) and the derivation
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<?xml version='1.0' encoding='ISO-8859-1' standalone="yes"?>
<!DOCTYPE UDF SYSTEM "file:config.dtd"> 
<UDF name=‘NthGrpMavg’ method=‘multiple_regression’>
<CPU default=‘2000’>
<Model >
<Ordinal name=‘X1’ value=‘groupsize’ type=‘computed’> </Ordinal>
<Ordinal name=‘X2’ value=‘enddate-startdate’ type=‘computed’ ></Ordinal>
<Ordinal name=‘X3’ value=‘windowsize’ type=‘direct’></Ordinal>
<Term coefficient=‘a0’ value=‘1’ type=‘constant’></Term>
<Term coefficient=‘a1’ value=‘X1’ type=‘direct’></Term>
<Term coefficient='a2' value='X2' type='direct'></Term>
<Term coefficient='a3' value='X3' type='direct'></Term>
<Term coefficient=‘a4’ value=‘X1*X1’ type='computed'></Term>
<Term coefficient=‘a5’ value=‘X2*X2’ type='computed'></Term>
<Term coefficient=‘a6’ value=‘X3*X3’ type='computed'></Term>
<Term coefficient=‘a7’ value=‘X1*X2’ type='computed'></Term>
<Term coefficient=‘a8’ value=‘X2*X3’ type='computed'></Term>
<Term coefficient=‘a9’ value=‘X1*X3’ type='computed'></Term>
</Model>
</CPU> 
<IO default=‘1000’>…</IO>
</UDF>

FIGURE 6. An example XML script for registering a cost model.

methods (e.g. direct, computed) of the associated terms
(e.g. X1∗X1).

Updating the database. Registering a model involves
parsing the XML script and saving information about the
cost model in the configuration tables. The information
includes the model formula, ordinal cost variables, nominal
cost variables, cost model parameters, default costs and
the feedback control information. The feedback control
information includes the maximum and minimum numbers
of observations required before a model update.

Generating the statistics object. In addition, the STM
creates a new object type (e.g. NthGrpMavg_stat) having
cost functions as members and associates this type with the
Statistics object of the ORDBMS. This allows the generated
cost functions to be incorporated into the ORDBMS’s
extensible query optimizer.

3.2.2. UDF execution cost recording
Figure 7 shows the steps involved in recording the execution
costs of a UDF during run-time.

Estimating the execution cost. While generating a query
execution plan, the query optimizer uses the current cost
model obtained from the configuration tables to estimate the
CPU and disk I/O costs. In case no cost model is available
(because initially no model parameters are available), the
default costs are used.

Executing the UDF. Each time a UDF is executed, the
values of cost variables used and the observed CPU and disk
I/O costs are recorded in the execution cost log table. These

records constitute the feedback information used to adapt the
cost models to the recent executions of the UDF. The STM
system captures the observed costs by taking snapshots of
the execution session immediately before and after the UDF
execution and calculating the difference of the CPU and disk
I/O usage.

3.2.3. UDF cost model update
Figure 8 shows the steps for updating the cost model
parameters. Specifically, it shows using multiple regression
as the modeling technique.

Incremental update of cost model parameters. A new set
of cost model parameters is calculated from the parameter
values stored in the configuration tables and the new cost
data set in the log. The resulting updated parameter values
replace the old ones and are available for the query optimizer.
Section 3.3.1 describes the algorithm STM uses for this
incremental model update.

3.3. Modeling capabilities of the STM

As mentioned in Section 1.3, the STM updates the model
incrementally and can handle nominal cost variables.
Moreover, the STM deals with two cases of concerns in
regression techniques: outliers and multi-collinearity. In this
section, we elaborate on the techniques the STM has adopted
to handle these issues.

3.3.1. Incremental updates of cost model parameters
Our incremental model update algorithm is founded upon
the following property of multiple regression coefficients.
(We omit the proof of this property.)
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FIGURE 7. Recording execution costs during the run-time.

FIGURE 8. Updating a cost model using multiple regression.

Property 3.1. Consider a multiple regression model with
p coefficients.

Y = Xβ + E

Let 〈X1, Y1〉 be a data set and β̂1 ≡ (XT
1 X1)

−1XT
1 Y1 be

the least squares estimate of β. Then, given an additional
data set 〈Xa, Ya〉, the new vector of estimated least square
coefficients β̂new is derived as

β̂new = (XT
1 X1 + XT

a Xa)
−1(XT

1 X1β̂1 + XT
a Ya) (1)

In the following algorithm, Ĉ and β̂ are respectively
initialized to all-zero p × p and p × 1 matrices at start-up
and updated every time UpdateModel is invoked.

Algorithm 3.1. (UpdateModel)
Input:

Old Ĉ

Old vector of estimated regression coefficients β̂

Additional data set 〈Xa, Ya〉
Output:

New Ĉ

New vector of estimated regression coefficients β̂

Begin
1. β̂ := (Ĉ + XT

a Xa)
−1(Ĉβ + XT

a Ya);
2. Ĉ := Ĉ + XT

a Xa;
End

As mentioned in Section 1, using this algorithm the
ORDBMS can maintain the cost models of many UDFs
with only the memory needed for storing the regression
coefficients, i.e. without storing the entire cost data set.

3.3.2. Handling nominal cost variables
Three types of nominal variables are considered in the STM.

• Type 1: Nominal variables that have no effect on the
cost. These variables are ignored.

• Type 2: Nominal variables that have an effect on the cost
but only indirectly as an ordinal variable derived from
them. These variables are substituted with the ordinal
variable. An example is the startdate and enddate
deriving daterange for NthGrpMavg in Section 2.3.

• Type 3: Nominal variables that have random effect on
the cost. In this case, separate cost models are built for
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different values of the variable. That is,

model(O : n)= ∑
i∈domain(n) I (n = i)modeli (O)

where O denotes a set of ordinal variables, n denotes a
nominal variable, and I denotes a function that returns 1
if n = i and 0 otherwise. This can be easily extended to
the case of multiple nominal variables. If the cardinality
of a nominal variable is too large, then only the most
recently used values are considered.

Based on these types, we categorize the cost model
registration into the following three cases based on the
number of models registered and the associated sets of model
parameters.

• Case 1: Register one model and one set of parameters.
This case is used if there is no nominal cost variable, i.e.
all nominal variables are of Type 1 or Type 2. In this
case, the model may be either a user-provided model or
the default model.

• Case 2: Register one model and multiple sets of
parameters. This case is used if there are nominal cost
variables while no user-provided models are provided.
In this case, the default model is used for all possible
values of a nominal variable. Each set of parameters is
associated with each recently used value of the variable.

• Case 3: Register multiple models and one set of
parameters per model. This case is used if there are
nominal cost variables while user-provided models are
provided. In general, a user-provided model varies
depending on the value of a nominal variable. Hence,
one model and one set of parameters are associated with
each value of the variable. Furthermore, the default
model can be used for nominal variable values not
associated with user-provided models.5

Case 3 is most general, but it involves user-provided models.
If this is not feasible, we resort to Case 2.

3.3.3. Removing outliers
Outliers are extreme observations. Under the method of least
squares, a fitted equation may be pulled disproportionately
towards an outlying observation. For our purpose of cost
modeling, an outlier should be detected and removed from
consideration. We adopt an approach based on the notion
of semi-studentized residuals6 [20]. A semi-studentized
residual is defined as the ordinary residual divided by the root
mean square error. The common rule of thumb is to regard
a data point as an outlier if the semi-studentized residual of
the data point is greater than 4.

Definition 3.1. (Semi-studentized residuals) Let 〈X, Y 〉
denote a data set and β̂ denote the vector of estimated
regression coefficients based on the data set. Then, given
the vector of residuals E

Ê = Y − Ŷ = Y − Xβ̂

5Not implemented in our system yet.
6We use semi-studentized instead of studentized residuals because the

latter requires saving all the previous data.

and the mean square error MSE

MSE = 1

n − p
ÊT Ê

where n is the number of observations in the data set and p

is the number of regression coefficients (in β̂), the vector of
semi-studentized residuals is defined as

Ê√
MSE

=




y1−ŷ1√
MSE
...

yn−ŷn√
MSE




where y1, y2, . . . , yn constitute Y .

The following algorithm summarizes the procedure for
removing outliers from an additional data set used to update
the model. It calculates the semi-studentized residual (δ) of
each data point in the data set and checks if the resulting value
is greater than the threshold.

Algorithm 3.2. (RemoveOutlier)
Input:

Additional data set 〈Xa, Ya〉 used to update the model
Sum of squared errors SSE and the number of observations

N
Output:

Data set 〈Xa, Ya〉 with no outlier
New SSE and N

Begin
1. N1 := the number of new observations in data set Xa ;
2. N := N + N1;
3. SSE1 := ∑N1

i=1 (Yi − Ŷi )
2
; //SSE of the additional data

set
4. SSE := SSE + SSE1; //Update SSE for the entire data

set.
5. MSE := ( 1

N−p
)SSE;

6. for i = 1 to p // Discard if δ > 4

if
∣∣∣ yi−ŷi√

MSE

∣∣∣ > 4

then { Xa := Xa − xi ; Ya := Ya − yi ; }
End

3.3.4. Multi-collinearity
The multi-collinearity problem can happen for a couple of
reasons. One reason is too few distinct values of a cost
variable. In the case of a polynomial model, fitting requires
at least one more data point than the degree of polynomial.
For example, a quadratic model needs at least three data
points. The other reason is too close correlation among
regression terms. For example, X and its power term X2

may be collinear, or an interaction term X log X may be
highly correlated with X and log X.

If, for example, a user executes NthGrpMavg repeatedly
with the same group symbol and window size but possibly
different start and end date and the STM uses the collected
data set to update a cost model, then the multi-collinearity
problem will happen.

The STM detects the multi-collinearity case by testing if
the calculation of XTX generates a singular matrix error, and
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handles it by postponing the update of the cost model until
more data points are available. The default costs would be
used until then. If the problem persists after several tries, a
user-interaction is called for, and STM checks the cause and
suggests a remedial action to the user.

4. EXPERIMENTS

We have implemented the STM in Oracle9i and evaluated it
using UDFs with different characteristics. The experiments
focused on the accuracy of cost estimations tuned over
repeated feedback cycles and the efficacy of handling
nominal cost variables. In this section we present the
experiments performed, specifically, the experimental UDFs
in Section 4.1, the data in Section 4.2, the cost models
in Section 4.3, the setup in Section 4.4 and the results in
Section 4.5.

4.1. Experimental UDFs

Two kinds of database UDFs have been used: two aggregate
functions on financial time series data and three keyword-
based search functions on text data. All these UDFs are
implemented in Oracle PL/SQL.

4.1.1. Time-series UDFs
The two UDFs have the following signatures.

• MinGrpMavg(groupsymbol, sdate, edate, windowsize);
• NthGrpMavg(groupsymbol, sdate, edate, windowsize,

n);

Given a group symbol, MinGrpMavg returns the minimum
of group moving average calculated within a specified data
range whereas NthGrpMavg returns the n-th minimum of
group moving average. Both UDFs are extensions of the
conventional moving average functions [12]. These UDFs
are white boxes, and their simplified codes are shown in
Appendix A.

4.1.2. Text-search UDFs
The three UDFS have the following signatures.

• SimpleTextSearch (text documents, list of keywords);
• ProximityTextSearch (text documents, list of keywords,

max_span);
• ThresholdTextSearch (text documents, list of keywords,

threshold).

Given a list of keywords connected with AND or
OR, SimpleTextSearch searches the text documents and
returns the number of documents containing the keywords.
ProximityTextSearch returns the number of documents
containing the keywords within the proximity of max_span
words. ThresholdTextSearch returns the number of
documents containing the keywords with the score of at least
the threshold. These UDFs invoke a built-in Oracle Text
function Contains [13] and are black boxes because we do
not know the implementation of Contains.

4.2. Experimental data

4.2.1. Time-series data
A time series can be regular or irregular. In a regular time
series, data arrive predictably at predefined intervals whereas,
in an irregular time series, unpredictable bursts of data arrive
at unspecified points in time.

Figure 9 shows the schema of the financial ticker time-
series data used in the experiment. The schema tsdev contains
three tables. The table ticker_index is an index to ticker
symbols that are members of a group, the table tsquick_tab
is a table that contains the regular time-series data and the
table tsquick_irtab contains the irregular time-series data.
The table schema of tsquick_irtab is identical to that of
tsquick_tab. The cardinalities of the tables ticker_index,
tsquick_tab and tsquick_irtab are 68, 1629144 and 1512775,
respectively. The sizes of the tables are about 2 KB, 56 MB
and 52 MB, respectively. Irregular data are alterations of
these regular data by removing random intervals of data at
random time stamp.

4.2.2. Text data
Figure 10 shows the schema of the text data used in the
experiment. The schema ctxdev contains only the table
text_dataset, which stores text documents as character large
objects (CLOBs). We use XML data of news articles obtained
from Reuters. The cardinality of the table text_dataset is
36422, and the table size is 72 MB. The text index size after
loading the document set is 56.8 MB.

4.3. Experimental UDF cost models

In this section we outline the cost model building processes
and present the resulting cost models.

4.3.1. Time-series UDF cost models
The cost models differ between regular and irregular time-
series data.

Regular time-series. From the two UDFs shown in
Appendix A, we derive the user-provided (User) models and
the default full quadratic (Default) models as shown below.
In these equations, a0, a1, . . . , a9 denote coefficients (with
different values for different models) and d,w and g denote
daterange, windowsize and groupsize, respectively.

MinGrpMavg:
[Default] cost = a0 + a1g + a2d + a3w + a4g

2

+ a5d
2 + a6w

2 + a7gd

+ a8gw + a9dw

[User] cost = a0 + a1d + a2gd + a3gw + a4dw

NthGrpMavg:
[Default] cost = a0 + a1g + a2d + a3w + a4g

2

+ a5d
2 + a6w

2 + a7gd

+ a8gw + a9dw

[User] cost = a0 + a1g(d + w + 1) + a2(d + 2)w
+ a3(d + w + 1)
+ a4(d + 2) log2 (d + 2)
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tsquick_tab      // regular time series of one ticker

ticker : varchar(10) // ticker symbol
tstamp : date
open    : decimal(7, 3)   // opening price
high     : decimal(7, 3)   // highest price
low       : decimal(7, 3)  // lowest price
close    : decimal(7, 3)  // closing price
volume : decimal          // traded volume

ticker_index         // a group of tickers

ticker_index_id : varchar(10)  // group symbol
ticker_index      : varchar(30)  // group description
ticker : varchar(30)  // ticker symbol

foreign key

Schema tsdev

tsquick_irtab // irregular time series of one ticker

FIGURE 9. Schema of the experimental time-series data.

Text_dataset // text documents

document_id : integer // document id

Item_id: integer // item id

fname: varchar2(20)  // file name

Schema ctxdev

text: clob // text docuement

FIGURE 10. Schema of the experimental text data.

Irregular time-series. Because irregular time-series have
data at different time stamps for different ticker symbols,
groupsize is not constant across time stamps and, therefore,
cannot be used as a cost variable. Instead, we introduce
group symbol as a nominal cost variable and build separate
models for different group symbols. Either Case 2 or Case 3
in Section 3.3.2 applies here. Note that we use the default
models in Case 2 and user-provided models in Case 3. For
the UDFs considered, one user-provided model is shared
by all group symbols. The cost models are reduced from
those for the regular time-series by removing the cost variable
groupsize (i.e. g).

MinGrpMavg:
[Case 2: Default] cost = a0 + a1d + a2w + a3d

2

+ a4w
2 + a5dw

[Case 3: User] cost = a0 + a1d + a2w + a3dw

NthGrpMavg:
[Case 2: Default] cost = a0 + a1d + a2w + a3d

2

+ a4w
2 + a5dw

[Case 3: User] cost = a0 + a1(d + 2)w + a2(d + w

+ 1) + a3(d + 2) log2 (d + 2)

4.3.2. Text-search UDF cost models
Since the text-search UDFs are black boxes, we determine
the cost variables based on the well-known text indexing
and search mechanism [18]. It is straightforward to identify
one cost variable predominant for all three UDFs: the
number of documents containing the searched keyword
phrase (abbreviated to numdocs). The value of this
variable can be obtained from the index with a simple
look-up of the postings lists and any necessary Boolean
processing (e.g. AND, OR, NOT) depending on the text query
expression.

Unfortunately, however, the internal format of the
postings lists of the Oracle Text index is not known
to us. Therefore, in our experiments, numdocs of a
multi-keyword SimpleTextSearch is estimated based on the
numdocs of the individual keywords as explained below.
Besides, max_span of ProximityTextSearch and threshold of
ThresholdTextSearch are used as additional cost variables as
if they were uncorrelated to numdocs.

Here, we describe the numdocs estimation for a multi-
keyword SimpleTextSearch. Let us define the frequency of
a search keyword phrase K as

freq(K) = numdocs(K)/ total_number_of_documents

where numdocs(K) denotes the number of documents
containing K. As the denominator is a constant, estimating
numdocs(K) is tantamount to estimating freq(K). For
simplicity, let us assume that keywords have uniform
and independent probabilities of occurrences in the text
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documents. Then,

freq(K1 AND K2) = freq(K1) × freq(K2)

freq(K1 OR K2) = freq(K1) + freq(K2)

− freq(K1) × freq(K2)

where K1 and K2 denote keyword phrases. Hence,
for an arbitrary search keyword phrase K, e.g., K =
(K1 ANDK2)OR (K3 ANDK4), freq(K) is calculated from
freq(K1), freq(K2), freq(K3) and freq(K4) using the above
two equations.

The following equations show the full quadratic cost
models of the three UDFs. Note that user-provided models
are not applicable because the UDFs are black boxes. In these
equations, a0, a1, . . . , a5 denote regression coefficients (with
different values for different models), and n, m and t denote
numdocs, max_span and threshold, respectively.

SimpleTextSearch:
[Default] cost = a0 + a1n + a2n

2

ProximityTextSearch:
[Default] cost = a0 + a1n + a2m + a3n

2

+ a4m
2 + a5nm

ThresholdTextSearch:
[Default] cost = a0 +a1n+a2t +a3n

2 +a4t
2 +a5nt

4.4. Experimental setup

This section describes various issues pertaining to the setup
for the experiments.

Platform. Experiments are performed using Oracle9i on
SunOS5.8, installed on Sun Ultra Enterprise 450 with four
276 MHz CPUs, 1024 MB RAM and 55 GB hard disk. Oracle
is configured to use 16 MB database buffer cache.

Programming. We use C shell script to generate other
C shell scripts that, when executed for a particular UDF,
generate PL/SQL codes for generating ‘statistics’ objects
through Oracle Data Cartridge Interface (ODCI) and for
executing the UDF and recording the cost. The codes for
model building and update are written in Java.

STM system data. We store the STM system data (or
metadata) in Oracle tables. Example data are the registered
UDF’s model parameters, cost variables, and the associated
configuration and control data shown in Figure 4. For
simplicity of the implementation, the cost log data are also
stored in a table instead of a file.

Cost data set distributions. In a multi-dimensional space
defined by cost variables, the distribution of cost data points
is determined by the actual values of cost variables used in the
UDF executions. We consider two kinds of data distribution:
uniform and normal. For the uniform distribution, we assume
a finite range of values for each ordinal cost variable. In the
experiments, we set the following range of values: the date
range of 0–100 years, the window size of 1–100 days, and the
group size of 5–12 ticker symbols. The normal distribution
simulates the values of cost variables concentrated in local

regions. For this distribution, we pick the mean (for the
centroid) randomly from the ranges of the cost variables. The
standard deviations are set to 200 days for the date range and
3 days for the window size, respectively. We use a product
of one-dimensional normal distributions instead of one joint
normal distribution, under the assumption of uncorrelated
cost variables.

Performance metric. As the metric of cost estimation
accuracy, we use the relative error defined as the ratio of the
absolute difference between the observed and the estimated
costs to the observed cost. In our experiments, median
relative error is more meaningful than mean relative error
because the mean is biased by a small number of excessive
relative errors attributed to cases with small values of CPU
or disk I/O cost.

Caching effect. In a computer system with dynamic system
load, the caching effect on the cost is quite random. We
simulate this random effect by flushing the database buffer by
a random portion at a random interval. For this purpose, the
following two parameters are used: interval and percentage.
‘Interval’ controls the number of UDF invocations between
two I/O-intensive dummy runs that clear the data buffer, and
‘percentage’ controls the amount of buffer cleared each time.
In our experiments, interval is randomly selected from the
range [1, 20], and percentage from the range [0, 100]. Note
that in a real system appropriately configured, the caching
effect typically ranges in an interval narrower than [0, 100].
That is, we are simulating a ‘rainy day’ scenario.

Workload effect. Although we use generic cost metrics
immune to the fluctuations of workload, an excessive
workload may still incur additional disk I/O. This happens
when some pages in the buffer are invalidated (if not
modified) or flushed to disk (if modified) because of a buffer
overflow. The pages must be refetched from disk if needed
again, thus incurring additional disk I/O. We ignore this effect
because it rarely happens in a system configured adequately
(e.g. buffer space, swap space).

Negative estimate cost. When multiple regression is used,
some of the predicted values may be negative. This is not
desired in cost estimation. Hence, if a negative cost is ever
estimated for a query, we simply use zero instead.

4.5. Experimental results

We conduct three types of experiments with a focus on
the following aspects: (i) the accuracy of cost estimation,
(ii) handling nominal cost variables and (iii) adapting to the
changes of cost variable values. We use the default models
for the time-series UDFs. The results are almost the same as
those from the user-defined models.

4.5.1. Experiment 1: cost estimation accuracy
We use the two financial time series UDFs on regular time-
series data and the three text search functions. For each UDF,
Figure 11 shows the median relative errors of the UDF cost
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(d) ProximityTextSearch

(c) SimpleTextSearch

(b) NthGrpMavg on regular time-series data

(a) MinGrpMavg on regular time-series data

FIGURE 11. Cost estimation errors for UDFs.
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TABLE 1. Rate of cost estimations with relative errors
<30%.

UDF CPU cost (%) Disk I/O cost (%)

MinGrpMavg 99.7 79.9
NthGrpMavg 95.25 80.25
simpleTextSearch 85.5 69.7
proximityTextSearch 99.0 43.4
thresholdTextSearch 88.9 38.4

estimations from the first through twentieth feedback cycle,
with 50 data points each. They also show the distributions
of relative errors in the estimated CPU costs and disk I/O
costs.

From the figures in the first column of Figure 11, it appears
as if the errors did not decrease over repeated cycles. In fact,
they do, and very quickly. As the cost models are so suitable
to the experimental UDFs, the errors are as small as they can
be after the first cycle, and the models are stable.

Table 1 summarizes the percentage rates of cost estima-
tions with relative errors lower than 30% for the CPU and disk
I/O costs. It shows that the disk I/O cost has higher estimation
errors more often than the CPU cost. The reason for this is the
random effect of caching, which affects only the disk I/O cost.

Table 1 also shows that the text search UDFs incur higher
cost estimation errors more often than the financial time
series UDFs. The reason for this is the assumption of
independent and uniformly distributed keywords. In reality,
the occurrences of two keywords are correlated in many cases.
Thus, the assumption introduces an error in the estimated
value of the cost variable numdocs.

Furthermore, compared with SimpleTextSearch, the
disk I/O cost estimation errors are larger for both
ProximityTextSearch and ThresholdTextSearch. This is
caused by ignoring the correlation between numdocs and
each of max_span and threshold (in Section 4.3.2). Note
that inaccurate estimations of numdocs have more impact on
the disk I/O costs than the CPU costs.

4.5.2. Experiment 2: handling nominal cost variables
We use MinGrpMavg on irregular time-series data to evaluate
our approach in handling nominal cost variables. As
mentioned in Section 4.3.1, with irregular time series the
nominal input argument groupsymbol becomes a nominal
cost variable that cannot be converted to an ordinal one. We
use both Case 2 and Case 3 described in Section 3.3.2. The
default quadratic model (for Case 2) and the user-provided
model (for Case 3) are shown in Section 4.3.1. The text
search functions are not applicable here because they have
no nominal cost variable.

Figure 12 shows the medians and distributions of relative
errors for Case 2 and Case 3. We collect 100 data points in
each of the 20 iterations. Table 2 summarizes the percentage
rates of cost estimations with relative errors lower than 30%.
The errors are quite comparable to those without nominal
cost variables despite the irregularity of the data.

4.5.3. Experiment 3: adapting to cost variable values
We use the two financial time series UDFs on localized cost
data sets simulated with the normal distribution. Text search
UDFs are not considered because the localization does not
apply to keywords, which are essentially nominal.

In Figure 13, we see that the cost estimation errors are quite
large during the first few cycles. This happens because the
data set used to fit the model does not cover the entire ranges
of values of the cost variables. For example, the cost model
based on one localized data set is not so useful to predict
the costs of another localized data set. However, the errors
show the tendency of decreasing over the feedback cycles as
the covered region expands. Eventually, the errors become
comparable to those from the uniformly distributed data.
Thus, this experiment demonstrates the self-tuning ability of
STM more clearly than in Experiment 1 by, ironically, tuning
more slowly.

5. RELATED WORK

We find related work in the following three categories: UDF
cost modeling, regression-based cost modeling and self-
tuning modeling.

5.1. UDF cost modeling

Our work relates to those in [7] and [8] in terms of UDF
cost modeling. In [7], Boulos and Ono use a parade-of-
runs for a simple text search UDF. They use the number of
keywords and the total size (i.e. bytes) of the text documents
as the cost variables, and use a multidimensional histogram
as the cost model. In their work, however, the data set
becomes too voluminous to be stored and processed with
reasonable performance. They mitigate this problem by
sampling the generated data sets but, as a result, incur high
errors in the cost estimation. In [8], Boulos et al. present a
curve fitting technique based on neural networks. However,
this approach provides a very complex solution that cannot
be incorporated into an ORDBMS.

5.2. Regression-based cost modeling

Multiple regression has been used to generate a cost model
in other works as well. Andres et al. [21] model DBMS
performance as a regression equation and tune its coefficients
by running a set of representative workload. Ebrahimi [22]
uses a similar approach to tune the coefficients of software
(not database) cost model.

There are two kinds of efforts made to derive local cost
functions of query operations for use by a global query
optimizer in a multidatabase environment: model calibrating
[23, 24] and query sampling [25, 26, 27]. Du et al. [23]
develop a cost function by combining the cost models of
individual query operations (e.g. select, join) into a regression
equation and calibrating the coefficients at each local DBMS
by running synthetic operations on a synthetic database.
Gardarin et al. [24] extend Du et al.’s work to an object-
oriented query optimization.
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FIGURE 12. Cost estimation errors for MinGrpMavg on irregular time-series data.

TABLE 2. Rate of cost estimations with relative
errors <30%.

Case number CPU cost (%) Disk I/O cost (%)

Case 2 94.94 80.33
Case 3 98.42 79.95

In the query sampling method [25, 26, 27], Zhu et al.
categorize all possible query operations into classes by the
data access method used, and develop regression cost models
associated with each class. Each class contains either unary
(select) or binary (join) operations. Then, at each local
DBMS, they generate a cost function for each class of query
operations by fitting the cost model to a cost data set generated
by executing query operations randomly selected from the
class. Differently from the works in [23, 24], this method
uses the entire real data actually used in a local DBMS.

Both the model calibrating and query sampling methods
aim at facilitating cost function generation in the data profile
approach. However, they still require users to understand
the concepts like index-based table scanning, and be capable
of building cost models from the DBMS implementations
of query operations like select and join. Furthermore, these
methods assume users know the database objects (e.g. tables,
indexes) accessed by a query, but this assumption is not
necessarily true when dealing with a UDF.

5.3. Self-tuning modeling

Recently there have been efforts for building a self-tuning
DBMS [28], as exemplified by the automin project [29]
at Microsoft Corporation. Self-tuning DBMSs are able

to automatically tune themselves to application needs and
hardware capabilities, thus reducing the administration
overhead significantly. In this section, we provide a quick
survey of existing works that are using self-tuning techniques
and distinguish them from our work.

Chaudhuri et al. [29] discuss feedback-based self-tuning in
the following four system issues: index selection for a given
workload, memory management among concurrent queries,
distribution statistics creation and updating, and dynamic
storage allocation. Our work is also feedback-based, but it
addresses a different system issue.

There have been several papers presenting the self-tuning
approach for estimating the selectivity of simple predicates
(i.e. predicates on relational attributes) [30, 31, 32]. Chen and
Roussopoulos [30] present a query feedback-based approach
to estimating selectivity without accessing the actual tuples
in the database. They use a cumulative data distribution
function to estimate the selectivity for a range query by
estimating the values at the two extreme points of the
query range. The modeling technique used is polynomial
regression, and an algorithm similar to ours is used for
incremental updates of the regression model. Aboulnaga
and Chaudhuri [31] and Bruno et al. [32] present a self-tuning
approach to building and maintaining a histogram to estimate
the selectivity. Each time the selectivity is estimated for a
query using the histogram, the estimated value is compared
with the actual selectivity and the estimation error is used
to refine the histogram. Our work shares the concept of
self-tuning estimation with these works, but is distinct for
estimating the UDF execution cost instead of selectivity.
Note that their works address the selectivity of simple
predicates, not UDF predicates.
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FIGURE 13. Cost estimation errors on localized data sets.

In [33], Stillger et al. present a self-tuning approach to
repairing an incorrect query execution plan (QEP). Each
time a query is executed, the used QEP is analyzed based
on the cost estimation errors to determine where in the
plan the significant error occurred. The analysis results are
then used to adjust the data statistics and the selectivity and
cardinality estimation models. Unlike our approach which
performs tuning at the level of a UDF which is executed as
one step within a query, their approach performs tuning at
the entire query level and, therefore, incurs higher overhead
to collect the statistics needed for the tuning. Moreover,
different types of query predicates need separate tuning
processes.

In [34], Lee et al. present a self-tuning approach to data
placement in a shared-nothing parallel database system. If
a load imbalance happens, it determines the amount of data
to be moved from the overloaded node and integrates the
moved data into selected destination nodes. Although called
‘self-tuning’, this work is essentially about dynamic resource
allocations and is closer to a trigger-action mechanism.
Thus, their work is different from the continuous self-tuning
mechanism supported in our work.

6. CONCLUSIONS

6.1. Summary

We have presented a self-tuning approach to building and
maintaining the cost functions of UDFs in an ORDBMS.
Our approach is incrementally adaptive in that a cost model

is adjusted continuously based on a new data set collected
from the recent UDF executions. Additionally, it handles a
nominal cost variable by keeping cost functions separately
for recently used values of the variable.

We have built a framework that iterates through three
functional components in a feedback loop and updates a user-
provided cost model at each cycle. The three components are
registering a UDF cost model, recording the UDF execution
costs and updating the UDF cost model. Currently we use
multiple regression as the cost model considering UDFs with
smooth cost variations. This model allows for an incremental
update of the model as a new data set becomes available
at each cycle. The framework is also capable of removing
outliers and handling multi-collinearity problems.

We have performed experiments in the framework, using
two aggregate financial time series UDFs and three text
search UDFs. As the financial time series UDFs are white
boxes, we have used both the user-provided models and
the default (full quadratic) models. In contrast, as the text
search UDFs are black boxes, we have used only the default
models. The experimental results show the cost models
stabilizing immediately after the first cycle for uniformly
distributed data sets and around the third cycle for normally
distributed data sets. In addition, the cost models are quite
accurate, especially considering the adverse effect of data
buffer caching. At least 80% of cost estimations incur lower
than 30% relative errors in all experimental cases except
the disk I/O costs of text search UDFs, which are black
boxes.
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6.2. Further work

The current framework may not work well for UDFs with
non-smooth cost variations. Currently, we are developing the
next version of the STM that aims at modeling arbitrary (i.e.
non-smooth) cost variations while compromising the model
precision to an acceptable degree. One idea is to partition
the data space and model data in each partition separately.
Multiple regression is not usable in this case and, therefore,
we are using two alternative techniques—multi-dimensional
quadtree and non-parametric regression. Our eventual goal
is to evolve the STM into a more generic framework that
supports different kinds of modeling techniques.

We cannot always expect users to analyze the run-time of
complex UDFs. They may not be capable of performing the
task even if they have written the UDF codes. Automating
run-time analysis would be useful in such a case. One
approach is to incorporate code analysis techniques. The
specific process is like this. First, the code of a UDF
is analyzed and broken into fragments that configure the
flow of the code. Second, a run-time model of each code
fragment is derived based on its pattern, specifically, by
choosing one among the run-time models associated with
predetermined patterns. Third, the run-time model of the
UDF is built as a combination of the run-time models of code
fragments. We conjecture that the run-time model of each
fragment can be a simple regression model like a quadratic
model.

Another effort in the plan is to build the selectivity function
of a UDF predicate, which is another important piece of
statistics required by an ORDBMS query optimizer.
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APPENDIX A. FINANCIAL TIME-SERIES UDFS

We show the codes simplified from the original PL/SQL codes.

A.1. MinGrpMavg

FUNCTION MinGrpMavg(groupsymbol IN CHAR,sdate IN CHAR,

edate IN CHAR,windowsize IN NUMBER)

RETURN NUMBER IS

ti tsdev.ticker_index.ticker_index_id%TYPE;

ts tsdev.tsquick_tab.tstamp%TYPE;

tm tsdev.tsquick_tab.close%TYPE;

tickdummy VARCHAR2(10);tickcount NUMBER:=0;

reccount NUMBER := 0;

BEGIN

//The subquery is used for reading the data of all ticker symbols

//within the group and build a group average time series.

//The outer query then calculates the group moving average.

--Cost˜(groupsize*(daterange+windowsize)+daterange*windowsize)

OPEN CURSOR c1 FOR

(SELECT x.ticker_index_id,x.tstamp, sum(x.group_close)/count(x.group_close)

FROM (SELECT a.ticker_index_id, b.tstamp,

sum(b.close)/count(b.close) AS group_close

FROM tsdev.ticker_index a,tsdev.tsquick_tab b

WHERE a.ticker_index_id = groupsymbol AND a.ticker = b.ticker

AND b.tstamp >= sdate - windowsize AND b.tstamp <= edate

GROUP BY a.ticker_index_id, b.tstamp) x

WHERE (x.tstamp between to_date(x.tstamp,’DD-MON-YY’)-windowsize

AND to_date(x.tstamp,’DD-MON-YY’))

GROUP BY x.ticker_index_id,x.tstamp

HAVING x.tstamp between to_date(sdate,’DD-MON-YY’)

AND to_date(edate,’DD-MON-YY’));

--Cost ˜(daterange)

LOOP UNTIL c1%NOTFOUND

FETCH C1 INTO ti,ts,tm;

IF (tickcount = 0) OR (tickcount > tm)

THEN tickcount := tm;

END IF;
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END LOOP;

RETURN(tickcount);

END MinGrpMavg;

A.2. NthGrpMavg

FUNCTION NthGrpMavg(groupsymbol: CHAR,sdate: DATE,

edate:DATE,windowsize:NUMBER,n:NUMBER)

RETURN NUMBER IS

temp:TABLE OF tsdev.tsquick_tab.close%TYPE;

tempavg:TABLE OF tsdev.tsquick_tab.close%TYPE;

j, k, tot: NUMBER;

BEGIN

//Read the data of all ticker symbols within the group and

//build a group average time series. Store the result in temp.

//This involves opening a cursor and fetching records in a loop.

-- Cost ˜ groupsize(daterange+windowsize+1)

OPEN CURSOR c1 FOR

(SELECT b.tstamp,sum(b.close)/count(b.close) AS group_close

FROM tsdev.ticker_index a,tsdev.tsquick_tab b

WHERE a.ticker_index_id = groupsymbol AND a.ticker = b.ticker

AND b.tstamp >= sdate - windowsize AND b.tstamp <= edate

GROUP BY b.tstamp);

-- Cost ˜ daterange+windowsize+1

LOOP UNTIL c1%NOTFOUND

FETCH c1 INTO c1_rec;

temp(i) := c1_rec.group_close;

i := i + 1;

END LOOP;

//Calculate the moving average of group average time series

//and store the result in tempavg.

-- Cost ˜ (daterange+2)windowsize

-- Note: temp.count = daterange+windowsize+1

FOR j = 1 TO (temp.count - windowsize + 1)

BEGIN

tot := 0 ;

FOR k = j TO (j + windowsize - 1) tot := tot + temp(k);

tempavg(j) := tot/windowsize;

END;

//Mergesort tempavg and return the n-th of the sorted tempavg.

-- Cost ˜ (daterange+2)log(daterange+2)

Mergesort(tempavg, 1, tempavg.count);

RETURN(tempavg(n));

END NthGrpMvgAvg;

APPENDIX B. COST FUNCTION REGISTRATION THROUGH ODCI

--Create type minmavg_stat, which includes all the statistics functions.

CREATE OR REPLACE TYPE minmavg_stat AS OBJECT (

curnum NUMBER,

STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)

RETURN NUMBER,

STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,

cost OUT sys.ODCICost, args sys.ODCIArgDescList,

ticker char,sdate char, edate char, wsize NUMBER) RETURN NUMBER,

PRAGMA restrict_references(ODCIStatsFunctionCost, WNDS, WNPS),

STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,

sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,

ticker char,sdate char, edate char, wsize NUMBER) RETURN NUMBER,
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PRAGMA restrict_references(ODCIStatsSelectivity, WNDS, WNPS)

)

/

-- Create type body minmavg_stat

-- a) Function ODCIGetInterfaces : Oracle Internal function (mandatory).

-- b) Function ODCIStatsFunctionCost : Cost function (regression equation).

-- c) Function ODCIStatsSelectivity : Selectivity function (default values).

CREATE OR REPLACE TYPE BODY minmavg_stat IS

STATIC FUNCTION ODCIGetInterfaces(ifclist OUT sys.ODCIObjectList)

RETURN NUMBER IS

BEGIN

ifclist := sys.ODCIObjectList(sys.ODCIObject(’SYS’,’ODCISTATS1’));

RETURN ODCIConst.Success;

END ODCIGetInterfaces;

STATIC FUNCTION ODCIStatsFunctionCost(func sys.ODCIFuncInfo,

cost OUT sys.ODCICost, args sys.ODCIArgDescList,

ticker char, sdate char, edate char, wsize NUMBER)

RETURN NUMBER IS

fname VARCHAR2(30);

tcount NUMBER;

range NUMBER;

size NUMBER;

BEGIN

cost := sys.ODCICost(NULL, NULL, NULL);

select (TO_DATE(edate,’DD-MON-YY’) - TO_DATE(sdate,’DD-MON-YY’)) date_range

into range

from dual;

range := range - (+16055.5);

size := wsize - (+49.44);

cost.CPUCost := ROUND(

( 1 * (+11.8272450115377392) ) +

( range * (+0.0007452936798574) ) +

( size * (+0.0423070733974652) ) +

( (range*range) * (+0.0000000004402906) ) +

( (size*range) * (+0.0000025356459042) ) +

( (size*size) * (-0.0000188506209238)) ;

cost.IOCost := ROUND(

( 1 * (+290.7927961404646453) ) +

( range * (+0.0194580835416424) ) +

( size * (-0.0427221861374802) ) +

( (range*range) * (+0.0000000224353175) ) +

( (size*range) * (+0.0000070627539797) ) +

( (size*size) * (+0.0010460367870459)) );

RETURN ODCIConst.Success;

END;

STATIC FUNCTION ODCIStatsSelectivity(pred sys.ODCIPredInfo,

sel OUT NUMBER, args sys.ODCIArgDescList, strt NUMBER, stop NUMBER,

ticker char, sdate char, edate char, size NUMBER)

RETURN NUMBER IS

BEGIN

sel := -1;

RETURN ODCIConst.Success;

END;

END;

/

ASSOCIATE STATISTICS WITH FUNCTIONS sys.minmavg USING minmavg_stat

/
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