IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

|[PAPER Special Section on Data Engineering

Temporal Coalescing on Window Extentsover Data Streams

Mohammed AL-KATEB'®, Student Member, Sasi Sekhar KUNTA), and Byung Suk LEE®), Nonmembers

SUMMARY This paper focuses on the coalescing operator applied to Example 1 (Windowed temporal stream join):

the processing of continuous queries with temporal funstiand predi- Assume a query that detects, at every minute, any two re-
cates over windowed data streams. Coalescing is a key apeeatabling gions of similar humidity values lasting minutes or longer

the evaluation of interval predicates and functions on mapuples. Ap- ; .
plying this operation for temporal query processing on windd streams 'r? the past60 minutes. The qugry p_rocessor outputs tV_VO .re-
gion IDs and the associated time interval whenever it finds

brings the challenge of coalescing tuples in a window exd¢eh time the
window slides over the data stream. This coalescing bec@ves more two regions satisfying the condition. Specifically, it penis
a non-temporal join on the regionIDs and humidity values,

involving when some tuples arrive out of order. This papstidguishes
between eager coalescing and lazy coalescing, the two kicoalescin . . .

9 9 y 9 9 a temporal join with theoverrLaps predicate, and a tempo-
ral selection on thewrersect of two overlapping intervals.

schemes. The former coalesces tuples during window exfedidte and
the latter does it during window extent scan. With these talemes, the
paper first presents algorithms for updating a window extarthoth tuple-

g ' ”) SELECT sl.regionId, s2.regionld,
based and time-based windows. Then, the problem of optirsalecting

VALID INTERSECT(VALID(s1),VALID(s2))

between eager and lazy coalescing for concurrent queriestsilated as a FROM

0-1 integer programming problem. Through extensive peréorce study,
the two schemes are compared and the optimal selection isrdgrated.

Stream(regionId, humidity) as sl
RANGE 60 MINUTE SLIDES 1 MINUTE,
Stream(regionId, humidity) as s2

RANGE 60 MINUTE SLIDES 1 MINUTE,
WHERE sl.regionld != s2.regionld

AND sl.humidity "= s2.humidity //approximately equal

AND VALID(s1) OVERLAPS VALID(s2)

AND CAST(VALID INTERSECT(VALID(s1),VALID(s2))

AS INTERVAL MINUTE) (PERIOD) >= 4;

Time is a very common aspect of real-world phenomena gyample 2 (Windowed temporal stream aggregation):
gnd, indeed, numerous real-world ap_pllcgnons are t-enhpora-rhe query below detects the longest period of high tempera-
in nature. A large cIass_ of these applications deal with con-; ;e in the past 24 hours for each region. The query proces-
tinuous, unbounded, high-volume data streams (e.g.-Inter g4 outputs the region 1D and the maximum duration of temper-
net trafic pattern study, stock ticker price monitoring, Sensor 4 ,re being above 100 degrees in each region. The aggrega-

networks monitoring). Thus, methods for temporal process-tions are computed over a 24-hour window sliding each hour.
ing over data stream are important for those applications.

Existing work on temporal processing over data
streams includes temporal data stream mining (e.g., [1] [2] FrRoM
spatiotemporal data streams (e.g., [3] [4]), temporal@gar e
gate computation over data stream (e.qg., [5] [6]), and tem-
poral event detection over data stream (e.g., [7][8]).

Contrasted with the existing work, the area of our wor
is the processing afontinuous queries with temporal func-
tions and predicates over windowed data strea@sieries
of this type are very useful in a wide range of stream appli-
cations. To the best of our knowledge, however, there has
been no study conducted specifically targeting such queries

We provide below two examples of windowed tempo-
ral stream queries, considering a wireless sensor networ
in which sensors are mounted with weather boards to col-
lect timestamped topology information along with humidity
temperature, etc [9]. We further express the queries using
syntax borrowed from CQL [10] and TSQL [11].

key words: data streams, window extents, temporal coalescing

1. Introduction

SELECT s.regionld,
MAX (CAST(VALID(s. temperature) AS INTERVAL HOUR))
Stream(regionId, temperature) as s
RANGE 24 HOUR SLIDES 1 HOUR
s.temperature > 100;
To answer windowed temporal stream queries like
K these, there should be a framework that supports the fol-
lowing three aspectsmodelingthe temporal dimension of
a windowed data strearnpalescinguples in a window ex-
tent, and evaluatingemporal predicates and functiooser
coalesced tuples. The temporal dimension models the time
at which a fact is true (i.e., valid) in the modeled reality.
Coalescing [12] [13] is the process of merging adjacent or
verlapping timestamps of value-equivalent tuples. Itis a
l?undamental operation in the temporal data model, and is es-
sential to temporal query processing since queries exaduat
on uncoalesced data may generate incorrect answers [12
(see Section 3). A temporal predicate evaluates an interval
comparison [14] (€.9.QVERLAPS, CONTAINS, BEFORE, AFTER),
Manuscript received May 23, 2010. and a temporal function returns time points associated with
"Department of Computer Science, The University of Vermont an interval (e.g.yaLp, INTErsEcT). For temporal functions

a) E-mail: malkateb@cs.uvm.edu and predicates, coalescing is a key operation to support.
b) E-mail: skunta@cs.uvm.edu

¢) E-mail: bslee@cs.uvm.edu
DOI: 10.1587transinf.E93.D.1

*This is aself-joinquery, but, from the query processing per-
spective, is equivalent to joining two duplicate streams.

Copyright© 2010 The Institute of Electronics, Information and Comneatiopn Engineers

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

The focus of this paper is on the problencoflescing
with respect to the update of a window extent and temporal2. Temporal Data Stream M odel
query processing on the tuples in a window extent.

Two kinds of coalescing schemes exist for temporal In this section, we present the temporal data stream model
database query processingagercoalescing andazy co- assumed in our work. Both the data stream model and the
alescing [15]. Eager coalescing performs coalescing at thetemporal data model are hinged on the common notion of
time of updating a temporal table, whereas lazy coalescingtimestamp. Thus, their integration is natural, although th
defers it to query execution time [15]. The former saves exact modeling of temporal dimension igtdrent — as a se-
time for coalescing during query execution while requiring quence of the time instants of (future) tuples arriving iteda
one coalesced table to be materialized for each set of coastream versus a sequence of the time intervals of (past) tu-
lescing attributes specified in the query. ples archived in temporal database. In this section we first

One question is whether and how these two coalesc-summarize these two models briefly, and then describe their
ing schemes can be used for tempstetamquery process- integration to a temporal data stream model.
ing. Simply speaking, it only means substituting a window
extent for a temporal table. Unlike database queries, how-2.1 Data stream model
ever, stream tuples arrive unboundedly and stream queries
run continuously, typically on an ever-changing subset of A data stream is an infinite sequence of tuples [17][18]. Typ-
the stream referred to asmndow extenf16]. This makes ically, each tuple in a data stream is associated with a times
both coalescing schemes disable the basic window extentamp attribute. In many cases only tuples bounded by a win-
update algorithms. Thus, in this paper we present new algo-dow on a data stream are of interest at any giventime [17]. A
rithms working correctly with coalescing. window may be tuple-based or time-based [17][18]. At any

There are tradets between eager coalescing and lazy time instantt, a tuple-based window of size (tuples) on
coalescing in terms of the memory space required to storea data stream contains tuples with the largeimestamps
window extents and the time for updating and querying win- not exceeding and a time-based window of size (e.g.,
dow extents (see Section 3.2). Given this trdtleme ad- seconds) contains tuples with the timestamps in the range of
dress the problem of making an optimal choice between thet — w to t. The set of physical tuples contained in a window
two schemes for given sets of queries with distinct coalesc-is referred to as aindow extentand the specification of a
ing attributes. For this purpose, we develop a cost model forwindow extent is done through theindow operatof16].
estimating the total cost combining the three cost items. In other words, a window operator is like a “cookie cutter”

We conduct two sets of performance study of the two and window extents are like “cookies cut” with it [16].
coalescing schemes with respect to the total cost. The first When a new tuple arrives from the data stream, the cur-
set of experiments compares the relative costs between earent window extent is updated by adding the new tuple to it
ger and lazy coalescing considering a single query, and theand discarding any expired tuples from it (see Figure 1(a)).
second set of experiments examines interesting cases of thgVhile this mechanism is a standard mechanism for handling
costs when multiple queries are registered to the system. the arrival of new tuples from an input stream (e.g., [16]

The main contribution of this paper lies in the study [17] [19]), the need for modeling the temporal dimension
of the coalescing to support continuous queries with tem-in data stream tuples demands &etient mechanism (see
poral functions and predicates over windowed data streamsSection 2.3).

More specific contributions include defining a temporal data We assume tuples may arrive out of order. Our process-
stream model with the coalescing in mind, presenting cor- ing model uses the timestamp of a tuple to detect if the tuple
rect and éicient algorithms for updating window extents has arrived out of order. Though simpler than the processing
with the coalescing in place, and solving the problem of an model of [20] (exploiting punctuation semantics [21]), our
optimal selection between eager and lazy coalescing. To themodel is adequate enough to support the coalescing of tuples
best of our knowledge, this is the first work that conducts an arriving out of order. Additionally, we assume that tuples i
in-depth study of coalescing for windowed temporal query a window extent are maintained in an increasing order of
processing over data stream. timestamp with no duplicate timestamp between any pair of

This rest of this paper is organized as follows. Sec- tuples in the same stream.
tion 2 describes the temporal data stream model assumed
in the presented work. Section 3 provides some relevant2.2 Temporal data model
discussions on coalescing. Section 4 presents the window
extent update algorithms. Section 5 discusses the windown a temporal data model, two orthogonal temporal dimen-
extent scan algorithms. Section 6 develops a cost model forsions are considered [22]: valid time and transaction time.
the three cost items (memory, update, scan) and formulateghe valid time of a fact is the time at which the fact is true
the optimal eager-lazy selection problem based on the cosin the modeled reality. The transaction time is the time at
model. Section 7 presents the experiments for performancevhich the fact is actually present in the system. We con-
study. Section 8 reviews related work. Section 9 summa-sider the modeling of valid time, which is adequate enough
rizes the paper and suggests future work. for the purpose of this paper since coalescing is commonly

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS

performed on valid time. In addition, a temporal data model

Each tuple arriving in the raw data stream consists of

may support either attribute timestamping or tuple times- a set of time-invariant attributes (optional), a set of time
tamping [22] depending on whether each timestamp is as-varying attributes, and a timestamp attribute. When a new
sociated with an attribute or the entire tuple. This paper as tuple is added to a window extent, the temporal dimension

sumeguple timestampingUsing attribute timestamping is

in that tuple is modeled as follows (see Figure 1(b)): (1) its

more complex [23], and can be sought as an interesting fu-timestamp attribute is used to represent its starting fsta

ture work.

2.3 Integration to a temporal data stream model

Expired
Tuple

T T T 1

Previous
Window
Extent *

Current /"
Window
Extent ™\

New

s N N N N B

NN

Data Stream

(a) With Conventional Data Stream Model

current
Window *
Extent

A
., | Time-invariant Time-varying @Timesmmp @Vq'lue
Attributes.__ attributes Attribute = 7, H

New Tuple
Added to -----
Window Extent

y PP oo

Sub: t -
B o N S S N

Timestamp
Attribute
Data Stream

(b) With Temporal Data Stream Model

Fig.1 Updating a Window Extent

(2) a new attribute is attached to the tuple to represent its
ending instant, (3) its starting instant value is assigodté
ending instant of its preceding tuple, (4) its ending instan
takes the value of its starting instant until a subsequeitu
arrives, and (5) its ending instant is assigned a value équal
the value of the timestamp attribute of the subsequent tuple
Whenever necessary, we will call the resulting tupgks-
poral tuplesto distinguish them from the raw stream tuples.
Note that, as mentioned in Section 1, modeling temporal di-
mension is essential to support temporal query processing
and is needed particularly for the coalescing operation.

3. Coalescing

In this section, we discuss some relevant issues on coalesc
ing, with a focus on the importance of coalescing in tem-
poral query processing and the contrast between eager coa
lescing and lazy coalescing.

The introduction of coalescing for temporal query pro-
cessing dates back to Bdhlen [24]. Generally speaking, co-
alescing [12] is an operation of reorganizing temporal data
for temporal query processing. Specifically, it is the pssce
of merging adjacent or overlapping time intervals of value-
equivalent tuples in order to capture the maximal temporal
extent of an instance in a temporal relation.

3.1 Importance of coalescing

As shown in several existing work (e.g., [12] [15] [24]), co-
alescing is a central operation in the temporal data model,
and, without it, the correctness of a temporal query precess
ing result is not guaranteed. We provide below two exam-
ples which demonstrate this point by showing that tempo-
ral queries evaluated on uncoalesced data generate intorre
answers. The first example is for temporal database appli-
cations, and the second example is for data stream applica-
tions.

Example 3 (Coalescing over Temporal Databases):

Consider the snapshot of a temporal table of employees’ dsita
shown in Table 1. Assume that the manager needs to know the
history of Andy’s salary. There are three tuples for Andye Tirst

tuple represents Andy when he was earning $100k, whereas the

In order to support temporal queries over data streams,second and third tup.les reflect the Fime durin.g which Andyfary
we propose to model temporal dimension in the data streamas been $120k. Without coalescing, the history of Andyarsa
model. The model is straightforward, since time is an essen-IS Presented as shown in Table 2 which incorrectly represée
tial component in both data stream model and temporal dataSalary of $120k in two separate tuples. With coalescing, évaw
model. Specifically, each tuple arriving from a data stream (€€ Table 3) the two tuples with the salary of $120k are nderge

is timestamped with a left-closgdyht-open intervald, te),
wherets is the starting instant and is the ending instant of
the interval during which the data value of the tuple is valid

into one single tuple because the timestamps of the twonatigi
tuples are adjacent to each other.

4
Tablel Temporal table Employee.
Name Dept Salary | Start End
Andy | Development| 100k | 2000 | 2004
Andy | Development| 120k | 2004 | 2008
Andy R&D 120k | 2008 | NOW
Table2 History of Andy’s Salary without Coalescing.

Name | Salary | Start End

Andy 100k | 2000 | 2004
Andy 120k 2004 | 2008
Andy 120k | 2008 | NOW

Table3 History of Andy’s with Coalescing.

Name | Salary | Start End

Andy 100k 2000 | 2004
Andy 120k | 2004 | NOW

Example 4 (Coalescing over Windowed Data Streams):
Consider the application of wireless sensor networks assuim
Section 1. Assume a query that monitors the change in tertpera
of different regions with the goal of reporting regions whose tem-
perature did not change for two or more hours. Figure 2 shdves t
results of coalescing tuples in a window currently holdirmgentu-
ples of temperature readings, and contrasts the coalesoediow

to its counterpart in the un-coalesced window. We can sea fro
the figure that while the un-coalesced window has nine tuhes
coalesced window represents its content with only five supiée
first tuple represents readings from regibmwith temperature value

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

3.2 Eager versus lazy coalescing

As mentioned in Section 1, there are pros and cons betweern
eager and lazy coalescing schemes.

One the pros side, eager coalescifigis the following
advantages. First, it obviates repeated coalescing ofitive w
dow extent during query processing, specifically window-
based join processing, as a join window extent should be
scanned repeatedly every time a new tuple arrives at the
other stream. Second, eager coalescing during window-
extent updates paydfdf coalescing is a relatively expen-
sive operation. Third, if the available window fber space
is limited, then eager coalescing is a useful mechanism for
reducing the required Ifiier space.

On the cons side, eager coalescing physically alters the
tuples in a window extent and, therefore, if there are two
or more temporal queries that require coalescing dieidi
ent time-varying attributes, then there must be separae co
lesced window extents maintained. The storage overhead
and the window extent update overhead in this case may
make the eager coalescing not worthwhile.

4. Updating a Window Extent

In this section, we present algorithms for updating a win-
dow extent in the presence of eager or lazy coalescing while
preserving the correct window semantics.

The algorithms designed make the following assump-
tions. First, tuples may arrive out of the order of times-
tamp, which may necessitate retracting some of the coa-

of 81 from 1:00 p.m. to 3:00 p.m.; the next three tuples represent !€sced tuples. Second,fidirent tuples may belong to dif-

readings from regior2 and show that temperature in this region
fluctuated fronB81 at 1:00 p.m., to79 at 2:00 p.m., and back up to
81 at 3:00 p.m.; the third tuple represents readings from regso
with temperature value &1 from 1:00 p.m. to 3:00 p.m.

RegionID Temprature
(Time-invariant (Time-varying ~ Timestamp
attribute) attribute)

R

81 1:00 |

2 81 1:00 RegionlD Temprature
(Time-invariant (Time-varying

attribute) attribute)

R

1 81 1:00 | 300

Staring
Instant

Ending
Instant

81 1:00

81 2:00

81 2:00 2 81 1:00 | 200

81 3:00

200 |

|
|
|
200 |
|
|
|

81 3:00 81 300 [300

\
\
\
\
79 |
\
\
\
81 |

|
| |
| |
| |
ERN
| |
| |
| |

|

\ |
\ |
79 | 300 |
\ |
\ |

300 | 81 100 [3:00

(a) Un-coalesced (b) Coalesced

Fig.2 Coalescing over Windowed Data Streams

ferent groups, and only tuples belonging to the same group
are coalesced (e.g., humidity readings are grouped by re-
gionID). Third, tuples are always memory-resident (with no
overflow to disk), thus demanding frugal consumption of
memory space. Fourth, no index is used to access tuples
in a window extent, which lifts the overhead of updating an
index as tuples arrive (and possibly coalesced) but brimgys t
need to linear-scan the window extent for query processing.
4.1 Influence of coalescing on the basic window extent up-
date algorithms

The basic algorithms for updating a window extent work by
simply adding new tuples to a window extent and discard-
ing expired tuples from it. However, in the presence of eager
coalescing, these basic algorithms no longer work. The rea-
son is that with eager coalescing one or more tuples may be
coalesced to form a single tuple in the window extent. In
this case, for example if some but not all of the coalesced
original tuples expire, then there is no correct way thedasi
algorithms can handle it. If they discard the coalescedetupl
they have removed the tuples that have not expired yet. If
they do not, then they have retained the tuples that have ex-
pired. In either case, the query results are incorrect.fGhare
changes of the basic algorithms are required to ensure the

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS

5
correctness. Algorithm 1 tupleBasedLazyUpdategs)
On the other hand with lazy coalescing, the impact is Inputs: shew// a new arrival tuple

smaller. Each time a new tuple arrives, the structure of the Giobal variables:
tuple is altered with an additional attribute attached @ re // Soidest the tuple with the smallest ts in the window extent
resent its ending instant and the value of its timestamp-is as // Satest the tuple with the largest te in the window extent
signed to the ending instant of the previous tuple. Changes // Discard the oldest tuple
required for this alteration are less involving. 1: Shextoldest= SoldestNeX{)

2. removeSy|dest
4.2 Window extent update algorithms 3: Soldest = Snextoldest

// Add the new tuple
We present the algorithms targeting tuple-based windows 4 it s;}e;:ts ;:Sa‘;fﬁit\fetdhi';t of order
. age ew

and discuss the moqmcatmns necessary fortime-based Win-g: it 5 .,.ts < Syigesits then
dows. (See Appendix A for basic functions needed by these 7: discardsmey // arrived too late
algorithms.). 8 dse

9: find the tuplesyey Next to which s,ey should be added, i.e.,

. . Sprev-ts < Snew-tS < Sprev.nex().te

4.2.1 Update with lazy coalescing 10: addTupISans Sorer)

11 endif

In the lazy coalescing scheme, the algorithm of updating a12: ese

window extent is a direct extension of the basic window ex- 13: // shewhas arrived in order
tent update algorithm. It employs only the idea of updating 14: addTuplésew. Sates)

the starting and ending instants of tuples, and defers any co endaiaf‘es‘: Snew

alescing to the query execution time.

Updating a tuple-based window extent a window extent is based on three key ideas. First, each tu-

ple is attached with a timestamp vector (denoted)aghich
comprise the timestamps of all subsequent tuples coalescec
with that tuple. Remembering the timestamps of the coa-
lesced tuples is important in order to correctly discard tu-
ples when they expire. Second, updating a window extent is
achieved primarily by manipulating the timestamp vectors.
That is, adding a new tuple to the current window extent
may not necessarily result in an actual insertion of the new
tuple. Instead, it may result in merging the new tuple with
an existing tuple and updating the timestamp vector of that
existing tuple. Similarly, discarding an expired tuplerfro
the current window extent may not necessarily result in an
actual removal of the tuple. Instead, it may result in only up
dating the timestamp vector of an exiting tuple. Third, if a
new tuple arrives out of order, it may either be merged with
an existing tuple or cause an existing tuple to split into two
tuples.

The algorithm works in two phases upon the arrival of a new
tuple (see Algorithm 1). The first phase concerns discarding
an expired tuple from the window extent, and the second
phase concerns adding the new tuple into the window extent.
In the first phase, the algorithm simply removes the oldest
tuple from the window extent and upda®giestto the new
oldest tuple (Lines 1-3). In the second phase, if the new
tuple has arrived too late (i.e., has arrived out of order and
should have expired), it is discarded (Line 7). If the new
tuple has arrived out of order but still should be added to the
window extent, then the algorithm finds where to insert the
tuple in the window extent and adds it (Lines 9-10). If the
new tuple has arrived in order, then the algorithm adds the
new tuple at the end of the window extent and updatgs:

to the new latest tuple (Lines 14-15).

Updating a time-based window extent

The only diferences from updating a tuple-based window UpPdating a tuple-based window extent

are in the way old tuples are identified for deletion and in _))

the way the belatedness of an out-of-order arrival tuple is The algorithm works in two phases upon the arrival of a
determined. Thus, we only need to replace Lines 1-3 of "éW tuple (see Algorithm 2). The first phase of the algo-
Algorithm 1 by Lines 1-4 shown below and replace the if- ithm concerns discarding the expired tuple from the win-

condition in Line 6 of Algorithm 1 bys,ewtS < Shewts— T, dow extent. If the oldest tuple in the window is currently co-
whereT is the time-based window size. alesced with other tuples, then the expired tuple is removed

by updating the starting instant of the oldest tuple with the
smallest timestamp value in its timestamp vector (Lines 2—
3). Otherwise it is directly removed from the window extent

1: while (SoidesttS < Snewts— T) do

2: Soldest = SoldestNeX{)
3. removespigestPrev)

4: end while andsyigestiS updated to the new oldest tuple (Lines 5-7).
The second phase concerns adding the new tuple into
4.2.2 Update with eager coalescing a window extent. If the new tuple has arrived too late, that

is, has arrived out of order and should have expired, then it
In the eager coalescing scheme, the algorithm of updatingis discarded (Line 12). If it has arrived out of order butl stil

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

Algorithm 2 tupleBasedEagerUpdatets) 2: if (Solgestt-Siz&) > 0 andspgestte > Shewts — T) then
INpUtS: Shew// @ New arrival tuple 3: Soldest = SPIitTUpleSoidest Snewsts - T)
// Global variables: g: :d i e
// Soldest the tuple with the smallest ts in the window extent 4 rel;jr?(s)t\/;sokljdm.pre 0
. est

// Satest the tuple with the largest te in the window extent 7+ end while

// Discard the oldest tuple
1: if SoigestV.Siz€) > 0then))
2. Soidestts = SoidestV. first() 5. Scanning a Window Extent
3: removeSygestV. first() from sogestV
4: dse . .
5. Snextoldest= SoldestNex{) We use window extent scan as an operation that gener-
6: removesoidest ally represents the window-based temporal query process-
;j o dsfi"fd‘?s‘: Snextoldest ing over data streams. Temporal join queries are of particu-

lar interest in terms of using a window. Temporal predicates

/[Add the new tuple are typically defined on intervals, and joins on these irgerv

9: if ShewtS < Satestts then

10: // Shewhas arrived out of order predicates are essentially non-equijoins. For exampée, th
11: if Shew!S < Soldestls then temporal join predicat@ALID(s1) OVERLAPS VALID(s2) in
12: g discardsew // arrived too late Example 1 is equivalent to the following non-equijoin pred-
13 else . icate sl.ts < s2.te AND s2.t; < sl.t.. A window scan is
14: find the tuplesiarget that overlapsnew, i.€., Sargetts < Snewts < . . L . . .
Srgette: and belongs to the same groupsas, a common operation in non-equijoin processing Ilke_ this.

15: if Shewis value-equivalent witlarget then Temporal aggregation queries may as well require window
16: mergeTuplenew Sarget) extent scan, especially for selective aggregation funstio
gf else _ spliTupld © like MAX, MIN, and MEDIAN. For example, the windowed

: Sprev = SP 11 TUP Gtarget Snew aggregation in Example 2 requires scanning the entire win-
19: addTuplésnew, Sprev) . .
20: end if dow whenever a tuple with the maximum temperature value
21: endif is discarded from the window extent.
22: else Thus, we use the window extent scan cost as an ob-

23: // Snew has arrived in order

24 find the latest tupleaes that belongs to the same groups s jective counterpart of the window extent update cost in the

25: if Snewis value-equivalent witlsistes then performanc_:e study (Section 7) _ .

26: mergeTupleSnew Sates) The window extent scan algorithms are simple. They
27: dse involve a linear scan of all tuples in the window extent for
28: addTuplésnew Sates) both window types regardless of the coalescing approach.
20 g et = Shew (The scan could be an index-based if an ind

30- endif ; uld be an index-based scan if an index were
31: end if available, but in the current work an index is not considered

on a window extent which is memory-resident.) The only
distinction in our work is that, in the case of lazily-coaled
should be in the window extent, then the algorithm scans window extent, there is an additional overhead of coalescin
the window extent to find a tuple that overlaps the new tuple tuples during query execution. This overhead increases lin
(that is, a tuple whose time interval contains the timestamp early with the number of tuples in the window extent and
of the new tuple) and belongs to the same group (Line 14).the coalescing probability.

If the two tuples should be coalesced, then they are merged

(Line 16). Otherwise, the overlapping tuple is split (Lir&) 1
and the new tuple is inserted between the two split tuples
(Line 19). If the new tuple has arrived in order, then it scans
the window extent to find the latest tuple that belongs to the
same group (Line 24). If the two tuples should be coalesced,From the tradefis observed in Section 3.2, it is evident that
then they are merged (Line 26). Otherwise the new tuple isthe costs of storing, updating, and scanning window extents
added at the end of the window extent (Line 28) aggstis are the key cost itemsffecting the choice between eager

6. Optimal Selection between Eager and L azy Coalesc-
ing

updated to the new latest tuple (Line 29). coalescing and laze coalescing. In this section we formu-
late the problem of choosing between the two coalescing
Updating a time-based window extent schemes to optimize an objective defined as a combination

of the three cost items. We first develop a cost model of
In the same manner as the case of lazy coalescing, thdhe three cost items and then formulate the optimal selec-
only modifications needed are to replace Lines 1-8 of Al- tion problem based on the model. The cost model presented
gorithm 2 by Lines 1-7 shown below and replace the if- here assumes a tuple-based window. Only the cost model
condition in Line 11 of Algorithm 2 bygewts < Shewts—T, needs to be replaced for the same optimization framework
whereT is the time-window size. to work with a time-based window. Table 4 summarizes the
1: while (SyidesttS < Shewts— T) do notations used in the cost model.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS

Table4 Notations used in the cost model.
Symbol Description

reager tuple size in eagerly-coalesced window extent (bytes)
rfazy tuple size in a lazily-coalesced window extent (bytes)
m timestamp size (bytes)
w window extent size (number of tuples)
i tuple index (> 1)
cp probability that thé™ tuple coalesces with the € 1)th
tuple of the same group £ 2)
oop probability that theé™ tuple arrives out of ordeli & 1)
k the number of tuples that have arrived so fap(1)
Cread cost of reading a specific tuple in the window extent
Cinsert cost of inserting a tuple at a specific position in the win-
dow extent

Cgelete cost of deleting the oldest tuple from the window extent
Cattach cost of attaching a timestamp to a specific tuple

Cdetach cost of detaching the first timestamp from the timestamp
vector of the oldest tuple

Cerge sum of the cost of finding the target tuple and the cost
of mergeTuplesi.e., merging the timestamp of the new
tuple into the timestamp vector of the target tuple

Cspiit sum of the cost of finding the target tuple and the cost of
splitTuple i.e., splitting the target tuple and its timestamp
vector and inserting the new tuple

M®29ek) | memory consumption for storing a window extentkof
eagerly-coalesced tuples

M™2Y(k) | memory consumption for storing a window extentkof
lazily-coalesced tuples

u®age(k) | time for updating a window extent with the fidstuples
using eager coalescing

U™Y(k) | time for updating a window extent with the filstuples
using lazy coalescing

Seageik) | time for scanning a window extent containikguples
stored with eager coalescing

S2y(k) time for scanning a window extent containitguples
stored with lazy coalescing

(Crmerge @and Cspiit include extra costs for setting up and following up the oper-
ations specified in the functiomserge TuplesndsplitTuple(Section Appendix
A).)

6.1 Cost model

6.1.1 Window extent memory consumption

Note that a tuple in a lazy-coalesced window extent
has all the attributes in an incoming tuple of the stream,
whereas in an eager-coalesced window extent, it has only
the attributes required by the query. Thef8%"is no larger
thanr'@?,

6.1.2 Window extent update time

In the case of eager coalescing (Equation 3), for each new
tuple the update time comprises the costs of either inggrtin
it uncoalesced (if it arrives in order and does not coalesce
with an existing tuple), merging it with an existing tupl&ifi
arrives in order and it does coalesce with that existinggypl
inserting it and splitting an existing tuple (if it arrivestoof
order and it does not coalesce with that existing tuple), or
merging it with an existing tuple (if it arrives out of order
and it does coalesce with that existing tuple). In addition,
once the number of tuples exceeds the window size, then
there is the additional cost of either uncoalescing thestlde
tuple and detaching the timestamp from its timestamp vector
(if it was coalesced) or simply discarding the oldest tuffle (
not). In the case of lazy coalescing (Equation 4), the update
time comprises the costs for inserting a new tuple and, if the
number of tuples exceeds the window size, then the cost of
deleting the oldest tuple.

k
U®%{k) = »"((1-00R)(L - cp) Cinsert+ (1~ 00R) P Crnerge
i=1

+00Q (1 - cp) (Cinsert + Cspiit) + 00Q CP Crmeye
+(Cpi-w) Cdetach+ (1 — CP-w Cdeletd) (3)

wherek > 1 andcp—_,, = 0 fork < w.

lazysy _ | Cinsert fk<w
v = { Cinsort+ Caetete if k> w 4)

6.1.3 Window extent scan time

In the case of eager coalescing (Equation 1), for each newThe window extent scan involves reading all tuples in the
tuple, the memory consumption increases by the timestampwindow extent. In the case of eager coalescing (Equa-
size if coalescing occurs and by the tuples size if not. Fortion 5), all tuples in the current window extent are simply
each expiring tuple, the memory consumption decreases byscanned linearly. The number of tuples can be computed by
the timestamp size if the oldest tuple was coalesced with itsdividing the current window extent's memory consumption
subsequent tuples and by the tuple size otherwise. In thedy the tuple size. In the case of lazy coalescing (Equatipn 6)
case of lazy coalescing (Equation 2), the memory consump-there is the overhead of coalescing tuples during query ex-
tion increases linearly with the number of new tuples until ecution. The time for reading each tuple during the scan

the window becomes full and then remains constant.

k
ME20(k) = " ((cp m+ (1 - cp) r2e°)
i=1
~(cp-wm+ (1~ cp-y) rea9®) (1)
wherek > 1 andcp_,, = 0 fork < w.

MB2(k) = min (k, w) r'® wherek > 1 @)

depends on whether tuple coalesces with the previous tuple
or not.

Meager(
Seager(k) = Cread reTe(r) (5)
k
Slazy(k) = Z(Cp (Ceoatesct Cread) + (1 - ¢pi) Cread) (6)

i=1

“In the current work, an index is not considered on a window
extent which is memory-resident.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

6.2 Optimal selection problem formulation In contrast, there exists one window extent for all
DCQs inS — & and, thus, the costs of storing and updat-

Given multiple concurrent temporal queries running agains ing tuples are incurred for the single window extent, but the

the same window, we can consider a set of all queries,cost of scanning tuples is incurred for each DCQ. The total

each specifying time-variant coalescing attributes ametti cost for all DCQs inS — & is also expressed as a weighted

invariant grouping attributes. We call itdistinct coalesc- ~ sum as well, that is,

ing query (DCQ) set For example, if one quer@; spec-

ifies coalescing on attributg#\, B} grouped by{G11, G12}, CosPH(K) = 4,12(K) + 1,02(K) + Z Sc,ancostgazy(k) (10)
two other querieQ, andQs specify coalescing on attributes jes-8

{B, C} grouped by{G,}, and another quer§, specifies co- where

alescing on the same attributigy C} but grouped byG3} , SCancoséazy(k) -)N'jazy(k)

then{({A, B}, {G11, G12}), ({B, C}, {G2}), ({B, C}, {Gs})} is the

DCQ set frc_>m the fC?Uf queries. Based on these cost expressions, the optimal selection
There is one window extent needed for each DCQ that o 11em of determining which DCQs are subject to eager

is subject to eager coalescing, as the eager coalescing phyggajescing (leaving the rest to lazy coalescing) is staged a
ically alter the tuples in it, and one lazily-coalesced vawd ¢i1ows.

extent is needed for all the other DCQs. Note that the num-
ber of window extents that should be maintained is thus no Optimal selection problem: Given a DCQ seS
more than the cardinality of the DCQ set. (They are equal if and the numbek of tuples that have arrived so
and only if eager coalescing is used for all the queries.) Laghf|nd a subses’ of S that minimizes the cost
. . X . puted as

The window extent size has afidirent unit from the
other two cost items. Thus, we normalize them to values in Z Cosf™°(K) + Z Scancosﬁazy(k)
the range of [0,1] by dividing them by the maximum pos- jes’ jes-&
sible values Kmax Umax aNdSmay). Mmax is the window

e>_<tent size needed whe_n no coalescing is dohgy is the and.,4(K)) are independent of the DCQ spand, thus,
window extent update time when all tuples are coalesced o : . .
are not part of the cost objective function. Besides, their

(then th_ere 's only one tuplg in the window extent), S values are zero if there is no DCQ subject to lazy coalescing.
is the window extent scan time when all tuples are coalesced

during the scan. Theorem 1: The optimal selection between lazy and eager
Let us denote the normalized window extent size, up- coalescing for multiple concurrent queries is a 0-1 integer

date time, and scan time asv, ando, respectively. Then, programming problem.

they are expressed as follows for tfie DCQ depending on

the coalescing scheme.

Note that the cost terms of lazy coalescing (i&42?(k)

Proof Sketch The proof can be easily seen by defining
Xj = 1if j € S and O otherwise (i.e.j € S - &).
Then, the problem can be rewritten to that of minimizing

cagey cagey Sy —) - ager
,u?ager(k) _ M;\A (k); Utjeager(k) _ UJU (k); Z?:l(cj Xj+ d) wheren = |S, Xj € [O, 1], Cj = COS? (k) -
max cagery Scancostazy(k), andd = 3, Scancostazy(k).
O_jeager(k) _ for J cS (7)
Smax 7. Performance Study
g = MIazy(k) Jazyge - U'azy(k) We study the performances of eager and Iazy coalescing
H Mmax Umax with respect to the costs formulated as a weighted sum of
| sk the three normalized cost items (see Equations 9 and 10).
o7k = ﬁ forjesS-8 ® The performance study consists of two sets of experi-

ments. In the first set of experiments, we compare the two
whereS is the DCQ set and” is the set of DCQs whose coalescing mechanisms forfidirent coalescing probabili-
window extents are coalesced eagerly. ties and out-of-order probabilities undeitdrent memory,
These three normalized quantities (i.ﬂ,,U, and O’) update’ and scan cost We|ght5 (i-'en/lv,/lo') when a sin-
participate in the optimal selection problem formulatien a gle query is registered. We assume that coalescing and out-
follows. For each DCQ i, there exists one window eX- of-order probabilities are learned and captured during the
tent eagerly coalesced on the attributes of that query andprocessing of input data streams. In the second set of ex-
thus, the costs of storing, updating, and scanning tupkes ar periments, we study interesting cases in the optimal selec-
incurred for each window extent. We express this cost as ation problem by comparing the costs resulting frofiefient
weighted sum of the three normalized quantities, thatis, selections when multiple queries are registered: eager coa
lescing for all queries, lazy coalescing for all queriesd an
Cosfage'(k) = ﬂ”y?ager(k) + auufage'(k) + A(rrr?ager(k) 9) an optimal selection as described in the previous section.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS

All experiments are implemented ir+G on a laptop
with Windows Vista running on Intel Core2 Duo 2 GHz
CPU and 3 GB RAM.

7.2 Experiments 1: comparison between eager and lazy
coalescing costs

In this section, we describe the setup of data sets used
in the experiments in Section 7.1 and present the two sets offo visualize the expected performances of the algorithms,
experiments and their results in Section 7.2 and Sectign 7.3we plot the costs of eager coalescing and lazy coalescing

respectively, summarize the results in Section 7.4, angksha
some practicality considerations in Section 7.5.

7.1 Data sets
Synthetic data sets

We generate synthetic data streams of, 200 timestamped
tuples. The timestamp size is eight bytes.
has three time-varying attributes and three time-invagan
tributes, each of size four bytes. Time-invariant attrisut
are used for grouping.

As mentioned in Section 1, we use the coalescing prob-

ability (cp) and the out-of-order probabilitpbp) as the con-
trol parameters in the experiment$hus, we generate mul-
tiple data streams with fierent coalescing probabilities and
out-of-order probabilities (each ranging from 0 to 1 with an
interval of Q1). In contrast, the number of groups has no ef-

fect on the relative costs between eager and lazy coalgscing
and thus we set the number of groups to single values 3, 5,

and 7 for the three time-invariant attributes, respedfivel

Real data set

We use a real data set collected from sensors deployed in

the Intel Berkeley Research lab between Februaly &&d

Aprils 51, 2004 [9]. Sensors mounted with weather boards

collected timestamped topology information, along witk hu

midity, temperature, light and voltage values once every 31
seconds. Collection of data was done using the TinyDB
guery processing system, built on the TinyOS platform. The

resulting data file includes a log of about 2.3 million read-

ings collected from these sensors. The schema of records

is (date: yyyy-mm-dd, time: hh:mm:ss.xxx, epoch: int,
moteid: int, temperature: real, humidity: real, lightlkea
voltage:reagl. In this schema, epoch is a monotonically

increasing sequence number unique for each mote. Tem-
perature is in degrees Celsius. Humidity is temperature-

corrected relative humidity, ranging from 0 to 100%. Light
is in Lux (1 Lux is about moonlight, 400 Lux about a bright
office, and 100,000 Lux about full sunlight.) Voltage is ex-
pressed in volts, ranging from@to 30 volts.

Each tuple

obtained using the cost model (in Section 6.1) while vary-
ing the coalescing and out-of-order probabilities fdfet:

ent weights of memory costf), update cost(,) and scan
cost(l,;). These three costs are the actual values measurec
by running the algorithms (see Sections 4 and 5) on syn-
thetic data sets.

Weighted sum of Normalized cos

Out of Order Probabilit9 0 Coalescing Probabilit
(b) Weights:(1,50,1)

1 ~...eagelJlazy

Weighted sum of Normalized cost:

Out of Order ProbabiIiR/ 0 Coalescing Probabilit

(c) Weights:(1,100,1)

Fig.3 Costs of eager and lazy coalescing for an increasing update c

Four other parameters were considered as well — window ex- Weight.

tent size (i.e., number of tuples), stream data set size ifuenber

of tuples), stream rate, and the number of groups. Among them
the window extent size shows insignificarffest as costs calcu-
lated are normalized, and the stream data set size and staé@am
do not dfect the costs at all as the cost is measyredtuplein a
window extent. In the case of the number of groupsffé@s only

the coalescing probability and, since the coalescing (itibais
already considered a tuning parameter, it loses signifeeanc

Before we present the experimental results, let us first
discuss how the costs offtkrent per-tuple atomic opera-
tions (Table 4) vary with respect to the coalescing and out-
of-order probabilities. (We implement a window extent as
an array data structure in this performance study.)

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010
10

Creag: This cost depends only on the size of a specific as the update cost weight increases. This indicates that the
tuple. Since the tuple size is constantin lazy coalescing cost of eager coalescing increases faster & {®) than

but increases linearly with the coalescing probability in any other point. To understand the reason for this trend,
eager coalescing as more timestamps are added to théet us study the behavior of the graphs shown in these fig-
time stamp vector of a tupl&eaq varies in the same ures in detail. From Equation 3 and our discussion of the
manner with the coalescing probability. Evidently, the costs of the atomic operations above, we see thage-
out-of-order probability has ndiect on this cost. TuplesandsplitTuplesare the only operations contributing
Cinsert aNdCqelets These two operations are limited to to the change in cost when the update weight is changed.
a specific single tuple and, thus, are irrelevant to coa- gpecifically, the following two observations hold. Firsir f
lescing and out-of-order probabilities. . a givencp, the update cost of eager coalescib§as", in-
Caetach andCatiacn - These costs are applicable onlyin o o co with the increasea@dp. The reason for this is quite

the case of eager coalescing and remains constant fOEIear from the fact that, as mentioned ab@gergeandCapi
the same reason & sert aNACyelete

Crmerge If the new tupie to be merged is not arriving in NCT€aseé monotonously wittp x oe(;pe?ndoop/cp, respec-
order, then we have to search the window for the ap- _tlvely. Second, for a giveoop U ’ decreases_ with the
propriate position in the window extent and also search Increase otp. '_I'he reason for this can be explained as fol-
the timestamp vector of that tuple for finding the ap- OWS- With the increase afp, Crergeincreases buCspir de-
propriate position to insert the timestamp of the new creases. In this performance StuBypit is a more dominant
tuple. Thus, this cost increases with the out-of-order factor tharCme,ge!n the cost Of_ eager coglescmg because of
probability. Additionally, if the coalescing probability e currenrray implementation of a window extent, We

is higher, then the timestamp vector will be larger and can deducg from these two observatpns that _vvhatevgr the
so the cost of merging is higher. Th@hergeincreases update weight may be, eager coalescing cost is the highes
monotonously wittoopx cp. at (cp,00p = (Q.O, _1.0) and the lowest at (1_.0, 0.0), and as
e Cspit: This cost is applicaBIe only for out-of-order tu- the update weight increases the crossover line moves towarc
ples and increases monotonously with the out-of-order (1.0, 0.0) as visualized in Figure 3(a) through Figure 3(c).
probability. On the other hand, the cost decreases
monotonously with the coalescing probability because
the number of tuples to be moved to create a room
in the window extent (with the array data structure) is
smaller when more tuples have been coalesced. Thus,
Cspiit increases monotonously widop/ cp.

Now, we present the experimental results. We have
conducted this set of experiments with a wide range of dif-
ferent weight combinations of memory, update and scan
costs. We show a few interesting cases here. < 05

Among the three cost weighta;)(, Ay, /lo'), increasing Out of Order Probabilitp 0 Coalescing Probabilit
1, gives an advantage to lazy coalescing whereas increas- Fig.4 Costs of eager and lazy coalescing for no memory cost weight.
ing A, or A, gives an advantage to eager coalecing. Thus,
in this experiment, we increasg, relative to, and A,
and observe the performance trend. Figures 3(a) through ~ As a special case, Figure 4 shows the costs of eager
3(c) show the costs of eager coalescing and lazy coalescingoalescing and lazy coalescing whgs-0, 4,=1 andd,=1.
when (4, ,, ,) is (1,1,1), (1,50, 1), and(1,100Q 1), re- This combination of weights refers to the case in which the
spectively. These weight combinations refer to the cases ofSystem has diicient memory and update and scan costs are
an increasingly higher weight given to the update cost. given equal priority. As expected, eager coalescing and laz

¢ From these figures we make two observations. First,coalescing show more or less the same costs, with slight
when the update cost weight,{ is comparable to the mem- differences in a region represented by lowp@nd higher
ory cost weight {,) and the scan cost weighty) (see Fig- oop. This is because theftiérence in normalized scan costs
ure 3(a)), eager coalescing outperforms lazy coalescing in(for which lazy> eager) is countered well by thefidirence
the entire ranges afopandcp. The reason is that eager co- in normalized update costs (for which eagelazy) in this
alescing costs less than lazy coalescing in two (i.e., mgmor region.
and scan) of the three cost items. Note that all three costs
are normalized (to maximum 1.0). 7.3 Experiments 2: optimal selection between eager and

Second, the three figures show a trend of the relative lazy coalescing
performance between eager coalescing and lazy coalescing.

The closer thedp, oop) pair is to (Q0,0.0), the lower the For this set of experiments, we consider a scenario of six
cost of eager coalescing compared to lazy coalescing. In adgueries with the following DCQ setupt ({h}, {ep}), ({t},
dition, the crossover line moves toward the poind(0.0) {md}), ({v}, {It}), ({h,t}, {ep md}), ({t,v}, {md It}), ({h,t,v},

Weighted sum of Normalized cos

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS
11

Table5 Scenarios used for the real data set
Cp1, CP2, CP3, CP4, CPs, CPs Result Selection between eager and lazy
Casel | 0.1,0.1,0.1,0.1,0.1, 0.1 alllazy = optimal < all eager | lazy on all queries
Case2 | 0.8,0.8,0.8,0.8,0.8,0.8 all eager=optimal< all lazy | eager on all queries
Case3 | 0.5,0.5,0.5,0.1,0.1,0.2 optimal< all lazy < all eager | eager orQ;, Q2, Q3 and lazy onQ4, Qs, Qg
Case4 | 0.8,0.8,0.8,0.1,0.1, 0.1 optimal< all eager< all lazy | eager orQs, Q2, Q3 and lazy onQ4, Qs, Qg

(cp denotes the coalescing probability for quély)

{epmd It}) } whereh, t, v, ep md, andlt refer to humid-

=
&3]

ity, temperature, voltage, epoch, mote ID, and light, respe I3 Dﬁ:: E:gfr
tively.” We attain the required coalescing probabilities for 10 M optional

these experiments by quantifying the coalescing attribute
values with an appropriate quantum size. All tuples are in
order in the real data set and, thus, out-of-order probabil-
ity is zero. (4, 4,, A-) are considered to bg, 1, 2). When
multiple queries are registered in the system, memory and
update costs give favor to lazy coalescing while scan cost
gives favor to eager coalescing. Additionally, in the calse o
lazy coalescing, at least two scans are needed for any oper-
ation on the window extent, one for coalescing the window

[¢)]

Weighted sum of Normalized costs

o

1 2 3 4
Case Number

(a) Differentcp cases.

©
~

and the other for performing the requisite operation accord Dﬁ:: E:ff '
ing to the query. This justifies assigning weiglitsl, 2). 0.3 M Optional

We measure the costs of the per-tuple atomic opera-
tions Cread, Cinsertt Cdelete Cmerge Cspiit, @Nnd Cqetach by re-
peating each operation 1000 times and averaging it over all
the tuples of the stream data set.

The scenario shown in Table 5 are used for the real data

o©
=

o
=
i
=
[—

Weighted sum of Normalized costs
o
N

set. In this scenario setup, the six queries are divided into Loz Cagse ﬁum%er 6
two groups Q1, Q2, Qz and Q4, Qs, Q) and high & 0.8), (b) Different(cp, oop) cases.

medium E0.5), or low 0.1) coalescing probability is as-
signed to each group with fiiérent cases of combination.
Figure 5(a) summarizes the resulting costs of all-lazy, all
eager, and optimal selections in each case.

We can see from the selection decisions in Table 5 that
the optimal solution for the given set of queries suggestsand 2), we assign lowp(= 0.2) in Case 1 and higtp(= 0.7)
eager coalescing for queries having higher coalescingprob in Case 2 and vargopfrom 0.0 to 1.0. Due to space con-
ab|||ty and |azy Coa|escing for queries having lower coales straint and insignificant tierence in the selection results,
ing probability. This phenomenon is mainly due to the fact we show only the results for twoop values € 0.3, 0.6).
that when the coalescing probabilities are high the normal-In the second set (comprising Cases 3 and 4), weystd
ized memory costs and scan costs for eager coalescing aré@ medium value< 0.5) and varyoopfrom 0.0 to 1.0. We
very low and hence can negate the extra update cost for perobserve that abop = 0.7 there is a change in the selection
forming eager coalescing. result from eager to lazy. We examine this behavior further

Now, let us see some scenarios wheogplays a role. in the third set of cases (comprising Cases 5 and 6), where
For this we consider the synthetic data sets, as they allowWe setcp to a value similar to the value used in Case 3 of
us to change the out-of-order probability. We consider the Table 5 and vary theopvalues of queries Q2 and Q3. Fig-
same scenario of six queries except that the attributesiare i ure 5(b) summarizes the resulting costs of all-lazy, ajjeza
tegers. Weights on the update and scan costs are considerednd optimal selections in each case.
to be equal while the weight on the memory costis assumed ~ We can see from Table 6 that the optimal solution for
to be zero in order to show the impactadpmore clearly. the cases suggests eager coalescing for queries having lowe
(Note thatoop does not fect the memory cost whilep ~ 00ps and lazy coalescing for queries having higbeps
does.) Like the cases in Table 5, all the cases shown in Ta{for givencps). This phenomenon is mainly due to the fact
ble 6 compare the costs of performing queries with Coa|esc-that, for the current array implementation of the window ex-
ing all lazy, all eager, and the optimal selections. tent, the diference in update costs between eager and lazy is

In this scenario setup, the queries are tested with threelarger than the dierence in scan costs at higtoerps (where
different sets of cases. In the first set (comprising Cases 1eager coalescing costlazy coalescing cost) and theffir-

ence in scan costs is larger than thietience in update costs

"We use light as a grouping attribute because its shows a lim-at loweroops (where lazy coalescing casteager coalesc-
ited number of constant values in the data set. ing cost).

Fig.5 Alllazy, all eager, and optimal costs.

12

Table 6

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

Scenarios used for the synthetic data sets

CP1. CP2, CP3, P4, €Ps, CPs

00p1, 002, 003, 00y, 00Ps, 005

Selection between eager and lazy

Casel

0.2,0.2,0.2,0.2,0.2,0.2

0.3,0.3,0.3,0.3,0.3,0.3

lazy on all queries

Case?2

0.7,0.7,0.7,0.7,0.7, 0.7

0.6, 0.6, 0.6, 0.6, 0.6, 0.6

eager on all queries

Case3

0.5,0.5,0.5,0.5,0.5,0.5

0.3,0.3,0.3,0.3,0.3,0.3

eager on all queries

Case4

0.5,0.5,0.5,0.5,0.5,0.5

0.7,0.7,0.7,0.7,0.7,0.7

lazy on all queries

Caseb

0.4,0.4,0.4,0.2,0.2,0.2

0.6,0.6,0.6,0.7,0.7,0.7

eager orQ1, Qp, Q3 and lazy onQ4, Qs, Qs

Case 6

0.4,0.4,0.4,0.2,0.2,0.2

0.6,0.8,0.8,0.7,0.7,0.7

eager orQ; and lazy onQy, Qs, Q4, Qs, Qs

(cp denotes the coalescing probability for quély)

7.4 Summary of experiment results

e Eager coalescing outperforms lazy coalescing when the
update cost weighti() is comparable to the memory
cost weight {,,) and scan cost weighi).

e The cost of eager coalescing becomes increasingly
lower than that of lazy coalescing asp(oop ap-
proaches (0.0, 0.0) and, as the weight of update cost in-
creases, becomes increasingly higher than that of lazy
coalescing ascfp, oop) approaches (0.0, 1.0).

o If all tuples arrive in order, then the cost of eager coa-
lescing increases with the increase in coalescing prob-
ability. If some tuples arrive out of order, then the cost

of eager coalescing decreases with the increase in coa- .
weights on them.

lescing probability.

e When multiple queries are registered in the system,
there exists an optimal set of queries, some coalesce
eagerly and others lazily, whose cost is no greater than
both the cost of performing eager coalescing on all the
queries and the cost of performing lazy coalescing on
all the queries.

e When multiple queries are registered in the system with
different coalescing probabilities and the weights of
update scan and memory are equal, optimal selection
problem suggests us to do eager coalescing on querie
with higher coalescing probabilities and lazy coalesc-
ing on the rest.

e When multiple queries are registered in the system witl
different coalescing probabilities, the probability for a
query to be selected to coalesce lazily increases with an
increase in the update cost weight and the memory cost
weight and the probability for a query to be selected to
coalesce eagerly increases with an increase in the sca

cost weight.

7.5 Practicality considerations on the cost objective

ized cost items, carries some practical implications wath r

spect to the weighting scheme.

The weighting scheme accommodatefedent situa-
tions of available computing resources in real-world strea
ing applications. For many applications, a stream proogssi

reflected through a larger weight on the memory cost. When
more limited in the processing power, it can be reflected

through larger weights on the update and scan costs. Fur-
The experimental results suggest the following conclusion ther, for streaming applications with high arrival rateg][1

assigning a larger weight to the update cost accommodates
the situation adequately.

While normalization is generally a good mechanism
to ensure fairness when considering cost items fiédint
units and scales, it is possible to have a deviation among
the three normalized cost items. In such a case, the weight-
ing scheme can be used to compensate for fileets of the
deviation. If any normalized cost item is excessively large
compared with others, then the optimization will be par-
ticularly sensitive to the weight assigned to the large item
So, prior knowledge of the deviations among the normalized
cost items would be helpful in determining the appropriate

OI8. Related Work

The areas of related work are temporal data management
and data stream processing. Extensive resedfctt€have
been directed to develop concepts, tools, and technigaes th
better support the management of temporal data; see [22]
and [25]. Data stream processing has also received a grea
deal of research attention in recent years; see [17] and [18]
%or comprehensive overviews. The uniqueness of our work
Ies in being the first in-depth work about temporal coalesc-
ing to support continuous queries with temporal functions
h and predicates applied to windowed data streams. There-
fore, in this section we discuss other work on coalescing in
temporal databases and coalescing over data streams.

Coalescing in temporal databases

rét')hlen [24] is the first to emphasize the importance of coa-

lescing for temporal databases with respect to query seman-
tics. Then, Bohlen et al. [12] investigated the perforneanc

of three approaches to implement coalescing in temporal

databases. The first approach requires modifying the un-
The cost objective, expressed as a weighted sum of normalderlying DBMS internals, which is time-consuming and ex-

pensive. The second approach works by reading a tempora

table into main memory, coalescing it, and then writing the

table back to the database. This approach is not applicable
in many situations in which temporal tables are too large to
be loaded in main memory. The third approach defines co-

system is limited in either or both of memory and process- alescing operation as a set of pure SQL statements. In this
ing power [17]. When more limited in memory, it can be approach, however, a coalescing query is usually complex.

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS
13

Zhou et al. [26] proposed and compared two ap-
proaches to address the complexity of supporting coalescy symmary and Future Work
ing in RDBMS through SQL implementation. The first ap-

proach utilizes new functionality of SQL 2003, which can be In this paper, we studied the coalescing operation for sup-

used to support a built-in coalescing function that is trans . :
parent to the users. The second approach proposes to inportlng tgmporal query processing over Qata streams.
tegrate the coalescing functionality in RDBMS as a user- . In view of eager and I{;\zy coalescing, we Qeveloped
defined aggregates. w!ndow extent update aIgonth_ms for tuple_— and t|r_ne-based
Dyreson [15] addressed the problem of temporal coa- windows. With cager coalescing, the ba.S'C a'go”_th”? does
lescing in temporal databases for the specific situations innot work, so we d§5|gned a correct_algonthm (achieving al-
which tuples contain incomplete temporal information and most the samefBciency). The algorithm manipulates tuple .
model diferent temporal granularities timestamps to merge uncoalesced tuples when a new tu_plg is
added and to split already coalesced tuples when an existing
tuple is discarded. With lazy coalescing, the timestamp of a
newly added tuple must be modified to correctly model the
Coalescing over data streams validity of the tuple.
Additionally, we addressed the problem of optimally
selecting eager and lazy coalescing for multiple temporal
i qgueries running concurrently over the same data stream.

Given the traded between lazy and eager coalescing

Fr:gggftsr:g?u(;\éirtr?eatc%nsé;e?rgfs nglse es(iir?n I?1 éear:'p;;a\‘llvodritgchemes, the optimization minimizes the total cost inalirre
P 9. 9 ‘on all window extents needed by those queries. (The total

coalescmg IS smpl_y u_sed t_o represent two events as one SNZost is a weighted sum of the normalized costs of storing,
gle event if the valid-time intervals of the two events over-

a updating, and scanning all window extents.) For this pur-
P- RayChaudhuri et al. [27] employed coalescing in sen- pose, we developed a cost model of the individual cost items
y N ploy 9 in eager and lazy coalescing and used it to formulate the op-
sor networks applications to obscure the temporality oidat ,. "= . .

. timization problem as a 0-1 integer programming problem.
collected by local sensor nodes before the readings are h d d f dv of th
streamed out. Coalescing in their work, however, e V.VEt eh con uc.te a performance study of the two co-
ent from the cbalescin intem oraldata,base—it is,sim | analescmg schemes with respect to the total cost. One set of

. 9 P Pl experiments compared the relative costs between eager an
accumulation of sensor readings made at local sensor nodeﬁ lesci ideri inal h .
during each time interval azy coalescing considering a single query. T e compari-

: son was done for élierent combinations of the weights on

Recently, Zaniolo [28] demonstrated that temporal co- the three cost items. The other set of experiments observec

ale_scmg can be e_xpressed using Kleene-closure ConstrUCtSl‘nteresting cases of selecting between the two coalescing
which are extensions of that SQL standards proposed fOrschemes for dierent groups of multiple concurrent queries.

finding patterns in a sequence of data (e.g., data streamsrwo parametersfiect the costs — the coalescing probabil-

and order(_ad sequences of eve_nts). Zaniolo’s work, hOW'ity and the out-of-order probability. Thus, the performanc
ever, considers a data stream simply as a sequence of data

That is, it does not take into account the unique model of Study was centered on these two control parameters,
’ o q . The presented research opens an avenue for several fu
data stream query processing itself. In contrast to Zalsiolo

work. our work pertains to the coalescing assuming the slid- ture work. First, the data model needs to be extended. For
. " X C o : 9 9 example, attribute timestamping should be supported ds wel
ing window model, which is typically an integral part of the

eV brocessing over data streams as tuple timestamping. Second, the query language shoulc
query p 9 : . . be fully developed. For this, temporal database query lan-
In an dfort to propose a formal foundation for continu-

ous queries over data streams [29], Kramer et al. congidere guage and data stream query language should be integrate

coalescing as a phvsical operator that compacts the re ret_o produce a temporal stream query language. Third, various
cing pny b . pacts i P system issues pertinent separately to temporal databades a
sentation of a data stream by merging tuples with identical

values and consecutive timestamps into a single tuple Ourdata streams should b_e r_ewslted. Example Issues are tem
. : " poral stream query optimization, temporal stream indexing

work has the following fundamentalféerences from their .

) : and temporal stream load shedding.
work. First, they coalesce tuples over a data stream itself
as a means to controlling the data stream rate, while we
coalesce tuples over a sliding window as a means to evalAcknowledgments
uating temporal functions and predicates over data streams
Second, coalescing operator in their work does not have anThe authors would like to thank the members of Intel Berke-
impact on the semantics of a query, while in our work it is ley Research lab for graciously granting the permission to
a mandatory preprocessing step that should be done beforese their sensor datasets in the experiments.
evaluating temporal functions and predicates to guarantee This research is based upon work supported by the Na-
the correctness of query results. tional Science Foundation under Grant No. 11S-0415023.

Barga et al. [7] introduced a framework for complex even

14

References

(1]

(2]
(3]

(4

(5]

(6]

(7]

(8]

El
[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

C.J. Chu, V.S. Tseng, and T. Liang, “Afffieient algorithm for min-
ing temporal high utility itemsets from data streams,” J@aliof Sys-
tems and Software, vol.81, no.7, pp.1105-1117, 2008.

L. Harada, “Detection of complex temporal patterns odata
streams,” Inf. Syst., vol.29, no.6, pp.439-459, 2004.

M. Hadjieleftheriou, N. Mamoulis, and Y. Tao, “Continus con-
straint query evaluation for spatiotemporal streams,” 387,
pp.348-365.

M.F. Mokbel and W.G. Aref, “SOLE: scalable on-line ex¢éion of
continuous queries on spatio-temporal data streams,” TheB/
Journal, vol.17, no.5, pp.971-995, 2008.

D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger, {@al
aggregation over data streams using multiple granulsyit€DBT
'02, pp.646—663.

D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger, fi@nal and
spatio-temporal aggregations over data streams usingpfeuiime
granularities,” Inf. Syst., vol.28, no.1-2, pp.61-84, 200

R.S. Barga, J. Goldstein, M.H. Ali, and M. Hong, “Consist
streaming through time: A vision for event stream proceagsin
CIDR '07, pp.363-374.

E. Wu, Y. Diao, and S. Rizvi, “High-performance complexeat
processing over streams,” SIGMOD '06, New York, NY, USA,
pp.407-418, ACM.

“Intel lab data. http/berkeley.intel-research.riietbdatd..”

A. Arasu, S. Babu, and J. Widom, “The CQL continuous guan-
guage: semantic foundations and query execution,” The V18-
nal, vol.15, no.2, pp.121-142, 2006.

R. T. Snodgrass et al., “TSQL2 language specificati@GMOD
Rec., vol.23, no.1, pp.65-86, 1994.

M.H. Bohlen, R.T. Snodgrass, and M.D. Soo, “Coalegdim tem-
poral databases,” VLDB '96, pp.180-191.

C. Vassilakis, “An optimisation scheme for coalgsedid time se-
lection operator sequences.,” SIGMOD Record, vol.29, mp138—
43, 2000.

J.F. Allen, “Maintaining knowledge about temporaléntals,” Com-
mun. ACM, vol.26, no.11, pp.832-843, 1983.

C.E. Dyreson, “Temporal coalescing with now granjarand in-
complete information,” SIGMOD '03, pp.169-180.

J. Li, D. Maier, K. Tufte, V. Papadimos, and P.A. Tuck&emantics
and evaluation techniques for window aggregates in datarsts,”
SIGMOD '05, pp.311-322.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. WidoMptlels
and issues in data stream systems,” PODS '02, pp.1-16.

L. Golab and M.T. Ozsu, “Issues in data stream manageireie-
MOD Rec., vol.32, no.2, pp.5-14, 2003.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motvian
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Wido
“Stream: The stanford stream data manager.,” IEEE Datareegi
ing Bulletin, vol.26, no.1, pp.19-26, 2003.

J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnsand
D. Maier, “Out-of-order processing: a new architecture ayh-
performance stream systems,” Proc. VLDB Endow., vol.11no.
pp.274-288, 2008.

P.A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Eitplg
punctuation semantics in continuous data streams,” IEEEBSIron
Knowl. and Data Eng., vol.15, no.3, pp.555-568, 2003.

C. Date and H. Darwen, Temporal Data and the Relationadié/|
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA220
A.U. Tansel, “Temporal relational data model,” IEEE DE, vol.09,
no.3, pp.464-479, 1997.

M.H. Bohlen, The Temporal Deductive Database Systémo@olLog.,
Ph.D. thesis, Departement Informatik, ETH Ziirich, 1994.

C. Dyreson et al., “A consensus glossary of temporahlokzte con-
cepts,” SIGMOD Rec., vol.23, no.1, pp.52-64, 1994.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.1 JANUARY 2010

[26] X. Zhou, F. Wang, and C. Zaniolo, fi&cient temporal coalescing
query support in relational database systems,” DEXA '066pp—
686.

A. RayChaudhuri, U.K. Chinthala, and A. Bhattachar{@bfuscat-
ing temporal context of sensor data by coalescing at s¢Wicdile
Computing and Communications Review, vol.11, no.2, pp2l-
2007.

C. Zaniolo, “Event-oriented data models and temponarags in
transaction-time databases,” TIME, pp.47-53, 2009.

J. Kramer and B. Seeger, “A temporal foundation for tammous
queries over data streams.,” COMAD '05, pp.70-82.

T.T.L.D. Committee, “An evaluation of tsgl2,” A TSQL2dInmen-
tary, year= 1994,.

[27]

(28]
[29]

[30]

Mohammed Al-K ateb is a Ph.D. student at the Department of Com-
puter Science in The University of Vermont, U.S.A.. He reediBS and
MS degrees in Information Systems from Cairo Universityyfitg His
research interests include data streams processing apdr@ndata man-
agement. He is a student member of IEICE.

Sasi Sekhar Kunta is a Ph.D. student at the Department of Computer
Science in The University of Vermont, U.S.A.. He received & degree

in Computer Science from Acharya Nagarjuna Universityjdndnd a MS
degree in Computer Science from BITS at Pilani, India. Héeegch inter-
ests include complex event processing and data streamssinge

Byung Suk Lee is an Associate Professor at the Department of Com-
puter Science in The University of Vermont, U.S.A.. He reedia BS
degree from Seoul National University, South Korea, a MSreledrom
KAIST, South Korea, and a Ph.D. degree from Stanford Uniiyerd.S.A..

His research interests include database systems, datensmecessing,
and event processing.

Appendix A: Basic functions

In this section, we describe in further details the basictions used in the
window extent update algorithms. The discussion in thisise@ssumes
the tuple-based window model. Basic functions implememiiéiegrently
for the time-based window model can be described in the saame w

There are two basic functionprey) andnex{), which respectively
return the immediately preceding and succeeding tuplesgdfem tuple.
In addition, the algorithms use three basic operati@uiTuple mergeTu-
ples andsplitTuple TheaddTupleis common to both lazy coalescing and
eager coalescing, whereas thergeTuplesindsplitTupleare used in eager
coalescing only. Let us describe these operations further n

AL-KATEB et al.: TEMPORAL COALESCING ON WINDOW EXTENTS OVERATA STREAMS

Function 1. addTuple(gew, Sprev)

Inputs. Shew// @ Nnew tuple to be added
Inputs: Sprev// the tuple next to which syewis added
I renamesnen-tsto Shewts
: attach a new attribut to Shew
. Sprev-te = Snewts
» if Sprevnexqy == null then
Snew-fe = Snew-ts
ese
Snewte = Sprev-Nex().ts
: end if
. addsnew Next t0Sprey in the window extent

TheaddTuple(see Function 1) adds a new tupsge,) to the current
window extent as a temporal tuple (see Section 2.3). Thestamgp at-
tributetsis used to represent the starting instant of the tuple (Ljnarid a
new attribute is attached to the tuple to represent the gridgtant (Line 2).
The starting instant value of the new tuple is assigned tefiténg instant
of its preceding tuple (Line 3). If the new tuple has arrivacrder (thus
Shew IS the last tuple), then its ending instant takes the valué&daftarting
instant (Line 5). Otherwise, its ending instant is assigtiedvalue of the
starting instant of its subsequent tuple (Line 7). Evetyu#iie new tuple
is added next to the previous tupl£y) in the window extent (Line 9).

Function 2. mergeTuplesgw, S)

Inputs. Syew// @ Nnew tuple
S// an existing temporal tuple
1: insert the value o§,ewtsinto s.v in the sorted order of timestamp
2: if ste < sv.last() then
3: ste=svlast)
4: end if
5: discardshew

ThemergeTuplegsee Function 2) is called when a new tupdgs{)
is coalesced with an existing temporal tupde (t merges the two tuples by
inserting the timestamp of the new tupgé.ts) into the timestamp vector
of the existing tuple £v) while maintaining the sorted order of timestamp
(Line 1). If the new tuple has arrived in order, thep.ts becomes the
new last timestamp value mv. In this case, the ending instarng)(of the
existing tuple is updated to the new value (Line 3). After girey the two
tuples, the original new tuple is discarded from the windateset (Line 5).

Function 3: splitTuple(s, ts)

Inputs: s// temporal tuple to be split
ts// timestamp value of the late arrival tuple
: allocate a new temporal tupte
. copysto s
: remove froms.v all timestamp values greater them
: remove froms,.v all timestamp values less thém
. adds, next tosin the window extent
creturn s

OO A WNBE

The splitTuple (see Function 3) is called when a new tuple arrives
out of order and causes a gap in an existing temporal tuplsplits the
existing tuple into two tuples and returns the first tuplemfhe split. The
split is achieved by duplicating the existing tuple (Line @moving from
the timestamp vector of the original tuplg) @ll timestamp values greater
than the given timestamp valuss)((Line 3), and removing from the times-
tamp vector of the duplicate tuplep) all timestamp values less than the
given timestamp value (Line 4). Then, the duplicate tupledded next to
the original tuple in the window extent (Line 5), and the ora tuple is
returned (Line 6).

15

Appendix B: Extension of the coalescing oper ator

In this section, we discuss two issues relevant to our pegbegindow
extent update algorithms.

Grouped coalescingA user query may naturally require tuples to be
coalesced separately forflidirent groups. This grouped coalescing is very
common in temporal database queries. For instance, mosteoy gxam-
ples in the TSQL Commentary [30] use grouped coalescing. sahee is
common in real-world datstreamapplications. For instance, recall Exam-
ple 1 in which a wireless sensor network application mositbe changes
in the humidity of two diferent regions, grouped by the region. The algo-
rithms support grouped coalescing in this paper.

General coalescing Traditionally temporal database applications
perform transactions on simple data (e.g., employee regorBor these
applications, the notion of value equivalence for coategtias been lim-
ited to equality comparison. In contrast, data stream eains usually
monitor a trend continuously over time. For these applicgtthe notion of
value equivalence needs to be generalized to use any ayhitsmparison
operations which can be used to support a certain trend @isalfzxam-
ple trends are “increasing” (e.g., the value is larger thengervious one)
and “bounded” (e.g., the value is within a certain bound fribve previ-
ous one, the relative change from the previous value is mighcertain
bound). Moreover, the values compared may be the instarfcasyaata
type. Data stream applications can deal with a variety af tigtes ranging
from sensor readings (numbers) to XML documents (texts)tanddeo
frames (images). For those applications, the value cosgarinvolves
more expensive operations such as text search or imagesanaly

