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Abstract

We present a new method for computing temporal aggregation that uses a multidimen-
sional index. The novelty of our method lies in mapping the start time and end time 
of a temporal tuple to a data point in a two-dimensional space, which is stored in a 
two-dimensional index, and in calculating the temporal aggregates through a temporal 
join between the data in the index and the base intervals (defined as the intervals de-
limited by the start times or end times of the tuples). To enhance the performance, this 
method calculates the aggregates by incrementally modifying the aggregates from that 
of the previous base interval without re-reading all tuples for the current base interval. 
We have compared our method with the SB-tree, which is the state-of-the-art method 
for temporal aggregation. The results show that our method is an order of magnitude 
more efficient than the SB-tree method in an environment with frequent updates, while 
comparable in a read-only environment as the number of aggregates calculated in a 
query increases.

Keywords:	 multidimensional index; temporal aggregation

Introduction
Temporal aggregation is an operation 

for finding the aggregate value of an attri-
bute over a certain period of time. Specifi-
cally, it finds the time intervals in which the 
aggregate value does not change, namely 
the constant intervals (Kline & Snodgrass, 

1995), and performs the aggregation at each 
constant interval. Typically, there are two 
kinds of aggregate functions: cumulative 
(e.g., COUNT, SUM, AVG) and selective 
(e.g., MIN, MAX).

There have been several temporal ag-
gregation methods proposed to date. The 
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early ones included the linked list method 
by Tuma (1992) and the aggregation tree 
method by Kline and Snodgrass (1995) and 
its variants (Gendrano, Huang, Rodrigue, 
Moon, & Snodgrass, 1999; Kim, Kang, & 
Kim, 1999; Moon, Lopez, & Immanuel, 
2000; Ye & Keane, 1997). Although these 
methods do facilitate computing temporal 
aggregates, they require the data structures 
to reside in main memory. The data struc-
tures, however, are typically much larger 
than the available main memory because 
a temporal database retains all tuples from 
the past. Moreover, they require one data 
structure for each aggregate function.

Recently, Yang and Widom (2003) 
proposed a method using the SB-tree. 
This method is similar to the aggregation 
tree method, but uses a disk-resident data 
structure. (It, however, still requires one 
data structure for each aggregate function.) 
In this method, every time a new tuple is 
inserted or an existing tuple is updated or 
deleted, the temporal aggregates are up-
dated immediately using the SB-tree. Then, 
queries are executed quickly by simply 
reading the precomputed aggregate val-
ues. However, the overhead of immediate 
updates is nontrivial, particularly because 
the update is done for each aggregate func-
tion through a separate SB-tree. Thus, this 
method is not suitable in an environment 
with frequent insertions, deletions, or up-
dates (collectively called updates from now 
on) of tuples and relatively less frequent 
aggregation queries.

Many temporal database applications, 
however, are update intensive. Examples 
include financial applications handling 
stock market data and reservation systems 
for airlines, hotels, trains, and so forth. For 
these applications, there are very frequent 
updates and only a limited number of 
temporal aggregation queries. Thus, the 

ratio between updates and aggregation 
queries in these cases could be in the order 
of thousands.

In this paper, we propose a new method 
that resolves the problems of the existing 
methods for update-intensive applications, 
while accomplishing reasonably efficient 
temporal aggregation. Like the SB-tree 
method, our method uses a disk-resident 
data structure that is applicable to a large 
temporal database. The novelty of the 
method lies in mapping the start time and the 
end time of a temporal tuple to a data point 
in a two-dimensional space and storing 
the data point through a multidimensional 
index. (In this regard, we call this method 
the multidimensional index (MD-index) 
method (������������ ������������������  Trujillo, Luján-Mora, & Song��, 
2004).������������������������������������      ) An update operation incurs only a 
small overhead of inserting a tuple through 
the index. For an aggregation query opera-
tion, aggregates are computed through a 
temporal join between the data in the index 
and the base intervals (to be defined in 
the Temporal Aggregation Using a Mul-
tidimensional Index section), constituting 
constant intervals. For efficiency’s sake, 
this calculation is done by incrementally 
modifying the aggregate from that of the 
previous base interval without re-reading 
all tuples for the current base interval.

Compared with the SB-tree method, 
our method (1) incurs little overhead when 
updating tuples and, thus, is more efficient 
for update operations; and (2) uses only one 
index structure for all aggregate functions 
and, consequently, achieves increasingly 
comparable aggregation query perfor-
mance (through incremental calculations) 
as the number of aggregates in the query 
increases.

In this paper, “time” may be interpreted 
as any of the valid time, transaction time, 
and user-defined time, but we do not con-
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sider more than one of them at the same 
time. In other words, we do not consider 
bitemporal databases (Jensen������������   ���� �����������  ����et al., 1998). 
Moreover, the semantics of time is point-
based atelic1. This means that a tuple value 
is true at any point within a given time in-
terval, not as a result of achieving a certain 
goal during the interval.

Experimental results show that our 
method is an order of magnitude more ef-
ficient than the SB-tree method for update 
operations, and the gap becomes wider as 
more aggregate functions (e.g., COUNT, 
SUM, AVG, MIN, MAX) are supported 
by the system. The results also show that 
multiaggregation query performance ap-
proaches that of the SB-tree method as 
the number of the aggregate functions 
increases, becoming comparable to that 

of the SB-tree, when the query specifies 
all five aggregate functions (i.e., COUNT, 
SUM, AVG, MIN, MAX).

Following the Introduction, we 
provides some background information, 
followed by a discussion of related work. 
The Temporal Aggregation Using a Mul-
tidimensional Index section elaborates 
on the proposed MD-index method. The 
Performance Evaluation section compares 
the performance between the MD-index 
method and the SB-tree method, then we 
provide a conclusion for the paper.

Background

Temporal Aggregation
Each tuple in a temporal relation has 

an associated time interval (Kline & Snod-

Name Salary Time 
Interval

Richard 40k [18, 25)

5 8 12 14 18 21 23 250

John 35k John 37k

Richard 40k

Bill 45k

time

John 37k [14, 21)

John 35k [5, 12)

Bill 45k [8, 23)

a) Table E_SALARY�. b) Time intervals of tuples in E_SALARY�.

Figure 1. An example of a temporal relation
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grass, 1995). Figure 1a shows an example 
of a temporal relation E��������������� _�������������� SALARY, which 
stores the salary history of employees. The 
attribute Time Interval defines [Start time, 
End time) of tuples as shown Figure 1b2. 
Figure �����������������������������      2����������������������������       shows the COUNT and MIN of 
Salary changing over time. Note that each 
aggregate function generates different 
constant intervals.

MBR-MLGF
We use the multilevel grid file (MLGF) 

(Whang & Krishnamurthy, 1991) as the 
multidimensional index3. It is a multilevel 
extension of a grid file and is similar to the 
K-D-B-tree (Robinson, 1981)—a disk ver-
sion of the K-D tree—but using hashing. 
Specifically, it is a dynamic hash file sup-
porting multikey accesses to data through 
a multilevel directory tree structure.

An MLGF is made of a balanced tree 
consisting of a multilevel directory and 
data pages. Each directory level reflects 
the space partitioning, and each directory 

entry consists of a region vector and a 
pointer to either a data page or a lower-
level directory page. A region vector in an 
n-dimensional MLGF consists of n-hash 
values that uniquely identify the region, 
including its position, shape, and size. 
The i-th hash value is the common prefix 
of the hash values for the i-th attribute of 
all records in the region. A region for a 
higher-level directory entry contains all 
regions in the subtree, rooted by the page 
and pointed by the entry.

Figure 3 illustrates a two-level MLGF 
with two keys, k1 and k2. Figure 3a shows 
the directory structure, where the two levels 
are denoted by D1 and D2. Figure 3b and 
Figure 3c show the regions represented by 
D1 and D2, respectively. Here, each region 
corresponds to a disk page. There are 11 
entries in D1, one for each of the 11 regions 
A through K, and four entries in D2, one 
for each of the D1 regions a through d. For 
example, the region vector <� ������  �� �������  ������  �� ������� 01, 1� �� �������  �� ������� > of the 
directory entry in D2 represents the region 

Constant Interval COUNT Constant Interval MIN

[5, 8) 1 [5, 12) 35k

[8, 12) 2 [12, 14) 45k

[12, 14) 1 [14, 21) 37k

[14, 18) 2 [21, 25) 40k

[18, 21) 3

[21, 23) 2

[23, 25) 1

a) COUNT. b) MIN.

Figure 2. Temporal aggregates COUNT and MIN on E_SALARY.Salary
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c, in which the two key values are prefixed 
with 01 and 1, respectively. This region is 
in turn split into the regions F, G, and H by 
D1, each identified with the directory entry 
with the region vector < 010,����������������� ����������������10�������������� �������������>, < 011,���� ���10� 
>, or < 01,�����������������������������       ����������������������������     11��������������������������      �������������������������    >. In the MBR-MLGF, each 
directory entry maintains information about 
the minimum bounding regions of objects 
(without additional storage overhead). For 
example, Figure 4 shows the region R1 in a 
rectangle and the objects in it as points. The 
vertical line at min-ts and horizontal line at 
max-te reduces R1 to its MBR.

We particularly use the MBR-MLGF� 
(minimum-bounding-region MLGF)� 
(Song, Shang, Lee, Lee, & Kim, 1999), 
which is an extension of the MLGF tar-
geted toward efficient spatiotemporal data 
accesses. In the MBR-MLGF, each direc-
tory entry maintains information about 
the minimum bounding regions of objects 
(without additional storage overhead). For 
example, Figure 4 shows the region R1 in a 
rectangle and the objects in it as points. The 
vertical line at min-ts and the horizontal line 
at max-te reduces R1 to its MBR.

  0 ,   0 Region a
  00, 1 Region b
  01, 1 Region c
  1 ,   - Region d

k1,  k2

D2

  00,  00 Region A
  00,  01 Region B
  01,    0 Region C

k1,   k2

D1

  00,  10 Region D
  00,  11 Region E

  010, 10 Region F
  011, 10 Region G
  01,   11 Region H

  10,  10 Region I
  10,  11 Region J
  11,    1 Region K

To D
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Figure 3. An example of a MLGF

b) Regions in D1 c) Regions in D2

a) A two-level directory structure
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Related work
The first proposal for computing tem-

poral aggregates has been made by Tuma 
(1992). It was based on an extension to 
the nontemporal aggregate computation 
algorithm by Epstein (1979). The approach 
consists of two steps, each requiring one 
scan of the base table. The first step parti-
tions the time line into constant intervals. 
The second step considers each tuple t in the 
base table in turn, updating the aggregate 
values for all resultant tuples, covered by 
the tuple t’s valid interval. This method 
takes O(mn) time to compute temporal 
aggregates, where n is the size of the base 
table and m is the number of result tuples. 
This method builds a linked list����������   ��������� which re-
sides in main memory to represent constant 
intervals that are generated in the first step 
and used in the second step.

Kline and Snodgras (1995) proposed 
the aggregation tree based on the binary 
segment-tree (Preparata & Shamos, 1985). 

This segment-tree feature allows efficient 
processing of tuples with long intervals. 
The tree structure, however, is unbalanced. 
In the worst case, it takes O(n2) to compute 
a temporal aggregate from a table with n 
tuples. There has been balanced aggregation 
trees (Kim et al., 1999; Moon et al., 2000) 
proposed so that the worst-case run time is 
O(n� log� m), where m is the number of the 
constant interval. There have been parallel 
versions of the aggregation-trees (Ye & 
Keane, 1997; Gendrano et al., 1999), but 
they all inherit the same limitations of the 
original (i.e., nonparallel) versions.

One major drawback of the methods 
described so far is that they use main-
memory resident data�����������������������    ����������������������  structures. It limits 
the applicability of the methods to a tem-
poral database that is often too large to fit 
in main memory.

Yang and Widom�����������������   ���������������� (2003) proposed 
the SB-tree based on the segment-tree 
(Preparata & Shamos, 1985) and the B-tree. 

min-ts

max-te

end time

start time

region R1

Figure 4. Minimum bounding region in an MBR-MLGF
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Although similar to the aggregation tree 
in terms of storing a time interval and a 
value in each node, the SB-tree is different 
for storing multiple time intervals in each 
node. More importantly, the SB-tree is a 
disk-resident data structure.

Figure 5 shows an example SB-tree for 
COUNT. Each node of the SB-tree consists 
of key-value������������������������������       �����������������������������     pairs. Each key is the start 
time of a constant interval. Note that the 
end time of one interval is the same as the 
start time of the next interval. Each value 
is the value for the constant interval. For 
example, in Figure 5a, the node B contains 
three constant intervals [0,�����������������     ����������������   5), [5,���������   �������� 10) and 
[10,���������������������������������������          ��������������������������������������        15), and the values of COUNT are 0 in 
[0,������������������������������������           �����������������������������������         5), 1 in [5,�����������������������       ����������������������     10) and 2 in [10,�����  ����15).

A key insertion of SB-tree is handled 
as in the B-tree, and a value-update is done 
to a node at the highest possible level. For 
example, let us assume we insert a tuple with 
the time interval [10, 50) and, as a result, 

two keys 10 and 50 are inserted into the 
SB-tree shown in Figure 5a. Since the key 
10 already exists, only 50 is inserted. This 
insertion causes the node D to over������fl����ow. 
Then, (as in the B-tree) the node D is split 
into the nodes D1 and D2 as shown in Figure 
5b, and the keys are redistributed to the 
two new nodes while the center value 45 
is moved to the parent. Besides, 1 is added 
to the values in all nodes whose keys lie 
within the interval [10, 50). Note in Figure 
5b that 1 is added to the second value in 
the parent node A instead of the first and 
the second values in the node C, since the 
entire interval [15, 30) is included in the 
interval [10, 50). Figure 6 shows how the 
SB-tree is constructed as the tuples in Figure 
1a are inserted.

All the methods described in this 
section share a common disadvantage and 
advantage. The disadvantage is that they 
require one data structure for each aggregate 

15 30

0 0 0

5 10

0 1 2

20

1 2

35 40 45

1 2 1 0

A

B C D

key field

value field

15 30 45

0 1 0 0

5 10

0 1 2

20

1 2

A

B C D1

35 40

2 3 2

50

1 0

D2

Figure 5. An example of the SB-tree for COUNT

a) Before inserting [10, 50)

b) After inserting [10, 50)
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function. The advantage is that, when an 
aggregation query is issued, they have only 
to retrieve the up-to-date aggregate values 
in the data structures immediately (with an 
exception of the linked list method (Tuma, 
1992)). As mentioned in the Introduction, 
our MD-index method has the opposite 
disadvantage and advantage. That is, it 
requires only one data structure for all 
aggregate functions, and computes the 
aggregate values at query time.

Temporal Aggregation Using a 
Multi-dimensional Index

As mentioned in the Introduction, we 
represent temporal tuples as points in a 
two-dimensional����������������������������  ���������������������������(2-D) space defined by the 
start time and end time of the tuples. This 
mapping enables the proposed MD-index 
method. Based on this concept, we define 
the temporal join window and present the 
aggregation algorithms.

 1� 25

0 1 0

21

0 0

14 1�

0 1 2

25

1 0

14 21

0 0 0

5 12

0 1 0

1�

1 2

25

1 0

14 21

0 1 0

5 � 12

0 1 2 1

1�

1 2

23 25

2 1 0

Figure 6. An example of the SB-tree construction

a) After inserting [18, 25) b) After inserting [14, 21)

c) After inserting [5, 12)

d) After inserting [8, 23)
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Temporal Join Windows
We first define the base interval as 

follows.

Definition 1 (base intervals): Given tempo-
ral tuples, their base intervals are the 
time intervals delimited by the start 
times or end times of all tuples.� � �□

For a given aggregate function, if we 
merge all adjacent base intervals with the 
same aggregate values, then the merged 
intervals compose one constant interval� 
(Kline & Snodgrass, 1995) for the aggregate 
function. Base intervals are maintained by 
storing the start time and end time of each 
tuple in a separate B+-tree.

As the time interval of a tuple can 
be mapped to a 2-D point, so can the base 
interval be. Tuples thus mapped to 2-D 
points can be stored and retrieved through 
a 2-D index. Figure 7a shows the time in-
tervals of four tuples and six base intervals 

of COUNT, and Figure 7b shows the 2-D 
points mapped from these intervals.

Definition 2 (temporal join window of a 
base interval):  In a 2-D space repre-
senting all possible temporal tuples, 
we define the temporal join window 
(TJW) of a base interval Bi (TJW(Bi)) 
as the 2-D region containing all tuples 
whose time intervals overlap Bi. That 
is, given Bi ≡� �� ��[si, ei),

TJW( ) { , |  and }i s e s i e iB t t t s t e= < > ≤ ≥  

For example, in Figure 7b, TJW(B4) 
contains the tuples t2 and t3, and the tuple 
t2 belongs to TJW(B2), TJW(B3), TJW(B4), 
and TJW(B5). Note that the tuples’ points 
are located only at the grid points formed 
by the TJWs because, by definition, there 
cannot be the start time or end time of any 
tuple within a base interval.

 

5 � 12 14 1� 20 250

B1

time

B2
B3

B4
B5

B6

t1

t2

t3

t4
ti: tuple
Bj: base interval

5 � 12 14 1� 20 250

B1

start time ts

B2

B3

B4

B5

B6

t1

t2 t3

t4

5

�

12
14

1�
20

25

end time te

: tuple
: base interval

Figure 7. Tuples and base intervals

a) Intervals in the 1-D time b) Points in the 2-D space
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Temporal Aggregation Algorithms
Temporal aggregate for each base in-

terval, Bi, is obtained by aggregating tuples 
overlapping Bi, that is, tuples in TJW(Bi). 
As we can see from Figure 8, aggregating 
tuples in the order of Bi–�1, Bi, Bi+1 allows 
reusing tuples from the previous TJW. We 
now present the algorithms for computing 
aggregates in the order of base intervals. (It 
may well be done in the reverse order.)

The algorithm differs between cumu-
lative aggregation and selective aggrega-
tion. Let us first consider the cumulative 
one using COUNT as an example. (SUM 
is obtained in the same way as COUNT, 
and AVG is obtained as SUM divided by 
COUNT.) In Figure 8, COUNT of tuples in 
TJW(Bi) is obtained from the COUNT of 
tuples in TJW(Bi–�1) by adding the COUNT 
of tuples in the region C+E and subtracting 
the COUNT of tuples in A.

Because tuples’ points are located only 
at the grid points formed by the TJWs, all 
tuples in the region A have the end time 

ei–�1 and all tuples in the region C have the 
start time si. Let Ns(si) be the number of 
tuples with the start time si and Ne(ei–1) be 
the number of tuples with the end time ei–1. 
Then, COUNT(Bi), the value of COUNT in 
the base interval Bi, is obtained as

COUNT (Bi) = 
COUNT (Bi-1)-Ne(ei-1)=NS(Si)
				���    (1)

Now, let us consider the selective ag-
gregation with MIN as an example. MAX 
is symmetric to MIN and, therefore, is 
obtained in the same way as MIN. When 
calculating MIN in Bi after Bi–1, there are two 
cases depending on the MIN of the tuples in 
A. In case the MIN in Bi–1 is different from 
the MIN in A, the tuple with the minimum 
value must be in B+D and, therefore, the 
MIN in Bi is the smaller of MIN in B+D 
(= MIN in Bi–1) and that in C+E. In case 
the MIN in Bi–1 and the MIN in A are the 

 

si 1 si si+10

Bi

start time ts

Bi 1

Bi+1

ei+1

ei 1

ei

end time te

A

B

D

C

E F

TJW(Bi 1)
TJW(Bi)
TJW(Bi+1)

= A + B + D
= B + C + D + E
= D + E + F

Figure 8. TJWs of three consecutive base intervals
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same, the tuple with the minimum value 
must be in A and, therefore, the MIN in Bi 
is the smaller between the MIN of tuples 
in A and that in C+E.

Let Ms(si) be the minimum value of the 
tuples with the start time si and Me(ei–1) be 
the minimum value of the tuples with the end 
time ei–1. Then, MIN(Bi), the value of MIN 
in the base interval Bi,���������������    is obtained as

MIN(Bi)=

1 1 1

1

LESSER(MIN( ), ( )), if MIN( ) ( )
LESSER( ( ), ( )), otherwise

i s i i e i

e i s i

B M s B M e
M e M s

− − −

−

≠



				    (2)

where the function LESSER returns the 
smaller of the two arguments.

Figure 9 outlines the algorithms for 
calculating COUNT and MIN based on 
Equations (1) and (2) given a series of 
base intervals. The aggregate for the first 
base interval is computed in line 1 of each 
algorithm. Then, the aggregates for the 
rest of the base intervals are calculated 
incrementally in lines 2-15 and 2-17, respec-
tively. It outputs one aggregate value per 
constant interval, resulting from merging 
adjacent base intervals in lines 7-11  lines 
9-13, respectively.

Algorithm Aggregate_COUNT
Input: A series of base intervals Bi = [si, ei), i=1,2,…,n
Ouput: COUNT aggregate values for each constant interval C
begin
 1:    prev_count := the number of tuples with the start time ≤ s1 and the end time ≥ e1;
 2:    s := B1’s start time s1;
 3:    Ne := the number of tuples with the end time���  =� e1;
 4:    for i := 2 to n {
 5:        Ns := the number of tuples with the start time = si;
 6:        count := prev_count – Ne + Ns;
          /* if (count�����������������������������������������������������������������������             ����������������������������������������������������������������������           ==��������������������������������������������������������������������            �������������������������������������������������������������������          prev_count) then merge the base intervals to a constant interval */
          /* else output the result: */
 7:        if count != prev_count {
 8:            output <[s, ei–1), prev_count>;
 9:            s := Bi’s start time si;
10:       }
11:       e := Bi’s end time ei;
12:       Ne := the number of tuples with the end time = ei;
13:       prev_count := count;
14:   }
15:   output <[s, en), count>;
end;

a) Aggregate_COUNT

Figure 9. COUNT and MIN aggregation algorithms
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Performance Evaluation
We have conducted experiments to 

compare the performance with that of the 
SB-tree method. We describe the experi-
mental setup and present the results in this 
section.

Experiment Setup
We use two synthetic datasets (DS1, 

DS2) generated in a manner similar to the 
data used by Kline and Snodgrass (1995) 
and Moon et al. (2000). There are four 
temporal relations. Each tuple has four attri-
butes: name (4 bytes), salary (4 bytes), start 
time (4 bytes), and end time (4 bytes). The 
relation sizes are 1, 4, 16, and 64 Mbytes, 
each of which contains 65,536, 262,144, 
1,048,576, and 4,194,304 tuples.

The tuples in DS1 are uniformly dis-
tributed with respect to time. Their start 
time is selected randomly between 1 and 
the following time range (inclusive): 1 mil-
lion for the 1 Mbyte relation, 4 million for 
the 4 Mbyte relation, and so forth. (Note 
that we use an integer for the time stamp.) 
The end time is selected randomly between 
the start time + 1 and the start time + 30% 
of the time range. The tuples in DS2 are 
normally distributed, thus skewed, with 
respect to time. The mean and the standard 
deviation are 1/4 and 1/8 of the time range 
for the start time, and 3/4 and 1/8 of the 
time range for the end time.

After inserting tuples in a 1 Mbyte 
relation, for example, the size of the MD-
index is 3.2 Mbytes, and the size of SB-tree 

Algorithm Aggregate_MIN
Input: A series of base intervals Bi = [si, ei), i=1,2,…,n
Ouput: MIN aggregate values for Bi, i=1,2,…�,n
begin
 1:    prev_min := the minimum value of the tuples with the start time ��≤� s1 and the end time ��≥� e1;
 2:    s := B1’s start time s1;
 3:    Me := the minimum value of the tuples with the end time e1;
 4:    for i := 2 to n {
 5:        Ms := the minimum value of the tuples with the start time si;
 6:        if (prev_min != Me)
 7:            then min := lesser(prev_min, Ms);
 8:        else min := lesser(Me, Ms);
          /* if (min���������������������������������������������������������������������             ��������������������������������������������������������������������           ==������������������������������������������������������������������            �����������������������������������������������������������������          prev_min) then merge the base intervals to a constant interval */
          /* else output the result: */
 9:        if min != prev_min {
10:            output <[s, ei–1), prev_min>;
11:            s := Bi’s start time si;
12:       }
13:       e := Bi’s end time ei;
14:       Me := the minimum value of the tuples with the end time ei;
15:       prev_min := min;
16:   }
17:   output <[s, en), min>;
end;

b) Aggregate_MIN.

Figure 9. continued
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is 2.4 Mbytes for SUM, 2.3 Mbytes for 
COUNT, 2.4 Mbytes for AVG, 0.8 Mbytes 
for MIN, and 0.8 Mbytes for MAX. The 
size of the SB-tree varies significantly be-
tween cumulative and selective aggregate 
functions. Considering a 16 Mbyte relation 
as another example, the SUM SB-tree is 
approximately 11 Mbytes, while the MIN 
SB-tree is only 12 Kbytes. This is because 
MIN typically generates a smaller number 
of constant intervals (see Figure 3).

We measure the update performance 
by inserting new tuples amounting to 0.1% 
of the existing tuples into the datasets DS1 
and DS2. The ratio of 0.1% is sufficient for 
our purpose because, evidently, the perfor-
mance gap between the MD-index method 
and the SB-tree method would increase as 
more tuples are inserted. The maintenance 
cost of base intervals in the B+-tree is also 
included in the update cost. The tuples 
have been inserted in a batch but without 
any optimization taking advantage of the 
batch processing, so the result would not 
differ much from that of inserting tuples 
in increments.

The performance metrics are the 
elapsed time and the number of disk page 

accesses. The elapsed time is the total execu-
tion time measured in a single-user environ-
ment. We consider only the five standard 
aggregate functions (i.e., SUM, COUNT, 
AVG, MIN, MAX). In order to avoid noise, 
we execute each function more than three 
times and calculate an average.

The system is configured in Linux 
server with 1.0 Gbyte RAM and ATA-4 
IDE hard disk drive, and it uses direct 
I/O to eliminate the unpredictable effect 
of operating system buffering. The page 
size is 4 Kbytes for both disk pages and 
buffer pages.

Experiment Results
Experimental performance results of 

update operations and aggregation query 
operations are presented in this subsec-
tion.

Update Performance
Figures 10 and 11 compare the update 

performances of our MD-index method and 
the SB-tree method, using the dataset DS1 
and the dataset DS2, respectively. Each fig-
ure shows two cases for the SB-tree method: 
the five aggregate functions together and 

Figure 10. Update performance with respect to relation size using DS1
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each aggregate function separately. In the 
latter case, we show the results for only 
AVG and MIN because the results for 
SUM and COUNT are very close to that 
for AVG, and the result for MAX is very 
close to that for MIN.

As mentioned in the Introduction, the 
SB-tree method requires one SB-tree for 
each aggregate function, whereas our meth-
od uses one MD-index for all. Therefore, 
each update operation incurs updating five 
SB-trees in the SB-tree method, whereas 
it incurs updating one MBR-MLGF in the 
MD-index method. Figures 10 and 11 show 
that the MD-index method performs far 
better (by one to two orders of magnitude) 
than the SB-tree method when all the five 
aggregate functions are considered.

The two figures also show that the 
update performance of the SB-tree method 
is much better for MIN than AVG. While 
the AVG performance is much poorer than 
that of the MD-index method by an order 
of magnitude, the MIN performance is 
comparable. Moreover, the update costs of 
MIN SB-tree increases slower than those of 
the other three. The reason is the size of the 

MIN SB-tree, which is much smaller than 
the AVG SB-tree or the MD-index.

Aggregation Query Performance
Figures 12 and 13 compare the aggre-

gation query performance of our MD-index 
method and the SB-tree method using the 
dataset DS1 and dataset DS2, respectively. 
Here, each figure also shows two cases for 
the SB-tree method: the five aggregate func-
tions together and each aggregate function 
separately.

The two figures show that the aggrega-
tion query performance of the MD-index 
method is worse than that of the SB-tree 
method for a single aggregate function. This 
is as expected. We also see that the gap is 
larger for the MIN aggregate function due 
to the smaller size of the MIN SB-tree. 
Oftentimes, multiple aggregate functions 
appear in the same aggregation query�����  ����for 
periodic statistics reports, for example. This 
multiaggregation case brings a performance 
advantage to the MD-index method because 
it calculates all aggregates while accessing 
the index tree only once, regardless of the 
number of the aggregate functions. Indeed, 

Figure 11. Update performance with respect to relation size using DS2
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the two figures show that the performance 
of the MD-index method is comparable to 
(and, in some cases, better than) that of the 
SB-tree method when all the five aggregate 
functions are considered together.

Conclusion
We have presented a new temporal 

aggregation method called the MD-index 
method. It stores temporal tuples as 2-D 
points through a 2-D index; and it computes 
the aggregates by identifying the TJW of 
each base interval and joining the tuples 

in the window with the interval. The ag-
gregates for base intervals are calculated 
by incrementally modifying the aggregates 
from the previous base intervals without re-
reading all tuples in the TJW of the current 
base interval. Adjacent base intervals with 
the same aggregate value are subsequently 
merged into a constant interval. We have 
compared our method with the SB-tree 
method. The results show that our method 
is at least an order of magnitude faster 
than the SB-tree method for updates, while 
increasingly comparable for multiaggrega-

Figure 12. Temporal aggregation query performance with respect to relation size using 
DS1

Figure 13. Temporal aggregation query performance with respect to relation size using 
DS2
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tion queries as the number of aggregate 
functions in the query increases. These 
results indicate that the MD-index method is 
preferable in an environment with frequent 
updates or multiaggregation queries.
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Endnotes
1	  An atelic fact is characterized by be-

ing true at any point during a certain 
time interval, whereas a telic fact is 
characterized by being true as a result 
of completing a goal during an interval 
(Terenziani & Snodgrass, 2004).

2	  We represent the time as an integer 
for convenience without loss of gen-
erality.

3	  Nevertheless, any multidimensional 
point access method (Gaede & Gun-
ther, 1998) can be used for this pur-
pose.
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