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Abstract—Social curation services are emerging social media
platforms that enable users to curate their contents according to
the topic and express their interests at the topic level by following
curated collections of other users’ contents rather than the users
themselves. The topic-level information revealed through this
new feature far exceeds what existing methods solicit from the
traditional social networking services, to greatly enhance the
quality of topic-sensitive influence modeling. In this paper, we
propose a novel model called the topical influence with social
curation (TISC) to find influential users from social curation
services. This model, formulated by the continuous conditional
random field, fully takes advantage of the explicitly available
topic-level information reflected in both contents and interactions.
In order to validate its merits, we comprehensively compare
TISC with state-of-the-art models using two real-world data
sets collected from Pinterest and Scoop.it. The results show that
TISC achieves higher accuracy by up to around 80% and finds
more convincing results in case studies than the other models.
Moreover, we develop a distributed learning algorithm on Spark
and demonstrate its excellent scalability on a cluster of 48 cores.

I. INTRODUCTION

Content curation is the process of collecting, organizing,
and displaying information relevant to a particular topic or
area of interest [1]. Social curation, then, is defined to be
collaborative sharing of Web contents in support of content
curation [2]. Thus, a social curation service combines social
media features, such as liking, following, and commenting,
with content curation features. A large number of social
curation services have been launched recently, including Digg,
Reddit, Delicious, Pinterest, We Heart It, Storify, and Scoop.it,
to name just a few. They have been applied to filter out
uninteresting contents from the Web or social media, thereby
mitigating the problem of information overload. Pinterest1 is
one of the most popular services among them [3], becoming
the 3rd popular social media site in 2014.2

Recent studies on social network analysis—especially, ex-
pert finding and influence maximization—have recognized the
importance of quantifying social influence separately for each
topic [4]–[12]. The interactions (e.g., following and friendship)
in social networks are the important indicators of social
influence. Technical challenges arise because there is no way
of declaring the reason for an interaction in traditional social
networking services. For example, in Twitter, a following from
a user A to a user B means that the user B influenced the user

∗ Jae-Gil Lee is the corresponding author.
1https://www.pinterest.com/
2http://www.pewinternet.org/2015/01/09/social-media-update-2014/

A but does not say which aspect of the user B played a major
role in this following. The models for topic-sensitive influence
basically attempt to infer the main reason for each interaction
from the topic perspective.

A widely-accepted assumption in this line of research is
that interactions are made between the users having interests
in similar topics [5]–[10]. We call it the common-interest
assumption. This assumption works well for several scenarios.
For example, in a coauthorship network, an author tends to
collaborate with other authors working on the same topic.
However, interactions could occur even if there is no common
interest [11]. For example, a user may be willing to follow
a celebrity on Twitter only because the celebrity is popular.
Precisely inferring the reason for an interaction is inherently
challenging and yet to be figured out, because it cannot be
modeled by a simple assumption and is dependent on each
user’s individual characteristics.

A. Social Curation Services

In social curation services, the users are eager to express
their interests and opinions on contents as well as interactions.
First, the users collect and organize Web contents (e.g., photos,
news articles, posts, and bookmarks) such that those sharing a
common topic are displayed within the same collection. Such
a collection is called a board in Pinterest.3 For example, one
can store (or “pin”) the photos relevant to “jewelry” into a
board. Then, the users can show their topic-level interests by
referring to a particular board. For example, suppose that a
user C has two boards on “jewelry” and “dress,” respectively.
Another user D can follow the “jewelry” board rather than the
user C to express the reason for this following—the curated
content about jewelry.

The emergence of social curation services calls for a new
paradigm of topic-sensitive influence analysis. The existing
studies are less important for social curation services because
the topic distribution of a user’s content as well as the
strength of a relationship between users per topic, which these
studies attempt to extract, are explicitly available in social
curation services. The curated information is very reliable
since it is created by the users themselves—not by inference.
Furthermore, it contains fine-grained curation of the contents
and interactions, as multiple boards are allowed to exist for
the same topic. Therefore, our novel model should fully take
advantage of this rich and reliable information to find topic-
sensitive influence.

3We prefer to use the terminology used in Pinterest which is the most
popular social curation service.
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Fig. 1: The key concept of the TISC model.

B. Contributions

In this paper, we propose a novel model of topical influence
with social curation, which we call the TISC model, to find
influential users from social curation services. The TISC
model formulates our problem of finding influential users as a
global ranking problem [13]. As opposed to local ranking that
considers only a single object, global ranking considers the
entire set of objects as well as the relationships between them.
It is self-evident that global ranking fits better with our problem
than local ranking since influence should be determined on the
basis of not only the contents of users but also the interactions
between users. Thus, given a topic and the entire network of a
social curation service, we execute a learning to rank method
to calculate the ranking scores that indicate how much each
user in the network is influential in that topic.

We propose to employ the continuous conditional random
field (CCRF) [14] for conducting the learning task. The CCRF
computes a conditional probability distribution over the rank-
ing scores of objects (users) conditioned on the objects (users).
It is a perfect match for our problem since it allows us to
use both the content information of objects and the relation
information between objects [15]. Our model is based on
supervised learning, consisting of the learning and inference
tasks; the former decides the parameters of the model using a
training data set, and the latter predicts the scores of the users
according to the trained model. The learning task is processed
by maximum likelihood estimation [16].

The TISC model satisfies two requirements necessary for
social curation services. First, TISC fully takes advantage of
the topic-level interests reflected in both contents and interac-
tions. The state-of-the-art models have limitations especially
in harnessing contents and use them just for distilling the
topic distributions of users [6], [8]. In the motivating example
by Tang et al. [6], their model calculates the probability on
the topics “data mining” and “database.” Thus, a user who
wrote 100 articles on both topics cannot be differentiated from
another user who wrote 10 articles on both topics. Second,
TISC is free from the common-interest assumption, since it
uses real topic-level interactions. As far as we know, there is
no previous work satisfying both of these requirements.

Figure 1 shows the key concept of the TISC model. In
Figure 1(a), topic-level contents are manifested in the boards
explicitly created by users, and topic-level interactions are
manifested in the followings of other users’ boards. Here, the
color and diameter of a circle indicate the topic and size of the
board. In Figure 1(b), the content information is modeled as the
vertex features of the CCRF, and the interaction information
is modeled as the edge features of the CCRF. Here, the size

of a bar and the width of an arrow represent the values of the
features. Using these two types of features, the ranking scores
are inferred for each user and each topic.

The source code of TISC is available at https://github.com/
jaegil/Topical-Influence. In addition to the development of the
TISC model, the contributions of this paper include:

1. Empirical study: To emphasize the need for the TISC
model, we perform an in-depth analysis on the two real-
world data sets from Pinterest and Scoop.it, showing that
the common-interest assumption does not universally hold.

2. Hierarchical influence graph: To incorporate all the
information—both content and interaction—into the TISC
model, we propose a hierarchical influence graph (HIG)
that represents a social curation service.

3. Evaluation: To demonstrate the merits of the TISC model,
we conduct extensive evaluation using the two real-world
data sets. Our model is shown to achieve higher accuracy
than four other popular models by up to about 80%.

C. Outline

The rest of this paper is organized as follows. Section
II provides background knowledge for our work. Section III
empirically refutes the common-interest assumption. Section
IV proposes the TISC model. Section V presents the learn-
ing and inference algorithms implementing the TISC model.
Section VI presents the results of evaluation. Section VII
summarizes the state-of-the-art related work. Finally, Section
VIII concludes this study.

II. PRELIMINARY

A. Social Curation Services

We define a social curation service to be a social media
service that supports the five features below. These features are
commonly found in many popular services, including Pinterest,
We Heart It, and Scoop.it. (The other features relevant to
generic social media services are not described here.) Figure 2
shows the main page of a user on Pinterest for an illustration of
the five features. In addition, Table I summarizes the notation
used throughout this paper.

1. A user u ∈ U creates a set of boards Bu (see A and B).

2. A board bu ∈ Bu is a set of items Ibu on a common topic
(see C).

3. An item ibu ∈ Ibu is a basic unit of curated contents.

4. A topic t ∈ T is attached to each board, explaining the
theme of the board.

5. A user u can follow / unfollow either a user v or a board
of v (bv ∈ Bv). Following a user is regarded as following
all of the user’s boards. This topic-level interaction, which
allows us to follow a board, is the main ingredient for
breaking the common-interest assumption (see D and E).

B. Continuous Conditional Random Field (CCRF)

The conditional random field (CRF) [17] is a statistical
modeling method, which is often used for relational learn-
ing (or structured learning). Relational learning deals with
the cases in which statistical dependency exists between ob-
jects and each object has a rich set of features that can
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Fig. 2: A main page of a user on Pinterest.

TABLE I: Summary of notations used in this paper.

Notation Description
U the set of users in a social curation service

u, v, ui a specific user (i.e., u, v, ui ∈ U)
Bu the set of boards that a user u ∈ U created

bu, bv, bui
a specific board of the corresponding user

Ibu the set of items stored in a board bu ∈ Bu

Fbu the set of users who follow a board bu ∈ Bu

FUu the set of users that a user u ∈ U follows

FBu the set of all boards that a user u ∈ U follows

FBu,v the set of a user v’s boards that a user u follows

T the set of topics

T (bu) the topic attached to a board bu

aid classification or ranking [15]. In this paper, the curated
contents as in Figure 2 provide much information about the
degree of influence, and the interactions of following define
the relationships (between users) that can improve ranking. A
graphical model is a natural formalism for exploiting such
a dependency among objects because it can easily express
the conditional dependency between random variables. Thus, a
CRF as a graphical model associates a conditional distribution
P (y|X) with a graphical structure, where y is the set of
variables we want to predict and X is the set of observed
variables [15]. However, only discrete values can be assigned to
y in the CRF, while discrete values are insufficient to precisely
represent ranking scores. Therefore, continuous conditional
random field (CCRF) [14] has been proposed as an extension
of the CRF to allow continuous values of y.

Figure 3 depicts a graphical model of the CCRF. It is an
undirected graph. A gray vertex (xi,k) represents the k-th input
variable (feature) of the i-th object, and a white vertex (yi)
represents the output variable of the i-th object. A solid edge
between two white vertices represents the dependency between
output variables, and a dotted edge between a white vertex
and a gray vertex represents the dependency between an input
feature and an output variable.

The CCRF is formulated by the density function in Eq. (1),
where X(= {x1,x2, . . . ,xn}) is a set of input feature vectors
and y(= {y1, y2, . . . , yn}) is a set of output variables. The
denominator is a normalization constant which makes the
probability distribution valid. In Eq. (2), fk(k = 1, 2, . . . ,K1)
models the k-th feature, depicted by the dotted lines in Figure
3, and gk(k = 1, 2, . . . ,K2) models the k-th relationship,
depicted by the solid lines. fk is called a vertex feature
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Fig. 3: A graphical representation of the CCRF [18].

function, and gk is called an edge feature function. These two
types of feature functions for our problem will be elaborated
in Section IV.

P (y|X;α,β) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
, where (1)

Ψ =
∑
i

K1∑
k=1

αkfk(yi,X) +
∑
i,j

K2∑
k=1

βkgk(yi, yj ,X) (2)

The model parameters α(= {α1, α2, . . . , αK1}) and β(=
{β1, β2, . . . , βK2}) need to be estimated through learning and
provided for inference. αk and βk represent the importance
of the corresponding dependency in vertex features and edge
features, respectively. The inference task selects y that max-
imizes P (y|X) using the estimated values of α and β. The
learning and inference tasks for our problem will be elaborated
in Section V.

III. EMPIRICAL STUDY ON INTERACTIONS

A. Overview of the Data Sets

Two real-world data sets were used. One was crawled from
Pinterest (https://www.pinterest.com) during the period of June
to August in 2015 using the Pinterest API, and the other was
crawled from Scoop.it (http://www.scoop.it) during the period
of July to September in 2013 using the Scoop.it API. The
size of the raw data before preprocessing reached 13.0 Gbytes
in Pinterest and 7.5 Gbytes in Scoop.it. For Pinterest, owing
to a huge number of users and items, we conducted sampling
when expanding the set of users and items to collect. First, the
number of followers to sample was determined using Eq. (3) as
Lim et al. [19] did. Here, nfol denotes the number of followers
of a user, and 〈nfol〉 denotes its average for all users. Eq. (3)
is meant for sampling only the hub users with a large number
of followers. Second, 10% of items were randomly sampled
from each board. We did not retrieve the detailed contents of
items such as photos and news texts. The statistics of the two
data sets are summarized in Table II.

nsample = min(nfol, 0.1〈nfol〉+ lnnfol) (3)

Please recall that social curation services allow us to
express topic-level interests in boards. Figure 4 shows the
proportion of the curated items belonging to each topic in
our Pinterest data set. Popular topics include “design,” “home
decoration,” “women’s fashion,” and so on.



TABLE II: Statistics of the two data sets.

Pinterest Scoop.it

# All Vertices 4,405,821 10,065,778

# Users 8,624 9,325

# Boards 212,805 25,761

# Items 4,184,392 10,030,692

# All Edges 4,892,902 10,338,607

# Following Edges 495,705 282,154

# User←Board Edges 212,805 25,761

# Board←Item Edges 4,184,392 10,030,692
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Fig. 5: Proportion of following the boards of a followee.

Figure 5 shows the interaction behaviors of the users on the
two services. The x axis, denoted by following ratio, represents
the ratio of the number of the boards followed to that of all the
boards of a followee in each follower-followee relationship;
the y axis represents the proportion of each bin. In Figure
5(a) for Pinterest, most users follow either all boards or very
few boards. A little high proportion of following ratio = 1 is
due to the interface for following the entire set of boards at
once in Pinterest. However, since there is no such interface in
Scoop.it, the users are evenly distributed to the entire range
in Figure 5(b). Overall, in the two services, about 50%∼80%
of the users selectively follow the boards, thereby expressing
their topic-level interests explicitly.

B. Refutation of the Common-Interest Assumption

We now discuss the common-interest assumption based on
the empirical study whose results are shown in Figure 6. The
topic fraction in the scatter plots is defined as the fraction
of the boards on a given topic per user, and these fractions
are measured for the boards that the user has created (x-axis)
and those that the user has followed (y-axis), respectively. The
topic difference in the histograms is defined by Eq. (4), where
frac x and frac y indicate the values of the x and y axes
of the scatter plots, respectively, for a user.

topic diff =
|frac x− frac y|

max(frac x, frac y)
(4)

Figure 6 shows the results for the “design” topic on
Pinterest and the “education” topic on Scoop.it. If the common-
interest assumption were true, the points in the scatter plots
would be concentrated on the diagonal. However, the points
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Fig. 6: Some results to refute the common-interest assumption.

tend to spread out on the plane. The Pearson correlation
coefficients are 0.26 and 0.27, respectively. Also, in these
histograms, 50∼59% of the users have very distinct (≥ 0.4)
behaviors in creating and following the boards. Therefore, we
assert that the common-interest assumption is not valid (at
least in our real-world data sets). One possible explanation
is that people may follow other people to complement their
insufficiency of knowledge [20]. The benefits of not relying
on the assumption will be discussed in Section VI.

IV. TISC: TOPICAL INFLUENCE MODEL

A. Data Representation

A hierarchical influence graph (HIG) is a set of directed
rooted trees, as illustrated in Figure 7. It represents (i) the
curated contents and (ii) the topic-level interactions between
users. Since the users tend to organize contents into a hierar-
chy, it is natural to model each user’s contents using a directed
rooted tree. Here, the root indicates a user, the intermediate
vertices indicate the boards, and the leaf vertices indicate the
items. The level of a vertex is defined as one larger than
the number of links from the vertex to the root. The vertices
located at the same level represent the same type of objects in
social curation services. Then, these trees are interconnected
to represent the interactions between users. We formally define
the HIG in Definition 1.

Definition 1: A hierarchical influence graph (HIG) is G =
(V,E,A,w), where V, E, A, and w are defined as follows.

• V = VL1
∪VL2

∪. . .∪VLH
: VLi

is the set of vertices located
at the level Li. VL1

represents the users; VL2
represents the

largest boards, VL3 represents the next largest boards, and
so on; VLH

represents the items.

• E = (EL2,1
∪ EL3,2

∪ . . . ∪ ELH,H−1
) ∪ Eint:

◦ ELi,i−1 (2 ≤ i ≤ H) is the set of directed edges from
vLi ∈ VLi to vLi−1 ∈ VLi−1 . Each edge represents the
membership between the vertices in consecutive levels.
For example, with H = 3, EL2,1

connects boards to
the user who owns them, and EL3,2

connects items to
the board which contains them. Thus, each edge ELi,i−1
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Fig. 7: A hierarchical influence graph (HIG) where H = 3.

represents a many-to-one relationship. These edges are
collectively called hierarchy edges.

◦ Eint is the set of directed edges from vL1
∈ VL1

to vLi
∈

VLi
(1 ≤ i ≤ H) such that vL1

and vLi
are not in the

same hierarchy. Each edge represents the user’s interests
in other users or their contents. Note that these interests
can be expressed in objects at any level. Particularly, if
an edge is connected to VL2 , it is said to be a topic-level
interest. These edges are collectively called interaction
edges.

• A = AL1 ∪AL2 ∪ . . . ∪ALH
: aLi ∈ ALi is a vector of

the attributes of the corresponding vertex vLi ∈ VLi . The
specific attributes are dependent on the level of a vertex.
For instance, the attributes of vertices in VL2

include the
topic of a board.

• w = {wvi,vj | (vi, vj) ∈ E}: w is the set of the weights
(V × V → [0, 1]) of edges which are either hierarchy or
interaction edges.

Example 1: In Figure 7, three vertices in VL1 are shown,
each of which represents a user. Multiple vertices in VL2

, each
of which represents a board, are linked to one of the users
through the hierarchy edges (dotted lines). Similarly, multiple
vertices in VL3

are linked to one of the boards through the
hierarchy edges. The interaction edges (solid lines) connect a
user to either another user (e.g., un → u2) or another user’s
board (e.g., u1 → un’s boards). A and w are omitted here. �

The notations in Table I are interpreted using the HIG struc-
ture, as in Eq. (5). Suppose that vu, vv ∈ VL1 correspond to
specific users we want to consider and vbu ∈ VL2 corresponds
to a specific board.

U = VL1

Bu = {vL2
| (vL2

, vu) ∈ EL2,1
∧ vL2

∈ VL2
}

Ibu = {vL3 | (vL3 , vbu) ∈ EL3,2 ∧ vL3 ∈ VL3}
Fbu = {vL1 | (vL1 , vbu) ∈ EInt ∧ vL1 ∈ VL1}
FBu = {vL2

| (vu, vL2
) ∈ EInt ∧ vL2

∈ VL2
}

FUu = {vL1
| (vL2

, vL1
) ∈ EL2,1

∧
(vL2

∈ FBu ∧ vL1
∈ VL1

)}
FBu,v = {vL2 | (vL2 , vv) ∈ EL2,1 ∧ vL2 ∈ FBu}

(5)

In subsequent sections, we relax our definition of the HIG
structure without loss of generality. First, the boards exist in
only a single level since no commercial service supports more
than one level. Thus, the total number of levels is 3 (i.e., H =
3). Second, interaction edges to leaf vertices are not included

Algorithm 1 Topical Influence Ranking
INPUT: Training data set {Gtr,ytr}, Unseen data set G, One

or more topics Tq ⊆ T

OUTPUT: Ranking score vector r
1: R ← ∅; /* Set of ranking score vectors */
2: for each t ∈ Tq do
3: /* I. LEARNING PHASE (Section V-A) */
4: (α∗,β∗) ← Learning({Gtr,ytr}, t);
5: /* II. INFERENCE PHASE (Section V-B) */
6: y∗ ← Inference(G,α∗,β∗);
7: R ← R ∪ {(y∗, t)};
8: end for
9: /* Optional Merge Phase (Section V-C) */

10: r ← Combining(R,G,Tq); /* r ← y∗ if |Tq| = 1 */
11: return r

since each of them carries too narrow interest. Third, for ease
of analysis, an interaction edge to the root is converted to the
interaction edges to its all children. Thus, interaction edges
exist always from VL1

to VL2
.

B. Problem Definition

As mentioned in Section I-B, we formulate our problem of
finding influential users as global ranking. The ranking scores
are obtained according to Definition 2. The order in the ranking
scores does matter according to Definition 3.

Definition 2: Given a HIG G and a topic t ∈ T, the topical
influence of a user ui ∈ U is defined to be the value of yi that
satisfies Eq. (6) according to the CCRF of Eqs. (1) and (2).

F (X;α,β) = argmax
y

P (y|X;α,β) (6)

Definition 3: A user ui ∈ U is said to be more influential
in a topic t ∈ T than a user uj ∈ U if yi > yj .

Algorithm 1 shows the overall procedure for our TISC
model. The algorithm receives a training data set Gtr as well
as an unseen data set G from which we want to measure
the influence. Both data sets are represented as HIG’s. The
true output values ytr are known for the users in the training
data set, whereas they are not in the unseen data set. For a
specific topic, our algorithm learns the optimal values of the
model parameters using the training data set (Lines 3 and 4)
and infers the output values by applying the trained model to
the unseen data set (Lines 5 and 6). If multiple topics need to
be considered, the algorithm combines the scores obtained for
each topic into the overall score (Lines 9 and 10).

C. Input Features for Model Definition

We need to instantiate Eqs. (1) and (2) for learning and
inference. There are two types of feature functions for the
CCRF: a vertex feature function fk(yi,X) in Eq. (7) and an
edge feature function gk(yi, yj ,X) in Eq. (8).

fk(yi,X) = −(yi − xi,k)
2 (7)

gk(yi, yj ,X) = −S
(k)
i,j (yi − yj) (8)

In Eq. (7), for each user ui, the difference between the
ranking score yi and each feature value xi,k should be as
small as possible to maximize our objective function in Eq.
(1). By our definition of xi,k that will be introduced later, the



higher xi,k’s are, the more influential a user ui tends to be.
Thus, a difference between the two values induces a penalty
by converting it to a negative number. For this purpose, the
square of the difference is used to make it always positive.
xi,k is called a vertex feature.

In Eq. (8), for each interaction from a user ui to a user
uj , it is preferable that uj’s ranking score yj is higher than
ui’s ranking score yi. This design choice is due to the status
theory [21]. In this line of theory, a positive directed link
means that the creator of the link views the recipient as
having higher status. Thus, unless yj is larger than yi, this pair
of users receives a penalty corresponding to that difference.
Additionally, the difference of ranking scores is weighted by
Si,j

(k), which is called an edge feature.

In order to extract these vertex and edge features, since a
HIG contains the contents about all topics, we need to select
the contents and interactions related to a topic in which we
are interested. Let B′

u,t, FB
′
u,t, and FB

′
u,v,t denote the boards

to which a topic t ∈ T is attached, as in Eq. (9), where
u, v ∈ U. That is, they are the subsets of Bu, FBu, and FBu,v ,
respectively, that contain only the boards related to the topic
t. In addition, FU′

u,t denotes the set of users who have at least
one board on the topic t that a user u follows. Then, the vertex
and edge features are defined using those symbols.

B
′
u,t = {bu |T (bu) = t ∧ bu ∈ Bu}

FB
′
u,t = {bv |T (bv) = t ∧ bv ∈ FBu}

FB
′
u,v,t = {bv |T (bv) = t ∧ bv ∈ FBu,v}

FU
′
u,t = {v |FB′

u,v,t �= ∅ ∧ v ∈ FUu}

(9)

Another important benefit in addition to explicitly attached
topics in social curation services is the fine-grained curation
of the contents. Accordingly, we can precisely quantify the
degree of a user’s interest and influence in a specific topic by
measuring the sizes of the boards that the user has created
and followed on that topic. We refer to the number of items
collected in a board as its size, as in Definition 4.

Definition 4: The aggregate size of a set of boards B is
defined by the total number of the items contained in B, which
is denoted as size(B).

We now explain the vertex and edge features used in this
paper. Note that the TISC is flexible enough to adopt more
features if such information is available. That is, the applicable
features are not limited to those explained in this section.

1) Vertex Features: The main goal of the vertex features
is to relate the contents of a user to his/her influence on a
given topic. Five features are defined in this section. For each
feature, the z-score is actually used to suppress the difference
in scales.

1. The first feature xi,1 in Eq. (10) indicates the aggregated
size of the boards on the topic. The higher xi,1 is, the more
items on the topic the user ui have collected. Large-size
boards show the user’s own high interests and are likely to
attract many other users.

xi,1 = zx′
i,1
, where x′

i,1 =
∑

b′ui,t
∈B′

ui,t

|Ib′ui,t
|

= size(B′
ui,t)

(10)

2. The second feature xi,2 in Eq. (11) indicates the total
number of the followers of the boards on the topic. The
higher xi,2 is, the more boards of ui on the topic the users
follow. A large number of followers demonstrate the user’s
high popularity to other users.

xi,2 = zx′
i,2
, where x′

i,2 =
∑

b′ui,t
∈B′

ui,t

|Fb′ui,t
|

(11)

3. The third feature xi,3 in Eq. (12) is the product of the
previous two features, which is to consider the size of
curated contents and the number of followers together.

xi,3 = zx′
i,3
, where x′

i,3 = x′
i,1 · x′

i,2 (12)

4. The fourth feature xi,4 in Eq. (13) indicates the ratio of
the aggregate size of the user ui’s boards on the topic to
the aggregate size of all of ui’s boards. That is, xi,4 is the
relative value of xi,1.

xi,4 = zx′
i,4
, where x′

i,4 = x′
i,1

/ ∑
bui

∈Bui

|Ibui
|

= x′
i,1

/
size(Bui)

(13)

5. The fifth feature xi,5 in Eq. (14) indicates the ratio of the
number of the followers of the user ui’s boards on the topic
to the number of the followers of all of ui’s boards. That
is, xi,5 is the relative value of xi,2.

xi,5 = zx′
i,5
, where x′

i,5 = x′
i,2

/ ∑
bui

∈Bui

|Fbui
|

(14)

2) Edge Features: The main goal of the edge features is to
relate the interactions of a user to his/her influence on a given
topic. Two features are defined in this section, as depicted in
Figure 8.

1. The first feature S
(1)
i,j in Eq. (15) indicates the normalized

fraction of the boards of a user uj that a user ui follows
on a topic t among all the boards of the user uj . Simply

speaking, the fraction (S
′(1)
i,j ) represents what proportion of

uj’s contents ui likes. For example, S3,1
’(1) is illustrated in

Figure 8. These fractions are normalized to S
(1)
i,j such that

those originating from ui are summed to unity.

S
(1)
i,j =

1∑
uk∈FU′

ui,t
S
′(1)
i,k

· S′(1)
i,j , where

S
′(1)
i,j =

∑
b′uj,t

∈FB′
ui,uj,t

|Ib′uj,t
|

︸ ︷︷ ︸
b1 in Figure 8

/ ∑
buj

∈Buj

|Ibuj
|

︸ ︷︷ ︸
all1 in Figure 8

= size(FB′
ui,uj ,t)

/
size(Buj

)

(15)

2. The second feature S
(2)
i,j in Eq. (16) indicates the fraction

of the boards of a user uj that a user ui follows on a topic
t among all the boards that a user ui follows on the same
topic. Simply speaking, it represents what portion of the
contents ui likes is from uj’s contents, among all contents
ui likes. For example, S3,2

(2) is illustrated in Figure 8. Those
fractions originating from ui are naturally summed to unity.
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Fig. 8: Description of the two edge features.

S
(2)
i,j =

∑
b′uj,t

∈FB′
ui,uj,t

|Ib′uj,t
|

︸ ︷︷ ︸
b1 in Figure 8

/ ∑
uk∈FU′

ui,t

⎛
⎝ ∑

b′uk,t∈FB′
ui,uk,t

|Ib′uk,t
|
⎞
⎠

︸ ︷︷ ︸
b1+b2 in Figure 8

= size(FB′
ui,uj ,t)

/ ∑
uk∈FU′

ui,t

size(FB′
ui,uk,t

)

(16)
D. Summary

Putting Eqs. (10)∼(16) all together, the TISC model max-
imizes Eq. (17), where K1 = 5 and K2 = 2.

P (y|X;α,β) =
1

Z(X)
exp(Ψ), where

Z(X) =

∫ ∞

−∞
exp(Ψ)dy and

Ψ =
∑
i

K1∑
k=1

−αk(yi − xi,k)
2 +

∑
i,j

K2∑
k=1

−βkS
k
i,j(yi − yj)

(17)

V. TISC IMPLEMENTATIONS

This section discusses the implementation of the TISC
model regarding the learning and inference procedures. In the
interest of space, some detailed steps of algebraic derivations
are omitted.

We first obtain Eq. (18), which is a detailed form of Eq.
(17), by substituting Ψ into Z(X). Here, n is the number
of users for the given topic, a = αTe where e is a vector

space basis, b = 2Xα +
∑K2

k=1 βk(D
k
r − Dk

c )e where Dk
r

and Dk
c are the diagonal matrices with Dk

r i,i =
∑

j S
k
j,i and

Dk
c i,i =

∑
j S

k
i,j , respectively, and c =

∑
i

∑K1
k=1 αkx

2
i,k.

Z(X) = (2a)−
n
2 (2π)

n
2 exp(

1

4a
bT b− c) (18)

A. Model Learning for a Single Topic

The values of the parameters α(= {α1, α2, . . . , αK1}) and
β(= {β1, β2, . . . , βK2}) of Eq. (17) are estimated on a training
data set {X,y}, where X(= {x1,x2, . . . ,xn}) is a set of
input feature vectors of n users and y(= {y1, y2, . . . , yn}) is
a set of true output values of the n users. X is a feature matrix,
where xi,k represents the k-th feature of the user ui. A ranking
score yi(i = 1, 2, . . . , n) can be a real number.

As mentioned earlier, we employ the maximum likelihood
estimation (MLE) to find the optimal values of α and β that
maximize Eq. (17) through Eqs. (19) and (20). α∗ and β∗ are
the maximum likelihood estimators of α and β respectively.
Specifically, we calculate the conditional log likelihood with
respect to the CCRF, as in Eq. (20).

(α∗,β∗) = argmax
α,β

L(α,β), where (19)

L(α,β) = lnP (y|X;α,β) (20)

Then, we adopt stochastic gradient ascent (SGA) [16] to
maximize the log likelihood. Since it finds a local maximum,
we prove that our log-likelihood function is concave in Theo-
rem 1 to guarantee a global maximum.

Theorem 1: L(α,β) in Eq. (20) is a concave function.

Proof: By substituting Z(X) from Eq. (18) into Eq. (17)
and in turn P (y|X;α,β) into Eq. (20), we obtain L(α,β) =
n
2 ln(2a)− n

2 ln(2π)− 1
4ab

T b+c+
∑

i

∑K1
k=1 −αk(yi−xi,k)

2+∑
i,j

∑K2
k=1 −βkS

k
i,j(yi − yj). We only need to check the two

terms n
2 ln (2a) and − 1

4ab
T b, because the other terms are

affine with α and β. First, since ln(·) is a concave function and
a(= αTe) is affine with α, ln(2a) is concave on α. Second,
1
ab

T b(=
b21
a + . . .+

b2n
a ) is convex on (a, b), because it is a sum

of convex terms, and in turn (a, b) is affine with (α,β); hence,
1
ab

T b is convex on (α,β). Consequently, − 1
4ab

T b is concave
on (α,β). In summary, since both terms are concave and the
rest of the terms together are affine, L(α,β) is concave.

It is necessary that αk > 0 (k = 1, 2, . . . ,K1) in order
to make the integral of exp(Ψ) valid, i.e., for the use of the
Gaussian integral. Gradient ascent cannot be directly applied
to such a constrained optimization problem (αk > 0). Thus,
we maximize L(α,β) with respect to lnαk instead of αk as
in other work using the CCRF [14], [18].

Algorithm 2 shows the procedures of this MLE using
stochastic gradient ascent. The values of the two parameters
lnαk and βk are updated by their gradients in each iteration of
the algorithm (Lines 4∼11), and it repeats the same procedure
until the parameter values reach a convergence point at which
the relative size of the updates measured by the Euclidean
norm is below a convergence threshold δ (Line 12). Note that
in our experiment the data have been crawled randomly and
thus there is no need to shuffle the training data randomly in
the algorithm.4 The random shuffling was omitted in other
work [14], [18] as well. v is called a learning rate and
determines the size of each step (Lines 6 and 10). The values
of δ and v are usually determined empirically.

Eqs. (21) and (22) show how the gradients ∇lnαk
and ∇βk

in Lines 5 and 9 of Algorithm 2 are calculated, respectively.

∇lnαk
=

∂L(α,β)

∂ lnαk
= αk

(∑
i

−(yi − xi,k)
2 − ∂ lnZ(X)

∂αk

)
(21)

∇βk
=

∂L(α,β)

∂βk
=

∑
i,j

Sk
i,j(yj − yi)− ∂ lnZ(X)

∂βk
(22)

4If the training data were given in some meaningful order, then it could bias
the gradient and lead to poor convergence. Thus, stochastic gradient ascent
would shuffle the data randomly.



Algorithm 2 Learning (with MLE using SGA)
INPUT: Training data set {Gtr,ytr}, Topic t
OUTPUT: Optimal parameter values α∗ and β∗

1: Derive X and {Dk
r ,D

k
c} for t from Gtr;

2: Choose initial values for parameters lnαk and βk;
3: repeat
4: for each k ∈ {1, . . . ,K1} do
5: Compute the gradient ∇lnαk

using Eq. (21);
6: lnαk ← lnαk + v∇lnαk

; /* an updated αk */
7: end for
8: for each k ∈ {1, . . . ,K2} do
9: Compute the gradient ∇βk

using Eq. (22);
10: βk ← βk + v∇βk

; /* an updated βk */
11: end for
12: until ||(∇lnα,∇β)||

||(lnα,β)|| < δ /* convergence condition */

13: α∗ ← {α1, . . . , αK1}, β∗ ← {β1, . . . , βK2};
14: return α∗ and β∗;

Here, the partial derivatives
∂ lnZ(X)

∂αk
and

∂ lnZ(X)
∂βk

are cal-
culated through Eqs. (23) and (24), respectively. X ·,k in Eq.
(23) denotes the k-th column of the matrix X .

∂ lnZ(X)

∂αk
= − n

2a
− 1

4a2
bT b+

1

2a
bTX ·,k −

∑
i

x2
i,k (23)

∂ lnZ(X)

∂βk
=

1

2a
bT (Dk

r −Dk
c )e (24)

Theorem 2: The running time complexity of TISC learn-
ing (Algorithm 2) is O(n) where n is the number of users.

Proof: First, in Line 5, computing each gradient ∇lnαk

using Eqs. (21) and (23) takes O(n). Normally Eq. (23) would
take O(n2) because of b that requires a multiplication of an
n × n matrix (Dk

r − Dk
c ) and an n-vector e, but since Dk

r

and Dk
c are diagonal matrices in this case, the running time is

reduced to O(n) for computing
∑n

i=1(D
k
r i,i−Dk

c i,i)ei. Thus,
computing all ∇lnαk

for k = 1, 2, . . . ,K1 takes O(nK1).
Also, in Line 9, computing each gradient ∇βk

using Eqs. (22)
and (24) takes O(n) as well.

∑
i,j S

k
i,j(yj−yi) in Eq. (22) takes

approximately O(n) since 〈d〉 � n where 〈d〉 is the average
degree. Thus, computing all ∇βk

for k = 1, 2, ...,K2 takes
O(nK2). Second, Lines 6 and 10 take O(K1+K2) altogether.
Hence, if τ iterations are executed, the entire algorithm as a
whole takes O(τn(K1+K2)), which can be simplified to O(n)
since K1 +K2 � n.

B. Influence Score Calculation for a Single Topic

We calculate the value of y that maximizes Eq. (17) in
an unseen data set using α∗ and β∗ estimated in Algorithm
2. The value of y for which the derivative of Eq. (17) with
respect to y is equal to zero corresponds to a maximum y∗.
In this way, the ranking scores are calculated using Eq. (25).

y∗ = argmax
y

P (y|X;α∗,β∗)

=
1

α∗Te
(2Xα∗ +

K2∑
k=1

βk(D
k
r −Dk

c )e)
(25)

Theorem 3: The running time complexity of TISC infer-
ence is O(n) where n is the number of users.

Proof: The first term 2Xα∗ in Eq. (25) is a multiplication
of an n × K1 matrix and a K1-vector, and therefore takes
O(nK1). The second term

∑K2

k=1 βk(D
k
r −Dk

c )e in Eq. (25)

takes O(nK2) because each summand βk(D
k
r − Dk

c )e, a
multiplication of an n×n matrix and an n-vector, can be done
in O(n) since Dk

r and Dk
c are diagonal matrices (as in Theo-

rem 2). Hence, the total time complexity is O(n(K1 +K2)),
which is simplified to O(n) since K1 +K2 � n.

C. Influence Score Combining for Multiple Topics

If one wants to find influential users with consideration
of multiple topics Tq ⊆ T, our model needs to combine the
ranking scores obtained separately for each topic t ∈ Tq , as
in Eq. (26), where the combined score ri of a user ui is a
weighted sum of those individual scores. Let yi,t be the ranking
score of the user ui on a specific topic t and wi,t be his/her
weight on t. This weight can be considered as the probability
for the user ui to curate an item under a board about a given
topic t among all boards about Tq .

ri =
∑
t∈Tq

wi,t ·yi,t, where wi,t =
size(B′

ui,t)∑
t′∈Tq

size(B′
ui,t′)

(26)

D. Distributed Learning with Spark

In order to support large-scale networks prevalent in these
days of big data, we attempt to speed up the learning phase
rather than the inference phase. The former is much more time-
consuming than the latter despite the same time complexity,
since the former involves iterations. More specifically, we
parallelize the computation of gradient ascent in Algorithm
2 (Lines 5 and 9), which is the dominant cost step.

We choose Spark [22] as a distributed computing frame-
work to implement distributed learning. Spark allows us to
construct a resilient distributed dataset (RDD), which is a read-
only collection of objects maintained in memory of multiple
machines. Spark fits our purpose perfectly since it is designed
to optimize iterative and interactive computation.

Algorithm 3 presents a parallel version of Algorithm 2
on Spark (in the Python form). First, a training data set is
partitioned and allocated to individual worker nodes (Line 1).
Then, in the map stage, each worker node computes the
gradients ∇m

lnαk
and then ∇m

βk
from the allocated partition m,

and in the reduce stage, the gradients computed from different
partitions are aggregated to output ∇lnαk

and ∇βk
into a vector

gradient(= {∇lnα1 , . . . ,∇lnαK1
,∇β1 , . . . ,∇βK2

}) (Line 5).
The functions gradient and add are responsible for computing
the gradients and summing them up.

While running Algorithm 3 on Spark, each worker node
caches an allocated partition into the RDD. In addition, Spark
keeps the same partitioning of the data set and allocates a
partition to the same worker node throughout the iterations.
Thus, iterative computation in this algorithm is really fast since
the data set is not loaded repeatedly once it is cached.

VI. EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the effectiveness and efficiency of our TISC model. Section
VI-A explains the setting for our experiments, Section VI-B



Algorithm 3 Distributed Learning on Spark (in Python)

1: points = spark.textFile(. . .).MAPPARTITIONS(. . .);
2: /* Initialize a parameter vector w */
3: w = numpy.random.ranf(size = K1 +K2);
4: for i in range(ITERATIONS) do
5: gradient = points.MAP(lambda m: gradient(m, w)).

REDUCE(add);
6: w += v × gradient;
7: if ||gradient||/||w|| < δ then
8: break;
9: end if

10: end for

TABLE III: Properties of the methods compared.

Content
Use

Interaction
Use

No CI
Assumption

Learning
Method

TSPR × © © Unsupervised

TwitterRank � © × Unsupervised

TAP-TPRI � © × Supervised

Regression © � © Supervised

TISC © © © Supervised

presents the results for accuracy, Section VI-C presents a few
cases that show the benefits of our model, and Section VI-D
presents the results for scalability.

A. Experiment Setting

1) Methods: We compared our TISC model with the state-
of-the-art methods of finding topic-sensitive influential users
from social networks [4], [6], [8]. In addition, linear regression
was adopted to predict the ranking scores using our vertex fea-
tures. However, existing work for maximizing topic-sensitive
influence (e.g., [7], [10], [12]) has a goal different from this line
of research and thus is not included for comparison. Overall,
the five methods below were compared with one another.

• Topic-Sensitive PageRank (TSPR) [4]

• TwitterRank [8]

• Topical Affinity Propagation for PageRank with Topic-
Based Influence (TAP-TPRI) [6]

• Linear Regression (denoted as Regression)

• Topical Influence with Social Curation (TISC): our pro-
posed method

Table III summarizes the properties of the five methods.
Our TISC model is free from the common-interest assumption
as well as fully uses both contents and interactions, whereas
the other alternatives do not. (i) TwitterRank and TAP-TPRI
use the contents only for extracting topic distribution, but not
for directly calculating the influence of a user. (ii) Regression
simply uses the number of followers, but not individual follow-
ing relationships. (iii) TwitterRank and TAP-TPRI are based
on the common-interest assumption.

The parameters needed in these methods were set to be
typical or default values. In TISC, the learning rate v was
set to be 10−7, and the convergence threshold δ was set to
be 5 · 10−4. In TSPR, TwitterRank, and TAP-TPRI whch are
based on PageRank, the damping factor α, the probability that
a person will continue traversal, was set to be 0.85, and the
convergence threshold δ was set to be 10−6, which are the
default values of the NetworkX5 package.

5https://networkx.github.io/

All methods except TAP-TPRI were implemented using
Python 2.7 with the numpy, scipy, scikit-learn, and NetworkX
packages. For TAP-TPRI, we used the source code in C++
provided by the authors.

2) Data Sets: We used the two real-world data sets intro-
duced in Section III-A. Each data set was divided into the
training data set and the unseen data set. The former was a
vertex-induced subgraph that consisted of 40% of the users,
and the latter was a vertex-induced subgraph that consisted of
the rest of the users.

As for the true output values ytr in the training data set,
we used the scores of boards in Scoop.it, which are calculated
by the service provider. It is known that the scores consider
keywords, update frequencies, amounts of sharing, and so on.
Then, a user was assigned the weighted sum of the scores
of the boards on the topic, where the weight is the size of a
board. However, owing to lack of such scores in Pinterest, we
calculated them for Pinterest in a similar manner. The resulting
score is the sum of the normalized values of the numbers
of relevant keywords, amounts of sharing (repin), numbers of
likes, numbers of followers, and so on. In reality, true influence
scores are available for only a subset of users, and this is the
reason why inference needs to be done.

In Section VI-B, the users in the unseen data set were
split into five groups according to their topic difference of
Eq. (4). These users were sorted in the ascending order of
the topic difference. Then, the users in the 20th percentile
were assigned to the group “G20,” those in the 20th to 40th
percentile were assigned to the group “G40,” and so on. Thus,
the group “G100” had the highest topic difference. This split is
intended to verify the negative impact of the common-interest
assumption on accuracy.

In Section VI-D, in order to provide huge data sets for
scalability test, we duplicated the entire original data sets in
Table II by 200, 400, 600, 800, and 1,000 times, which are
labled as “nx”. The graph of the original data set was one giant
connected component, and this component was duplicated with
no connection to existing components. For instance, the largest
one (i.e., “1000x”) of Pinterest contained about 8.6 million
users in total.

3) Configuration: All experiments except in Section VI-D
were conducted on a Linux server equipped with two Xeon
E5-2640 processors (2.60 GHz, 8 cores in each) and 48 Gbytes
of main memory. The server ran on Ubuntu 14.04.2 LTS. For
the scalability test in Section VI-D, we used twelve Microsoft
Azure A3 instances located in East Asia. Each A3 instance had
four cores, 7 GBytes of main memory, and 285 GBytes of hard
disk. On this cluster of machines, we ran Spark 1.3.1, where
the amount of main memory per executor was 1 GBytes and
the storage level was “MEMORY ONLY.” One instance was
dedicated to the head node of Spark, and the others were used
as worker nodes. A given training data set was split into 32
partitions for parallel processing in Spark.

4) Fairness: For a fair comparison between our method and
the other methods, we provided them with rich information in
social curation services as much as possible. For TSPR, the
teleport vector was precisely calculated using the number of
items belonging to a given topic in each user. For TwitterRank
and TAP-TPRI, the topic distribution of a user was precisely
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Fig. 9: Results of ranking accuracy for the Pinterest data set.
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Fig. 10: Results of ranking accuracy for the Scoop.it data set.

Algorithm 4 Accuracy Evaluation
INPUT: User group, Method, Unseen data set G
OUTPUT: Accuracy value

1: Etest ← random sample of follower-followee relationships
from the user group; /* typically, |Etest| = 10 */

2: for each (ui, uj) ∈ Etest do
3: Uirr ← random sample of users whom ui does not

follow; /* typically, |Uirr| = 10 */
4: Remove all interaction edges from ui to uj in G;
5: Apply a given method to calculate y;
6: accuracy ← accuracy +Q(uj , Uirr); /* Eq. (27) */
7: end for
8: return (accuracy/|Etest|); /* the average */

calculated using the number of items belonging to each topic,
without having to use LDA [23]. In addition, since the numbers
of followers were considered to calculate the true output
values, we dropped the relevant vertex features, i.e., xi,2, xi,3,
and xi,5, in TISC to favor the other methods.

5) Accuracy Metric: We adopted an approach suggested by
Weng et al. [8] to compare the accuracy of the methods, which
is explained in Algorithm 4. The existence of an interaction
edge from ui to uj means that ui has been already influenced
by uj . Thus, even though we remove the interaction, the
ranking score of uj had better be higher than those of the
users with no previous interaction from ui. Eq. (27) counts
the number of irrelevant users whose ranking scores are lower
than that of the prospective followee. The higher the value of
Eq. (27) is, the more accurate a method is.

Q(uf , Uirr) =
|{uk|uk ∈ Uirr, score(uk)<score(uf )}|

|Uirr| (27)

B. Accuracy Result

Figures 9 and 10 show the accuracy of the five methods
on Pinterest and Scoop.it respectively. The four most popular
topics were selected from each service. The x-axis indicates
the user groups, and the y-axis indicates the accuracy measured

using Algorithm 4. Overall, TISC outperformed other methods
significantly. TISC improved accuracy by up to 62∼80%,
39∼62%, 50∼66%, and 21∼53% compared with TSPR, Twit-
terRank, TAP-TPRI, and Regression, respectively, in Figure 9
and by up to 60∼83%, 41∼54%, 50∼66%, and 16∼29% in
Figure 10. These results indeed demonstrate the benefits of
TISC, primarily from taking advantage of both contents and
interactions and secondarily from being free of the common-
interest assumption.

In terms of comparing the accuracy across the user groups,
TISC was rather insensitive to the topic difference. In contrast,
the two methods that rely on the common-interest assumption,
TwitterRank and TAR-TPRI (see Table III), were affected.
TwitterRank, which is heavily dependent on the assumption,
showed pretty strong tendency that the average accuracy for
the four topics decreased as the topic difference increased, i.e.,
when going from G20 to G100, from 0.47 down to 0.44 to 0.43
to 0.39 and to 0.33 in Figure 9 and from 0.52 down to 0.47
to 0.46 to 0.46 and to 0.37 in Figure 10. TAP-TPRI, which is
also dependent on the assumption, showed weaker tendency,
i.e., from 0.42 at G20 down to 0.31 at G80 in Figure 9 and
from 0.41 at G20 down to 0.34 at G100 in Figure 10. Overall,
we confirm that this assumption is one of the main reasons for
incorrect prediction.

C. Case Study Result

Table IV summarizes the top-5 influencers found from the
unseen data set about each of the four topics on Pinterest. They
are real Pinterest user names. We manually examined each of
them to categorize them into three cases as below.

• Content-type errors (in red): the users who created less than
500 items on a given topic

• Interaction-type errors (in blue): the users who received
less than 100 followings on a given topic

• Correct answers (in bold): none of the above

In short, the result showed that TISC did not yield any errors
whereas the other methods yielded quite many errors.



TABLE IV: Top-5 influencers on Pinterest (in bold: correct answers, in red: content-type errors, in blue: interaction-type errors).

Topic
Method Design Home Decoration Women’s Fashion Food & Drink

TSPR designmilk, erofili, myan_duong,
designsponge, pennyweight

designmilk, designsponge, pennyweight,
ohjoy, myan_duong

designmilk, designsponge, pennyweight,
myan_duong, amandajanejones

designsponge, designmilk, ohjoy,
pennyweight, amandajanejones

TwitterRank designmilk, myan_duong, codeplusform,
aliciacarvalho, packagingdiva

designmilk, myan_duong, designcrush,
mollymadfis, ohjoy

designmilk, myan_duong, imptwitch,
codeplusform, longinaphillips

designmilk, myan_duong, designsponge,
imptwitch, simplyDesigning

TAP-TPRI kinfolkmag, erofili, thedesignfiles,
tempspaz, kneelandco

designmilk, 20x200, pennyweight,
kayolgr, amandajanejones

pennyweight, codeplusform,
missmossblog, myan_duong, designmilk

designmilk, designsponge, bianca_cash,
wideeyedlegless, sugarAndCloth

Regression designseedslove, designmilk,
packagingdiva, codeplusform, itoyoshi

designmilk, ohjoy, carlaaston,
codeplusform, myan_duong

codeplusform, ohjoy, myan_duong,
designmilk, kaleb_willis

packagingdiva, buzzfeedfood, ohjoy,
jchongdesign, designcrush

TISC packagingdiva, designmilk, thinkmule,
itoyoshi, vestidadeflores

designmilk, ohjoy, myan_duong,
4piccolina, hgdesignideas

levato, codeplusform, myan_duong,
4urenjoyment, designmilk

acurioustaste, buzzfeedfood, addapinch,
codeplusform, acuriouswork
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Fig. 11: Results of performance and scalability (12 machines).

It turns out that these errors are caused by the shortcomings
of the other methods. First, regarding the content-type errors,
TSPR does not distinguish the reasons for interactions, thus
possibly assigning high scores to irrelevant users. TwitterRank
considers the number of all items belonging to a user, not
the items specific to a topic and, therefore, even though the
total number of items is large, the fraction of the relevant
items is small in many erroneous users. TAP-TPRI does not
consider the absolute numbers of items, so many erroneous
users have a small number of items. Second, the interaction-
type errors are mainly due to the common-interest assumption,
since the reasons for interactions are incorrectly inferred by the
assumption. In addition, Regression does not exploit individual
following relationships, unlike TISC.

D. Performance and Scalability Result

Figure 11 presents learning performance accelerated by
Spark for huge duplicated data sets. The preprocessing time
spent for transforming a HIG into the features is not included
here. Thus, the results for the two social curation services
overlap because of similar numbers of sampled users. Figure
11(a) shows the elapsed time per iteration when running
Algorithm 3 with eight cores as the data size increases. The
result showed linear scalability of TISC, thereby confirming
Theorem 2. The elapsed time increased by only 1.3 times when
the data size increased by 5 times. Figure 11(b) shows the
elapsed time per iteration against the “600x” data sets as the
number of cores increases. Since TISC is fully parallelizable,
the elapsed time decreases with more cores, as long as there
is no resource idle. The rate of decrease started slowing down
after 8 cores were used. In addition, this parallel version
improved performance by up to 11 times compared with a
non-parallel version. Overall, we confirm that our method is

capable of processing large-scale networks, thanks to its high
scalability and parallelizability.

VII. RELATED WORK

A. Topic-Sensitive Influence Analysis

In an earlier work by Haveliwala [4], the author proposed
a topic-sensitive PageRank algorithm for crawled web pages.
It enhances the conventional PageRank algorithm by preparing
a set of PageRank vectors respectively biased toward different
topics and uses them to calculate page importance scores
specific to queries.

Topic-sensitive influence modeling is a recent trend gaining
momentum particularly in social network analysis. Nallap-
ati and Cohen [5] proposed a single framework called Link-
PLSA-LDA, which addresses both topic discovery (based on
PLSA [24]) and topic-specific influence modeling (based on
Link-LDA [25]) from online blogs (available from Nielson
Buzzmetrics). Tang et al. [6] proposed a topical affinity prop-
agation (TAP) model to analyze social influence in a large
network by the topic. Once learned in a certain network struc-
ture, the model can be used to perform topic-level influence
propagation. Liu et al. [7] proposed a topic-level influence
mining from heterogeneous networks, which contain different
types of vertices such as users and documents, comprised
of Twitter, Digg, and Cora. Their approach combines link
information and textual content to mine direct topic-level
influence between vertices and extends it to indirect chain
of influence via a topic-level influence propagation model.
Weng et al. [8] proposed TwitterRank, a topic-sensitive user
influence ranking approach in view of Twitter users with
reciprocal following relationships attributed to serious common
topical interests. Pal and Counts [9] addressed the problem of
identifying users considered authorities on a given topic in
microblogs (tweets). Their approach uses probabilistic clus-
tering (as opposed to network analysis) in a feature space
defined on users’ tweet activities and then ranks users within
a selected target cluster. Barbier et al. [10] proposed a topic-
aware influence propagation model extended from the well-
known independent cascade and linear threshold models and
also proposed a model focusing on how authoritative and
interested a user is in a topic in order to reduce the model
complexity. Chen et al. [12] proposed a topic-aware influence
maximization algorithm for finding a set of seed users that
maximizes topic-aware influence spread (i.e., the number of
users influenced). The proven premise is that topic-awareness
increases the influence spread.



None of these research done by others can take advantage
of the social curation services characterized by the topic-
level interests expressed by users who create their own boards
and/or follow specific boards of other users instead of the users
themselves. Refer to Table III, for example.

B. Social Curation Service Analysis

Several analyses of the social curation services appeared in
recent years, mostly by Pinterest. Gilbert at el. [3] made a dis-
tinction of their service from other social networking services,
particularly Twitter. Some of the reported findings include that
“being female means repins, but fewer followers” and that they
are distinct in terms of “use, look, want, and need.” A more
comprehensive study on the gender-specific user behaviors
was reported by Ottoni et al. [26]. Geng et al. [27] introduced
their deep learning technique for user profiling, specifically
to profile models and related image features together, thereby
enabling content-based social media technologies.

VIII. CONCLUSION

In this paper, we proposed the TISC model to find influen-
tial users from social curation services such as Pinterest and
Scoop.it. These social curation services provide us with a lot
of opportunities for topic-sensitive influence analysis, since
the topic-level interests in both contents and interactions are
actively expressed by the users, thus eliminating the need for
the common-interest assumption. Our model was designed to
fully take advantage of the rich and reliable information. We
conducted extensive experiments to demonstrate the benefits of
our model using two real-world data sets. TISC significantly
outperformed other methods in terms of the accuracy of finding
prospective followees, and the quality of the top-5 influencers
was observed to be higher in TISC than in other methods.
Furthermore, TISC was highly scalable and parallelizable, as
proven by its Spark implementation. We expect that the trend
of allowing users to express their interests and intentions in
detail will continue, being witnessed by the growth of Pinterest
and the ubiquity of hashtags on many services. Therefore,
we believe that the importance of this work will continue to
increase with this trend on emerging social media platforms.
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