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Abstract. Reservoir sampling is a well-known technique for random
sampling over data streams. In many streaming applications, however,
an input stream may be naturally heterogeneous, i.e., composed of sub-
streams whose statistical properties may also vary considerably. For this
class of applications, the conventional reservoir sampling technique does
not guarantee a statistically sufficient number of tuples from each sub-
stream to be included in the reservoir, and this can cause a damage on
the statistical quality of the sample. In this paper, we deal with this
heterogeneity problem by stratifying the reservoir sample among the un-
derlying sub-streams. We particularly consider situations in which the
stratified reservoir sample is needed to obtain reliable estimates at the
level of either the entire data stream or individual sub-streams. The first
challenge in this stratification is to achieve an optimal allocation of a
fixed-size reservoir to individual sub-streams. The second challenge is to
adaptively adjust the allocation as sub-streams appear in, or disappear
from, the input stream and as their statistical properties change over
time. We present a stratified reservoir sampling algorithm designed to
meet these challenges, and demonstrate through experiments the supe-
rior sample quality and the adaptivity of the algorithm.

1 Introduction

Sampling is the process of selecting some members of a population for the pur-
pose of deriving estimates of the population using only the selected members [10]
[14]. The basic sampling scheme is random sampling in which each member of
the population has an identical chance of being in the sample. Random sampling
usually generates consistent and unbiased estimates of the original population,
and it has been used in a wide range of application domains such as approximate
query processing (e.g., [23]) and data stream processing (e.g., [20]).

For applications in which data are available in the form of an incoming stream,
sampling has two major challenges. First, the size of the data stream is usually
unknown a priori and, therefore, it is not possible to predetermine the sample
fraction (or sampling rate) before the sampling starts. Second, in most cases the
data arriving in a stream cannot be stored and, therefore, have to be processed
sequentially in a single pass. A technique commonly used to overcome these
challenges is the reservoir sampling [15] [22], which selects a random sample of
a fixed size without replacement from a stream of an unknown size.
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Table 1. Mean and standard deviation of bidding amount of two FCC auctions [2]

Auction Item Mean Std dev
FCC 700 MHz Guard Band 73964.29 24591.07
FCC Analog TV Stations 263800.00 39115.21

For many streaming applications, however, we make two key observations.
First, an input stream may be composed of sub-streams that correspond to
different groups whose statistical properties, specifically mean and variance, may
vary significantly. We refer to this class of data streams as heterogeneous data
streams. Second, the application may naturally demand using a sample to derive
estimates at the level of either the entire data stream or individual sub-streams.

Consider, for example, the application of the Federal Communications Com-
mission (FCC) auction system [2] through which auctions for licenses of elec-
tromagnetic spectrum are conducted electronically over the Internet. In this
application, an auction data stream is composed of multiple sub-streams each of
which represents the biddings in a particular auction. Moreover, an auction data
stream can be heterogeneous, as the mean and the variance of bidding amounts
vary significantly from one auction to another depending on the type of an auc-
tion item (see Table 1). From the application standpoint, the scope of sampling
differs in two ways. On one hand, a sample of all bidding amounts can be used to
perform a set of analyses on the entire auction data stream, e.g., the median of
bidding amounts across all auctions. On the other hand, a sample of the bidding
amounts in individual auctions can be utilized to generate the estimate for each
individual auction, e.g., the median of bidding amounts in each auction.

For such applications with heterogeneous data streams, the conventional reser-
voir sampling technique does not guarantee a statistically sufficient number of
tuples to be included in the reservoir for every sub-stream. The inevitable conse-
quence of this is a damage to the statistical quality of the sample. Furthermore,
the technique is only used for the purpose of maintaining one random sample of
a fixed size from all tuples seen so far in an input stream. Therefore, it is not
suitable when multiple random sub-samples are needed to obtain the estimates
of individual sub-streams. In other words, it is not appropriate for the purpose
of producing a sub-sample stored in a sub-reservoir for each sub-stream.

The research literature addresses an analogous heterogeneity problem in the
context of database systems through stratified sampling [9] [13]. In this sampling
scheme [10], a population is initially clustered into homogenous disjoint strata.
Then, a sample is taken randomly from each stratum. Stratified sampling is
particularly preferred if the statistical properties of strata vary considerably [14].
Statistical properties are typically mean and variance or, equivalently, coefficient
of variation (CV) which is the ratio of the standard deviation to the mean.

In no existing work, however, data stream has been the target of a stratified
sampling algorithm. When applied to data streams, stratified sampling inherits
the challenges of random sampling over a data stream and poses the follow-
ing additional challenges. First, usually neither the number of sub-streams nor
their statistical properties are known in advance. Thus, it is not possible to
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optimally allocate a stratified sample to sub-streams prior to sampling. Second,
the membership of a data stream and the statistical properties of the member
sub-streams may change over time. Hence, the allocation should have the ability
to adapt to these changes.

In this paper, we address the problem of maintaining a stratified reservoir
sample over heterogeneous data streams for applications that demand reliable
estimates at the level of either the entire data stream or individual sub-streams.
There are two specific problems to be solved. The first one is to allocate a given
fixed-size reservoir optimally among sub-streams, and the second one is to adjust
the allocation as new sub-streams appear or existing sub-streams disappear (e.g.,
due to punctuation) or their statistical properties change over time.

To solve the allocation problem, we adopt a statistical method known as the
power allocation [6]. By controlling what is called the power parameter, this
method allows to allocate a given sample size optimally [6] when the estimates
are required from the data stream or from the individual sub-streams. To adapt
to changes in data stream membership and sub-streams statistical properties,
uniformity of the sample of each sub-stream should be maintained as the cor-
responding sample size changes over time. For this we use a simple variation of
the adaptive-size reservoir sampling technique (from our prior work) [5], which
maintains the uniformity of a reservoir sample with a required degree of confi-
dence after the reservoir size is adjusted in the middle of sampling.

Two sets of experiments have been conducted using synthetic and real datasets.
In the first set of experiments, we compare the stratified and the conventional
reservoir sampling algorithms with respect to the sample quality – specifically,
sample accuracy and sample precision1 – for different number of input sub-
streams and for varying degree of heterogeneity among the sub-streams. The
results of this experiment show that the stratified algorithm outperforms the
conventional algorithm by nearly an order of magnitude in both sample quality
metrics. In the second set of experiments, we examine how adaptively the strat-
ified reservoir sampling algorithm adjusts the allocation of the fixed reservoir
sample size. The results of this experiment show the stratified reservoir sampling
quickly adjusting the sub-sample sizes when the CV s of the member sub-streams
change and when a new sub-stream appears or an exiting sub-stream expires.

Main contributions of this paper can be summarized as follows.

– It identifies and motivates the problem of stratified reservoir sampling over
heterogeneous data streams.

– It presents an algorithm for maintaining a stratified reservoir sample over
a heterogeneous data stream when the sample is used to obtain either one
estimate from the whole stream or multiple estimates from the sub-streams.

– It empirically shows the superiority of the proposed algorithm (with respect
to the precision and accuracy of the sample) and demonstrates its adaptivity.

1 Sample accuracy is the degree of closeness of the estimate to its true value. Sample
precision is the degree to which the estimates from different samples taken from the
same data set vary from one another.
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The rest of the paper is organized as follows. Section 2 gives an overview of
the reservoir sampling and stratified sampling techniques. Section 3 formulates
the research problem and presents the proposed stratified sampling algorithm.
Section 4 presents and discusses the experiment results. Section 5 reviews related
work. Section 6 concludes this paper and suggests future work.

2 Background

This section provides backgrounds on reservoir sampling and stratified sampling.

2.1 Reservoir Sampling

Reservoir sampling [15] [22] is a technique for selecting a uniform random sample
of a fixed size without replacement from an input stream of an unknown size.
Initially, the algorithm (see Algorithm 1) places all tuples in a reservoir r until
the reservoir (of the size of |r| tuples) becomes full. After that, each kth tuple is
accepted for inclusion in the reservoir with the probability of |r|

k and an accepted
tuple replaces a randomly selected tuple in the reservoir.

Algorithm 1. Conventional Reservoir Sampling (CRS)
Require: |r| // size of a reservoir r
1: k = 0
2: for each tuple arriving from the input stream do
3: k = k + 1
4: if k ≤ |r| then
5: add the tuple to the reservoir
6: else
7: decide with the probability |r|

k whether to accept the tuple

8: if the tuples is accepted then
9: replace a randomly selected tuple in the reservoir with the accepted tuple
10: end if
11: end if
12: end for

Reservoir sampling guarantees that a reservoir always holds a uniform sample
of the k tuples seen so far [15]. After the kth tuple arrives, each of the k tuples
has the equal probability |r|

k to be included in the reservoir. That is, each of the(
k
|r|

)
different possible samples has the same probability 1

( k
|r|)

to represent r.

2.2 Stratified Sampling

Stratified sampling [10] [14] is a sampling scheme in which a heterogeneous pop-
ulation R is initially clustered into n disjoint homogeneous strata, R1, R2, ...,
Ri, ..., Rn, and then a sample ri is taken randomly from each stratum Ri. Every
member of R should belong to one and only one stratum (i.e., Ri ∩ Rj = φ
(i �= j) and R1 ∪ R2 ∪ ... ∪ Ri ∪ ... ∪ Rn = R). A stratified sample of a given
size is expected to have higher statistical precision (i.e., lower sampling error)
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than a random sample of the same size taken from the same population when
the statistical properties (i.e., mean and variance) of strata vary considerably.

Allocating a given sample size |r| to different strata is a fundamental issue in
stratified sampling. Obviously, the allocation is under the constraint on the the
sum of the sub-sample sizes assigned to individual strata, |r1|, |r2|, ..., |rn|:

n∑

i=1

|ri| ≤ |r| (1)

There are two allocation methods commonly used for a stratified sample, the
proportional allocation [14] and the Neyman allocation [14]. Under the propor-
tional allocation, the sample size of each stratum is determined in proportion to
the size of the stratum:

|ri| = |r| × |Ri|
|R| (2)

where R denotes the whole population, Ri denotes a stratum, and |R| and |Ri|
denote the sizes of R and Ri, respectively. Under the Neyman allocation, the
sample size of each stratum is determined in proportion to the standard deviation
as well as the size of the stratum:

|ri| = |r| × σi × |Ri|∑n
j=1 σj × |Rj | (3)

where σi denotes the standard deviation of Ri.

3 Stratified Reservoir Sampling

The proposed stratified reservoir sampling algorithm is described in this sec-
tion. As mentioned in Section 1, there are two technical issues to resolve in the
proposed algorithm: (1) determining the optimal sizes of sub-samples for each
sub-stream, and (2) maintaining the uniformity of sub-samples as their sizes
change. In this section, we first formulate the problem formally in Section 3.1
and discuss our approaches to the two technical issues in Sections 3.2 and 3.3
and then summarize them into one algorithm in Section 3.4.

3.1 Problem Formulation

The problem of allocating a fixed-size reservoir to sub-streams is an adaptive
optimization problem formulated as follows. An input data stream S consists of
n sub-streams S1, S2, ..., Sn. Each sub-stream Si (i = 1, 2, ..., n) is a sequence of
tuples si1 , si2 , ... such that Si∩Sj= φ (i �= j) and ∪Si = S. Given a total available
size of |r| tuples in a reservoir r, the objective is to allocate |r| optimally among
the n sub-streams subject to the following constraint at any point in time t:

n∑

i=1

|ri(t)| ≤ |r| (4)

where ri(t) denotes the sample allocated for Si at time point t and |ri(t)| denotes
its size. The optimality criterion is the sample quality, and there is some minor
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Fig. 1. An illustration of stratified reservoir sampling

difference in the specific criteria depending on which purpose (i.e., one whole
sample or individual sub-samples) the sample is used for (details in Section 3.2).

Figure 1 illustrates the processing of stratified reservoir sampling. It shows
that the sizes of sub-samples r1, r2, and r3 have respectively decreased, increased,
and decreased from t1 to t2 while the same total sample size remains the same.

3.2 Optimal Stratified-Reservoir Allocation

For the flexible aim of generating estimates from the whole sample or from sepa-
rate sub-samples, the commonly used Neyman allocation is not adequate enough
since it is geared for the former case only. To overcome this limit, we adopt an-
other statistical method, known as power allocation, [6]. The power allocation
method provides a way to allocate the sample to different strata whether the
sample is used to generate a single estimate for the underlying population as a
whole or multiple estimates separately for each of the underlying strata. This
flexibility is enabled by a control parameter called the power of allocation.

Formally, the size of a sample, |ri|, assigned to a stratum Ri is computed as

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)q)
/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)q)
/

( ∑ |Rk|
j=1 ykj

|Rk|

) (5)

where yij denotes the sampling attribute value of the jth member in Ri, σi

denotes the standard deviation of the sampling attribute values in Ri, and q
denotes the power of allocation.

When the stratified sample is used of the entire population, power allocation
aims to minimize the sampling variance of the estimator of the whole stratified
sample, where the sampling variance is formulated as

n∑

i=1

σi × |Ri| × (|Ri| − |ri|)
|ri| (6)

In this case, it achieves an optimal allocation by setting the power value to 1.
Note that this results in the exact Neyman allocation, that is

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)1
)

/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)1
)

/

( ∑ |Rk|
j=1 ykj

|Rk|

) = |r| × σi × |Ri|∑n
k=1 σk × |Rk| (7)
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When the stratified sample is used at the level of individual strata, Neyman
allocation may cause the sampling variances of some strata to be larger than
those achievable by considering strata individually. Power allocation’s remedy
for this deficiency is to allocate sub-sample sizes in proportion to CV of each
stratum, which is achieved by setting the power to 0. In this case,

|ri| = |r| ×
σi ×

((∑|Ri|
j=1 yij

)0
)

/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk ×

((∑|Rk|
j=1 ykj

)0
)

/

( ∑ |Rk|
j=1 ykj

|Rk|

) = |r| ×
σi/

( ∑ |Ri|
j=1 yij

|Ri|

)

∑n
k=1 σk/

( ∑ |Rk|
j=1 ykj

|Rk|

)

(8)

Applying this power allocation to data stream gives the following formula for
determining sub-sample sizes at any point in time t.

|ri(t)| = |r| ×
σi(t) ×

((∑|Si(t)|
j=1 yij

)q)
/

( ∑ |Si(t)|
j=1 yij

|Si(t)|

)

∑n
k=1 σk(t) ×

((∑|Sk(t)|
j=1 ykj

)q)
/

( ∑ |Sk(t)|
j=1 ykj

|Sk(t)|

) (9)

where |ri(t)| denotes the size of a sub-sample allocated for a sub-stream Si at
time point t, σi(t) denotes the running standard deviation2 of the sampling
attribute values in Si up to t, and |Si(t)| denotes the number of tuples processed
up to t from Si.

3.3 Maintaining Sample Uniformity

As mentioned in Section 1, we use the adaptive-size reservoir sampling algorithm
(ARS) [5] (see Algorithm 2) to maintain the uniformity of each sub-sample as
its size decreases or increases as a result of optimal allocation.

ARS is based on the concept of uniformity confidence (UC), which refers to
the probability that a sampling algorithm generates a uniform random sample
after the sample size changes in the middle of sampling. A theoretical study in
[5] concludes that if the reservoir size decreases, the sample uniformity can be
maintained in the reduced reservoir with 100% confidence by randomly evicting
tuples from the original reservoir.

In contrast, if the reservoir size increases, it is not possible to attain 100%
confidence in the enlarged reservoir. It is possible, however, to ensure the uni-
formity confidence above a given threshold. The steps are as follows. First, ARS
finds the minimum number of incoming tuples that should be considered to refill
the enlarged reservoir such that the resulting uniformity confidence exceeds the
given threshold (Equation 10). Then, it decides probabilistically on the number
of tuples to retain in the enlarged reservoir and randomly evicts the remaining

2 Running standard deviation is required for the calculations in the power allocation
method. For this, we use an efficient recurrence relation [21], known as the updating
method, that is capable of calculating the standard deviation in a single scan of the
data and providing precise calculation even when the data values are relatively large.
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number of tuples (Equation 11). Eventually, it fills the room available in the
enlarged reservoir from the incoming tuples.

UC(k, |r|, δ, m) =

∑|r|
x=max {0,(|r|+δ)−m}

(
k
x

)(
m

|r|+δ−x

)

(
k+m
|r|+δ

) × 100 (10)

p(x) =

(
k
x

)(
m

|r|+δ−x

)

(
k+m
|r|+δ

) (11)

In this paper, we use a simple variation of ARS in which the number of incoming
tuples required to refill an enlarged reservoir is computed as3

m =
δ × k

|r| (12)

Algorithm 2. Adaptive-size Reservoir Sampling (ARS)
Require: |r| // size of a reservoir r

k // number of tuples seen so far
ζ // uniformity confidence threshold

1: while true do
2: while the reservoir size |r| does not change do
3: continue sampling using CRS (Algorithm 1)
4: end while
5: if reservoir size is decreased by δ then
6: randomly evicts δ tuples from the reservoir
7: else
8: // i.e., reservoir size is increased by δ
9: find the minimum value of m (Equation 10) such that UC >= ζ

10: flip a biased coin to decide on x, the number of tuples to retain in the reservoir (Equa-
tion 11)

11: randomly evict |r| − x tuples from the reservoir
12: select δ + |r| − x tuples from the incoming m tuples using CRS (Algorithm 1)
13: end if
14: end while

3.4 Stratified Reservoir Sampling Algorithm

Based on the discussions above, our stratified reservoir sampling algorithm works
as shown in Algorithm 3. In this algorithm, the input stream S is treated as a set
of sub-streams S1, S2, etc, and ALGi refers to the sampling algorithm currently
in use for the sub-stream Si.

In the initialization phase of the algorithm (Lines 1-15), the first |r| tuples
in a data stream S are added to the reservoir while the running statistics of
sub-streams are being updated (Lines 3-4). The sampling starts using CRS for
all new sub-streams (Lines 5-8) and, once the reservoir becomes full, the size
of a sub-reservoir is initialized in proportion to the number of tuple seen so far
from the corresponding sub-stream (Lines 13-15).

In the sampling phase (Lines 16-41), each time a new tuple s arrives from
a sub-stream Si, the algorithm decides to sample s using CRS if Si is a new
3 The rationale for computing the value of m in this way is a simple heuristic that,

since r has been filled from k tuples so far, the room for additional δ tuples should
be filled in proportion to k

|r| , that is, δ × k
|r| tuples. This heuristic facilitates the

use of the ARS by eliminating the need to conduct an expensive search to find the
optimum value of m using Equation 10, which is an inverse-mapping problem.
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Algorithm 3. Stratified Reservoir Sampling (SRS)
Require: |r| // size of a reservoir r

q // power of allocation
Δ // sample reallocation time interval

// *************** initialization phase***************
1: for each new tuple s arriving from a sub-stream Si do
2: if reservoir r is not full then
3: add s to r
4: update the running statistics of Si

5: if Si /∈ S // i.e., Si is a new sub-stream then
6: S = S U {Si}
7: ALGi = CRS // start sampling using CRS
8: end if
9: else

10: break // go to line 13
11: end if
12: end for
13: for each Si ∈ S do
14: |ri| = size(Si) // initialize sub-reservoir sizes
15: end for

// ***************** sampling phase*****************
16: while true do
17: for each new tuple s arriving from a sub-stream Si do
18: if Si /∈ S // i.e., Si is a new sub-stream then
19: S = S U {Si}
20: ALGi = CRS // start sampling using CRS
21: end if
22: sample s into the sub-reservoir ri using ALGi // either CRS or ARS
23: update the running statistics of Si

24: if the time interval Δ has passed then
25: break // go to line 28 to calculate sub-reservoir sizes
26: end if
27: end for
28: for each sample ri allocated to sub-stream Si do
29: if Si expires from S // e.g., due to a punctuation then
30: S = S - {Si}
31: |ri(t)| = 0
32: else
33: calculate |ri(t)| for Si using Equation 9 with the given value of q
34: if |ri(t)| has changed as a result then
35: ALGi = ARS (Algorithm 2)
36: else
37: ALGi = CRS (Algorithm 1)
38: end if
39: end if
40: end for
41: end while

sub-stream (Lines 18-21). Then, the algorithm samples s into ri using the cor-
responding sampling algorithm (i.e., either CRS or ARS) while updating its
running statistics (Lines 22-23 and 28-40). Periodically, the algorithm reallo-
cates the reservoir size optimally among sub-streams (Lines 24-26). Specifically,
if a sub-stream has expired from the input stream (e.g., due to the presence of
a punctuation), the memory of the sub-reservoir of that sub-stream is released
(Lines 29-31). Otherwise, the algorithm calculates the optimal sample size for
the sub-stream (Line 33). If the size of ri changes as a result, then the algorithm
switches over to ARS to continue sampling the incoming Si tuples (Lines 34-35).
Note that ARS quickly resumes CRS once the size adjustment is handled. If the
size of ri does not change, then the algorithm samples the incoming Si tuples
using CRS (Line 37).
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4 Performance Evaluation

We conduct two sets of experiments. The first set of experiments evaluates the
performance of the stratified reservoir sampling (SRS) algorithm against the
conventional reservoir sampling (CRS) algorithm with respect to the sample
quality. The second set demonstrates the adaptivity of the SRS to the changes
of data stream membership and the statistical characteristics of member sub-
streams. In this section, the design and setup of the experiments are described
in Section 4.1 and the results of the experiments are presented in Section 4.2.

4.1 Experiment Design and Setup

Intuitively, two factors affect the performances of algorithms over a data stream
consisting of multiple heterogeneous sub-streams: the number of sub-streams
and the degree of heterogeneity among the sub-streams. These two parameters
are thus used in the comparisons between SRS and CRS.

Performance Metrics. The two kinds of sample quality mentioned in Sec-
tion 1 are used to compare the performances of SRS and CRS: accuracy and
precision. Specifically, we use the error in estimated mean (EEM), the difference
between the mean value estimated from the sample and the actual mean value,
as the metric of sample accuracy. The estimated mean for a random sample is
calculated as

1

|r| ×
|r|∑

i=1

yi (13)

where yi denotes the value of the sampling attribute of the ith tuple in a sample r
[10]. Extended from it, the estimated mean for a stratified sample is calculated as

|n|∑

i=1

⎛

⎝ |Si|
|S| ×

⎛

⎝ 1

|ri|
|ri|∑

j=1

yij

⎞

⎠

⎞

⎠ (14)

where yij denotes the value of sampling attribute of the jth tuple in a sub-sample
ri [10].

On the other hand, we use the standard error (SE), a common statistical
quantification of the sample precision, as the metric of sample precision. The
SE is a measure of how precise the sample is; the larger the SE, the lower the
statistical precision of the sample is, and vice versa. The SE for a random sample
is computed as √((

1 −
( |r|
|S|

))
×

(
σ2

|S|
))

(15)

where σ2 denotes the variance of the entire sample [10]. Extended from it, the
SE for a stratified sample is computed as

1

|S| ×
√√
√
√

n∑

i=1

|Si|2 ×
(

1 − |ri|
|Si|

)
×

(
σi

2

|ri|
)

(16)

where σi
2 denotes the variance of the ith sub-sample [10].
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Datasets. Experiments are conducted using both synthetic and real datasets.
Synthetic datasets are used to examine the effect of the statistical characteristics
of an input data stream on the quality of the sample. Now, we describe the
process of synthetic dataset generation and outline the profile of the real datasets.

Synthetic Datasets. A synthetic data stream is generated bottom up, that is,
by first generating sub-streams and then combining them to form one stream.
The sampling attribute value in each sub-stream Si has the doubly-truncated
normal distribution [19], i.e., the normal distribution with bounded lower and
upper ends. Formally, if a random variable X � N(μ, σ) has the normal
distribution such that ∞ ≤ l ≤ X ≤ u ≤ ∞, then X is considered to have
a doubly-truncated normal distribution with the probability density function

pdf (x; μ, σ, l, u) =
1
σ
φ

(
x−μ

σ

)

Φ
(

u−μ
σ

) − Φ
(

l−μ
σ

) (17)

where φ(x) is the probability density function of the standard normal distribu-
tion, and Φ(x) is its cumulative distribution function [19]. This distribution is
used in many applications like inventory management and financial applications,
in which the values are naturally constrained within a certain bound [16].

The datasets are synthesized from a different number of sub-streams (n) and
with a varying degree of heterogeneity among the sub-streams (DH). DH is
defined as the ratio of the inter-sub-stream variability to the intra-sub-stream
variability. With the variability expressed in terms of CV [6], we define DH as
the ratio of the standard deviation among the CVs of sub-streams (σ[CV ]) to the
average of the CVs of sub-streams (μ[CV ]). With the doubly-truncated normal
distribution in place, we know that the standard deviation of the sampling at-
tribute values of a sub-stream Si is bounded by half the range of these values.
This means that each CVi is bounded within the range of 0 to 1. Consequently,
DH is also bounded within the range of 0 to 1.

Given the values of n and DH, the synthetic dataset generator works as follows.
First, it sets the value of μ[CV ] to 0.5 (note 0 <μ[CV ]≤ 1) and calculates the value
of σ[CV ] accordingly. Second, it generates n random numbers from a doubly-
truncated normal distribution with μ[CV ], σ[CV ], l[CV ] = μ[CV ] − σ[CV ], and
u[CV ] = μ[CV ] +σ[CV ]. The n random numbers generated correspond to the CVs
of the n sub-streams. Third, for Si, the synthetic dataset generator uses the
value of CVi to assign the values of μ[Si] and σ[Si] randomly such that σ[Si]

μ[Si]
=CVi.

Finally, the generator produces the values of Si from a doubly-truncated normal
distribution with μ[Si], σ[Si], li = μ[Si] − σ[Si], and ui = μ[Si] + σ[Si].

Figure 2 shows an example of different datasets with varying degree of het-
erogeneity. In this example, the number of sub-streams is 10 and the values
of DH are set to 30%, 50%, and 70%. When DH is relatively low (e.g., 30%
in Figure 2(a)), we see that most of the sub-streams have wide and similar
spreads of sampling attribute values. The wide spread of each sub-stream indi-
cates that the variability within each sub-stream is high, and the similar spreads
among sub-streams indicates that the variability across sub-streams is low. These
two combined indicate a low degree of heterogeneity in the entire stream. In
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(a) Degree of heterogeneity = 30%
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(b) Degree of heterogeneity = 50%
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(c) Degree of heterogeneity = 70%

Fig. 2. Scatter plots of synthetic datasets with different degrees of heterogeneity

contrast, when the DH is relatively high (e.g., 70% in Figure 2(c)), we see that
most sub-streams have narrow and dissimilar spreads of the sampling attribute
values. This is the converse of the Figure 2(a) case above, and thus indicates a
high degree of heterogeneity in the entire stream.

Real Datasets. Two kinds of real datasets are used, one (SENS) in the wireless
sensor networks application and one (AUCT) in the auction application.

– The SENS real dataset is weather measurements from sensors deployed
through the Intel Berkeley Research lab to gather time-stamped topology
information, along with humidity, temperature, light and voltage values [1].
SENS is a projection of this data on two attributes, sensor mote id and
temperature measurement acquired from 55 motes. (Data from three motes
have incomplete readings and thus have been discarded.). SENS is charac-
terized with a low degree of heterogeneity. The low degree of heterogeneity
among the temperature readings of different motes is due to the fact that
temperatures of nearby regions are expected to be close to each other.

– The AUCT real dataset is for auctions conducted over the Internet through
the Federal Communications Commission (FCC) [2]. The entire dataset con-
sists of 55 auction sub-datasets. Each sub-dataset contains bidding informa-
tion of one auction. We have merged the 55 auction sub-datasets into one
single dataset. The order of tuples in the resulting dataset is shuffled and
the resulting tuples are projected on two attributes, auction ID and bidding
amount. AUCT is characterized with a high degree of heterogeneity. The
high degree of heterogeneity of the bidding amounts is intuitive since the
bidding amounts can vary to a large extent depending on the auction item.

4.2 Experiment Results

Sample Quality. In this set of experiments, we compare sample accuracy and
precision between SRS and CRS. Given that SRS is meant to support both the
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case of using a sample to obtain the estimate of the entire data stream and
the case of using a sample to obtain the estimates of individual sub-streams,
experiments are done to report the results in both cases. We refer to the former
case as the whole-sample case and the latter case as the sub-sample case4.
In the sub-sample case, the results are reported as the average square value of
the sample quality metric used. The results of the experiments demonstrate that
in both cases SRS outperforms CRS in sample accuracy as well as precision by
nearly an order of magnitude.

Whole-sample Case. Figures 3(a) and 3(b) show the SRS accuracy against the
CRS accuracy using the synthetic datasets for different degree of heterogeneity
and for different number of sub-streams, respectively. Figure 3(a) shows that
the degree of heterogeneity has a major influence on the sample accuracy. For a
low degree of heterogeneity, (e.g., 10%), we observe that there is only a minor
improvement of SRS accuracy over CRS accuracy. The level of improvement,
however, increases as the degree of heterogeneity increases. For a high degree of
heterogeneity, (e.g., 70% or higher), we see that the SRS accuracy is higher than
the CRS accuracy by more than an order of magnitude. The reason for this is
that CRS does not consider any heterogeneity between sub-streams whereas SRS
does. On the other hand, Figure 3(b) shows that the performance improvement of
SRS over CRS is more or less constant regardless of the number of sub-streams.
This makes sense because the accuracy of CRS is not affected by the number
of sub-streams (Equation 13) and because the accuracy of SRS is primarily
influenced by the size and the values of sub-streams (Equation 14).

Figures 4(a) and 4(b) show similar results for the sample precision by demon-
strating that the degree of heterogeneity has dominant effect on the precision.

Figure 5 shows the results from using the real datasets AUCT and SENS. The
results are consistent with the results from using the synthetic datasets. The
figure shows that the improvement of SRS over CRS is higher for for the AUCT
dataset than SENS with regard to both sample accuracy and sample precision.
This is due to the higher degree of heterogeneity of the AUCT dataset.

Sub-sample Case. Figures 6 and 7 show the results for sub-sample accuracy
and sub-sample precision, respectively, using the synthetic dataset. These results
report the average square value of EEM (for accuracy) and SE (for precision) per
sub-sample. As we see in Figure 6(a), the sub-sample accuracy of SRS improves
over the accuracy of CRS linearly with the degree of heterogeneity. Likewise,
Figure 7(a) shows a similar trend for the sub-sample precision. From Figure 6(b)
and Figure 7(b) we observe that the number of sub-streams is irrelevant to the
performance of both SRS and CRS at the level of individual sub-samples.

The results from using the SENS and AUCT real datasets in Figure 8 are
similar to those in Figures 6 and 7.

SRS Adaptivity. In this set of experiments, we demonstrate the adaptivity of
the SRS by showing the change in the allocation of a stratified reservoir sample as
4 In the experiments, q is assigned the values of 1 and 0 for the whole-sample case

and the sub-sample case, respectively. (Recall Section 3.2).
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Fig. 3. Whole-Sample accuracy - synthetic datasets
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Fig. 4. Whole-Sample precision - synthetic datasets
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Fig. 5. Whole-Sample accuracy and precision - real datasets

a new sub-stream appears in, or an exiting sub-stream expires from, the input
stream (i.e., with respect to data stream membership) and as the statistical
properties of individual sub-streams change over time (i.e., with respect to sub-
streams’ stationariness). Results presented in this section show the change in
sub-reservoir sizes over time for five sub-streams synthetically generated and
for five sub-streams selected from the AUCT and SENS real datasets. (Only
five sub-streams are used for better visibility. Results for a larger number of
sub-streams look similar.)
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Fig. 6. Sub-Sample accuracy - synthetic datasets
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Fig. 7. Sub-Sample precision - synthetic datasets
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Fig. 8. Sub-Sample accuracy and precision - real datasets

Figure 9 shows the adaptivity of SRS from using synthetic datasets. When
DH is low (10%) (Figure 9(a)), the sub-reservoir sizes for the sub-streams are
relatively close to one another compared with the case of a higher DH (90%)
(Figure 9(b)). The observed influence of the DH on the closeness of the sub-
reservoir sizes is reasonable since the allocation of sub-reservoir size is subject
to the heterogeneity of the sub-streams.

Figures 9(a) and 9(b) also show that the sizes of sub-reservoirs change more
frequently in the early stages of sampling and less frequently as the sampling
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Fig. 9. SRS adaptivity - synthetic datasets

progresses. The frequent change in the early stages is attributed to the signif-
icance of the difference in the sub-streams running statistics. As the sampling
progresses, the change in a sub-stream statistics relative to the changes in the
statistics of other sub-streams becomes smaller and, therefore, does not cause so
much frequent changes in sub-reservoir sizes. This trend is in part due to the fact
that the underlying sub-streams are stationary in their statistical properties.

In order to conduct experiments to study the influence of data stream mem-
bership and non-stationariness, we modify the generation of synthetic datasets
as follows. For data stream membership, we make the sub-streams appear in
sequence. For non-stationariness, we periodically re-generate n random numbers
that correspond to the CVs of n sub-streams such that the overall DH among
them is preserved (recall Section 4.1).

Figure 9(c) shows that when a new sub-stream appears in a data stream,
the SRS adapts to this situation by releasing memory from the sub-reservoirs of
existing sub-streams and allocating the released memory to the sub-reservoirs of
the new sub-stream. Figure 9(d) shows that when the running statistics of some
sub-streams change over time, SRS decreases (or increases) the sizes of some
exiting sub-reservoirs and increases (or decreases) the sizes of other exiting sub-
reservoirs. A reduced sub-reservoir size may increase afterwards, and vice versa.
The frequency of the change in sub-reservoir sizes is relative to the frequency of
the change in the running statistics of sub-streams. (Figure 9(e) shows the case
of more frequent change in the running statistics compared to Figure 9(d)).
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Fig. 10. SRS adaptivity - real datasets

Figure 10(a) shows the change of sub-reservoir sizes using SENS real dataset.
This dataset represents the case in which sub-streams all exist from the begin-
ning of the input stream and their statistics remain stationary over time. In other
words, readings from different sensors scattered to collect temperature informa-
tion in a certain area are likely to be generated altogether from the time the
data collection begins. Besides, the change of temperature readings is expected
to be similar at any time of the day. Consequently, all sub-reservoir sizes show
little change over time.

Figure 10(b) shows the change of sub-reservoir sizes using AUCT real dataset.
This dataset represents the case in which sub-streams are added one after an-
other and their statistics change over time. Indeed, in auctions applications, it
is unlikely that all auctions (represented by sub-streams) start simultaneously;
they are expected to start one after another. Besides, the bidding amount of
an auction item naturally increases over time, making the statistics of an auc-
tion sub-stream non-stationary. As a consequence, we see significant changes of
sub-reservoir sizes over time.

Figure 10(c) further shows the adaptivity of SRS under the scenario of auc-
tions going open and then closed while sampling progresses. When a new auction
opens, memory has to be released from existing sub-reservoirs and allocated to
the sub-reservoir of the newly opened auction sub-stream (see the point marked
with ∗). When an auction closes from further bids (because the auction is forced
to close, the auction expires, the auction item is sold, etc.), the sub-reservoir size
of the closed auction sub-stream is released and allocated to the sub-reservoirs
of the sub-streams of auctions still open (see the point marked with +).

5 Related Work

Reservoir sampling technique was proposed by McLeod [15]. Vitter [22] improved
the algorithm’s performance through more optimization studies. Reservoir sam-
pling has been used in many database applications including clustering [12], data
warehousing [7], spatial data management [17], and approximate query process-
ing [23]. Besides the conventional reservoir algorithm, various reservoir-based
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sampling algorithms have been proposed in the research literature for various
applications. Examples of such algorithms include reservoir sampling with re-
placement (i.e., with duplicates being allowed in the sample) [18], sampling from
an evolving dataset (i.e., in the presence of insertions and deletions) [11], biased
reservoir sampling (i.e., to bias the sample over time using a given bias func-
tion) [4], and adaptive-size reservoir sampling [5] (i.e., to allow the reservoir size
to be adjusted in the middle of sampling). In contrast to the existing research
on reservoir sampling, our work addresses the problem of stratifying a reservoir
sample rather than maintaining a single reservoir sample.

Stratified sampling has been used for approximate query processing in database
systems [3] [8] [9] [13]. Congressional sampling [3] proposes to use stratified sam-
pling approach to solve the problem of providing accurate approximate answers
of a set of grouped aggregation queries using pre-computed biased samples of
the data. In [8], stratified sampling is used in the problem of identifying an ap-
propriate sample selection for answering aggregation queries approximately with
the goal of minimizing error in the query result under a given query workload.
A comprehensive study of the work proposed in [8] is presented in [9]. The work
in [13] solves the problem of using stratified sampling to calculate approximate
results of low selectivity aggregation queries. All this work pertains to databases,
which makes our work different in addressing stratified sampling for data streams.

6 Conclusion and Future Work

In this paper, we studied the problem of maintaining a stratified sample over data
streams which consist of multiple sub-streams with large statistical variations.
First, we discussed the motivation of this new research problem in real-world
applications. Second, we discussed an optimal allocation method of a fixed-size
reservoir, which can be used whether the sample is needed to generate estimates
of the whole data stream or the sub-streams on an individual basis. Third, we
presented a sampling algorithm which uses the proposed allocation method to
adjust the allocation of a stratified reservoir sample among sub-streams adap-
tively as sub-streams appear in, or disappear from, the input stream and as
their statistical properties change over time. Finally, through experiments, we
demonstrated the adaptivity of the proposed algorithm and its superiority over
the conventional reservoir sampling algorithm with regard to the sample quality.

Several issues are open for future work. One issue is to extend the proposed
algorithm to handle multi-variate sampling situation in which an input stream
has multiple sampling attributes and an estimate is needed from each sampling
attribute. In this situation, it may be required to compromise the allocation of
a stratified reservoir sample with respect to the target estimates. Another is to
explore the utility of the proposed algorithm in more real-world applications.
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