
62 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Abstract

We present a new method for computing temporal aggregation that uses a multidimen-
sional index. The novelty of our method lies in mapping the start time and end time
of a temporal tuple to a data point in a two-dimensional space, which is stored in a
two-dimensional index, and in calculating the temporal aggregates through a temporal
join between the data in the index and the base intervals (defined as the intervals de-
limited by the start times or end times of the tuples). To enhance the performance, this
method calculates the aggregates by incrementally modifying the aggregates from that
of the previous base interval without re-reading all tuples for the current base interval.
We have compared our method with the SB-tree, which is the state-of-the-art method
for temporal aggregation. The results show that our method is an order of magnitude
more efficient than the SB-tree method in an environment with frequent updates, while
comparable in a read-only environment as the number of aggregates calculated in a
query increases.

Keywords:	 multidimensional index; temporal aggregation

Introduction
Temporal aggregation is an operation

for finding the aggregate value of an attri-
bute over a certain period of time. Specifi-
cally, it finds the time intervals in which the
aggregate value does not change, namely
the constant intervals (Kline & Snodgrass,

1995), and performs the aggregation at each
constant interval. Typically, there are two
kinds of aggregate functions: cumulative
(e.g., COUNT, SUM, AVG) and selective
(e.g., MIN, MAX).

There have been several temporal ag-
gregation methods proposed to date. The

 Temporal Aggregation Using a
Multidimensional Index

Joon-Ho Woo, Korea Advanced Institute of Science and Technology (KAIST), Korea
Min-Jae Lee, Korea Advanced Institute of Science and Technology (KAIST), Korea
Kyu-Young Whang, Korea Advanced Institute of Science and Technology (KAIST),

Korea

Woong-Kee Loh, Korea Advanced Institute of Science and Technology (KAIST),
Korea

Byung Suk Lee, University of Vermont, USA

Journal of Database Management, 18(2), 62-80, April-June 2007 63

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

early ones included the linked list method
by Tuma (1992) and the aggregation tree
method by Kline and Snodgrass (1995) and
its variants (Gendrano, Huang, Rodrigue,
Moon, & Snodgrass, 1999; Kim, Kang, &
Kim, 1999; Moon, Lopez, & Immanuel,
2000; Ye & Keane, 1997). Although these
methods do facilitate computing temporal
aggregates, they require the data structures
to reside in main memory. The data struc-
tures, however, are typically much larger
than the available main memory because
a temporal database retains all tuples from
the past. Moreover, they require one data
structure for each aggregate function.

Recently, Yang and Widom (2003)
proposed a method using the SB-tree.
This method is similar to the aggregation
tree method, but uses a disk-resident data
structure. (It, however, still requires one
data structure for each aggregate function.)
In this method, every time a new tuple is
inserted or an existing tuple is updated or
deleted, the temporal aggregates are up-
dated immediately using the SB-tree. Then,
queries are executed quickly by simply
reading the precomputed aggregate val-
ues. However, the overhead of immediate
updates is nontrivial, particularly because
the update is done for each aggregate func-
tion through a separate SB-tree. Thus, this
method is not suitable in an environment
with frequent insertions, deletions, or up-
dates (collectively called updates from now
on) of tuples and relatively less frequent
aggregation queries.

Many temporal database applications,
however, are update intensive. Examples
include financial applications handling
stock market data and reservation systems
for airlines, hotels, trains, and so forth. For
these applications, there are very frequent
updates and only a limited number of
temporal aggregation queries. Thus, the

ratio between updates and aggregation
queries in these cases could be in the order
of thousands.

In this paper, we propose a new method
that resolves the problems of the existing
methods for update-intensive applications,
while accomplishing reasonably efficient
temporal aggregation. Like the SB-tree
method, our method uses a disk-resident
data structure that is applicable to a large
temporal database. The novelty of the
method lies in mapping the start time and the
end time of a temporal tuple to a data point
in a two-dimensional space and storing
the data point through a multidimensional
index. (In this regard, we call this method
the multidimensional index (MD-index)
method (������������ ������������������ Trujillo, Luján-Mora, & Song��,
2004).������������������������������������) An update operation incurs only a
small overhead of inserting a tuple through
the index. For an aggregation query opera-
tion, aggregates are computed through a
temporal join between the data in the index
and the base intervals (to be defined in
the Temporal Aggregation Using a Mul-
tidimensional Index section), constituting
constant intervals. For efficiency’s sake,
this calculation is done by incrementally
modifying the aggregate from that of the
previous base interval without re-reading
all tuples for the current base interval.

Compared with the SB-tree method,
our method (1) incurs little overhead when
updating tuples and, thus, is more efficient
for update operations; and (2) uses only one
index structure for all aggregate functions
and, consequently, achieves increasingly
comparable aggregation query perfor-
mance (through incremental calculations)
as the number of aggregates in the query
increases.

In this paper, “time” may be interpreted
as any of the valid time, transaction time,
and user-defined time, but we do not con-

64 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

sider more than one of them at the same
time. In other words, we do not consider
bitemporal databases (Jensen������������ ���� ����������� ����et al., 1998).
Moreover, the semantics of time is point-
based atelic1. This means that a tuple value
is true at any point within a given time in-
terval, not as a result of achieving a certain
goal during the interval.

Experimental results show that our
method is an order of magnitude more ef-
ficient than the SB-tree method for update
operations, and the gap becomes wider as
more aggregate functions (e.g., COUNT,
SUM, AVG, MIN, MAX) are supported
by the system. The results also show that
multiaggregation query performance ap-
proaches that of the SB-tree method as
the number of the aggregate functions
increases, becoming comparable to that

of the SB-tree, when the query specifies
all five aggregate functions (i.e., COUNT,
SUM, AVG, MIN, MAX).

Following the Introduction, we
provides some background information,
followed by a discussion of related work.
The Temporal Aggregation Using a Mul-
tidimensional Index section elaborates
on the proposed MD-index method. The
Performance Evaluation section compares
the performance between the MD-index
method and the SB-tree method, then we
provide a conclusion for the paper.

Background

Temporal Aggregation
Each tuple in a temporal relation has

an associated time interval (Kline & Snod-

Name Salary Time
Interval

Richard 40k [18, 25)

5 8 12 14 18 21 23 250

John 35k John 37k

Richard 40k

Bill 45k

time

John 37k [14, 21)

John 35k [5, 12)

Bill 45k [8, 23)

a) Table E_SALARY�. b) Time intervals of tuples in E_SALARY�.

Figure 1. An example of a temporal relation

Journal of Database Management, 18(2), 62-80, April-June 2007 65

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

grass, 1995). Figure 1a shows an example
of a temporal relation E��������������� _�������������� SALARY, which
stores the salary history of employees. The
attribute Time Interval defines [Start time,
End time) of tuples as shown Figure 1b2.
Figure ����������������������������� 2���������������������������� shows the COUNT and MIN of
Salary changing over time. Note that each
aggregate function generates different
constant intervals.

MBR-MLGF
We use the multilevel grid file (MLGF)

(Whang & Krishnamurthy, 1991) as the
multidimensional index3. It is a multilevel
extension of a grid file and is similar to the
K-D-B-tree (Robinson, 1981)—a disk ver-
sion of the K-D tree—but using hashing.
Specifically, it is a dynamic hash file sup-
porting multikey accesses to data through
a multilevel directory tree structure.

An MLGF is made of a balanced tree
consisting of a multilevel directory and
data pages. Each directory level reflects
the space partitioning, and each directory

entry consists of a region vector and a
pointer to either a data page or a lower-
level directory page. A region vector in an
n-dimensional MLGF consists of n-hash
values that uniquely identify the region,
including its position, shape, and size.
The i-th hash value is the common prefix
of the hash values for the i-th attribute of
all records in the region. A region for a
higher-level directory entry contains all
regions in the subtree, rooted by the page
and pointed by the entry.

Figure 3 illustrates a two-level MLGF
with two keys, k1 and k2. Figure 3a shows
the directory structure, where the two levels
are denoted by D1 and D2. Figure 3b and
Figure 3c show the regions represented by
D1 and D2, respectively. Here, each region
corresponds to a disk page. There are 11
entries in D1, one for each of the 11 regions
A through K, and four entries in D2, one
for each of the D1 regions a through d. For
example, the region vector <� ������ �� ������� ������ �� ������� 01, 1� �� ������� �� ������� > of the
directory entry in D2 represents the region

Constant Interval COUNT Constant Interval MIN

[5, 8) 1 [5, 12) 35k

[8, 12) 2 [12, 14) 45k

[12, 14) 1 [14, 21) 37k

[14, 18) 2 [21, 25) 40k

[18, 21) 3

[21, 23) 2

[23, 25) 1

a) COUNT. b) MIN.

Figure 2. Temporal aggregates COUNT and MIN on E_SALARY.Salary

66 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

c, in which the two key values are prefixed
with 01 and 1, respectively. This region is
in turn split into the regions F, G, and H by
D1, each identified with the directory entry
with the region vector < 010,����������������� ����������������10�������������� �������������>, < 011,���� ���10�
>, or < 01,����������������������������� ���������������������������� 11�������������������������� ������������������������� >. In the MBR-MLGF, each
directory entry maintains information about
the minimum bounding regions of objects
(without additional storage overhead). For
example, Figure 4 shows the region R1 in a
rectangle and the objects in it as points. The
vertical line at min-ts and horizontal line at
max-te reduces R1 to its MBR.

We particularly use the MBR-MLGF�
(minimum-bounding-region MLGF)�
(Song, Shang, Lee, Lee, & Kim, 1999),
which is an extension of the MLGF tar-
geted toward efficient spatiotemporal data
accesses. In the MBR-MLGF, each direc-
tory entry maintains information about
the minimum bounding regions of objects
(without additional storage overhead). For
example, Figure 4 shows the region R1 in a
rectangle and the objects in it as points. The
vertical line at min-ts and the horizontal line
at max-te reduces R1 to its MBR.

 0 , 0 Region a
 00, 1 Region b
 01, 1 Region c
 1 , - Region d

k1, k2

D2

 00, 00 Region A
 00, 01 Region B
 01, 0 Region C

k1, k2

D1

 00, 10 Region D
 00, 11 Region E

 010, 10 Region F
 011, 10 Region G
 01, 11 Region H

 10, 10 Region I
 10, 11 Region J
 11, 1 Region K

To D
ata Pages

E H J

D F G I

K

B

A

D

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

k1

k2

b c

d

a

000 001 010 011 100 101 110 111

000

001

010

011

100

101

110

111

k1

k2

Figure 3. An example of a MLGF

b) Regions in D1 c) Regions in D2

a) A two-level directory structure

Journal of Database Management, 18(2), 62-80, April-June 2007 67

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Related work
The first proposal for computing tem-

poral aggregates has been made by Tuma
(1992). It was based on an extension to
the nontemporal aggregate computation
algorithm by Epstein (1979). The approach
consists of two steps, each requiring one
scan of the base table. The first step parti-
tions the time line into constant intervals.
The second step considers each tuple t in the
base table in turn, updating the aggregate
values for all resultant tuples, covered by
the tuple t’s valid interval. This method
takes O(mn) time to compute temporal
aggregates, where n is the size of the base
table and m is the number of result tuples.
This method builds a linked list���������� ��������� which re-
sides in main memory to represent constant
intervals that are generated in the first step
and used in the second step.

Kline and Snodgras (1995) proposed
the aggregation tree based on the binary
segment-tree (Preparata & Shamos, 1985).

This segment-tree feature allows efficient
processing of tuples with long intervals.
The tree structure, however, is unbalanced.
In the worst case, it takes O(n2) to compute
a temporal aggregate from a table with n
tuples. There has been balanced aggregation
trees (Kim et al., 1999; Moon et al., 2000)
proposed so that the worst-case run time is
O(n� log� m), where m is the number of the
constant interval. There have been parallel
versions of the aggregation-trees (Ye &
Keane, 1997; Gendrano et al., 1999), but
they all inherit the same limitations of the
original (i.e., nonparallel) versions.

One major drawback of the methods
described so far is that they use main-
memory resident data����������������������� ���������������������� structures. It limits
the applicability of the methods to a tem-
poral database that is often too large to fit
in main memory.

Yang and Widom����������������� ���������������� (2003) proposed
the SB-tree based on the segment-tree
(Preparata & Shamos, 1985) and the B-tree.

min-ts

max-te

end time

start time

region R1

Figure 4. Minimum bounding region in an MBR-MLGF

68 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Although similar to the aggregation tree
in terms of storing a time interval and a
value in each node, the SB-tree is different
for storing multiple time intervals in each
node. More importantly, the SB-tree is a
disk-resident data structure.

Figure 5 shows an example SB-tree for
COUNT. Each node of the SB-tree consists
of key-value������������������������������ ����������������������������� pairs. Each key is the start
time of a constant interval. Note that the
end time of one interval is the same as the
start time of the next interval. Each value
is the value for the constant interval. For
example, in Figure 5a, the node B contains
three constant intervals [0,����������������� ���������������� 5), [5,��������� �������� 10) and
[10,��������������������������������������� �������������������������������������� 15), and the values of COUNT are 0 in
[0,������������������������������������ ����������������������������������� 5), 1 in [5,����������������������� ���������������������� 10) and 2 in [10,����� ����15).

A key insertion of SB-tree is handled
as in the B-tree, and a value-update is done
to a node at the highest possible level. For
example, let us assume we insert a tuple with
the time interval [10, 50) and, as a result,

two keys 10 and 50 are inserted into the
SB-tree shown in Figure 5a. Since the key
10 already exists, only 50 is inserted. This
insertion causes the node D to over������fl����ow.
Then, (as in the B-tree) the node D is split
into the nodes D1 and D2 as shown in Figure
5b, and the keys are redistributed to the
two new nodes while the center value 45
is moved to the parent. Besides, 1 is added
to the values in all nodes whose keys lie
within the interval [10, 50). Note in Figure
5b that 1 is added to the second value in
the parent node A instead of the first and
the second values in the node C, since the
entire interval [15, 30) is included in the
interval [10, 50). Figure 6 shows how the
SB-tree is constructed as the tuples in Figure
1a are inserted.

All the methods described in this
section share a common disadvantage and
advantage. The disadvantage is that they
require one data structure for each aggregate

15 30

0 0 0

5 10

0 1 2

20

1 2

35 40 45

1 2 1 0

A

B C D

key field

value field

15 30 45

0 1 0 0

5 10

0 1 2

20

1 2

A

B C D1

35 40

2 3 2

50

1 0

D2

Figure 5. An example of the SB-tree for COUNT

a) Before inserting [10, 50)

b) After inserting [10, 50)

Journal of Database Management, 18(2), 62-80, April-June 2007 69

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

function. The advantage is that, when an
aggregation query is issued, they have only
to retrieve the up-to-date aggregate values
in the data structures immediately (with an
exception of the linked list method (Tuma,
1992)). As mentioned in the Introduction,
our MD-index method has the opposite
disadvantage and advantage. That is, it
requires only one data structure for all
aggregate functions, and computes the
aggregate values at query time.

Temporal Aggregation Using a
Multi-dimensional Index

As mentioned in the Introduction, we
represent temporal tuples as points in a
two-dimensional���������������������������� ���������������������������(2-D) space defined by the
start time and end time of the tuples. This
mapping enables the proposed MD-index
method. Based on this concept, we define
the temporal join window and present the
aggregation algorithms.

 1� 25

0 1 0

21

0 0

14 1�

0 1 2

25

1 0

14 21

0 0 0

5 12

0 1 0

1�

1 2

25

1 0

14 21

0 1 0

5 � 12

0 1 2 1

1�

1 2

23 25

2 1 0

Figure 6. An example of the SB-tree construction

a) After inserting [18, 25) b) After inserting [14, 21)

c) After inserting [5, 12)

d) After inserting [8, 23)

70 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Temporal Join Windows
We first define the base interval as

follows.

Definition 1 (base intervals): Given tempo-
ral tuples, their base intervals are the
time intervals delimited by the start
times or end times of all tuples.� � �□

For a given aggregate function, if we
merge all adjacent base intervals with the
same aggregate values, then the merged
intervals compose one constant interval�
(Kline & Snodgrass, 1995) for the aggregate
function. Base intervals are maintained by
storing the start time and end time of each
tuple in a separate B+-tree.

As the time interval of a tuple can
be mapped to a 2-D point, so can the base
interval be. Tuples thus mapped to 2-D
points can be stored and retrieved through
a 2-D index. Figure 7a shows the time in-
tervals of four tuples and six base intervals

of COUNT, and Figure 7b shows the 2-D
points mapped from these intervals.

Definition 2 (temporal join window of a
base interval): In a 2-D space repre-
senting all possible temporal tuples,
we define the temporal join window
(TJW) of a base interval Bi (TJW(Bi))
as the 2-D region containing all tuples
whose time intervals overlap Bi. That
is, given Bi ≡� �� ��[si, ei),

TJW() { , | and }i s e s i e iB t t t s t e= < > ≤ ≥

For example, in Figure 7b, TJW(B4)
contains the tuples t2 and t3, and the tuple
t2 belongs to TJW(B2), TJW(B3), TJW(B4),
and TJW(B5). Note that the tuples’ points
are located only at the grid points formed
by the TJWs because, by definition, there
cannot be the start time or end time of any
tuple within a base interval.

5 � 12 14 1� 20 250

B1

time

B2
B3

B4
B5

B6

t1

t2

t3

t4
ti: tuple
Bj: base interval

5 � 12 14 1� 20 250

B1

start time ts

B2

B3

B4

B5

B6

t1

t2 t3

t4

5

�

12
14

1�
20

25

end time te

: tuple
: base interval

Figure 7. Tuples and base intervals

a) Intervals in the 1-D time b) Points in the 2-D space

Journal of Database Management, 18(2), 62-80, April-June 2007 71

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Temporal Aggregation Algorithms
Temporal aggregate for each base in-

terval, Bi, is obtained by aggregating tuples
overlapping Bi, that is, tuples in TJW(Bi).
As we can see from Figure 8, aggregating
tuples in the order of Bi–�1, Bi, Bi+1 allows
reusing tuples from the previous TJW. We
now present the algorithms for computing
aggregates in the order of base intervals. (It
may well be done in the reverse order.)

The algorithm differs between cumu-
lative aggregation and selective aggrega-
tion. Let us first consider the cumulative
one using COUNT as an example. (SUM
is obtained in the same way as COUNT,
and AVG is obtained as SUM divided by
COUNT.) In Figure 8, COUNT of tuples in
TJW(Bi) is obtained from the COUNT of
tuples in TJW(Bi–�1) by adding the COUNT
of tuples in the region C+E and subtracting
the COUNT of tuples in A.

Because tuples’ points are located only
at the grid points formed by the TJWs, all
tuples in the region A have the end time

ei–�1 and all tuples in the region C have the
start time si. Let Ns(si) be the number of
tuples with the start time si and Ne(ei–1) be
the number of tuples with the end time ei–1.
Then, COUNT(Bi), the value of COUNT in
the base interval Bi, is obtained as

COUNT (Bi) =
COUNT (Bi-1)-Ne(ei-1)=NS(Si)
				��� (1)

Now, let us consider the selective ag-
gregation with MIN as an example. MAX
is symmetric to MIN and, therefore, is
obtained in the same way as MIN. When
calculating MIN in Bi after Bi–1, there are two
cases depending on the MIN of the tuples in
A. In case the MIN in Bi–1 is different from
the MIN in A, the tuple with the minimum
value must be in B+D and, therefore, the
MIN in Bi is the smaller of MIN in B+D
(= MIN in Bi–1) and that in C+E. In case
the MIN in Bi–1 and the MIN in A are the

si 1 si si+10

Bi

start time ts

Bi 1

Bi+1

ei+1

ei 1

ei

end time te

A

B

D

C

E F

TJW(Bi 1)
TJW(Bi)
TJW(Bi+1)

= A + B + D
= B + C + D + E
= D + E + F

Figure 8. TJWs of three consecutive base intervals

72 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

same, the tuple with the minimum value
must be in A and, therefore, the MIN in Bi
is the smaller between the MIN of tuples
in A and that in C+E.

Let Ms(si) be the minimum value of the
tuples with the start time si and Me(ei–1) be
the minimum value of the tuples with the end
time ei–1. Then, MIN(Bi), the value of MIN
in the base interval Bi,��������������� is obtained as

MIN(Bi)=

1 1 1

1

LESSER(MIN(), ()), if MIN() ()
LESSER((), ()), otherwise

i s i i e i

e i s i

B M s B M e
M e M s

− − −

−

≠



				 (2)

where the function LESSER returns the
smaller of the two arguments.

Figure 9 outlines the algorithms for
calculating COUNT and MIN based on
Equations (1) and (2) given a series of
base intervals. The aggregate for the first
base interval is computed in line 1 of each
algorithm. Then, the aggregates for the
rest of the base intervals are calculated
incrementally in lines 2-15 and 2-17, respec-
tively. It outputs one aggregate value per
constant interval, resulting from merging
adjacent base intervals in lines 7-11 lines
9-13, respectively.

Algorithm Aggregate_COUNT
Input: A series of base intervals Bi = [si, ei), i=1,2,…,n
Ouput: COUNT aggregate values for each constant interval C
begin
 1: prev_count := the number of tuples with the start time ≤ s1 and the end time ≥ e1;
 2: s := B1’s start time s1;
 3: Ne := the number of tuples with the end time��� =� e1;
 4: for i := 2 to n {
 5: Ns := the number of tuples with the start time = si;
 6: count := prev_count – Ne + Ns;
 /* if (count��� �� ==�� ��� prev_count) then merge the base intervals to a constant interval */
 /* else output the result: */
 7: if count != prev_count {
 8: output <[s, ei–1), prev_count>;
 9: s := Bi’s start time si;
10: }
11: e := Bi’s end time ei;
12: Ne := the number of tuples with the end time = ei;
13: prev_count := count;
14: }
15: output <[s, en), count>;
end;

a) Aggregate_COUNT

Figure 9. COUNT and MIN aggregation algorithms

Journal of Database Management, 18(2), 62-80, April-June 2007 73

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Performance Evaluation
We have conducted experiments to

compare the performance with that of the
SB-tree method. We describe the experi-
mental setup and present the results in this
section.

Experiment Setup
We use two synthetic datasets (DS1,

DS2) generated in a manner similar to the
data used by Kline and Snodgrass (1995)
and Moon et al. (2000). There are four
temporal relations. Each tuple has four attri-
butes: name (4 bytes), salary (4 bytes), start
time (4 bytes), and end time (4 bytes). The
relation sizes are 1, 4, 16, and 64 Mbytes,
each of which contains 65,536, 262,144,
1,048,576, and 4,194,304 tuples.

The tuples in DS1 are uniformly dis-
tributed with respect to time. Their start
time is selected randomly between 1 and
the following time range (inclusive): 1 mil-
lion for the 1 Mbyte relation, 4 million for
the 4 Mbyte relation, and so forth. (Note
that we use an integer for the time stamp.)
The end time is selected randomly between
the start time + 1 and the start time + 30%
of the time range. The tuples in DS2 are
normally distributed, thus skewed, with
respect to time. The mean and the standard
deviation are 1/4 and 1/8 of the time range
for the start time, and 3/4 and 1/8 of the
time range for the end time.

After inserting tuples in a 1 Mbyte
relation, for example, the size of the MD-
index is 3.2 Mbytes, and the size of SB-tree

Algorithm Aggregate_MIN
Input: A series of base intervals Bi = [si, ei), i=1,2,…,n
Ouput: MIN aggregate values for Bi, i=1,2,…�,n
begin
 1: prev_min := the minimum value of the tuples with the start time ��≤� s1 and the end time ��≥� e1;
 2: s := B1’s start time s1;
 3: Me := the minimum value of the tuples with the end time e1;
 4: for i := 2 to n {
 5: Ms := the minimum value of the tuples with the start time si;
 6: if (prev_min != Me)
 7: then min := lesser(prev_min, Ms);
 8: else min := lesser(Me, Ms);
 /* if (min��� �� ==�� ��� prev_min) then merge the base intervals to a constant interval */
 /* else output the result: */
 9: if min != prev_min {
10: output <[s, ei–1), prev_min>;
11: s := Bi’s start time si;
12: }
13: e := Bi’s end time ei;
14: Me := the minimum value of the tuples with the end time ei;
15: prev_min := min;
16: }
17: output <[s, en), min>;
end;

b) Aggregate_MIN.

Figure 9. continued

74 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

is 2.4 Mbytes for SUM, 2.3 Mbytes for
COUNT, 2.4 Mbytes for AVG, 0.8 Mbytes
for MIN, and 0.8 Mbytes for MAX. The
size of the SB-tree varies significantly be-
tween cumulative and selective aggregate
functions. Considering a 16 Mbyte relation
as another example, the SUM SB-tree is
approximately 11 Mbytes, while the MIN
SB-tree is only 12 Kbytes. This is because
MIN typically generates a smaller number
of constant intervals (see Figure 3).

We measure the update performance
by inserting new tuples amounting to 0.1%
of the existing tuples into the datasets DS1
and DS2. The ratio of 0.1% is sufficient for
our purpose because, evidently, the perfor-
mance gap between the MD-index method
and the SB-tree method would increase as
more tuples are inserted. The maintenance
cost of base intervals in the B+-tree is also
included in the update cost. The tuples
have been inserted in a batch but without
any optimization taking advantage of the
batch processing, so the result would not
differ much from that of inserting tuples
in increments.

The performance metrics are the
elapsed time and the number of disk page

accesses. The elapsed time is the total execu-
tion time measured in a single-user environ-
ment. We consider only the five standard
aggregate functions (i.e., SUM, COUNT,
AVG, MIN, MAX). In order to avoid noise,
we execute each function more than three
times and calculate an average.

The system is configured in Linux
server with 1.0 Gbyte RAM and ATA-4
IDE hard disk drive, and it uses direct
I/O to eliminate the unpredictable effect
of operating system buffering. The page
size is 4 Kbytes for both disk pages and
buffer pages.

Experiment Results
Experimental performance results of

update operations and aggregation query
operations are presented in this subsec-
tion.

Update Performance
Figures 10 and 11 compare the update

performances of our MD-index method and
the SB-tree method, using the dataset DS1
and the dataset DS2, respectively. Each fig-
ure shows two cases for the SB-tree method:
the five aggregate functions together and

Figure 10. Update performance with respect to relation size using DS1

Journal of Database Management, 18(2), 62-80, April-June 2007 75

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

each aggregate function separately. In the
latter case, we show the results for only
AVG and MIN because the results for
SUM and COUNT are very close to that
for AVG, and the result for MAX is very
close to that for MIN.

As mentioned in the Introduction, the
SB-tree method requires one SB-tree for
each aggregate function, whereas our meth-
od uses one MD-index for all. Therefore,
each update operation incurs updating five
SB-trees in the SB-tree method, whereas
it incurs updating one MBR-MLGF in the
MD-index method. Figures 10 and 11 show
that the MD-index method performs far
better (by one to two orders of magnitude)
than the SB-tree method when all the five
aggregate functions are considered.

The two figures also show that the
update performance of the SB-tree method
is much better for MIN than AVG. While
the AVG performance is much poorer than
that of the MD-index method by an order
of magnitude, the MIN performance is
comparable. Moreover, the update costs of
MIN SB-tree increases slower than those of
the other three. The reason is the size of the

MIN SB-tree, which is much smaller than
the AVG SB-tree or the MD-index.

Aggregation Query Performance
Figures 12 and 13 compare the aggre-

gation query performance of our MD-index
method and the SB-tree method using the
dataset DS1 and dataset DS2, respectively.
Here, each figure also shows two cases for
the SB-tree method: the five aggregate func-
tions together and each aggregate function
separately.

The two figures show that the aggrega-
tion query performance of the MD-index
method is worse than that of the SB-tree
method for a single aggregate function. This
is as expected. We also see that the gap is
larger for the MIN aggregate function due
to the smaller size of the MIN SB-tree.
Oftentimes, multiple aggregate functions
appear in the same aggregation query����� ����for
periodic statistics reports, for example. This
multiaggregation case brings a performance
advantage to the MD-index method because
it calculates all aggregates while accessing
the index tree only once, regardless of the
number of the aggregate functions. Indeed,

Figure 11. Update performance with respect to relation size using DS2

76 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

the two figures show that the performance
of the MD-index method is comparable to
(and, in some cases, better than) that of the
SB-tree method when all the five aggregate
functions are considered together.

Conclusion
We have presented a new temporal

aggregation method called the MD-index
method. It stores temporal tuples as 2-D
points through a 2-D index; and it computes
the aggregates by identifying the TJW of
each base interval and joining the tuples

in the window with the interval. The ag-
gregates for base intervals are calculated
by incrementally modifying the aggregates
from the previous base intervals without re-
reading all tuples in the TJW of the current
base interval. Adjacent base intervals with
the same aggregate value are subsequently
merged into a constant interval. We have
compared our method with the SB-tree
method. The results show that our method
is at least an order of magnitude faster
than the SB-tree method for updates, while
increasingly comparable for multiaggrega-

Figure 12. Temporal aggregation query performance with respect to relation size using
DS1

Figure 13. Temporal aggregation query performance with respect to relation size using
DS2

Journal of Database Management, 18(2), 62-80, April-June 2007 77

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

tion queries as the number of aggregate
functions in the query increases. These
results indicate that the MD-index method is
preferable in an environment with frequent
updates or multiaggregation queries.

Acknowledgment
We thank the anonymous reviewers

for their invaluable comments. This work
was supported by the Korea Science and
Engineering Foundation (KOSEF) through
the Advanced Information Technology
Research Center (AITrc)��������������� and the Brain
Korea 21 Project����������������������� . For the author Byung
Suk Lee, the work was partially supported
by the U.S. Department of Energy through
Grant No. DE-FG02-ER45962 and the U.S.
National Science Foundation through Grant
No. IIS-0415023.

References
Epstein, R. (1979). Techniques for process-

ing of aggregates in relational data-
base systems (Tech. Rep. UCB/ERL
M7918). Berkeley, CA: University
of California.

Gaede, V., & Gunther, O. (1998). Multi-
dimensional access methods. ACM
Computing Surveys, 30(2), 170-
231.

Gendrano, J. A. G., Huang, B. C., Rodrigue,
J. M., Moon, B., & Snodgrass, R.
T. (1999). Parallel algorithms for
computing temporal aggregates. In
Proceedings of the IEEE International
Conference on Data Engineering,
Sydney, Australia, 418-427.

Jensen, C. S., et al. (1998)������������� .������������ The consen-
sus glossary of temporal database
concepts (February 1998 version).
Temporal databases: research and
practice. Lecture Notes in Computer
Science�������������� (LNCS)������� , 1399, 373-374.

Kim, J., Kang, S.����������������������� ,���������������������� & Kim, M. (1999). Ef-
fective remporal aggregation using
point-based trees. In Proceedings
of the International Conference
on Database and Expert Systems�
Applications (DEXA), Florence, Italy,
1018-1030.

Kline, N., & Snodgrass, R. T. (1995).
Computing remporal aggregates. In
Proceedings of the IEEE International
Conference on Data Engineering�
(ICDE)������������������ , Taipei, Taiwan, 222-231.

Moon, B., Lopez, I. F. V.����������������� ,���������������� & Immanuel, V.
(2000). Scalable algorithms for large
temporal aggregation. In Proceedings
of the IEEE International Conference
on Data Engineering������������� (ICDE)������ , San
Diego, USA, 145-154.

Preparata, F. P., & Shamos, M. I. (1985).
Computational geometry: An intro-
duction. Berlin/Heidelberg, Ger-
many: Springer-Verlag.

Robinson, J. T. (1981). The K-D-B-tree: A
search structure for large multidimen-
sional dynamic indexes. In Proceed-
ings of the International Conference
on Management of Data, ACM SIG-
MOD, New York, USA, 10-18.

Song, J., Whang, K., Lee, Y., Lee, M., &
Kim, S. (1999). Spatial join process-
ing using corner transformation. IEEE
Transactions on Knowledge and Data
Engineering, 11(4), 688-698.

Terenziani, P., & Snodgrass, R.������������ ����������� T. (2004).
Reconciling point-based and Interval-
based semantics in temporal relational
databases: A treatment of the telic/
atelic distinction. IEEE Transactions
on Knowledge and Data Engineering,
16(5), 540-551.

Trujillo�������� ���������������������������� , J.���� ���������������������������� , Luján-Mora�������������������� , S., �������������� &������������� ������������ Song�������� , I.-Y.
(2004)��������������������������� .Applying UML and XML for
designing and interchanging informa-
tion for data warehouses and OLAP

78 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

applications.� Journal of Database
Management, 15(1),������� 41-72�.

Tuma, P. A. (1992)��.� Implementing historical
aggregates in TempIS, Unpublished
master’s thesis, Wayne State Uni-
versity, .

Whang, K., Kim, S., & Wiederhold, G.
(1994). Dynamic maintenance of data
distribution for selectivity estimation.
The VLDB Journal, 3(1), 29-51.

Whang, K., & Krishnamurthy, R. (1991).
The multilevel grid file a dynamic
hierarchical multi-dimesional file
structure. In Proceeding��������� s�������� of the
2nd International Conference on
Database Systems for Advanced Ap-
plications (DASFAA), Tokyo, Japan,
449-459.

Yang, J., & Widom, J. (2003). Incremental
computation and maintenance of tem-
poral aggregates. The VLDB Journal,
12(3), 262-283.

Ye, X., & Keane, J. A. (1997). Processing
temporal aggregates in parallel. In
Proceedings of the IEEE Interna-

tional Conference on Systems, Man,
and Cybernetics, Orlando, USA,
1373-1378.

Zhang, D., Markowetz, A., Tsotras, V.,
Gunopulos, D.����������������������� ,���������������������� & Seeger, B. (2001).
Efficient computation of temporal
aggregate with range predicates. In
Proceedings of the ACM Symposium
on Principles of Database Systems�
(PODS)��������������������� , Santa Barbara, USA.

Endnotes
1	 An atelic fact is characterized by be-

ing true at any point during a certain
time interval, whereas a telic fact is
characterized by being true as a result
of completing a goal during an interval
(Terenziani & Snodgrass, 2004).

2	 We represent the time as an integer
for convenience without loss of gen-
erality.

3	 Nevertheless, any multidimensional
point access method (Gaede & Gun-
ther, 1998) can be used for this pur-
pose.

Joon-Ho Woo received his BS degree in Computer Science from Korea Advanced Insti-
tute of Science and Technology (KAIST) in 1993 and earned his MS and PhD degrees
in Computer Science from KAIST in 1995 and 2004, respectively. He worked at Center
for Advanced Information System (CAIS), KAIST and participated in developing the
integrated campus information system. He is currently with Samsung SDS, Co., Ltd. His
research interest includes spatio-temporal databases, geographic information system,
and information retrieval.

Byung Suk Lee received his BS degree from Seoul National University in 1980, M.S. from
Korea Advanced Institute of Science and Technology in 1982, and PhD from Stanford
University in 1991. His research areas include database systems, data modeling, and
information retrieval. He has held various positions in industry and academia, including

Journal of Database Management, 18(2), 62-80, April-June 2007 79

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Gold Star Electric, Bell Communications Research, Datacom Global Communications,
University of St. Thomas, and currently University of Vermont. He was also a visiting
professor at Dartmouth College and a guest professor at Lawrence Livermore National
Laboratory. He served on international conferences as a program committee member,
publicity chair, and special session organizer, and served on US federal funding pro-
grams, including NSF proposal review panel and DOE EPSCoR session panel.

Min-Jae Lee received his BS degree in Computer Science from Korea Advanced Institute
of Science and Technology (KAIST) in 1995, and earned his MS and PhD degrees in
Computer Science from KAIST in 1997 and 2004, respectively. Until November 2004,
he was a post-doctoral fellow at Advanced Information Technology Information Center,
KAIST. In December 2005, He joined Neowiz, Co., Ltd., in Korea as a researcher. His
research interest includes spatial databases, access methods, information retrieval,
query processors, database systems, and storage systems.

Kyu-Young Whang graduated (Summa Cum Laude) from Seoul National University in
1973 and received his MS degrees from Korea Advanced Institute of Science and Technol-
ogy (KAIST) in 1975, and Stanford University in 1982. He earned the PhD degree from
Stanford University in 1984. From 1983 to 1991, he was a Research Staff Member at the
IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1990, he joined KAIST, where
he currently is a full professor at the Department of Computer Science and the Director
of the Advanced Information Technology Research Center (AITrc). His research interests
encompass database systems/storage systems, object-oriented databases, multimedia
databases, geographic information systems (GIS), data mining/data warehouses, and
XML databases. He is an author of over 90 papers in refereed international journals
and conference proceedings (and over 140 papers in domestic ones).
He served as an IEEE Distinguished Visitor from 1989 to 1990, received the Best Paper
Award from the 6th IEEE International Conference on Data Engineering (ICDE) in 1990,
served the ICDE six times as a program co-chair and vice chair from 1989 to 2003,
and served program committees of over 90 international conferences including VLDB
and ACM SIGMOD. He was the program chair (Asia and Pacific Rim) for COOPIS'98
and the program chair (Asia, Pacific, and Australia) for VLDB 2000. He is a general
co-chair of VLDB 2006 and the general chair of PAKDD 2003 and DASFAA 2004. He
twice received the External Honor Recognition from IBM. He is an Editor-in-Chief of
the VLDB Journal having served the editorial board as a founding member for thirteen
years. He was an associate editor of the IEEE Data Engineering Bulletin from 1990 to
1993 and an editor of Distributed and Parallel Databases Journal from 1991 to 1995.
He is on the editorial boards of the IEEE TKDE, The World-Wide Web Journal, and
Int'l Journal of GIS. He was a trustee of the VLDB Endowment from 1998 to 2004. He
is the vice chair of the steering committee of the DASFAA Conference and is a steering
committee member of the PAKDD Conference. He served the IEEE Computer Society
Asia/Pacific Activities Group as the Korean representative from 1993 to 1997.
He is a senior member of the IEEE, a member of the ACM, and a member of IFIP WG
2.6.

80 Journal of Database Management, 18(2), 62-80, April-June 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Woong-Kee Loh received his BS degree in Computer Science from Korea Advanced
Institute of Science and Technology (KAIST) in 1991, and earned his MS and PhD de-
grees in Computer Science from KAIST in 1993 and 2001, respectively. He was a winter
student of NHK Science and Technical Research Laboratories (STRL) in Tokyo, Japan
in 1995. He was a visiting summer student at Computer Science Department, Stanford
University in 1997. Until March 2005, he was a principal researcher at Tmax Data,
Co., Ltd. in Bundang, Korea, and worked on a new DBMS architecture that reduces
system overheads. Since April 2005, he has been a visiting professor at Computer Sci-
ence Department, KAIST. His research interest includes data mining/data warehous-
ing, spatio-temporal databases, main memory databases, XML internet databases, and
multimedia content-based retrieval.

