
Available online at www.sciencedirect.com
Information Sciences 178 (2008) 2128–2149

www.elsevier.com/locate/ins
Aggregation in sensor networks with a user-provided quality
of service goal

Zhen He a,1, Byung Suk Lee b, X. Sean Wang b,*

a Department of Computer Science, La Trobe University, Bundoora, VIC 3086, Australia
b Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Received 25 August 2006; received in revised form 6 January 2008; accepted 7 January 2008
Abstract

Significant research has been devoted to aggregation in sensor networks with the purpose of optimizing its performance.
Existing research has mostly concentrated on maximizing network lifetime within a user-given error bound. In general, the
greater the error bound, the longer the lifetime. However, in some situations, it may not be realistic for the user to provide
an error bound. Instead, the user may want to provide a quality of service (QoS) goal that has a combined objective of
lifetime and error. Indeed, the error tolerable by the user may depend on how long the sensor network can last. This paper
presents an aggregation protocol and related algorithms for reaching such a QoS goal. The key idea is to periodically mod-
ify a filter threshold for each sensor in a way that is optimal within the user objective, the key technical method being to
translate the problem into a mathematical programming formulation with constraints coming from various sources, such
as the user, the sensor network, and the data characteristics. Extensive experiments demonstrate the high accuracy, high
flexibility and low overhead of this QoS-based optimization approach.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Sensor networks; Aggregation; Quality of service; Distributed optimization
1. Introduction

Recently, there has been significant research conducted on data aggregation in wireless sensor networks. Two
performance factors have been considered: sensor network lifetime and aggregation precision (or error).
Although the approaches vary, existing work is mostly concerned with maximizing lifetime under certain error
tolerance. (The existing work will be discussed in Section 2.) Some users, however, may have a more flexible objec-
tive. For instance, they may want the opposite, that is, to minimize error under certain lifetime constraints. This
may be necessary in a situation where precision of data is important and there is limited useful lifetime. Further-
more, users may want to achieve a more complex objective, such as to maximize lifetime and minimize error under
0020-0255/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2008.01.003

* Corresponding author. Tel.: +1 802 656 3342; fax: +1 802 656 0696.
E-mail addresses: z.he@latrobe.edu.au (Z. He), Byung.Lee@uvm.ed (B.S. Lee), Sean.Wang@uvm.edu (X.S. Wang).

1 Part of this author’s work was done while he was at the Department of Computer Science, University of Vermont.

mailto:z.he@latrobe.edu.au
mailto:Byung.Lee@uvm.ed
mailto:Sean.Wang@uvm.edu

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2129
certain constraints on both error and lifetime. This may be necessary in a situation where users’ error tolerance
depends on the possible lifetime. We refer to the above performance objectives as a quality of service (QoS) goal.

In the framework of this paper, we allow users to express their QoS goal by providing an objective function
with lifetime and error as the variables, together with constraints in the form of lifetime and error bounds. The
performance goal of the sensor network, then, is to maximize the QoS achieved within the user-provided con-
straints. (If the error and lifetime bounds are found to be too restrictive to be feasible, the system may go back
to the user for more relaxed constraints.)

In order to maximize the QoS, the trade-off between lifetime and error needs to be controlled. The basic
mechanism we use is to adjust a filter threshold for each sensor and have each sensor operate as follows: if
the value read (gathered, collected, or sensed) by a sensor is within the filter threshold given to the sensor,
the sensor does not send data, thus saving battery power needed for transmission. (This is the same as the ‘‘fil-
ter approach” described in Olson et al. [19].) The aggregation error is aggregated from the filter thresholds of
the non-sending sensors.

With the above mechanism, in order to reach the performance goal, the filter thresholds need to be adjusted
toward maximizing the QoS. Here, we assume that the lifetime of a sensor is solely dependent on how much
data it has to transmit. The more data it has to send, the shorter the life, and vice versa. Therefore, the larger
the filter thresholds, the longer the lifetimes of the sensors, but the higher the aggregation error.

Our approach is to develop a mathematical formulation of an optimization problem whose solution gives
the best filter thresholds to sensors. In this formulation, in addition to the above user-provided constraints,
there are also system-induced constraints from the sensor network system, due to its configuration and oper-
ation strategy (including a cluster head rotation policy). Furthermore, the amount of transmission energy
which can be saved (hence lifetime gained) by a particular filter threshold also depends on the characteristics
of the data. In this paper, we use historical data to predict the impact on future energy savings by specific filter
thresholds. We refer to the corresponding constraints as the data-dependent constraints.

Once we know the user-provided, system-induced and data-dependent constraints, we have an optimization
problem in which the optimization parameters are the filter thresholds for the sensors. Since the data charac-
teristics and network status (e.g., actual battery consumption) may change over time, we need to perform the
above optimization periodically, to reflect precisely the current status of the sensor network. For the purpose
of such periodic adjustments, we use a general protocol that allows the system to collect the parameters for all
the relevant constraints and to disseminate the optimized filter thresholds.

We demonstrate our method through a detailed algorithm design, based on the above framework, by
assuming a commonly-used sensor network configuration. In the implementation of algorithms, we consider
SUM as the aggregation function. We also show results from extensive experiments with real data sets. The
experiment results show that the optimization computation using our method is very accurate, despite the
approximations made in our implementations and can flexibly adjust to different QoS goals (expressed as
objective functions). Additionally, we compare our algorithm with the most comparable existing method in
which the user-provided objective is simply to maximize lifetime (subject to an error bound). The results show
that our method produces almost the same optimal solutions (e.g., similar lifetime for the same error bound)
despite the overhead inherent in making our method more flexible and versatile in handling general QoS goals.

The main contributions of this paper include: (1) the introduction of the concept of flexible user-provided
QoS goals; (2) the optimization formulation of the problem in meeting the QoS goals; (3) the aggregation
query processing protocol supporting the optimization formulation; and (4) an instantiation of the protocol
under realistic assumptions.

The remainder of the paper is organized as follows: Section 2 discusses related work; Section 3 introduces
an aggregation protocol for our optimization problem; Section 3.3 presents generic algorithms based on the
protocol; Section 4 describes a specific instantiation of the generic algorithms; Section 5 evaluates the instan-
tiated algorithms and Section 6 concludes the paper.

2. Related work

The existing work on sensor network aggregations aims to maximize lifetime. We classify the existing meth-
ods into three categories, based on the error tolerance type: zero-error [13,14,23,24], user-defined-error

2130 Z. He et al. / Information Sciences 178 (2008) 2128–2149
[7,19,21], and low-error [6,12,16,18,22]. It should be noted that some research has focused on ensuring certain
QoS constraints (where QoS is defined in terms of the latency of delivering aggregates from source to sink
nodes) are met [27,29,28]. However, our work is more focused on the quality of the collected data, rather than
the delivery speed of the data.

In the zero-error category, Madden et al. [14] and Yao et al. [24] provide methods to maximize lifetime
by performing in-network aggregation while using a tree-based routing model. Kalpakis et al. [13] study a
problem in which, given a collection of sensors and a sink, as well as their locations and the energy of
each sensor. They find a data collection schedule that maximizes lifetime. Tan et al. [23] develop a routing
scheme that maximizes lifetime for a given set of sensors. Fan et al. [8] develop a structure-free aggrega-
tion algorithm that maximizes lifetime for a given set of sensors. These studies differ from ours in that
they do not allow any imprecision in the aggregation and, therefore, do not allow users to trade accuracy
for extended lifetime.

In the user-defined-error category, Olston et al. [19] propose an adaptive filter-based approach for a single-
hop network. The filters adapt to changing conditions to minimize the data sent, while ensuring that the user-
defined error bound is not violated. Deligiannakis et al. [7] adapt the method by Olston et al. [19] to work with
a tree-based routing model. Sharaf et al. [21] maximize lifetime by influencing the routing tree construction to
reduce the transmitted data and imposing a hierarchy of output filters on the sensor network. This aforemen-
tioned work allows users to trade accuracy for extended lifetime (within the error bound) but, unlike our work,
does not allow users to specify a combined lifetime and error goal. Work by Ren and Liang [20] probabilisti-
cally (not deterministically) guarantees the user-defined error bound, given a confidence interval on the accu-
racy, while reducing the energy consumption to lengthen the lifetime.

In the low-error category, Considine et al. [6] and Nath et al. [18] provide duplicate-insensitive sketches and
synopses, respectively, to perform approximate in-network aggregation. Their methods are designed to work
with a ring-based, multi-path routing model, which means errors caused by communication failures are greatly
minimized. Amit et al. [16] combine the advantages of tree routing and multi-path routing by running them
simultaneously in different regions of the network. Their method reduced error caused by packet loss by up to
three times more than all previous methods. Sharifzadeh et al. [22] aggregate sensor readings while taking spa-
tial distribution of the sensor nodes into consideration. Kapalpkis et al. [12] maximize lifetime for aggregate
range queries using linear sketches. However, this previously mentioned work, unlike ours does not allow
users to control how accuracy should be traded for extended lifetime. Instead, they use various heuristics
and probabilistic mechanisms to keep the error low, while maximizing lifetime.

In contrast with the research above, Madden et al. [15] allow users to specify the minimum lifetime con-
straint. The sampling rate is then estimated so the lifetime constraint is satisfied. The sampling rate directly
influences the data precision. This work differs from ours in two respects: firstly, our work adjusts the trans-
mission of sampled data, not the sampling itself; and secondly, we allow the user to set a more flexible QoS
goal.

3. Aggregation protocols

In this section, we describe the aggregation protocols in a generic way, that is, the presented protocols are
not specific to any particular routing strategy or aggregation hierarchy. We also provide generic algorithms for
key steps of the protocol. (In Section 4, we will present specific algorithms designed for a cluster-based routing
strategy and a corresponding aggregation hierarchy.)

3.1. An overview

Underlying the optimization performed in our aggregation protocol is the use of filter thresholds. A filter
threshold is defined as the range between the lower bound and upper bound on sensor readings so that a sen-
sor sends a reading only if it falls outside the range. The optimization is to periodically adjust the filter thresh-
olds of individual sensors, in order to achieve certain user-requested QoS goals under system-induced and
data-dependent constraints globally at the network level. By adjusting the filter thresholds, we can adjust
the balance between the aggregation error and the network lifetime.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2131
A sensor assumes one or more of the following roles for aggregation query processing: a reading point
(RP), an aggregation point (AP), and a query point (QP). Sensors in these roles configure an aggregation hier-
archy as shown in Fig. 1. Note that this aggregation hierarchy is generic in the sense that it is independent of
the routing model. That is, the same hierarchy can be placed on top of any routing model, such as tree-based
routing, cluster-based routing, etc. For instance, an AP may be a non-leaf node of the tree in the tree-based
routing or a cluster head in the cluster-based routing. There can be multiple QPs, thus multiple aggregation
hierarchies, in the same network.

The protocol has two operation modes: a normal mode and an update mode. In the normal mode, aggrega-
tions of readings are done. The protocol is summarized below (see Fig. 1a). We assume the readings from dif-
ferent sensors are synchronized. (Synchronization in itself is a research issue and is beyond the scope of this
paper.)

Step 1. An RP sends readings, if outside the filter threshold, to its AP. Each time a reading is sent, the filter
threshold is centered on the reading. This centering is done to increase the probability that the next
reading will be within the filter threshold, assuming that sensor readings do not change abruptly
(see Example 1 below).
Fig. 1. Aggregation hierarchy and protocol.

2132 Z. He et al. / Information Sciences 178 (2008) 2128–2149
Step 2. The AP generates a partial aggregation of the readings and sends it to the next level in the hierarchy.
For a reading not sent by an RP, a first-level AP assumes the reading is the same as the last reading;
for a reading sent by an RP, it uses the reading sent.

Step 3. The QP generates a total aggregation of the readings and reports it to the user.

3.2. Update mode protocol

One of the key challenges in the update mode is to devise a way of capturing the characteristics of the data
being collected at each RP. This information allows the RP to determine the number of readings that need to
be sent to the QP for a given filter threshold. To accomplish this, we use what we call a filter Threshold–Read-

ing fraction (T–R) curve. A T–R curve is generated by each RP and characterizes the number of readings to be
sent, given a particular setting of the filter threshold.

Definition 1 (T–R curve). Consider a set of pairs h�j; rji in the space T � R, where �j 2 T (�j P 0) is a filter
threshold and rj 2 R (rj > 0) is the fraction of the readings that, given the value of T, would be sent out among
Fig. 2. An example of generating a T–R curve.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2133
all the readings made by an RP during the previous update interval. Then, a T–R curve is defined as a function
in a family of functions from T to R such that

P
jðrj � f ð�jÞÞ2 is minimized.

The example below shows how a T–R curve is generated.

Example 1. Suppose the 13 readings shown at the top of Fig. 2a were made by an RP. Then, the RP counts the
number of readings that would be sent for each of the filter thresholds from 0.0 with an increment of 1.0, and
finds that 13 points, five points, three points, three points, and one point would be sent if the filter thresholds
were 0.0, 1.0, 2.0, 3.0, and 4.0, respectively. The iteration stops when the number of readings to be sent
becomes 1 (which is the smallest number that renders the reading fraction (rj in Definition 1) greater than
zero). As a result, the RP collects a set of five data points, {(0.0, 13/13), (1.0, 5/13), (2.0, 3/13), (3.0,
3/13), (4.0, 1/13)}. Then, a T–R curve may be generated from these data points through regression. Fig. 2b
shows the case of using linear regression.

In the update mode, optimal filter thresholds are computed by QP and used as the new filter thresholds of
each RP. This is done at a predefined update interval. The protocol can be summarized as follows: (see
Fig. 1b).

Step 1. An RP generates a T–R curve (using the stored sample readings acquired during the update interval)
and sends it to its AP.

Step 2. The AP forwards the T–R curves to the next level in the hierarchy.
Step 3. The QP computes optimal filter thresholds for each RP based on all the T–R curves received, the

objective function, and the user-provided and system-induced constraints.
Step 4. The QP sends the filter thresholds to the RPs (through APs).
3.3. Generic protocol algorithms

The algorithms for the normal mode steps are straightforward. Thus, here we provide the algorithms for the
update mode protocol only, specifically for generating T–R curves and computing optimal filter thresholds.
Fig. 3. Algorithm Generate_TR_curve.

Fig. 4. Algorithm Compute_T.

2134 Z. He et al. / Information Sciences 178 (2008) 2128–2149
Fig. 3 shows the generic algorithm Generate_TR_curve for each RP to generate a T–R curve. The basic
idea is for each RP to store the sampled readings for the current update interval. Then, at the filter threshold
update time, the sampled readings are used to generate a T–R curve. This approach reduces the amount of
data sent from the RPs to the QP by sending only a curve that describes the relevant characteristics of the
data, instead of the individual readings. In this algorithm, we assume that the sampling rate (q) is constant
during an update interval (U). The output is a T–R curve, defined in Definition 1.

Fig. 4 shows the generic algorithm Compute_T. The basic idea is to produce a set of constraints comprising
of data-dependent (i.e., T–R) constraints (in Step 1) and system-induced constraints (in Step 2), combined with
user-provided objective function and any additional user-provided constraints. Using these functions and con-
straints, QP computes the optimal lifetime and aggregation error as well as the optimal filter thresholds to be
sent to the individual RPs.

In Step 1, the new T–R curve generated by an RP for the last update interval is used to update the running
average of the T–R curves for the RP. This is done separately for each RP. Using a running average instead of
only the new T–R curve will allow the long term pattern of readings to be reflected. In Step 2, the system
parameters include the costs of sampling, sending and receiving a reading, the remaining battery power,
etc. Some of these parameters are static (e.g., costs of sampling) and some are dynamic (e.g., battery power).
In Step 3, if the user-provided constraints turn out to be infeasible (i.e., no solution possible), then the user
should be consulted to relax the constraints.

4. Algorithm instantiation

4.1. Setup for the instantiation

In our instantiation, we consider cluster-based routing, illustrated in Fig. 5, in a multi-hop network config-
uration. This routing approach has been widely studied in the networking community [1–4,9,10,17,25,26]. In

Fig. 5. Cluster-based routing.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2135
this approach, nodes with geographical proximity form a cluster, after which one node is elected to be the clus-
ter head in each cluster. Each node (other than the sink) will be an RP, while the cluster head assumes the dual
roles of AP and RP. A cluster head forwards packets sent by RPs toward the destination sink node, namely
QP. In order to balance the load for data transmission among the sensors, a new cluster head is selected peri-
odically. We assume that each sensor is selected as a cluster head with an equal frequency which results in all
sensors consuming the same battery power.

Additionally, we assume sensor readings (i.e., samples) are synchronized, as mentioned in Section 3, and the
lifetime of the sensor network is the time until the first sensor runs out of battery power.

We use linear programming as the optimization technique for its computational efficiency. For this purpose,
we use a linear function to approximate a T–R constraint using a T–R curve. Additionally, we use a linear
function to compute the aggregation error. This is done by computing it as the sum of all the filter thresholds,
that is, as the aggregation error (upper) bound.2 Determining the filter thresholds of only the non-sending sen-
sors requires taking a T–R curve into consideration for computing the aggregation error and, as a result,
makes the function non-linear.

Furthermore, we require the objective function hðL;EÞ (of the network lifetime L and the aggregation
error E) to be monotonic. That is, hðL;EÞ should be monotonically non-increasing when E increases with
a fixed L, and monotonically non-decreasing when L increases with a fixed E. This property fits the premise
that a user’s QoS goal is better achieved if the error is lower and/or the lifetime is longer. For instance, any
function of the form cf ðLÞ � gðEÞ or cf ðLÞ=gðEÞ, where f ðLÞ is monotonically non-decreasing with L and
gðEÞ is monotonically non-increasing with E (and c is a calibration coefficient), will flexibly do as hðL;EÞ.
All of the following example functions have this monotonicity property and are suitable as hðL;EÞ: cL� E,
c log L� E, cL=E, L, �E, 1=E. The optimization step (Step 3 of Compute_T) will take advantage of this
monotonicity property.

4.2. Instantiation of Generate_TR_curve

A key design decision in the instantiation of the generic algorithm is the use of linear regression to produce
the T–R curve. We use linear regression for the following reasons: (1) it is computationally efficient; (2) the
resulting equation requires very small storage space (only two regression coefficients), thus can be sent up
the aggregation hierarchy at little cost; and (3) it facilitates the linear programming approach used for opti-
mization in Compute_T.

Fig. 6 shows an instantiation of Step 1 of the algorithm Generate_TR_curve. In the algorithm, we use an
additional input dT , the increment of a filter threshold, so that Step 3 of Fig. 6 iterates for �i from 0.0 at the
increment of dT . The iteration stops once the number of readings to be sent (cj) drops to equal to or less
than 1.
2 The aggregation error computed in [19], which is compared against our method in Section 5, is also an upper bound.

Fig. 6. T–R data set generation step (Step 1) of Generate_TR_curve (instantiation).

2136 Z. He et al. / Information Sciences 178 (2008) 2128–2149
4.3. Instantiation of Compute_T

In Step 1 of the algorithm Compute_T (see Fig. 4), the T–R curve generated by RPi ði ¼ 1; 2; . . . ;mÞ is
Ri ¼ fiðT iÞ ¼ ai þ bi � T i. To generate a running average of the T–R curves for each RPi, QP only needs to
obtain the average values �ai and �bi from all the ai and bi values sent by RPi in the past. This can be done incre-
mentally by QP with negligible overhead.

Using the running average T–R curve, we generate a T–R constraint for RPi as follows:
T i ¼ ðRi � �aiÞ=�bi ð1Þ

where T i and Ri are the filter threshold and reading fraction of RPi, respectively. Note that the constant �bi is a
negative number for all reading points RPi ði ¼ 1; 2; . . . ;mÞ. This is intuitive because the filter threshold T i

should decrease as Ri increases, i.e., as more readings are sent by RPi.
As mentioned earlier, we use the aggregation error bound, E, for our computation of an aggregation error:
E ¼
Xm

i¼1

T i ð2Þ
where T 1; T 2; . . . ; T m are all the RPs. Accordingly, in Step 3 (the optimization step described below) we aim to
minimize the aggregation error bound E by adjusting the filter thresholds while satisfying certain system-in-
duced, data-dependent and user-provided constraints. As mentioned earlier, we accomplish this by using lin-
ear programming.

In Step 2 of the algorithm Compute_T, given a sensor network with m reading points ðRPi; i ¼ 1; 2; . . . ;mÞ,
the system-induced constraints are:
Ri ¼ gðL; iÞ �
X

k2CðiÞ
ðwikRikÞ for i ¼ 1; 2; . . . ;m ð3Þ
where L is the lifetime of the sensor network, gðL; iÞ is a system-dependent function of L, and wik and Rik are,
respectively, the weight and the fraction of readings sent to RPi by RPk that is in the same cluster as RPi, de-
noted as CðiÞ. Here, CðiÞ does not include RPi because, as shown in the Appendix, the weight wik is derived
from the battery power consumed by RPi while it is a cluster head, thus receiving messages from its member
nodes RPk (k 6¼ i). The specific g and wik depend on factors like the cost of sending and receiving a reading, the
routing model, etc. We show the details of deriving Eq. (3) in the Appendix. Fig. 7 shows our instantiation of
Step 3 of the algorithm Compute_T. We use two additional inputs in our instantiation. One input is dL, the
increment of a lifetime L at each iteration; the other is Lmax, the maximum value of L used in the iteration. In
the algorithm, we compute the optimization for each value of L during the iteration. The reason for fixing the
value of L is that gðL; iÞ of Eq. (3) is not a linear function of L; it becomes linear (with Rik’s) once L is fixed,
which in turn makes Eq. (3) applicable to linear programming as a linear constraint.

Fig. 7. Optimization step (Step 3) of Compute_T (instantiation).

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2137
The initial value of L in the iteration is dL, which we regard as the minimum possible lifetime with respect to
the increment unit dL. (The value of L cannot be zero in our optimization, as gðL; iÞ is infinity when L equals
zero (see Eq. (9)).) The iteration then runs at the increment of dL and stops once L becomes greater than Lmax.
At each iteration, the minimum E (Emin) is found for the current value of L, as the objective is to minimize E

for the given L due to the monotonicity property required of hðL;EÞ. We use the classic linear programming
algorithm, simplex, for this. The resulting pair of L and Emin at the end of the iterations gives the optimal pair
hLopt;Eopti.

The procedure for finding Lopt and Eopt also gives the filter thresholds for the individual RPs. Indeed, when
solving the linear programming problem for each value of L, the value Ei for each RPi is computed as well.
The set of Ei computed for Lopt is the set of filter thresholds assigned to individual RPs.
5. Performance evaluations

We conduct three sets of experiments with the objectives of evaluating the accuracy, flexibility, and over-

head of the optimization computations of our method. The accuracy experiments aim to determine the impact
of approximations made in order to use linear programming as the optimization technique in the implemen-
tations (see Eqs. (1)–(3)). The flexibility experiments aim to determine how flexibly our method behaves
according to the user’s QoS goal. The overhead experiments aim to determine how our method compares
to existing methods, with the overhead of sending T–R curves and newly optimized filter thresholds between
RPs and QP.

5.1. Simulation setup

We conduct our experiments on the sensor network simulator and emulator (SENSE) [5]. The simulated
network has four layers: application, networking, MAC, and physical. We built our algorithms into the appli-
cation layer and also performed the routing inside the application layer rather than the network layer, which is
the traditional approach as the behaviors of our algorithms are highly dependent on routing decisions.

The routing algorithm simulated is the simple cluster-based routing (see Fig. 5). For this, we first create the
cluster heads randomly and then assign randomly created sensors to the closest cluster head. All sensors trans-
mit to the sink via one cluster head. The simulated network has 50 sensors, 10 clusters, and one sink in all
experiments.

We use a simple MAC layer which places the packets onto the physical layer, and assume there is no packet
loss. We, therefore, do not send acknowledgment packets. At the physical layer, we implement the same
energy consumption model (for sending and receiving packets) as that used in the experiments described in
[10].

Table 1 summarizes the simulation parameter settings used. Eelec is the energy consumed by the transmitter
electronics per bit sent or received, and eamp is the energy consumed by the transmitter amplifier. The values
used for Eelec and eamp are the same as those used in [26].

Table 1
Simulation parameter settings

Parameter Setting

Eelec 5 nJ/bit
eamp 100 pJ/bit/m2

Sensor placement area 500 � 500 m
Sampling interval 10 s
Cluster rotation interval 200 s
Initial energy of a sensor 0.5 J

2138 Z. He et al. / Information Sciences 178 (2008) 2128–2149
Given these settings, energy used to send a packet from one node to another, ETX, is computed as:
ETXðb; dÞ ¼ Eelec � bþ eamp � b� d2 ð4Þ
where b is the number of bits of the message, and d is the distance between the source and destination nodes.
Energy used by a node to receive a message, ERX, is computed as:
ERXðbÞ ¼ Eelec � b ð5Þ
5.2. Algorithm setup

Parameters used in our algorithms are set as follows: the update interval 200 s, dT (in Fig. 6) 0.01, and dL (in
Fig. 7) 50.0. Other parameters whose settings vary depending on the experiment; will be mentioned when the
experiments are presented. In the Filter method, the filter threshold is increased periodically. For a fair com-
parison, we have set the interval between successive increases to 200 s, which is the same as the update interval
used in our QoS method.

5.3. Data sets

In our experiments, we use three time series data sets, shown in Fig. 8. We downscale the time in the data
sets so that one day is mapped to 10 seconds. Then, for each original time-series data set, we generate 49 addi-
tional data sets by adding small variations to the data values using two different methods: fixed offset method
and random offset method. A fixed offset method simulates a situation in which a sensor at one location always
reads a value as either slightly larger or slightly smaller than a sensor at another location, as might happen if,
for example, one sensor is a bit closer to a heat source. This is implemented by adding a constant increment to
the previous reading. That is, given the original readings v1; v2; . . . ; vn, the ith (i ¼ 1; 2; . . . ; 49) data set has
readings of v1 þ 0:1� i; v2 þ 0:1� i; . . . ; vn þ 0:1� i.

A random offset method simulates a situation in which the sensor location determines the variance of read-
ings, for example, as might happen if one temperature sensor is in the shadow of a tree, while another is fully
exposed, with the temperature reading affected by volatile wind conditions. The ith data set is generated as
v1 þ rand½0; 0:1� i�; v2 þ rand½0; 0:1� i�; . . . ; vn þ rand½0; 0:1� i� where rand½0; 0:1� i� generates a random
number between 0.0 and 0:1� i each time it is called. The resulting 50 time-series are used as the readings from
50 different sensors. Due to space limitations, only the experimental results for random offset data sets are pre-
sented. All results obtained using fixed offset data sets show similar trends.

5.4. Experiments and the results

5.4.1. Accuracy of the optimization computations

To evaluate the accuracy, we compare the projected lifetime and actual lifetime at each iteration of the
optimization computation. The projected lifetime is recomputed (by the QP) at each iteration. We measure
a lifetime as the time until the first node in the network dies. We set up our method to maximize the lifetime
and minimize the aggregation error under both an error bound and a lifetime bound. Specifically, we use the

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900

Te
m

pe
ra

tu
re

 (
C

)

Time (days)

-5

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

Te
m

pe
ra

tu
re

 (
C

)

Time (days)

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900

W
at

er
 fl

ow
 (

cm
s)

Time (days)

Fig. 8. The original time-series data sets used in the experiments. (See above-mentioned references for further information.)

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2139
objective function hðL;EÞ ¼ 0:001L� E, the error (upper) bound (Emax) of 10.0 and the lifetime (lower) bound
(Lmin) of 11,200 seconds.

Fig. 9 shows the results of this experiment. The results show that overall the projected lifetime and the
actual lifetime are overall close, differing by less than 5% at the beginning and then converging towards the
end of the iterations. This indicates that our optimization computations are quite accurate and, particularly,
that our use of linear T–R curves is adequate for these data sets.

We have also tried varying parameters such as the update interval, the area of sensor field and the number
of clusters. The results show that the accuracy does not vary much with these parameters. In all the cases we

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

Li
fe

tim
e

(s
ec

)

Number of iterations

Projected
Actual

(a) Melb-max

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

Li
fe

tim
e

(s
ec

)

Number of iterations

Projected
Actual

(b) Melb-min

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

Li
fe

tim
e

(s
ec

)

Number of iterations

Projected
Actual

(c) Fisher

Fig. 9. Accuracy of optimization computation.

2140 Z. He et al. / Information Sciences 178 (2008) 2128–2149
examined, the difference between the projected lifetime and the achieved lifetime is no more than 10%. All the
performance graphs show two flat lines, as in Fig. 9. Thus, we have omitted these graphs.

5.4.2. Flexibility of the optimization computations

We set up our method with three different objective functions and the same set of user-provided constraints.
Specifically, we use the following three cases of objective functions: hðL;EÞ ¼ �E, hðL;EÞ ¼ L, and

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2141
hðL;EÞ ¼ 0:01L� E. Additionally, we use the following user-provided constraints: error (upper) bound (Emax)
of 10.0 and the lifetime (lower) bound (Lmin) of 10,500 s.3 The achieved network lifetime is the time until the
first node dies. The achieved aggregation error bound is computed as a temporal average of the sum of the
filter thresholds of all sensors.

Fig. 10 shows the resulting pairs of the achieved lifetime and the achieved error for each objective function.
With hðL;EÞ ¼ �E, the achieved lifetime is compromised as much as possible toward the minimum allowed
lifetime (Lmin) in order to minimize the achieved error. (The achieved lifetime is lower than Lmin by about
2.4%; this is due to slight inaccuracy in the optimization computations (see Fig. 9).) The converse is true with
hðL;EÞ ¼ L. The achieved error is compromised as much as possible toward the maximum allowed aggrega-
tion error (Emax) in order to maximize the achieved lifetime. With hðL;EÞ ¼ 0:01L� E, the result falls in
between. Both the achieved lifetime and the achieved error are compromised to a certain extent, in order
to maximize the objective function.

We make some interesting observations in light of a difference in the pattern of the change of data values
between the Melb data sets and the Fisher data set. (As shown in Fig. 8, the value changes quite linearly in
Melb, but remains almost constant with occasional spikes in Fisher.) With hðL;EÞ ¼ �E, the pair of achieved
lifetime and achieved error is almost the same between Melb and Fisher. This is because the sensors send their
readings frequently in order to minimize the aggregation error. With hðL;EÞ ¼ L, the aggregation error is sig-
nificantly lower for Fisher than for Melb. This is because the filter thresholds of the sensors can be smaller for
Fisher, as the magnitude of the change in data values is smaller most of the time (as shown in Fig. 8). With
hðL;EÞ ¼ 0:01L� E, the result shows both phenomena to a lesser extent.

5.4.3. Comparison with other methods

To our knowledge, there is no existing method designed to minimize the aggregation error given a lifetime
constraint, nor a method designed to optimize a combination of the aggregation error and the lifetime. The
only existing methods which can be used for comparison purposes are those that maximize the lifetime given
an error constraint [7,19,21]. We have chosen Olson et al.’s [19] method for comparison, because it is designed
for a single-hop network and, hence, can be easily adapted to cluster-based routing, while other methods
[7,21], based on tree-based routing, cannot. In this comparison, we refer to our method as QoS and Olston
et al.’s method as Filter. We set up QoS with the same goal as Filter by using the objective function
hðL;EÞ ¼ L and a user-provided constraint E 6 Emax. Then, we compare the achieved lifetimes (until the first
node dies) between QoS and Filter.

There are three major differences between QoS and Filter. Firstly, QoS optimizes the filter thresholds for a
combined lifetime and error goal, whereas Filter does so only to maximize the lifetime while staying within an
error bound. In fact, the optimization objective of Filter is only a special case of the optimization objective of
QoS. In other words, the objective of QoS is more general, allowing the user to specify in one’s goal that ‘‘The
system can reduce the error by 0.01 for a 1 day reduction in lifetime, while prolonging the lifetime to at least 1
month and keeping the error to 0.5.” Secondly, with this difference in the optimization objective, the linear
equations QoS generates (at the QP) are different from those Filter generates. As a result, QoS is required
to use linear programming to solve the equations, whereas Filter uses its own iterative linear solver. Thirdly,
there is also a difference in the data the QP receives. In QoS, the QP receives T–R curves (from RPs) whereas in
Filter, the QP receives none. Specifically, the QP in Filter only observes the number of readings falling outside
the filter threshold (which is continuously shrunken automatically) to determine whether the thresholds should
be increased. On the surface, it may seem that QoS is less efficient as it consumes more energy in sending the
T–R curves. However, as the experiments in this section show, the T–R curves help the QP compute so much
more optimal filter thresholds that the overall energy usage is generally lower for QoS.

We tried different cases of varying parameters such as those mentioned in the accuracy experiments. The
resulting performance graph varies depending on the case, but all the results consistently show that QoS per-
forms better than Filter. This is a very encouraging result, considering that QoS carries the inherent overhead
3 We set Lmin lower than 11,200, used in the accuracy experiments, because it increases the optimization search space. A larger search
space allows us to see the effect of using different objective functions more clearly.

 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d
ag

gr
eg

at
io

n
er

ro
r

bo
un

d

Lifetime achieved (sec)

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(a) Melb-max

 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d
ag

gr
eg

at
io

n
er

ro
r

bo
un

d

Lifetime achieved (sec)

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(b) Melb-min

 0

 2

 4

 6

 8

 10

 10000 10200 10400 10600 10800 11000 11200 11400 11600

A
ch

ie
ve

d
ag

gr
eg

at
io

n
er

ro
r

bo
un

d

Lifetime achieved (sec)

h(L,E) = -E
h(L,E) = L

h(L,E) = 0.01L - E

(c) Fisher

Fig. 10. Optimization computations with different objective functions.

2142 Z. He et al. / Information Sciences 178 (2008) 2128–2149
of sending data (i.e., T–R curves, optimized filter thresholds) at each update interval. In Filter, there is no data
sent between RPs and the QP (or the sink) at all, except for an instruction from the QP to selected RPs to
expand their filter thresholds during the filter adjustment. These results show that, in QoS, the benefit of using
T–R curves to compute optimal filter thresholds outweighs the overhead.

We now present other experiments comparing QoS with Filter and discuss our observations on the results.
Fig. 11 shows the result for varying error bound. In both methods, the lifetime increases as the error bound

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Error bound

Filter
QoS

(a) Melb-max

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Error bound

Filter
QoS

(b) Melb-min

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Error bound

Filter
QoS

(c) Fisher

Fig. 11. Achieved lifetime for varying error bound.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2143
increases, which is obvious. The performance of the two methods is very similar for all the error bound values
and for all three data sets.

Fig. 12 shows the results of varying the update interval. The update interval is the interval between opti-
mization computations in QoS and the interval between filter threshold expansions in Filter. This figure shows
that QoS begins to outperform Filter as the update interval increases. This is due to the fact that, in QoS, a
larger update interval leads to less frequent sending of T–R curves, hence longer lifetime, but in Filter, this

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 200 300 400 500

Li
fe

tim
e

ac
hi

ev
ed

 (
se

c)

Update Interval (sec)

Filter
QoS

(a) Melb-max

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 200 300 400 500

Li
fe

tim
e

ac
hi

ev
ed

 (
se

c)

Update Interval (sec)

Filter
QoS

(b) Melb-min

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 200 300 400 500

Li
fe

tim
e

ac
hi

ev
ed

 (
se

c)

Update Interval (sec)

Filter
QoS

(c) Fisher

Fig. 12. Achieved lifetime for varying update interval.

2144 Z. He et al. / Information Sciences 178 (2008) 2128–2149
does not apply since Filter does not send T–R curves. It is true that, in Filter, a larger update interval also
leads to less frequent sending of an instruction for the filter threshold expansion. However, the resulting
increase of achieved lifetime is very small compared with that in QoS. This is because, as mentioned above,
there is no data (except for the small amount of instruction) sent by the sink during the update interval in
Filter.

Fig. 13 shows the results of varying sensor field area. This figure shows that the lifetimes of both methods
decrease as the area increases. This is obvious, since the average distance between nodes increases as the area

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2145
increases. Sending data across a longer distance increases the frequency of data retransmission and, conse-
quently, the nodes on average consume more battery power.

Fig. 14 shows the results of varying the number of clusters (among the 50 nodes). This figure shows that
QoS outperforms Filter when the number of clusters is smaller than 10, but performs approximately the same
for a larger number of clusters. This can be explained as follows: when the number of clusters is large, the size
of each cluster is small, since the number of nodes is fixed. A smaller cluster means each node acts as the
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Area (1000 m2)

Filter
QoS

(a) Melb-max

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Area (1000 m2)

Filter
QoS

(b) Melb-min

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Area (1000 m2)

Filter
QoS

(c) Fisher

Fig. 13. Achieved lifetime for varying sensor field area.

2146 Z. He et al. / Information Sciences 178 (2008) 2128–2149
cluster head for a longer duration. When a node acts as a cluster head, it sends the aggregated sample reading
to the sink at every sample interval. This is the main cause of energy consumption for cluster heads. Since both
methods do the same thing for this part of the normal mode, their performances are approximately the same
when the number of clusters is large.
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Number of clusters

Filter
QoS

(a) Melb-max

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Number of clusters

Filter
QoS

(b) Melb-min

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

Li
fe

tim
e

ac
he

iv
ed

 (
se

c)

Number of clusters

Filter
QoS

(c) Fisher

Fig. 14. Achieved lifetime for varying number of clusters.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2147
6. Conclusion

Allowing users to specify QoS goals relieves them from the unrealistic expectation of knowing a priori the
lifetime of the sensor network for a given error tolerance. To achieve user-provided QoS goals, we translated
the problem into a mathematical programming formulation. The formulation used in this paper is generic, so
it can be customized for different factors such as different network routing models, different configurations for
aggregation hierarchy, and so on.

To demonstrate the feasibility of our approach, we instantiated it for a particular system setup and pro-
vided concrete mathematical formulations and algorithms for solving the problem. To demonstrate the high
accuracy, high flexibility, and low overhead of our solution, we conducted extensive experiments using real
data sets on a simulator.

In this paper, we showed the algorithms for SUM only, but other aggregation functions such as COUNT,
AVG, MIN and MAX can be supported by modifying the appropriate parts of the optimization equations.
We leave this as the future work. Further future work will be to build a probabilistic model into our optimi-
zation equations to model varying probability of packet loss and unexpected sensor deaths.

Acknowledgements

We thank the Sensor Networks Work Study Group members at the University of Vermont for their com-
ments on our work. We also thank the anonymous reviewers for their invaluable comments on the original
manuscript and thank the Editor-in-Chief Professor Pedrycz for guiding us to improve the linguistic quality
of the manuscript. This research has been partly supported by the National Science Foundation under Grant
No. IIS-0415023. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Appendix A. Derivations of g and wik

Here we derive the function gðL; iÞ and the weight wik in the system-induced constraints expressed as Eq. (3)
of Section 4.3. Tables 2 and 3 respectively show the constants and variables used in the derivation. We assume
sensors within a cluster are numbered, and refer to the ith sensor as ‘‘sensor i.” Additionally, we make the
following assumptions on the cluster-based routing. First, given the assumption of synchronized sensor read-
ings (i.e., sampling), we assume that time duration is measured as sampling ticks, i.e., the number of readings
made. Second, as all sensors are equally likely to be selected as a cluster head, we assume that all the sensors in
the same cluster take turns to be selected once and only once in each round of turns.

Given these assumptions, for each sensor i in the network lasting lifetime L, Ri (i.e., the fraction of the read-
ings sent by the sensor) is expressed as follows:
Table
Consta

Symbo

Bi

Bsi

Brik

CðiÞ
Di

Ni

P i

Ohi

Oni
Ri ¼
Bi � BhiðLÞ � BniðLÞ

Bsi L
ð6Þ
2
nts used to derive the expressions of gðL; iÞ and wik in Eq. (3)

l Description

Battery power currently left in sensor i

Average battery power consumed by sensor i to send one reading (to its cluster head)
Battery power consumed by sensor i to receive a reading from sensor k

Set of sensors in the same cluster as, but excluding, sensor i

Duration of a sensor i being a cluster head each time it is selected
Number of sensors in the cluster to which sensor i belongs
Duration for one round of turns of selecting a cluster head in the cluster to which sensor i belongs. (P i ¼ DiNi)
Overhead on a sensor i while being a cluster head during Di

Overhead on a sensor i while not being a cluster head during Di

Table 3
Variables used to derive the expressions of gðL; iÞ and wik in Eq. (3)

Symbol Description

Ri Fraction of the number of readings sent (to the cluster head) over the number of readings sampled by sensor i

L Lifetime of the sensor network, measured as the number of sampling ticks
Rik Fraction of readings sent to sensor i by sensor k that belongs to cluster Cði)
Bhi ðLÞ Battery power consumed by a sensor i while being a cluster head in a network lasting lifetime L

Bni ðLÞ Battery power consumed by a sensor i while not being a cluster head in a network lasting lifetime L

2148 Z. He et al. / Information Sciences 178 (2008) 2128–2149
The reasoning behind this equation is as follows: the numerator is the battery power that would remain avail-
able for sensor i to send readings after consuming the battery power BhiðLÞ while being a cluster head and the
battery power (BniðLÞ) while not being a cluster head. Here, the latter is due to an overhead inherent in a sen-
sor, even when no reading is sent or received. Then, the numerator divided by Bsi is the number of readings
sent (to a cluster head) during the lifetime. (Note that, while a sensor is a cluster head, its readings are not sent
to a cluster head (i.e., itself) and, therefore, Bsi is the average power consumed per sending.) Since time dura-
tion is measured as sampling ticks, L is the total number of samples that would be taken during the lifetime
(clock time) of the sensor network. Hence, further dividing the result (of division by Bsi) by L results in the
fraction Ri during the lifetime.

Next, the two variables in Eq. (6), BhiðLÞ and BniðLÞ, are expressed as:
BhiðLÞ ¼
L
P i

Di

X
k2CðiÞ

RikBrik

 !
þ Ohi

 !
ð7Þ

BniðLÞ ¼
ðN i � 1ÞL

P i
Oni ð8Þ
The reasoning behind Eq. (7) is as follows: during the time sensor i is the cluster head, for each sensor k in the
cluster CðiÞ, the fraction of readings sent to sensor i is Rik (see Section 4.3). Thus, the number of readings re-
ceived by sensor i from sensor k each time it is a cluster head is DiRik, and the battery power consumed by
sensor i to receive that many readings is DiRikBrik . Considering all sensors in CðiÞ, we sum the above term
for all k 2 CðiÞ. Then, we add the overhead of being a cluster head Ohi and multiply the result by the number
of times sensor i is a cluster head, i.e., the number of the rounds of cluster head turns (L=P i). The reasoning
behind Eq. (8) is as follows: sensor i is not selected as a cluster head Ni � 1 times during P i (for one round of
turns). Since there are L=P i rounds of turns during the sensor networks’ lifetime L, the number of times sensor
i is not a cluster head during L equals ðNi � 1ÞL=P i. By multiplying this to the overhead Oni , we obtain Eq. (8).

Now, by substituting Eqs. (7) and (8) into Eq. (6), we obtain the following expressions for gðL; iÞ and wik.
gðL; iÞ ¼ Bi

Bsi L
� Ohi

Bsi P i
� ðN i � 1ÞOni

Bsi P i
ð9Þ

wik ¼
Brik

Bsi N i
ð10Þ
References

[1] A. Amis, R. Prakash, T. Vuong, D. Huynh, Max–min d-cluster formation in wireless ad hoc networks, in: Proceedings of IEEE
Conference on Computer Communications (INFOCOM), 2002, pp. 32–41.

[2] A.D. Amis, R. Prakash, Load-balancing clusters in wireless ad hoc networks, in: Proceedings of IEEE Symposium on Application-
Specific Systems and Software Engineering Technology (ASSET), 2000, p. 25.

[3] S. Bandyopadhyay, E.J. Coyle, An energy efficient hierarchical clustering algorithm for wireless sensor networks, in: Proceedings of
IEEE Conference on Computer Communications (INFOCOM), 2003, pp. 1713–1723.

[4] M. Chatterjee, S.K. Das, D. Turgut, WCA: A weighted clustering algorithm for mobile ad hoc networks, Cluster Computing 5 (2)
(2002) 193–204.

[5] G. Chen, J. Branch, M. Pflug, L. Zhu, B. Szymanski, Advances in Pervasive Computing and Networking, Springer, 2005.

Z. He et al. / Information Sciences 178 (2008) 2128–2149 2149
[6] J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation techniques for sensor databases, in: Proceedings of IEEE
International Conference on Data Engineering (ICDE), 2004, pp. 449–460.

[7] A. Deligiannakis, Y. Kotidis, N. Roussopoulos, Hierarchical in-network data aggregation with quality guarantees, in: Proceedings of
International Conference on Extending Database Technology (EDBT), 2004, pp. 658–675.

[8] K.-W. Fan, S. Liu, P. Sinha, Structure-free data aggregation in sensor networks, IEEE Transactions on Mobile Computing 6 (8)
(2007) 929–942.

[9] M.J. Handy, M. Hasse, D. Timmermann, Low energy adaptive clustering hierarchy with deterministic cluster-head selection, in:
Proceedings of International Workshop on Mobile and Wireless Communications Network (MWCN), 2002, pp. 368–372.

[10] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks,
in: Proceedings of Hawaii International Conference on System Sciences (HICSS), 2000, p. 8020.

[11] K.W. Hipel, A.I. McLeod, Time Series Modelling of Water Resources and Environmental Systems, Elsevier, 1994.
[12] K. Kalakis, V. Puttagunta, P. Namjoshi, Accuracy vs. lifetime: Linear sketches for approximate aggregate range queries in sensor

networks, Technical Report 4, Computer Science and Electrical Engineering Department, University of Maryland, Baltimore County,
2004.

[13] K. Kalpakis, K. Dasgupta, P. Namjoshi, Maximum lifetime data gathering and aggregation in wireless sensor networks, in:
Proceedings of IEEE Conference on Networks (ICN), 2002, pp. 685–696.

[14] S. Madden, M.J. Franklin, J.M. Hellerstein, TAG: a tiny aggregation service for ad-hoc sensor networks, in: Proceedings of
Symposium on Operating Systems Design and Implementation (OSDI), 2002, pp. 131–146.

[15] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TinyDB: an acquisitional query processing system for sensor networks, ACM
Transactions on Database Systems 30 (1) (2005) 122–173.

[16] A. Manjhi, S. Nath, P.B. Gibbons, Tributaries and deltas: efficient and robust aggregation in sensor network streams, in: Proceedings
of ACM SIGMOD International Conference on Management of Data (SIGMOD), 2005, pp. 287–298.

[17] A.B. McDonald, T. Znati, A mobility based framework for adaptive clustering wireless ad-hoc networks, IEEE Journal on Selected
Areas in Communications 17 (8) (1999) 1466–1487.

[18] S. Nath, P.B. Gibbons, S. Seshan, Z.R. Anderson, Synopsis diffusion for robust aggrgation in sensor networks, in: Proceedings of
ACM Conference on Embedded Networked Sensor Systems (SenSys), 2004, pp. 250–262.

[19] C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries over distributed data streams, in: Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2003, pp. 563–574.

[20] Q. Ren, Q. Liang, Energy and quality aware query processing in wireless sensor database systems, Information Sciences 177 (10)
(2007) 2188–2205.

[21] M.A. Sharaf, J. Beaver, A. Labrinidis, P.K. Chrysanthis, Balancing energy efficiency and quality of aggregate data in sensor networks,
VLDB Journal 13 (4) (2004) 384–403.

[22] M. Sharifzadeh, C. Shahabi, Supporting spatial aggregation in sensor network databases, in: Proceedings of ACM International
Symposium on Advances in Geographic Information Systems (ACM-GIS), 2004, pp. 166–175.

[23] H.O. Tan, I. Korpeoglu, Power efficient data gathering and aggregation in wireless sensor networks, SIGMOD Record 32 (4) (2003)
66–71.

[24] Y. Yao, J. Gherke, Query processing for sensor networks, in: Proceedings of International Conference on Innovative Databse
Systems Research (CIDR), 2003, p. 21.

[25] M. Younis, M. Youssef, K. Arisha, Energy-aware routing in cluster-based sensor networks, in: Proceedings of IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS), 2002, pp. 129–136.

[26] O. Younis, S. Fahmy, Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach, in: Proceedings of IEEE
Conference on Computer Communications (INFOCOM), page 13_5, 2004.

[27] J. Zh, S. Papavassiliou, J. Yang, Adaptive localized qos-constrained data aggregation and processing in distributed sensor networks,
IEEE Transactions on Parallel and Distributed Systems 19 (9) (2006) 923–933.

[28] J. Zhu, S. Papavassiliou, S. Kafetzoglou, J. Yang. An efficient QoS-constrained data aggregation and processing approach in
distributed wireless sensor networks, in: Proceedings of IEEE Symposium on Computers and Communications (ISCC), 2006, pp.
257–262.

[29] J. Zhu, S. Papavassiliou, S. Kafetzoglou, J. Yang. On the modeling of data aggregation and report delivery in QoS-constrained sensor
networks, in: Proceedings of IEEE Pervasive Computing and Communications Workshops (PerCom), 2006, pp. 347–351.

	Aggregation in sensor networks with a user-provided quality of service goal
	Introduction
	Related work
	Aggregation protocols
	An overview
	Update mode protocol
	Generic protocol algorithms

	Algorithm instantiation
	Setup for the instantiation
	Instantiation of Generate_TR_curve
	Instantiation of Compute_T

	Performance evaluations
	Simulation setup
	Algorithm setup
	Data sets
	Experiments and the results
	Accuracy of the optimization computations
	Flexibility of the optimization computations
	Comparison with other methods

	Conclusion
	Acknowledgements
	Derivations of g and {w}_{ik}
	References

