
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010
1

PAPER Special Section on Data Engineering

Temporal Coalescing on Window Extents over Data Streams

Mohammed AL-KATEB†a), Student Member, Sasi Sekhar KUNTA†b), and Byung Suk LEE†c), Nonmembers

SUMMARY This paper focuses on the coalescing operator applied to
the processing of continuous queries with temporal functions and predi-
cates over windowed data streams. Coalescing is a key operation enabling
the evaluation of interval predicates and functions on temporal tuples. Ap-
plying this operation for temporal query processing on windowed streams
brings the challenge of coalescing tuples in a window extenteach time the
window slides over the data stream. This coalescing becomeseven more
involving when some tuples arrive out of order. This paper distinguishes
between eager coalescing and lazy coalescing, the two knowncoalescing
schemes. The former coalesces tuples during window extent update and
the latter does it during window extent scan. With these two schemes, the
paper first presents algorithms for updating a window extentfor both tuple-
based and time-based windows. Then, the problem of optimally selecting
between eager and lazy coalescing for concurrent queries isformulated as a
0-1 integer programming problem. Through extensive performance study,
the two schemes are compared and the optimal selection is demonstrated.
key words: data streams, window extents, temporal coalescing

1. Introduction

Time is a very common aspect of real-world phenomena
and, indeed, numerous real-world applications are temporal
in nature. A large class of these applications deal with con-
tinuous, unbounded, high-volume data streams (e.g., Inter-
net traffic pattern study, stock ticker price monitoring, sensor
networks monitoring). Thus, methods for temporal process-
ing over data stream are important for those applications.

Existing work on temporal processing over data
streams includes temporal data stream mining (e.g., [1] [2]),
spatiotemporal data streams (e.g., [3] [4]), temporal aggre-
gate computation over data stream (e.g., [5] [6]), and tem-
poral event detection over data stream (e.g., [7] [8]).

Contrasted with the existing work, the area of our work
is the processing ofcontinuous queries with temporal func-
tions and predicates over windowed data streams. Queries
of this type are very useful in a wide range of stream appli-
cations. To the best of our knowledge, however, there has
been no study conducted specifically targeting such queries.

We provide below two examples of windowed tempo-
ral stream queries, considering a wireless sensor network
in which sensors are mounted with weather boards to col-
lect timestamped topology information along with humidity,
temperature, etc [9]. We further express the queries using
syntax borrowed from CQL [10] and TSQL [11].

Manuscript received May 23, 2010.
†Department of Computer Science, The University of Vermont

a) E-mail: malkateb@cs.uvm.edu
b) E-mail: skunta@cs.uvm.edu
c) E-mail: bslee@cs.uvm.edu

DOI: 10.1587/transinf.E93.D.1

Example 1 (Windowed temporal stream join):
Assume a query that detects, at every minute, any two re-
gions of similar humidity values lasting4 minutes or longer
in the past60 minutes∗. The query processor outputs two re-
gion IDs and the associated time interval whenever it finds
two regions satisfying the condition. Specifically, it performs
a non-temporal join on the regionIDs and humidity values,
a temporal join with theoverlaps predicate, and a tempo-
ral selection on theintersect of two overlapping intervals.

SELECT s1.regionId, s2.regionId,
VALID INTERSECT(VALID(s1),VALID(s2))

FROM Stream(regionId, humidity) as s1
RANGE 60 MINUTE SLIDES 1 MINUTE,
Stream(regionId, humidity) as s2
RANGE 60 MINUTE SLIDES 1 MINUTE,

WHERE s1.regionId != s2.regionId
AND s1.humidity ˜= s2.humidity //approximately equal
AND VALID(s1) OVERLAPS VALID(s2)
AND CAST(VALID INTERSECT(VALID(s1),VALID(s2))

AS INTERVAL MINUTE)(PERIOD) >= 4;

Example 2 (Windowed temporal stream aggregation):
The query below detects the longest period of high tempera-
ture in the past 24 hours for each region. The query proces-
sor outputs the region ID and the maximum duration of temper-
ature being above 100 degrees in each region. The aggrega-
tions are computed over a 24-hour window sliding each hour.

SELECT s.regionId,
MAX(CAST(VALID(s.temperature) AS INTERVAL HOUR))

FROM Stream(regionId, temperature) as s
RANGE 24 HOUR SLIDES 1 HOUR

WHERE s.temperature > 100;

To answer windowed temporal stream queries like
these, there should be a framework that supports the fol-
lowing three aspects:modelingthe temporal dimension of
a windowed data stream,coalescingtuples in a window ex-
tent, and evaluatingtemporal predicates and functionsover
coalesced tuples. The temporal dimension models the time
at which a fact is true (i.e., valid) in the modeled reality.
Coalescing [12] [13] is the process of merging adjacent or
overlapping timestamps of value-equivalent tuples. It is a
fundamental operation in the temporal data model, and is es-
sential to temporal query processing since queries evaluated
on uncoalesced data may generate incorrect answers [12]
(see Section 3). A temporal predicate evaluates an interval
comparison [14] (e.g.,overlaps, contains, before, after),
and a temporal function returns time points associated with
an interval (e.g.,valid, intersect). For temporal functions
and predicates, coalescing is a key operation to support.

∗This is aself-joinquery, but, from the query processing per-
spective, is equivalent to joining two duplicate streams.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

The focus of this paper is on the problem ofcoalescing
with respect to the update of a window extent and temporal
query processing on the tuples in a window extent.

Two kinds of coalescing schemes exist for temporal
database query processing:eagercoalescing andlazy co-
alescing [15]. Eager coalescing performs coalescing at the
time of updating a temporal table, whereas lazy coalescing
defers it to query execution time [15]. The former saves
time for coalescing during query execution while requiring
one coalesced table to be materialized for each set of coa-
lescing attributes specified in the query.

One question is whether and how these two coalesc-
ing schemes can be used for temporalstreamquery process-
ing. Simply speaking, it only means substituting a window
extent for a temporal table. Unlike database queries, how-
ever, stream tuples arrive unboundedly and stream queries
run continuously, typically on an ever-changing subset of
the stream referred to as awindow extent[16]. This makes
both coalescing schemes disable the basic window extent
update algorithms. Thus, in this paper we present new algo-
rithms working correctly with coalescing.

There are tradeoffs between eager coalescing and lazy
coalescing in terms of the memory space required to store
window extents and the time for updating and querying win-
dow extents (see Section 3.2). Given this tradeoff, we ad-
dress the problem of making an optimal choice between the
two schemes for given sets of queries with distinct coalesc-
ing attributes. For this purpose, we develop a cost model for
estimating the total cost combining the three cost items.

We conduct two sets of performance study of the two
coalescing schemes with respect to the total cost. The first
set of experiments compares the relative costs between ea-
ger and lazy coalescing considering a single query, and the
second set of experiments examines interesting cases of the
costs when multiple queries are registered to the system.

The main contribution of this paper lies in the study
of the coalescing to support continuous queries with tem-
poral functions and predicates over windowed data streams.
More specific contributions include defining a temporal data
stream model with the coalescing in mind, presenting cor-
rect and efficient algorithms for updating window extents
with the coalescing in place, and solving the problem of an
optimal selection between eager and lazy coalescing. To the
best of our knowledge, this is the first work that conducts an
in-depth study of coalescing for windowed temporal query
processing over data stream.

This rest of this paper is organized as follows. Sec-
tion 2 describes the temporal data stream model assumed
in the presented work. Section 3 provides some relevant
discussions on coalescing. Section 4 presents the window
extent update algorithms. Section 5 discusses the window
extent scan algorithms. Section 6 develops a cost model for
the three cost items (memory, update, scan) and formulates
the optimal eager-lazy selection problem based on the cost
model. Section 7 presents the experiments for performance
study. Section 8 reviews related work. Section 9 summa-
rizes the paper and suggests future work.

2. Temporal Data Stream Model

In this section, we present the temporal data stream model
assumed in our work. Both the data stream model and the
temporal data model are hinged on the common notion of
timestamp. Thus, their integration is natural, although the
exact modeling of temporal dimension is different – as a se-
quence of the time instants of (future) tuples arriving in data
stream versus a sequence of the time intervals of (past) tu-
ples archived in temporal database. In this section we first
summarize these two models briefly, and then describe their
integration to a temporal data stream model.

2.1 Data stream model

A data stream is an infinite sequence of tuples [17][18]. Typ-
ically, each tuple in a data stream is associated with a times-
tamp attribute. In many cases only tuples bounded by a win-
dow on a data stream are of interest at any given time [17]. A
window may be tuple-based or time-based [17][18]. At any
time instantt, a tuple-based window of sizew (tuples) on
a data stream contains tuples with the largestw timestamps
not exceedingt and a time-based window of sizew (e.g.,
seconds) contains tuples with the timestamps in the range of
t − w to t. The set of physical tuples contained in a window
is referred to as awindow extent, and the specification of a
window extent is done through thewindow operator[16].
In other words, a window operator is like a “cookie cutter”
and window extents are like “cookies cut” with it [16].

When a new tuple arrives from the data stream, the cur-
rent window extent is updated by adding the new tuple to it
and discarding any expired tuples from it (see Figure 1(a)).
While this mechanism is a standard mechanism for handling
the arrival of new tuples from an input stream (e.g., [16]
[17] [19]), the need for modeling the temporal dimension
in data stream tuples demands a different mechanism (see
Section 2.3).

We assume tuples may arrive out of order. Our process-
ing model uses the timestamp of a tuple to detect if the tuple
has arrived out of order. Though simpler than the processing
model of [20] (exploiting punctuation semantics [21]), our
model is adequate enough to support the coalescing of tuples
arriving out of order. Additionally, we assume that tuples in
a window extent are maintained in an increasing order of
timestamp with no duplicate timestamp between any pair of
tuples in the same stream.

2.2 Temporal data model

In a temporal data model, two orthogonal temporal dimen-
sions are considered [22]: valid time and transaction time.
The valid time of a fact is the time at which the fact is true
in the modeled reality. The transaction time is the time at
which the fact is actually present in the system. We con-
sider the modeling of valid time, which is adequate enough
for the purpose of this paper since coalescing is commonly

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
3

performed on valid time. In addition, a temporal data model
may support either attribute timestamping or tuple times-
tamping [22] depending on whether each timestamp is as-
sociated with an attribute or the entire tuple. This paper as-
sumestuple timestamping. Using attribute timestamping is
more complex [23], and can be sought as an interesting fu-
ture work.

2.3 Integration to a temporal data stream model

(a) With Conventional Data Stream Model

(b) With Temporal Data Stream Model

Fig. 1 Updating a Window Extent

In order to support temporal queries over data streams,
we propose to model temporal dimension in the data stream
model. The model is straightforward, since time is an essen-
tial component in both data stream model and temporal data
model. Specifically, each tuple arriving from a data stream
is timestamped with a left-closed/right-open interval [ts, te),
wherets is the starting instant andte is the ending instant of
the interval during which the data value of the tuple is valid.

Each tuple arriving in the raw data stream consists of
a set of time-invariant attributes (optional), a set of time-
varying attributes, and a timestamp attribute. When a new
tuple is added to a window extent, the temporal dimension
in that tuple is modeled as follows (see Figure 1(b)): (1) its
timestamp attribute is used to represent its starting instant,
(2) a new attribute is attached to the tuple to represent its
ending instant, (3) its starting instant value is assigned to the
ending instant of its preceding tuple, (4) its ending instant
takes the value of its starting instant until a subsequent tuple
arrives, and (5) its ending instant is assigned a value equalto
the value of the timestamp attribute of the subsequent tuple.
Whenever necessary, we will call the resulting tuplestem-
poral tuplesto distinguish them from the raw stream tuples.
Note that, as mentioned in Section 1, modeling temporal di-
mension is essential to support temporal query processing
and is needed particularly for the coalescing operation.

3. Coalescing

In this section, we discuss some relevant issues on coalesc-
ing, with a focus on the importance of coalescing in tem-
poral query processing and the contrast between eager coa-
lescing and lazy coalescing.

The introduction of coalescing for temporal query pro-
cessing dates back to Böhlen [24]. Generally speaking, co-
alescing [12] is an operation of reorganizing temporal data
for temporal query processing. Specifically, it is the process
of merging adjacent or overlapping time intervals of value-
equivalent tuples in order to capture the maximal temporal
extent of an instance in a temporal relation.

3.1 Importance of coalescing

As shown in several existing work (e.g., [12] [15] [24]), co-
alescing is a central operation in the temporal data model,
and, without it, the correctness of a temporal query process-
ing result is not guaranteed. We provide below two exam-
ples which demonstrate this point by showing that tempo-
ral queries evaluated on uncoalesced data generate incorrect
answers. The first example is for temporal database appli-
cations, and the second example is for data stream applica-
tions.

Example 3 (Coalescing over Temporal Databases):
Consider the snapshot of a temporal table of employees’ dataas
shown in Table 1. Assume that the manager needs to know the
history of Andy’s salary. There are three tuples for Andy. The first
tuple represents Andy when he was earning $100k, whereas the
second and third tuples reflect the time during which Andy’s salary
has been $120k. Without coalescing, the history of Andy’s salary
is presented as shown in Table 2 which incorrectly represents the
salary of $120k in two separate tuples. With coalescing, however,
(see Table 3) the two tuples with the salary of $120k are merged
into one single tuple because the timestamps of the two original
tuples are adjacent to each other.

4
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Table 1 Temporal table Employee.

Name Dept Salary Start End
Andy Development 100k 2000 2004
Andy Development 120k 2004 2008
Andy R&D 120k 2008 NOW

Table 2 History of Andy’s Salary without Coalescing.

Name Salary Start End
Andy 100k 2000 2004
Andy 120k 2004 2008
Andy 120k 2008 NOW

Table 3 History of Andy’s with Coalescing.

Name Salary Start End
Andy 100k 2000 2004
Andy 120k 2004 NOW

Example 4 (Coalescing over Windowed Data Streams):
Consider the application of wireless sensor networks assumed in
Section 1. Assume a query that monitors the change in temperature
of different regions with the goal of reporting regions whose tem-
perature did not change for two or more hours. Figure 2 shows the
results of coalescing tuples in a window currently holding nine tu-
ples of temperature readings, and contrasts the coalesced window
to its counterpart in the un-coalesced window. We can see from
the figure that while the un-coalesced window has nine tuples, the
coalesced window represents its content with only five tuples. The
first tuple represents readings from region1 with temperature value
of 81 from 1:00 p.m. to 3:00 p.m.; the next three tuples represent
readings from region2 and show that temperature in this region
fluctuated from81 at 1:00 p.m., to79 at 2:00 p.m., and back up to
81 at 3:00 p.m.; the third tuple represents readings from region 3
with temperature value of81 from 1:00 p.m. to 3:00 p.m.

(a) Un-coalesced (b) Coalesced

Fig. 2 Coalescing over Windowed Data Streams

3.2 Eager versus lazy coalescing

As mentioned in Section 1, there are pros and cons between
eager and lazy coalescing schemes.

One the pros side, eager coalescing offers the following
advantages. First, it obviates repeated coalescing of the win-
dow extent during query processing, specifically window-
based join processing, as a join window extent should be
scanned repeatedly every time a new tuple arrives at the
other stream. Second, eager coalescing during window-
extent updates pays off if coalescing is a relatively expen-
sive operation. Third, if the available window buffer space
is limited, then eager coalescing is a useful mechanism for
reducing the required buffer space.

On the cons side, eager coalescing physically alters the
tuples in a window extent and, therefore, if there are two
or more temporal queries that require coalescing on differ-
ent time-varying attributes, then there must be separate coa-
lesced window extents maintained. The storage overhead
and the window extent update overhead in this case may
make the eager coalescing not worthwhile.

4. Updating a Window Extent

In this section, we present algorithms for updating a win-
dow extent in the presence of eager or lazy coalescing while
preserving the correct window semantics.

The algorithms designed make the following assump-
tions. First, tuples may arrive out of the order of times-
tamp, which may necessitate retracting some of the coa-
lesced tuples. Second, different tuples may belong to dif-
ferent groups, and only tuples belonging to the same group
are coalesced (e.g., humidity readings are grouped by re-
gionID). Third, tuples are always memory-resident (with no
overflow to disk), thus demanding frugal consumption of
memory space. Fourth, no index is used to access tuples
in a window extent, which lifts the overhead of updating an
index as tuples arrive (and possibly coalesced) but brings the
need to linear-scan the window extent for query processing.

4.1 Influence of coalescing on the basic window extent up-
date algorithms

The basic algorithms for updating a window extent work by
simply adding new tuples to a window extent and discard-
ing expired tuples from it. However, in the presence of eager
coalescing, these basic algorithms no longer work. The rea-
son is that with eager coalescing one or more tuples may be
coalesced to form a single tuple in the window extent. In
this case, for example if some but not all of the coalesced
original tuples expire, then there is no correct way the basic
algorithms can handle it. If they discard the coalesced tuple,
they have removed the tuples that have not expired yet. If
they do not, then they have retained the tuples that have ex-
pired. In either case, the query results are incorrect. Careful
changes of the basic algorithms are required to ensure the

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
5

correctness.
On the other hand with lazy coalescing, the impact is

smaller. Each time a new tuple arrives, the structure of the
tuple is altered with an additional attribute attached to rep-
resent its ending instant and the value of its timestamp is as-
signed to the ending instant of the previous tuple. Changes
required for this alteration are less involving.

4.2 Window extent update algorithms

We present the algorithms targeting tuple-based windows
and discuss the modifications necessary for time-based win-
dows. (See Appendix A for basic functions needed by these
algorithms.).

4.2.1 Update with lazy coalescing

In the lazy coalescing scheme, the algorithm of updating a
window extent is a direct extension of the basic window ex-
tent update algorithm. It employs only the idea of updating
the starting and ending instants of tuples, and defers any co-
alescing to the query execution time.

Updating a tuple-based window extent

The algorithm works in two phases upon the arrival of a new
tuple (see Algorithm 1). The first phase concerns discarding
an expired tuple from the window extent, and the second
phase concerns adding the new tuple into the window extent.
In the first phase, the algorithm simply removes the oldest
tuple from the window extent and updatessoldest to the new
oldest tuple (Lines 1–3). In the second phase, if the new
tuple has arrived too late (i.e., has arrived out of order and
should have expired), it is discarded (Line 7). If the new
tuple has arrived out of order but still should be added to the
window extent, then the algorithm finds where to insert the
tuple in the window extent and adds it (Lines 9–10). If the
new tuple has arrived in order, then the algorithm adds the
new tuple at the end of the window extent and updatesslatest

to the new latest tuple (Lines 14–15).

Updating a time-based window extent

The only differences from updating a tuple-based window
are in the way old tuples are identified for deletion and in
the way the belatedness of an out-of-order arrival tuple is
determined. Thus, we only need to replace Lines 1–3 of
Algorithm 1 by Lines 1–4 shown below and replace the if-
condition in Line 6 of Algorithm 1 bysnew.ts< snew.ts− T,
whereT is the time-based window size.

1: while (soldest.ts< snew.ts− T) do
2: soldest= soldest.next()
3: removesoldest.prev()
4: end while

4.2.2 Update with eager coalescing

In the eager coalescing scheme, the algorithm of updating

Algorithm 1 tupleBasedLazyUpdate(snew)
Inputs: snew // a new arrival tuple

// Global variables:
// soldest: the tuple with the smallest ts in the window extent
// slatest: the tuple with the largest te in the window extent

// Discard the oldest tuple
1: snext oldest= soldest.next()
2: removesoldest
3: soldest= snext oldest

// Add the new tuple
4: if snew.ts< slatest.ts then
5: // snew has arrived out of order
6: if snew.ts< soldest.ts then
7: discardsnew // arrived too late
8: else
9: find the tuplesprev next to which snew should be added, i.e.,

sprev.ts < snew.ts< sprev.next().te
10: addTuple(snew, sprev)
11: end if
12: else
13: // snew has arrived in order
14: addTuple(snew, slatest)
15: slatest = snew

16: end if

a window extent is based on three key ideas. First, each tu-
ple is attached with a timestamp vector (denoted asv) which
comprise the timestamps of all subsequent tuples coalesced
with that tuple. Remembering the timestamps of the coa-
lesced tuples is important in order to correctly discard tu-
ples when they expire. Second, updating a window extent is
achieved primarily by manipulating the timestamp vectors.
That is, adding a new tuple to the current window extent
may not necessarily result in an actual insertion of the new
tuple. Instead, it may result in merging the new tuple with
an existing tuple and updating the timestamp vector of that
existing tuple. Similarly, discarding an expired tuple from
the current window extent may not necessarily result in an
actual removal of the tuple. Instead, it may result in only up-
dating the timestamp vector of an exiting tuple. Third, if a
new tuple arrives out of order, it may either be merged with
an existing tuple or cause an existing tuple to split into two
tuples.

Updating a tuple-based window extent

The algorithm works in two phases upon the arrival of a
new tuple (see Algorithm 2). The first phase of the algo-
rithm concerns discarding the expired tuple from the win-
dow extent. If the oldest tuple in the window is currently co-
alesced with other tuples, then the expired tuple is removed
by updating the starting instant of the oldest tuple with the
smallest timestamp value in its timestamp vector (Lines 2–
3). Otherwise it is directly removed from the window extent
andsoldest is updated to the new oldest tuple (Lines 5–7).

The second phase concerns adding the new tuple into
a window extent. If the new tuple has arrived too late, that
is, has arrived out of order and should have expired, then it
is discarded (Line 12). If it has arrived out of order but still

6
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Algorithm 2 tupleBasedEagerUpdate(snew)
Inputs: snew // a new arrival tuple

// Global variables:
// soldest: the tuple with the smallest ts in the window extent
// slatest: the tuple with the largest te in the window extent

// Discard the oldest tuple
1: if soldest.v.size() > 0 then
2: soldest.ts = soldest.v. f irst()
3: removesoldest.v. f irst() from soldest.v
4: else
5: snext oldest= soldest.next()
6: removesoldest

7: soldest= snext oldest

8: end if

// Add the new tuple
9: if snew.ts< slatest.ts then

10: // snew has arrived out of order
11: if snew.ts< soldest.ts then
12: discardsnew // arrived too late
13: else
14: find the tuplestarget that overlapssnew, i.e., starget.ts < snew.ts <

starget.te, and belongs to the same group assnew

15: if snew is value-equivalent withstarget then
16: mergeTuples(snew, starget)
17: else
18: sprev = splitTuple(starget, snew.ts)
19: addTuple(snew, sprev)
20: end if
21: end if
22: else
23: // snew has arrived in order
24: find the latest tupleslatest that belongs to the same group assnew

25: if snew is value-equivalent withslatest then
26: mergeTuples(snew, slatest)
27: else
28: addTuple(snew, slatest)
29: slatest = snew

30: end if
31: end if

should be in the window extent, then the algorithm scans
the window extent to find a tuple that overlaps the new tuple
(that is, a tuple whose time interval contains the timestamp
of the new tuple) and belongs to the same group (Line 14).
If the two tuples should be coalesced, then they are merged
(Line 16). Otherwise, the overlapping tuple is split (Line 18)
and the new tuple is inserted between the two split tuples
(Line 19). If the new tuple has arrived in order, then it scans
the window extent to find the latest tuple that belongs to the
same group (Line 24). If the two tuples should be coalesced,
then they are merged (Line 26). Otherwise the new tuple is
added at the end of the window extent (Line 28) andslatest is
updated to the new latest tuple (Line 29).

Updating a time-based window extent

In the same manner as the case of lazy coalescing, the
only modifications needed are to replace Lines 1–8 of Al-
gorithm 2 by Lines 1–7 shown below and replace the if-
condition in Line 11 of Algorithm 2 bysnew.ts< snew.ts−T,
whereT is the time-window size.
1: while (soldest.ts< snew.ts− T) do

2: if (soldest.v.size() > 0 andsoldest.te > snew.ts− T) then
3: soldest= splitTuple(soldest, snew.ts− T)
4: end if
5: soldest= soldest.next()
6: removesoldest.prev()
7: end while

5. Scanning a Window Extent

We use window extent scan as an operation that gener-
ally represents the window-based temporal query process-
ing over data streams. Temporal join queries are of particu-
lar interest in terms of using a window. Temporal predicates
are typically defined on intervals, and joins on these interval
predicates are essentially non-equijoins. For example, the
temporal join predicateVALID(s1) OVERLAPS VALID(s2) in
Example 1 is equivalent to the following non-equijoin pred-
icate s1.ts < s2.te AND s2.ts < s1.te. A window scan is
a common operation in non-equijoin processing like this.
Temporal aggregation queries may as well require window
extent scan, especially for selective aggregation functions
like MAX, MIN, and MEDIAN. For example, the windowed
aggregation in Example 2 requires scanning the entire win-
dow whenever a tuple with the maximum temperature value
is discarded from the window extent.

Thus, we use the window extent scan cost as an ob-
jective counterpart of the window extent update cost in the
performance study (Section 7)

The window extent scan algorithms are simple. They
involve a linear scan of all tuples in the window extent for
both window types regardless of the coalescing approach.
(The scan could be an index-based scan if an index were
available, but in the current work an index is not considered
on a window extent which is memory-resident.) The only
distinction in our work is that, in the case of lazily-coalesced
window extent, there is an additional overhead of coalescing
tuples during query execution. This overhead increases lin-
early with the number of tuples in the window extent and
the coalescing probability.

6. Optimal Selection between Eager and Lazy Coalesc-
ing

From the tradeoffs observed in Section 3.2, it is evident that
the costs of storing, updating, and scanning window extents
are the key cost items affecting the choice between eager
coalescing and laze coalescing. In this section we formu-
late the problem of choosing between the two coalescing
schemes to optimize an objective defined as a combination
of the three cost items. We first develop a cost model of
the three cost items and then formulate the optimal selec-
tion problem based on the model. The cost model presented
here assumes a tuple-based window. Only the cost model
needs to be replaced for the same optimization framework
to work with a time-based window. Table 4 summarizes the
notations used in the cost model.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
7

Table 4 Notations used in the cost model.

Symbol Description
reager tuple size in eagerly-coalesced window extent (bytes)
r lazy tuple size in a lazily-coalesced window extent (bytes)
m timestamp size (bytes)
w window extent size (number of tuples)
i tuple index (i ≥ 1)

cpi probability that theith tuple coalesces with the (i − 1)th
tuple of the same group (i ≥ 2)

oopi probability that theith tuple arrives out of order (i ≥ 1)
k the number of tuples that have arrived so far (k ≥ 1)

Cread cost of reading a specific tuple in the window extent
Cinsert cost of inserting a tuple at a specific position in the win-

dow extent
Cdelete cost of deleting the oldest tuple from the window extent
Cattach cost of attaching a timestamp to a specific tuple
Cdetach cost of detaching the first timestamp from the timestamp

vector of the oldest tuple
Cmerge sum of the cost of finding the target tuple and the cost

of mergeTuples, i.e., merging the timestamp of the new
tuple into the timestamp vector of the target tuple

Csplit sum of the cost of finding the target tuple and the cost of
splitTuple, i.e., splitting the target tuple and its timestamp
vector and inserting the new tuple

Meager(k) memory consumption for storing a window extent ofk
eagerly-coalesced tuples

Mlazy(k) memory consumption for storing a window extent ofk
lazily-coalesced tuples

Ueager(k) time for updating a window extent with the firstk tuples
using eager coalescing

U lazy(k) time for updating a window extent with the firstk tuples
using lazy coalescing

Seager(k) time for scanning a window extent containingk tuples
stored with eager coalescing

Slazy(k) time for scanning a window extent containingk tuples
stored with lazy coalescing

(Cmerge andCsplit include extra costs for setting up and following up the oper-
ations specified in the functionsmergeTuplesandsplitTuple(Section Appendix
A).)

6.1 Cost model

6.1.1 Window extent memory consumption

In the case of eager coalescing (Equation 1), for each new
tuple, the memory consumption increases by the timestamp
size if coalescing occurs and by the tuples size if not. For
each expiring tuple, the memory consumption decreases by
the timestamp size if the oldest tuple was coalesced with its
subsequent tuples and by the tuple size otherwise. In the
case of lazy coalescing (Equation 2), the memory consump-
tion increases linearly with the number of new tuples until
the window becomes full and then remains constant.

Meager(k) =
k
∑

i=1

((cpi m+ (1− cpi) reager)

−(cpi−wm+ (1− cpi−w) reager)) (1)

wherek ≥ 1 andcpi−w = 0 for k ≤ w.

Mlazy(k) = min (k, w) r lazy wherek ≥ 1 (2)

Note that a tuple in a lazy-coalesced window extent
has all the attributes in an incoming tuple of the stream,
whereas in an eager-coalesced window extent, it has only
the attributes required by the query. Thus,reager is no larger
thanr lazy.

6.1.2 Window extent update time

In the case of eager coalescing (Equation 3), for each new
tuple the update time comprises the costs of either inserting
it uncoalesced (if it arrives in order and does not coalesce
with an existing tuple), merging it with an existing tuple (if it
arrives in order and it does coalesce with that existing tuple),
inserting it and splitting an existing tuple (if it arrives out of
order and it does not coalesce with that existing tuple), or
merging it with an existing tuple (if it arrives out of order
and it does coalesce with that existing tuple). In addition,
once the number of tuples exceeds the window size, then
there is the additional cost of either uncoalescing the oldest
tuple and detaching the timestamp from its timestamp vector
(if it was coalesced) or simply discarding the oldest tuple (if
not). In the case of lazy coalescing (Equation 4), the update
time comprises the costs for inserting a new tuple and, if the
number of tuples exceeds the window size, then the cost of
deleting the oldest tuple.

Ueager(k) =
k
∑

i=1

((1− oopi)(1− cpi)Cinsert+ (1− oopi) cpi Cmerge

+oopi (1− cpi) (Cinsert +Csplit) + oopi cpi Cmerge

+(cpi−w)Cdetach+ (1− cpi−wCdelete)) (3)

wherek ≥ 1 andcpi−w = 0 for k ≤ w.

U lazy(k) =

{

Cinsert if k ≤ w
Cinsert+Cdelete if k > w

(4)

6.1.3 Window extent scan time

The window extent scan involves reading all tuples in the
window extent†. In the case of eager coalescing (Equa-
tion 5), all tuples in the current window extent are simply
scanned linearly. The number of tuples can be computed by
dividing the current window extent’s memory consumption
by the tuple size. In the case of lazy coalescing (Equation 6),
there is the overhead of coalescing tuples during query ex-
ecution. The time for reading each tuple during the scan
depends on whether tuple coalesces with the previous tuple
or not.

Seager(k) = Cread
Meager(k)

reager (5)

Slazy(k) =
k
∑

i=1

(cpi (Ccoalesc+Cread) + (1− cpi)Cread) (6)

†In the current work, an index is not considered on a window
extent which is memory-resident.

8
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

6.2 Optimal selection problem formulation

Given multiple concurrent temporal queries running against
the same window, we can consider a set of all queries,
each specifying time-variant coalescing attributes and time-
invariant grouping attributes. We call it adistinct coalesc-
ing query (DCQ) set. For example, if one queryQ1 spec-
ifies coalescing on attributes{A, B} grouped by{G11,G12},
two other queriesQ2 andQ3 specify coalescing on attributes
{B,C} grouped by{G2}, and another queryQ4 specifies co-
alescing on the same attributes{B,C} but grouped by{G3} ,
then{({A, B}, {G11,G12}), ({B,C}, {G2}), ({B,C}, {G3})} is the
DCQ set from the four queries.

There is one window extent needed for each DCQ that
is subject to eager coalescing, as the eager coalescing phys-
ically alter the tuples in it, and one lazily-coalesced window
extent is needed for all the other DCQs. Note that the num-
ber of window extents that should be maintained is thus no
more than the cardinality of the DCQ set. (They are equal if
and only if eager coalescing is used for all the queries.)

The window extent size has a different unit from the
other two cost items. Thus, we normalize them to values in
the range of [0,1] by dividing them by the maximum pos-
sible values (Mmax, Umax, andSmax). Mmax is the window
extent size needed when no coalescing is done,Umax is the
window extent update time when all tuples are coalesced
(then there is only one tuple in the window extent), andSmax

is the window extent scan time when all tuples are coalesced
during the scan.

Let us denote the normalized window extent size, up-
date time, and scan time asµ, υ, andσ, respectively. Then,
they are expressed as follows for thejth DCQ depending on
the coalescing scheme.

µ
eager
j (k) =

Meager
j (k)

Mmax
; υeager

j (k) =
Ueager

j (k)

Umax
;

σ
eager
j (k) =

Seager
j (k)

Smax
for j ∈ S′ (7)

µlazy(k) =
Mlazy(k)
Mmax

; υlazy(k) =
U lazy(k)
Umax

;

σ
lazy
j (k) =

Slazy
j (k)

Smax
for j ∈ S − S′ (8)

whereS is the DCQ set andS′ is the set of DCQs whose
window extents are coalesced eagerly.

These three normalized quantities (i.e.,µ, υ, andσ)
participate in the optimal selection problem formulation as
follows. For each DCQ inS′, there exists one window ex-
tent eagerly coalesced on the attributes of that query and,
thus, the costs of storing, updating, and scanning tuples are
incurred for each window extent. We express this cost as a
weighted sum of the three normalized quantities, that is,

Costeager
j (k) = λµµ

eager
j (k) + λυu

eager
j (k) + λσσ

eager
j (k) (9)

In contrast, there exists one window extent for all
DCQs inS − S′ and, thus, the costs of storing and updat-
ing tuples are incurred for the single window extent, but the
cost of scanning tuples is incurred for each DCQ. The total
cost for all DCQs inS − S′ is also expressed as a weighted
sum as well, that is,

Costlazy(k) = λµµlazy(k) + λυυlazy(k) +
∑

j∈S−S′
Scancostlazy

j (k) (10)

where
Scancostlazy

j (k) = λσσ
lazy
j (k)

Based on these cost expressions, the optimal selection
problem of determining which DCQs are subject to eager
coalescing (leaving the rest to lazy coalescing) is stated as
follows.

Optimal selection problem: Given a DCQ setS
and the numberk of tuples that have arrived so
far, find a subsetS′ of S that minimizes the cost
computed as

∑

j∈S′
Costeager

j (k) +
∑

j∈S−S′
Scancostlazy

j (k)

Note that the cost terms of lazy coalescing (i.e.,λµµlazy(k)
andλυυlazy(k)) are independent of the DCQ setj and, thus,
are not part of the cost objective function. Besides, their
values are zero if there is no DCQ subject to lazy coalescing.

Theorem 1: The optimal selection between lazy and eager
coalescing for multiple concurrent queries is a 0-1 integer
programming problem.

Proof Sketch: The proof can be easily seen by defining
x j = 1 if j ∈ S and 0 otherwise (i.e.,j ∈ S − S′).
Then, the problem can be rewritten to that of minimizing
∑n

j=1(c j x j + d) wheren = |S|, x j ∈ [0, 1], c j = Costeager
j (k)−

Scancostlazy
j (k), andd =

∑n
j=1 Scancostlazy

j (k).

7. Performance Study

We study the performances of eager and lazy coalescing
with respect to the costs formulated as a weighted sum of
the three normalized cost items (see Equations 9 and 10).

The performance study consists of two sets of experi-
ments. In the first set of experiments, we compare the two
coalescing mechanisms for different coalescing probabili-
ties and out-of-order probabilities under different memory,
update, and scan cost weights (i.e.,λµ, λυ, λσ) when a sin-
gle query is registered. We assume that coalescing and out-
of-order probabilities are learned and captured during the
processing of input data streams. In the second set of ex-
periments, we study interesting cases in the optimal selec-
tion problem by comparing the costs resulting from different
selections when multiple queries are registered: eager coa-
lescing for all queries, lazy coalescing for all queries, and
an optimal selection as described in the previous section.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
9

All experiments are implemented in C++ on a laptop
with Windows Vista running on Intel Core2 Duo 2 GHz
CPU and 3 GB RAM.

In this section, we describe the setup of data sets used
in the experiments in Section 7.1 and present the two sets of
experiments and their results in Section 7.2 and Section 7.3,
respectively, summarize the results in Section 7.4, and share
some practicality considerations in Section 7.5.

7.1 Data sets

Synthetic data sets

We generate synthetic data streams of 200, 000 timestamped
tuples. The timestamp size is eight bytes. Each tuple
has three time-varying attributes and three time-invariant at-
tributes, each of size four bytes. Time-invariant attributes
are used for grouping.

As mentioned in Section 1, we use the coalescing prob-
ability (cp) and the out-of-order probability (oop) as the con-
trol parameters in the experiments.† Thus, we generate mul-
tiple data streams with different coalescing probabilities and
out-of-order probabilities (each ranging from 0 to 1 with an
interval of 0.1). In contrast, the number of groups has no ef-
fect on the relative costs between eager and lazy coalescing,
and thus we set the number of groups to single values 3, 5,
and 7 for the three time-invariant attributes, respectively.

Real data set

We use a real data set collected from sensors deployed in
the Intel Berkeley Research lab between February 28th and
Aprils 5th, 2004 [9]. Sensors mounted with weather boards
collected timestamped topology information, along with hu-
midity, temperature, light and voltage values once every 31
seconds. Collection of data was done using the TinyDB
query processing system, built on the TinyOS platform. The
resulting data file includes a log of about 2.3 million read-
ings collected from these sensors. The schema of records
is 〈date: yyyy-mm-dd, time: hh:mm:ss.xxx, epoch: int,
moteid: int, temperature: real, humidity: real, light:real,
voltage:real〉. In this schema, epoch is a monotonically
increasing sequence number unique for each mote. Tem-
perature is in degrees Celsius. Humidity is temperature-
corrected relative humidity, ranging from 0 to 100%. Light
is in Lux (1 Lux is about moonlight, 400 Lux about a bright
office, and 100,000 Lux about full sunlight.) Voltage is ex-
pressed in volts, ranging from 2.0 to 3.0 volts.

†Four other parameters were considered as well – window ex-
tent size (i.e., number of tuples), stream data set size (i.e., number
of tuples), stream rate, and the number of groups. Among them,
the window extent size shows insignificant effect as costs calcu-
lated are normalized, and the stream data set size and streamrate
do not affect the costs at all as the cost is measuredper tuplein a
window extent. In the case of the number of groups, it affects only
the coalescing probability and, since the coalescing probability is
already considered a tuning parameter, it loses significance.

7.2 Experiments 1: comparison between eager and lazy
coalescing costs

To visualize the expected performances of the algorithms,
we plot the costs of eager coalescing and lazy coalescing
obtained using the cost model (in Section 6.1) while vary-
ing the coalescing and out-of-order probabilities for differ-
ent weights of memory cost(λµ), update cost(λυ) and scan
cost(λσ). These three costs are the actual values measured
by running the algorithms (see Sections 4 and 5) on syn-
thetic data sets.

0

0.5

1

0

0.5

0

1

2

3

Coalescing ProbabilityOut of Order Probability

W
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

eager lazy

(a) Weights:(1,1,1)

0

0.5

1

0

0.5

0

2

4

6

Coalescing ProbabilityOut of Order Probability

W
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

eager lazy

(b) Weights:(1,50,1)

0

0.5

1

0

0.5

0

5

10

Coalescing ProbabilityOut of Order Probability

W
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

eager lazy

(c) Weights:(1,100,1)

Fig. 3 Costs of eager and lazy coalescing for an increasing update cost
weight.

Before we present the experimental results, let us first
discuss how the costs of different per-tuple atomic opera-
tions (Table 4) vary with respect to the coalescing and out-
of-order probabilities. (We implement a window extent as
an array data structure in this performance study.)

10
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

• Cread: This cost depends only on the size of a specific
tuple. Since the tuple size is constant in lazy coalescing
but increases linearly with the coalescing probability in
eager coalescing as more timestamps are added to the
time stamp vector of a tuple,Cread varies in the same
manner with the coalescing probability. Evidently, the
out-of-order probability has no effect on this cost.
• Cinsert andCdelete: These two operations are limited to

a specific single tuple and, thus, are irrelevant to coa-
lescing and out-of-order probabilities.
• Cdetach andCattach : These costs are applicable only in

the case of eager coalescing and remains constant for
the same reason asCinsert andCdelete.
• Cmerge: If the new tuple to be merged is not arriving in

order, then we have to search the window for the ap-
propriate position in the window extent and also search
the timestamp vector of that tuple for finding the ap-
propriate position to insert the timestamp of the new
tuple. Thus, this cost increases with the out-of-order
probability. Additionally, if the coalescing probability
is higher, then the timestamp vector will be larger and
so the cost of merging is higher. Thus,Cmergeincreases
monotonously withoop× cp.
• Csplit: This cost is applicable only for out-of-order tu-

ples and increases monotonously with the out-of-order
probability. On the other hand, the cost decreases
monotonously with the coalescing probability because
the number of tuples to be moved to create a room
in the window extent (with the array data structure) is
smaller when more tuples have been coalesced. Thus,
Csplit increases monotonously withoop/ cp.

Now, we present the experimental results. We have
conducted this set of experiments with a wide range of dif-
ferent weight combinations of memory, update and scan
costs. We show a few interesting cases here.

Among the three cost weights (λµ, λυ, λσ), increasing
λυ gives an advantage to lazy coalescing whereas increas-
ing λµ or λσ gives an advantage to eager coalecing. Thus,
in this experiment, we increaseλυ relative toλµ and λσ,
and observe the performance trend. Figures 3(a) through
3(c) show the costs of eager coalescing and lazy coalescing
when 〈λµ, λυ, λσ〉 is 〈1, 1, 1〉, 〈1, 50, 1〉, and〈1, 100, 1〉, re-
spectively. These weight combinations refer to the cases of
an increasingly higher weight given to the update cost.

¿From these figures we make two observations. First,
when the update cost weight (λυ) is comparable to the mem-
ory cost weight (λµ) and the scan cost weight (λσ) (see Fig-
ure 3(a)), eager coalescing outperforms lazy coalescing in
the entire ranges ofoopandcp. The reason is that eager co-
alescing costs less than lazy coalescing in two (i.e., memory
and scan) of the three cost items. Note that all three costs
are normalized (to maximum 1.0).

Second, the three figures show a trend of the relative
performance between eager coalescing and lazy coalescing.
The closer the (cp, oop) pair is to (0.0, 0.0), the lower the
cost of eager coalescing compared to lazy coalescing. In ad-
dition, the crossover line moves toward the point (1.0, 0.0)

as the update cost weight increases. This indicates that the
cost of eager coalescing increases faster at (0.0, 1.0) than
any other point. To understand the reason for this trend,
let us study the behavior of the graphs shown in these fig-
ures in detail. From Equation 3 and our discussion of the
costs of the atomic operations above, we see thatmerge-
TuplesandsplitTuplesare the only operations contributing
to the change in cost when the update weight is changed.
Specifically, the following two observations hold. First, for
a givencp, the update cost of eager coalescing,Ueager, in-
creases with the increase ofoop. The reason for this is quite
clear from the fact that, as mentioned above,CmergeandCsplit

increase monotonously withcp× oopandoop/cp, respec-
tively. Second, for a givenoop, Ueager decreases with the
increase ofcp. The reason for this can be explained as fol-
lows. With the increase ofcp, Cmerge increases butCsplit de-
creases. In this performance study,Csplit is a more dominant
factor thanCmerge in the cost of eager coalescing because of
the currentarray implementation of a window extent. We
can deduce from these two observations that whatever the
update weight may be, eager coalescing cost is the highest
at (cp,oop) = (0.0, 1.0) and the lowest at (1.0, 0.0), and as
the update weight increases the crossover line moves toward
(1.0, 0.0) as visualized in Figure 3(a) through Figure 3(c).

0

0.5

1

0

0.5

0

0.5

1

1.5

Coalescing ProbabilityOut of Order Probability

W
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

eager lazy

Fig. 4 Costs of eager and lazy coalescing for no memory cost weight.

As a special case, Figure 4 shows the costs of eager
coalescing and lazy coalescing whenλµ=0,λυ=1 andλσ=1.
This combination of weights refers to the case in which the
system has sufficient memory and update and scan costs are
given equal priority. As expected, eager coalescing and lazy
coalescing show more or less the same costs, with slight
differences in a region represented by lowercp and higher
oop. This is because the difference in normalized scan costs
(for which lazy> eager) is countered well by the difference
in normalized update costs (for which eager> lazy) in this
region.

7.3 Experiments 2: optimal selection between eager and
lazy coalescing

For this set of experiments, we consider a scenario of six
queries with the following DCQ setup:{ ({h}, {ep}), ({t},
{md}), ({v}, {lt}), ({h, t}, {ep,md}), ({t, v}, {md, lt}), ({h, t, v},

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
11

Table 5 Scenarios used for the real data set

cp1, cp2, cp3, cp4, cp5, cp6 Result Selection between eager and lazy
Case 1 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 all lazy= optimal< all eager lazy on all queries
Case 2 0.8, 0.8, 0.8, 0.8, 0.8, 0.8 all eager= optimal< all lazy eager on all queries
Case 3 0.5, 0.5, 0.5, 0.1, 0.1, 0.1 optimal< all lazy< all eager eager onQ1,Q2,Q3 and lazy onQ4,Q5,Q6

Case 4 0.8, 0.8, 0.8, 0.1, 0.1, 0.1 optimal< all eager< all lazy eager onQ1,Q2,Q3 and lazy onQ4,Q5,Q6

(cpi denotes the coalescing probability for queryQi .)

{ep,md, lt}) } whereh, t, v, ep, md, and lt refer to humid-
ity, temperature, voltage, epoch, mote ID, and light, respec-
tively.† We attain the required coalescing probabilities for
these experiments by quantifying the coalescing attribute
values with an appropriate quantum size. All tuples are in
order in the real data set and, thus, out-of-order probabil-
ity is zero. 〈λµ, λυ, λσ〉 are considered to be〈1, 1, 2〉. When
multiple queries are registered in the system, memory and
update costs give favor to lazy coalescing while scan cost
gives favor to eager coalescing. Additionally, in the case of
lazy coalescing, at least two scans are needed for any oper-
ation on the window extent, one for coalescing the window
and the other for performing the requisite operation accord-
ing to the query. This justifies assigning weights〈1, 1, 2〉.

We measure the costs of the per-tuple atomic opera-
tions Cread, Cinsert, Cdelete, Cmerge, Csplit, andCdetach by re-
peating each operation 1000 times and averaging it over all
the tuples of the stream data set.

The scenario shown in Table 5 are used for the real data
set. In this scenario setup, the six queries are divided into
two groups (Q1,Q2,Q3 and Q4,Q5,Q6) and high (= 0.8),
medium (=0.5), or low (=0.1) coalescing probability is as-
signed to each group with different cases of combination.
Figure 5(a) summarizes the resulting costs of all-lazy, all-
eager, and optimal selections in each case.

We can see from the selection decisions in Table 5 that
the optimal solution for the given set of queries suggests
eager coalescing for queries having higher coalescing prob-
ability and lazy coalescing for queries having lower coalesc-
ing probability. This phenomenon is mainly due to the fact
that when the coalescing probabilities are high the normal-
ized memory costs and scan costs for eager coalescing are
very low and hence can negate the extra update cost for per-
forming eager coalescing.

Now, let us see some scenarios whereoopplays a role.
For this we consider the synthetic data sets, as they allow
us to change the out-of-order probability. We consider the
same scenario of six queries except that the attributes are in-
tegers. Weights on the update and scan costs are considered
to be equal while the weight on the memory cost is assumed
to be zero in order to show the impact ofoopmore clearly.
(Note thatoop does not affect the memory cost whilecp
does.) Like the cases in Table 5, all the cases shown in Ta-
ble 6 compare the costs of performing queries with coalesc-
ing all lazy, all eager, and the optimal selections.

In this scenario setup, the queries are tested with three
different sets of cases. In the first set (comprising Cases 1

†We use light as a grouping attribute because its shows a lim-
ited number of constant values in the data set.

1 2 3 4
0

5

10

15

Case Number

W
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

All Eager
All Lazy
Optional

(a) Differentcp cases.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

Case NumberW
ei

gh
te

d
su

m
 o

f N
or

m
al

iz
ed

 c
os

ts

All Eager
All Lazy
Optional

(b) Different〈cp, oop〉 cases.

Fig. 5 All lazy, all eager, and optimal costs.

and 2), we assign lowcp(= 0.2) in Case 1 and highcp(= 0.7)
in Case 2 and varyoop from 0.0 to 1.0. Due to space con-
straint and insignificant difference in the selection results,
we show only the results for twooop values (= 0.3, 0.6).
In the second set (comprising Cases 3 and 4), we setcp to
a medium value (= 0.5) and varyoop from 0.0 to 1.0. We
observe that atoop= 0.7 there is a change in the selection
result from eager to lazy. We examine this behavior further
in the third set of cases (comprising Cases 5 and 6), where
we setcp to a value similar to the value used in Case 3 of
Table 5 and vary theoopvalues of queries Q2 and Q3. Fig-
ure 5(b) summarizes the resulting costs of all-lazy, all-eager,
and optimal selections in each case.

We can see from Table 6 that the optimal solution for
the cases suggests eager coalescing for queries having lower
oops and lazy coalescing for queries having higheroops
(for givencps). This phenomenon is mainly due to the fact
that, for the current array implementation of the window ex-
tent, the difference in update costs between eager and lazy is
larger than the difference in scan costs at higheroops (where
eager coalescing cost> lazy coalescing cost) and the differ-
ence in scan costs is larger than the difference in update costs
at loweroops (where lazy coalescing cost> eager coalesc-
ing cost).

12
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Table 6 Scenarios used for the synthetic data sets

cp1, cp2, cp3, cp4, cp5, cp6 oop1, oop2,oop3, oop4, oop5,oop6 Selection between eager and lazy
Case 1 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 0.3, 0.3, 0.3, 0.3, 0.3, 0.3 lazy on all queries
Case 2 0.7, 0.7, 0.7, 0.7, 0.7, 0.7 0.6, 0.6, 0.6, 0.6, 0.6, 0.6 eager on all queries
Case 3 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.3, 0.3, 0.3, 0.3, 0.3, 0.3 eager on all queries
Case 4 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.7, 0.7, 0.7, 0.7, 0.7, 0.7 lazy on all queries
Case 5 0.4, 0.4, 0.4, 0.2, 0.2, 0.2 0.6, 0.6, 0.6, 0.7, 0.7, 0.7 eager onQ1,Q2,Q3 and lazy onQ4,Q5,Q6

Case 6 0.4, 0.4, 0.4, 0.2, 0.2, 0.2 0.6, 0.8, 0.8, 0.7, 0.7, 0.7 eager onQ1 and lazy onQ2,Q3,Q4,Q5,Q6

(cpi denotes the coalescing probability for queryQi .)

7.4 Summary of experiment results

The experimental results suggest the following conclusions.

• Eager coalescing outperforms lazy coalescing when the
update cost weight (λυ) is comparable to the memory
cost weight (λµ) and scan cost weight (λσ).
• The cost of eager coalescing becomes increasingly

lower than that of lazy coalescing as (cp, oop) ap-
proaches (0.0, 0.0) and, as the weight of update cost in-
creases, becomes increasingly higher than that of lazy
coalescing as (cp, oop) approaches (0.0, 1.0).
• If all tuples arrive in order, then the cost of eager coa-

lescing increases with the increase in coalescing prob-
ability. If some tuples arrive out of order, then the cost
of eager coalescing decreases with the increase in coa-
lescing probability.
• When multiple queries are registered in the system,

there exists an optimal set of queries, some coalesced
eagerly and others lazily, whose cost is no greater than
both the cost of performing eager coalescing on all the
queries and the cost of performing lazy coalescing on
all the queries.
• When multiple queries are registered in the system with

different coalescing probabilities and the weights of
update scan and memory are equal, optimal selection
problem suggests us to do eager coalescing on queries
with higher coalescing probabilities and lazy coalesc-
ing on the rest.
• When multiple queries are registered in the system with

different coalescing probabilities, the probability for a
query to be selected to coalesce lazily increases with an
increase in the update cost weight and the memory cost
weight and the probability for a query to be selected to
coalesce eagerly increases with an increase in the scan
cost weight.

7.5 Practicality considerations on the cost objective

The cost objective, expressed as a weighted sum of normal-
ized cost items, carries some practical implications with re-
spect to the weighting scheme.

The weighting scheme accommodates different situa-
tions of available computing resources in real-world stream-
ing applications. For many applications, a stream processing
system is limited in either or both of memory and process-
ing power [17]. When more limited in memory, it can be

reflected through a larger weight on the memory cost. When
more limited in the processing power, it can be reflected
through larger weights on the update and scan costs. Fur-
ther, for streaming applications with high arrival rates [17],
assigning a larger weight to the update cost accommodates
the situation adequately.

While normalization is generally a good mechanism
to ensure fairness when considering cost items of different
units and scales, it is possible to have a deviation among
the three normalized cost items. In such a case, the weight-
ing scheme can be used to compensate for the effects of the
deviation. If any normalized cost item is excessively large
compared with others, then the optimization will be par-
ticularly sensitive to the weight assigned to the large item.
So, prior knowledge of the deviations among the normalized
cost items would be helpful in determining the appropriate
weights on them.

8. Related Work

The areas of related work are temporal data management
and data stream processing. Extensive research efforts have
been directed to develop concepts, tools, and techniques that
better support the management of temporal data; see [22]
and [25]. Data stream processing has also received a great
deal of research attention in recent years; see [17] and [18]
for comprehensive overviews. The uniqueness of our work
lies in being the first in-depth work about temporal coalesc-
ing to support continuous queries with temporal functions
and predicates applied to windowed data streams. There-
fore, in this section we discuss other work on coalescing in
temporal databases and coalescing over data streams.

Coalescing in temporal databases

Böhlen [24] is the first to emphasize the importance of coa-
lescing for temporal databases with respect to query seman-
tics. Then, Böhlen et al. [12] investigated the performance
of three approaches to implement coalescing in temporal
databases. The first approach requires modifying the un-
derlying DBMS internals, which is time-consuming and ex-
pensive. The second approach works by reading a temporal
table into main memory, coalescing it, and then writing the
table back to the database. This approach is not applicable
in many situations in which temporal tables are too large to
be loaded in main memory. The third approach defines co-
alescing operation as a set of pure SQL statements. In this
approach, however, a coalescing query is usually complex.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
13

Zhou et al. [26] proposed and compared two ap-
proaches to address the complexity of supporting coalesc-
ing in RDBMS through SQL implementation. The first ap-
proach utilizes new functionality of SQL 2003, which can be
used to support a built-in coalescing function that is trans-
parent to the users. The second approach proposes to in-
tegrate the coalescing functionality in RDBMS as a user-
defined aggregates.

Dyreson [15] addressed the problem of temporal coa-
lescing in temporal databases for the specific situations in
which tuples contain incomplete temporal information and
model different temporal granularities

Coalescing over data streams

Barga et al. [7] introduced a framework for complex event
processing over data streams based on a temporal data
model that uses the concept of coalescing. In Barga’s work,
coalescing is simply used to represent two events as one sin-
gle event if the valid-time intervals of the two events over-
lap.

RayChaudhuri et al. [27] employed coalescing in sen-
sor networks applications to obscure the temporality of data
collected by local sensor nodes before the readings are
streamed out. Coalescing in their work, however, is differ-
ent from the coalescing in temporal database - it is simply an
accumulation of sensor readings made at local sensor nodes
during each time interval.

Recently, Zaniolo [28] demonstrated that temporal co-
alescing can be expressed using Kleene-closure constructs,
which are extensions of that SQL standards proposed for
finding patterns in a sequence of data (e.g., data streams
and ordered sequences of events). Zaniolo’s work, how-
ever, considers a data stream simply as a sequence of data.
That is, it does not take into account the unique model of
data stream query processing itself. In contrast to Zaniolo’s
work, our work pertains to the coalescing assuming the slid-
ing window model, which is typically an integral part of the
query processing over data streams.

In an effort to propose a formal foundation for continu-
ous queries over data streams [29], Krämer et al. considered
coalescing as a physical operator that compacts the repre-
sentation of a data stream by merging tuples with identical
values and consecutive timestamps into a single tuple. Our
work has the following fundamental differences from their
work. First, they coalesce tuples over a data stream itself
as a means to controlling the data stream rate, while we
coalesce tuples over a sliding window as a means to eval-
uating temporal functions and predicates over data streams.
Second, coalescing operator in their work does not have an
impact on the semantics of a query, while in our work it is
a mandatory preprocessing step that should be done before
evaluating temporal functions and predicates to guarantee
the correctness of query results.

9. Summary and Future Work

In this paper, we studied the coalescing operation for sup-
porting temporal query processing over data streams.

In view of eager and lazy coalescing, we developed
window extent update algorithms for tuple- and time-based
windows. With eager coalescing, the basic algorithm does
not work, so we designed a correct algorithm (achieving al-
most the same efficiency). The algorithm manipulates tuple
timestamps to merge uncoalesced tuples when a new tuple is
added and to split already coalesced tuples when an existing
tuple is discarded. With lazy coalescing, the timestamp of a
newly added tuple must be modified to correctly model the
validity of the tuple.

Additionally, we addressed the problem of optimally
selecting eager and lazy coalescing for multiple temporal
queries running concurrently over the same data stream.
Given the tradeoff between lazy and eager coalescing
schemes, the optimization minimizes the total cost incurred
on all window extents needed by those queries. (The total
cost is a weighted sum of the normalized costs of storing,
updating, and scanning all window extents.) For this pur-
pose, we developed a cost model of the individual cost items
in eager and lazy coalescing and used it to formulate the op-
timization problem as a 0-1 integer programming problem.

We then conducted a performance study of the two co-
alescing schemes with respect to the total cost. One set of
experiments compared the relative costs between eager and
lazy coalescing considering a single query. The compari-
son was done for different combinations of the weights on
the three cost items. The other set of experiments observed
interesting cases of selecting between the two coalescing
schemes for different groups of multiple concurrent queries.
Two parameters affect the costs – the coalescing probabil-
ity and the out-of-order probability. Thus, the performance
study was centered on these two control parameters.

The presented research opens an avenue for several fu-
ture work. First, the data model needs to be extended. For
example, attribute timestamping should be supported as well
as tuple timestamping. Second, the query language should
be fully developed. For this, temporal database query lan-
guage and data stream query language should be integrated
to produce a temporal stream query language. Third, various
system issues pertinent separately to temporal databases and
data streams should be revisited. Example issues are tem-
poral stream query optimization, temporal stream indexing,
and temporal stream load shedding.

Acknowledgments

The authors would like to thank the members of Intel Berke-
ley Research lab for graciously granting the permission to
use their sensor datasets in the experiments.

This research is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-0415023.

14
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

References

[1] C.J. Chu, V.S. Tseng, and T. Liang, “An efficient algorithm for min-
ing temporal high utility itemsets from data streams,” Journal of Sys-
tems and Software, vol.81, no.7, pp.1105–1117, 2008.

[2] L. Harada, “Detection of complex temporal patterns overdata
streams,” Inf. Syst., vol.29, no.6, pp.439–459, 2004.

[3] M. Hadjieleftheriou, N. Mamoulis, and Y. Tao, “Continuous con-
straint query evaluation for spatiotemporal streams,” SSTD’07,
pp.348–365.

[4] M.F. Mokbel and W.G. Aref, “SOLE: scalable on-line execution of
continuous queries on spatio-temporal data streams,” The VLDB
Journal, vol.17, no.5, pp.971–995, 2008.

[5] D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger, “Temporal
aggregation over data streams using multiple granularities,” EDBT
’02, pp.646–663.

[6] D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger, “Temporal and
spatio-temporal aggregations over data streams using multiple time
granularities,” Inf. Syst., vol.28, no.1-2, pp.61–84, 2003.

[7] R.S. Barga, J. Goldstein, M.H. Ali, and M. Hong, “Consistent
streaming through time: A vision for event stream processing,”
CIDR ’07, pp.363–374.

[8] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” SIGMOD ’06, New York, NY, USA,
pp.407–418, ACM.

[9] “Intel lab data. http://berkeley.intel-research.net/labdata/..”
[10] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query lan-

guage: semantic foundations and query execution,” The VLDBJour-
nal, vol.15, no.2, pp.121–142, 2006.

[11] R. T. Snodgrass et al., “TSQL2 language specification,”SIGMOD
Rec., vol.23, no.1, pp.65–86, 1994.

[12] M.H. Böhlen, R.T. Snodgrass, and M.D. Soo, “Coalescing in tem-
poral databases,” VLDB ’96, pp.180–191.

[13] C. Vassilakis, “An optimisation scheme for coalesce/valid time se-
lection operator sequences.,” SIGMOD Record, vol.29, no.1, pp.38–
43, 2000.

[14] J.F. Allen, “Maintaining knowledge about temporal intervals,” Com-
mun. ACM, vol.26, no.11, pp.832–843, 1983.

[15] C.E. Dyreson, “Temporal coalescing with now granularity, and in-
complete information,” SIGMOD ’03, pp.169–180.

[16] J. Li, D. Maier, K. Tufte, V. Papadimos, and P.A. Tucker,“Semantics
and evaluation techniques for window aggregates in data streams,”
SIGMOD ’05, pp.311–322.

[17] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” PODS ’02, pp.1–16.

[18] L. Golab and M.T. Ozsu, “Issues in data stream management,” SIG-
MOD Rec., vol.32, no.2, pp.5–14, 2003.

[19] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom,
“Stream: The stanford stream data manager.,” IEEE Data Engineer-
ing Bulletin, vol.26, no.1, pp.19–26, 2003.

[20] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and
D. Maier, “Out-of-order processing: a new architecture forhigh-
performance stream systems,” Proc. VLDB Endow., vol.1, no.1,
pp.274–288, 2008.

[21] P.A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting
punctuation semantics in continuous data streams,” IEEE Trans. on
Knowl. and Data Eng., vol.15, no.3, pp.555–568, 2003.

[22] C. Date and H. Darwen, Temporal Data and the Relational Model,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[23] A.U. Tansel, “Temporal relational data model,” IEEE TKDE, vol.09,
no.3, pp.464–479, 1997.

[24] M.H. Böhlen, The Temporal Deductive Database System ChronoLog.,
Ph.D. thesis, Departement Informatik, ETH Ziirich, 1994.

[25] C. Dyreson et al., “A consensus glossary of temporal database con-
cepts,” SIGMOD Rec., vol.23, no.1, pp.52–64, 1994.

[26] X. Zhou, F. Wang, and C. Zaniolo, “Efficient temporal coalescing
query support in relational database systems,” DEXA ’06, pp.676–
686.

[27] A. RayChaudhuri, U.K. Chinthala, and A. Bhattacharya,“Obfuscat-
ing temporal context of sensor data by coalescing at source,” Mobile
Computing and Communications Review, vol.11, no.2, pp.41–42,
2007.

[28] C. Zaniolo, “Event-oriented data models and temporal queries in
transaction-time databases,” TIME, pp.47–53, 2009.

[29] J. Krämer and B. Seeger, “A temporal foundation for continuous
queries over data streams.,” COMAD ’05, pp.70–82.

[30] T.T.L.D. Committee, “An evaluation of tsql2,” A TSQL2 Commen-
tary, year= 1994,.

Mohammed Al-Kateb is a Ph.D. student at the Department of Com-
puter Science in The University of Vermont, U.S.A.. He received BS and
MS degrees in Information Systems from Cairo University, Egypt. His
research interests include data streams processing and temporal data man-
agement. He is a student member of IEICE.

Sasi Sekhar Kunta is a Ph.D. student at the Department of Computer
Science in The University of Vermont, U.S.A.. He received a BS degree
in Computer Science from Acharya Nagarjuna University, India, and a MS
degree in Computer Science from BITS at Pilani, India. His research inter-
ests include complex event processing and data stream processing.

Byung Suk Lee is an Associate Professor at the Department of Com-
puter Science in The University of Vermont, U.S.A.. He received a BS
degree from Seoul National University, South Korea, a MS degree from
KAIST, South Korea, and a Ph.D. degree from Stanford University, U.S.A..
His research interests include database systems, data stream processing,
and event processing.

Appendix A: Basic functions

In this section, we describe in further details the basic functions used in the
window extent update algorithms. The discussion in this section assumes
the tuple-based window model. Basic functions implementeddifferently
for the time-based window model can be described in the same way.

There are two basic functions,prev() andnext(), which respectively
return the immediately preceding and succeeding tuples of agiven tuple.
In addition, the algorithms use three basic operations:addTuple, mergeTu-
ples, andsplitTuple. TheaddTupleis common to both lazy coalescing and
eager coalescing, whereas themergeTuplesandsplitTupleare used in eager
coalescing only. Let us describe these operations further now.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERDATA STREAMS
15

Function 1: addTuple(snew, sprev)

Inputs: snew // a new tuple to be added
Inputs: sprev // the tuple next to which snew is added
1: renamesnew.ts to snew.ts
2: attach a new attributete to snew

3: sprev.te = snew.ts
4: if sprev.next() == null then
5: snew.te = snew.ts
6: else
7: snew.te = sprev.next().ts
8: end if
9: addsnew next tosprev in the window extent

TheaddTuple(see Function 1) adds a new tuple (snew) to the current
window extent as a temporal tuple (see Section 2.3). The timestamp at-
tribute ts is used to represent the starting instant of the tuple (Line 1), and a
new attribute is attached to the tuple to represent the ending instant (Line 2).
The starting instant value of the new tuple is assigned to theending instant
of its preceding tuple (Line 3). If the new tuple has arrived in order (thus
snew is the last tuple), then its ending instant takes the value ofits starting
instant (Line 5). Otherwise, its ending instant is assignedthe value of the
starting instant of its subsequent tuple (Line 7). Eventually, the new tuple
is added next to the previous tuple (sprev) in the window extent (Line 9).

Function 2: mergeTuples(snew, s)

Inputs: snew // a new tuple
s // an existing temporal tuple

1: insert the value ofsnew.ts into s.v in the sorted order of timestamp
2: if s.te < s.v.last() then
3: s.te = s.v.last()
4: end if
5: discardsnew

ThemergeTuples(see Function 2) is called when a new tuple (snew)
is coalesced with an existing temporal tuple (s). It merges the two tuples by
inserting the timestamp of the new tuple (snew.ts) into the timestamp vector
of the existing tuple (s.v) while maintaining the sorted order of timestamp
(Line 1). If the new tuple has arrived in order, thensnew.ts becomes the
new last timestamp value ins.v. In this case, the ending instant (te) of the
existing tuple is updated to the new value (Line 3). After merging the two
tuples, the original new tuple is discarded from the window extent (Line 5).

Function 3: splitTuple(s, ts)

Inputs: s // temporal tuple to be split
ts // timestamp value of the late arrival tuple

1: allocate a new temporal tuples2

2: copys to s2

3: remove froms.v all timestamp values greater thants
4: remove froms2.v all timestamp values less thants
5: adds2 next tos in the window extent
6: return s

The splitTuple (see Function 3) is called when a new tuple arrives
out of order and causes a gap in an existing temporal tuple. Itsplits the
existing tuple into two tuples and returns the first tuple after the split. The
split is achieved by duplicating the existing tuple (Line 2), removing from
the timestamp vector of the original tuple (s) all timestamp values greater
than the given timestamp value (ts) (Line 3), and removing from the times-
tamp vector of the duplicate tuple (s2) all timestamp values less than the
given timestamp value (Line 4). Then, the duplicate tuple isadded next to
the original tuple in the window extent (Line 5), and the original tuple is
returned (Line 6).

Appendix B: Extension of the coalescing operator

In this section, we discuss two issues relevant to our proposed window
extent update algorithms.

Grouped coalescing: A user query may naturally require tuples to be
coalesced separately for different groups. This grouped coalescing is very
common in temporal database queries. For instance, most of query exam-
ples in the TSQL Commentary [30] use grouped coalescing. Thesame is
common in real-world datastreamapplications. For instance, recall Exam-
ple 1 in which a wireless sensor network application monitors the changes
in the humidity of two different regions, grouped by the region. The algo-
rithms support grouped coalescing in this paper.

General coalescing: Traditionally temporal database applications
perform transactions on simple data (e.g., employee records). For these
applications, the notion of value equivalence for coalescing has been lim-
ited to equality comparison. In contrast, data stream applications usually
monitor a trend continuously over time. For these application, the notion of
value equivalence needs to be generalized to use any arbitrary comparison
operations which can be used to support a certain trend analysis. Exam-
ple trends are “increasing” (e.g., the value is larger than the pervious one)
and “bounded” (e.g., the value is within a certain bound fromthe previ-
ous one, the relative change from the previous value is within a certain
bound). Moreover, the values compared may be the instances of any data
type. Data stream applications can deal with a variety of data types ranging
from sensor readings (numbers) to XML documents (texts) andto video
frames (images). For those applications, the value comparison involves
more expensive operations such as text search or image analysis.

