
1. INTRODUCTION

A temporal database is essential to applications dealing with
time-varying data [11], such as trend analysis and prediction
in decision support systems, version management in comput-
er aided designs, medical record management, and data
warehousing. In this regard, a temporal database system is
used to store and query time-varying information.

There has been extensive research on temporal databases
[25]. The early research focused mainly on conceptual prob-
lems like data models and query languages. An example is
the temporal SQL(TSQL)[19], which extends the relational
data model and the query language SQL with temporal fea-
tures. Subsequently, the research shifted toward system
implementation problems like query processing in which
query operations have been extended to support temporal
data models and queries. Among various query operations,
temporal aggregation is particularly important due to the
high processing cost [13].

Temporal aggregation is an operation for finding the
aggregate value of an attribute over a certain period of time.
Specifically, it finds the time intervals in which the aggre-
gate value does not change, namely the constant intervals
[13], and performs the aggregation in each constant interval.
There are typically two kinds of aggregate functions: cumu-
lative (e.g. COUNT, SUM, AVG) and selective (e.g. MIN,
MAX). Aggregation is an expensive operation, and temporal
aggregation is particularly more so because it deals with
very large data accumulated over time and has to calculate
aggregate values separately for multiple time intervals.

There have been several temporal aggregation methods
proposed to date. The early ones include the aggregation tree
method [13] and its variants [24, 8, 12, 15]. Although these
methods do facilitate calculating temporal aggregates, they
require one aggregation tree for each aggregate function.
Moreover, they require the tree structures to reside in main
memory. The trees, however, are typically much larger than
the available main memory because a temporal database

vol 19 no 1 january 2004 3

Comput Syst Sci & Eng (2004) 5: 3–9
© 2004 CRL Publishing Ltd

Transformation-based temporal
aggregation using order-based
buffer replacement strategy

Joon-Ho Woo*, Byung Suk Lee†, Min-Jae Lee*, Jae-Gil Lee* and Kyu-Young Whang*

*Department of Computer Science and Advanced Information Technology Research Center (AITrc),
Korea Advanced Institute of Science and Technology (KAIST). Email: {jhwoo, mjlee, jglee, kywhang}@mozart.kaist.ac.kr
†Department of Computer Science, University of Vermont, VT, USA. Email: bslee@cs.uvm.edu

We present a new method for computing temporal aggregation based on dimension transformation. The novelty of our method lies in transforming
the start time and end time of one-dimensional temporal tuples to two-dimensional data points and storing the points in a two-dimensional index. It
then calculates temporal aggregates through a temporal join between the data in the index and the base intervals (defined as the intervals delimited
by the start time or end time of the tuples). To enhance the performance, this method calculates the aggregates by incrementally modifying the aggre-
gates from that of the previous base interval without re-reading all tuples for the current base interval. We further improve the efficiency with a new
buffer page replacement technique that predicts the page access order within the index. We demonstrate the efficacy of our method through experi-
ments.

Keywords: temporal databases, temporal aggregation, multi-dimensional indexes, buffer management

International Journal of

Computer Systems
Science & Engineering

retains all tuples from the past.
Yang and Widom [26] have proposed a method using the

SB-tree, which is disk resident. In this method, every time a
new tuple is inserted or an existing tuple is updated or delet-
ed, the temporal aggregates are updated immediately using
the SB-tree. Then, queries are executed quickly by simply
reading the pre-calculated aggregate values. However, the
overhead of immediate updates is nontrivial, particularly for
selective aggregate functions. For example, if the deleted
tuple is the minimum one, then the method requires re-read-
ing all tuples in the time interval of the deleted tuple in order
to calculate a new minimum. Moreover, the update should be
done for each aggregate function through its own SB-tree.
Thus, this method is suitable only in an environment with
infrequent insertions, deletions, or updates of tuples and rela-
tively more frequent queries.

Another problem is that the SB-tree is not usable for
queries predicated on ordinary (i.e. non-temporal) attributes.
An example query is, “find the average salary of all employ-
ees hired between JAN-01-2000 and DEC-31-2002 and cur-
rently working in the sales department.” Zhang et al. [27]
proposed a new method to solve this problem. The method,
however, is restricted to only the transaction time dimension
and only the COUNT, SUM and AVG aggregate functions.

In this paper, we propose a new method based on two-
dimensional transformation. In this method, the start time
and end time of a temporal tuple are transformed to a data
point in a two-dimensional space, and the data point is stored
and retrieved through a multi-dimensional index. It calcu-
lates the aggregates through a temporal join between the data
in the index and the base interval constituting the constant
interval. This calculation is done by incrementally modifying
the aggregate from the previous base interval without re-
reading all tuples for the current base interval.

Compared with the aggregation tree methods, our method
requires only one index tree for all aggregate functions and
does not require the tree structure to be resident in main
memory. Compared with the SB-tree method, our method
does not incur any extra overhead when updating tuples and,
therefore, is significantly more efficient for update opera-
tions. Besides, it uses only one index structure for all possi-
ble aggregate functions and leverages multi-dimensional
indexes common in spatial or spatio-temporal databases.
Furthermore, it can process the temporal aggregations with a
predicate on ordinary attributes by just adding dimensions
for those attributes in the multi-dimensional index. Unlike
the method proposed by Zhang et al. [27], our method can
process any other time dimension as well as transaction time
dimension.

Since the index structure is disk-resident in our method,
the buffer management is crucial for efficient aggregation
computation. The conventional strategy like the Least-
Recently-Used (LRU) may be appropriate if the order of
page accesses is unpredictable [3], but the performance will
be better if the order can be predicted. This paper describes
how to predict the order and proposes a new order-based
buffer page replacement technique. Experimental results
show that our technique reduces the elapsed time and the
number of disk page accesses as much as 3.8 times over the
LRU technique.

Following this introduction, Section 2 provides some
background information. Section 3 describes related work.

Section 4 describes the proposed temporal aggregation
method. Section 5 describes the order-based buffer manage-
ment technique, and Section 6 compares the performance
with the case where the LRU buffer replacement technique is
used. Finally, Section 7 concludes the paper.

2. BACKGROUND

In this section we briefly review some relevant concepts of
temporal aggregation in Section 2.1, and introduce the multi-
dimensional index used in our work in Section 2.2.

2.1 Temporal aggregations

Each tuple in a temporal relation has an associated time
interval [13]. This time interval can be determined based on
an instant on the time axis (called the instant grouping) or
based on a fixed span like the year, month, week, or day
(called the span grouping) [15]. There are constant intervals
defined in both cases. Because the span grouping can be
regarded a special case of the instant grouping, we focus on
the instant grouping in this paper.

Figure 1a shows an example temporal relation
E_SALARY, which stores the salary history of employees.
The attribute Time Interval defines [Start time, End time) of
tuples as shown Figure 1b.1 Figure 2 shows the COUNT and
MIN of Salary changing over time. Note that each aggregate
function generates different constant intervals. For example,
for COUNT, the constant intervals are [5, 8), [8, 12), [12,
14), [14, 18), [18, 21), [21, 23), [23, 25); for MIN, they are
[5, 12), [12, 14), [14, 21), [21, 25).

2.2 Multi-dimensional index

Garcia-Molina et al. [6] categorized multi-dimensional index
structures into “hash-like” [16, 2] and “tree-like” [1, 5, 9]. In
our work we use the multilevel grid file (MLGF) [22],2
which is both hash-like and tree-like. It is a multilevel exten-
sion of the grid file and is similar to the K-D-B-tree [18] – a
disk version of the K-D-tree – but, uses hashing. Specifical-
ly, it is a dynamic hash file supporting multi-key accesses to
data through a multilevel directory tree structure. We partic-
ularly use the minimum bounding rectangle (MBR)-MLGF

4 computer systems science & engineering

J H WOO ET AL

Figure 1 An example of temporal relation. (a) Table E_SALARY, (b) time
intervals of tuples in E-SALARY

1 We represent the time as an integer for convenience without loss of generality.
2 In principle, any multi-dimensional point access method [7] can be used
for the same purpose.

[20]. The MBR-MLGF is an extension of the MLGF targeted
toward efficient spatial or spatio-temporal data accesses. In
this section, we describe the structure of the MLGF and its
extension to the MBR-MLGF.

An MLGF is made of a multi-level directory structure and
data pages. Each directory level reflects partitioned space,
and each directory entry consists of a region vector and a
pointer to either a data page or the lower-level directory
page. A region vector consists of hashing keys, one key per
dimension. The ith hashing key value of a region vector is
the prefix common to the ith hashing key values of all

records in the region. The region of a directory entry encom-
passes the regions of all directory entries under it.

MLGF adapts to dynamic changes of data by splitting or
merging pages as data are inserted or deleted, respectively.
When a data record is inserted into the data space, the
record’s keys are hashed to find the region the record
belongs to, and the record is inserted into the data page allo-
cated to the region. If an overflow occurs as a result, the
region is split into halves, a new page is allocated, and part
of the data are moved into the new page. MLGF uses local
splitting strategy [22], by which it splits only the necessary
regions instead of the hyperplane of the entire file. This
strategy allows for keeping only the minimum required
directory entries. As a result, the size of an MLGF directory
is determined by only the number of inserted data records
and is independent of the distributions or the correlation
among the attributes of the data [14]. In this regard, MLGF
is suitable for handling temporal data because there exists
high correlation between the start time and the end time of a
temporal tuple as evidenced by the constraint (start time <
end time).

Figure 3 illustrates a two-level MLGF with two keys k1
and k2. Figure 3a shows the directory structure, where the
two levels are denoted by D1 and D2. Figure 3b and Figure
3c show the regions represented by D1 and D2, respectively.
Here, each region corresponds to a disk page. There are
eleven entries in D1 – one for each of the eleven regions A

5

TRANSFORMATION BASED TEMPORAL AGGREGATION

vol 19 no 1 january 2004

Figure 2 Temporal aggregates COUNT and MIN on E_SALARY.Salary at
their constant intervals.

Figure 3 An example MLGF

through K, and 4 entries in D2 – one for each of the D1
regions a through d. For example, the region vector < 01, 1>
of the directory entry in D2 represents the region c, in which
the two key values are prefixed with 01 and 1, respectively.
This region is in turn split into the regions F, G, and H by
D1, each identified with the directory entry with the region
vector <010,10>, <011,10>, or <01,11>. In the MBR-MLGF
[20], each directory entry maintains information about the
minimum bounding regions of objects (without additional
storage overhead). For example, Figure 4 shows the region
R1 in a rectangle and the objects in it as points. The vertical
line at min-ts and horizontal line at max-te reduces R1 to its
MBR.

3. RELATED WORK

Tuma [21] proposed a two-step algorithm for computing
temporal aggregates, where each step requires a full database
scan. The first step finds the intervals of the aggregate result
tuples using a linked-list, and the second step updates the
values of all result tuples affected by each tuple. This
method takes O(mn) time, where m is the number of result
tuples and n is the number of tuples.

Kline and Snodgras [13] proposed the aggregation tree
based on the binary segment-tree [17]. The segment-tree fea-
ture allows efficient processing of tuples with long intervals.
Each node of the tree contains the tuple’s lifespan and the
value used for aggregation. Children nodes’ time intervals
are mutually exclusive and exhaustive partitions of the par-
ent’s time interval, and a leaf node’s time interval makes one
constant interval. The aggregation result of one constant
interval is obtained by reading all node from the root node to
the leaf node, and the entire result is obtained by depth-first-
search of the tree.

One drawback of the aggregation tree is that it is a main-
memory data structure, which limits its effectiveness as a
data structure for maintaining temporal aggregates. Another
drawback is that it is unbalanced. In the worst case, it takes
O(n2) to compute a temporal aggregate from a table with n
tuples. There have been balanced aggregation trees [12, 15]
proposed so that the worst-case run time is O(n log m).
These trees are, however, still main-memory data structures.
In addition, there have been parallel versions of the aggrega-
tion-trees [24, 8], but they all inherit the same limitations of
the sequential versions.

Yang and Widom [26] proposed the SB-tree, which is
similar to the aggregation tree in terms of storing a time
interval and a value in each node. However, being based on

the B-tree [4], the SB-tree is different in that it stores multi-
ple time intervals in each node, is balanced, and is disk-resident.
As mentioned in Introduction, the SB-tree incurs non-trivial
update cost of a tuple. Moreover, the SB-tree is not usable for
temporal aggregation predicated on ordinary attributes.

Zhang et al. [27] proposed the Multi-Version SB-tree
(MVSB-tree) for temporal aggregations with predicates on
ordinary attributes. The MVSB-tree is a forest of SB-trees,
and the root node of each SB-tree is stored in a structure like
the B-tree. The MVSB-tree stores data with non-decreasing
time trend, and the aggregation result is obtained using a pre-
fix-sum technique. So, it cannot be applied to data with a
valid time dimension and can process only the COUNT,
SUM, and AVG aggregate functions.

4. THE PROPOSED TEMPORAL
AGGREGATION METHOD

As mentioned in Introduction, we represent temporal tuples
as points in a two-dimensional (2-D) space defined by the
start time and end time of the tuples. Based on this concept,
we provide the notion of a temporal join window in Section
4.1 and present the aggregation algorithms in Section 4.2.

4.1 Temporal join windows

We first define the base interval as follows.

Definition 1 Base intervals
Given temporal tuples, their base intervals are the time
intervals delimited by the start times or end times of all
tuples.

For a given aggregate function, if we merge all adjacent
base intervals with the same aggregate values, then the

6 computer systems science & engineering

J H WOO ET AL

Figure 5 Tuples and base intervalsFigure 4 Minimum bounding region in an MBR-MLGF

merged intervals make one constant interval [13] for the
aggregate function. Base intervals are maintained by storing
the start time and end time of each tuple in a separate B+-
tree.

As the time interval of a tuple can be mapped to a 2-D
point, so can the base interval be. Tuples thus mapped to 2-D
points can be stored and retrieved through a 2-D index. Fig-
ure 5a shows the time intervals of four tuples and six base
intervals of COUNT, and Figure 5b shows the 2-D points
mapped from these intervals.

Given the 2-D representation of time intervals, the tempo-
ral join window is defined as follows, in a way similar to the
spatial join window proposed by Song et al. [20].

Definition 2 Temporal join window
In a 2-D space representing all possible temporal tuples, we
define the temporal join window (TJW) of an interval Ii

(TJW(Ii)) as the 2-D region containing all tuples whose time
intervals overlap Ii. That is, given Ii ≡ [si, ei),

TJW(Ii) = {< ts, te > | ts < ei and te > si}

If the interval is a base interval, then by definition there can-
not be the start time or end time of any tuple within the inter-
val, and hence, Definition 2 is refined as follows.

Definition 3 Temporal join window of a base interval
In a 2-D space representing all possible temporal tuples, we
define the temporal join window (TJW) of a base interval Bi

(TJW(Bi) as the 2-D region containing all tuples whose time
intervals overlap Bi. That is, given Bi≡ [si, ei),

TJW(Bi) = {< ts, te > | ts ≤ si and te ≥ ei}

Figure 6 shows the temporal join window (TJW) for a base
interval Bi. In Figure 5b, for example, TJW(B4) contains the
tuples t2 and t3, and the tuple t2 belongs to TJW(B2),
TJW(B3), TJW(B4), and TJW(B5).

Note that the tuples’ 2-D points are located on the grid
points formed by intersecting the boundaries of the TJWs of
base intervals. Formally,

Property 1 TJW grid
Consider all base intervals Bi≡ [si, ei), i = 1,2 ... of the given
temporal tuples. Then, for each tuple [ts, te), there exist Bj
such that ts = sj and Bk such that te = ek.

Proof
Straightforward from the definition of the base interval.

4.2 Temporal aggregation algorithms

Temporal aggregate for each base interval Bi is obtained by
aggregating tuples overlapping Bi, that is, tuples in TJW(Bi).
As we can see from Figure 7, aggregating tuples in the order
of Bi–1, Bi, Bi+1 allows reusing tuples from the previous TJW.
We now present the algorithms for calculating aggregates in
the order of base intervals. (It may well be done in the
reverse order.)

The algorithm differs between cumulative aggregation
and selective aggregation. Let us first consider the cumula-
tive one using COUNT as an example. (SUM is obtained in
the same way as COUNT, and AVG is obtained as SUM
divided by COUNT.) In Figure 7, the COUNT of tuples in
TJW(Bi) is obtained from the COUNT of tuples in TJW(Bi–1)
by adding the COUNT of tuples in the region C+E and sub-
tracting the COUNT of tuples in A.

Because the tuples’ points are located only at the grid
points formed by the TJWs (see Property 1), all tuples in A
have the end time ei–1 (while all tuples in B+C have the end
time ei) and all tuples in the region C+E have the start time
si (while all tuples in F have the start time si+1). Let Ns(s) be

i
the number of tuples with the start time si and Ne(e) be the

i

number of tuples with the end time ei–1. Then, COUNT(Bi),
the value of COUNT in the base interval Bi, is obtained as

COUNT(Bi) = COUNT(Bi–1) – Ne(ei–1) + Ns(si) (1)

Now, let us consider the selective aggregation with MIN
as an example. (MAX is symmetric to MIN and, therefore, is
obtained in the same way as MIN.) When calculating MIN in
Bi after Bi–1, there are two cases depending on the MIN of
the tuples in A. In case the MIN in Bi–1 is different from the
MIN in A, the tuple with the minimum value must be in
B+D and, therefore, the MIN in Bi is the smaller between the
MIN in B+D (= MIN in Bi–1) and the MIN in C+E. In case
the MIN in Bi–1 and the MIN in A are the same, the tuple
with the minimum value must be in A and, therefore, the
MIN in Bi is the smaller between the MIN in A and the MIN
in C+E.

Let Ms(si) be the minimum value of the tuples with the
start time si and Me(ei–1) be the minimum value of the tuples
with the end time ei–1. Then, MIN(Bi), the value of MIN in
the base interval Bi, is obtained as

7

TRANSFORMATION BASED TEMPORAL AGGREGATION

vol 19 no 1 january 2004

Figure 6 Temporal join window TJW(Bi) for a base interval Bi Figure 7 Temporal join windows of three consecutive base intervals.

end
time

te

ei+1

ei

ei-1

si-1 si si+1

base interval Bi-1

base interval Bi

TJW(Bi-1) = A + B + D

TJW(Bi) = B+C+D+E

TJW(Bi+1) = D + E + F

start time ts

B C

 A

 D

E

 F

base interval Bi+1

MIN(Bi) =

LESSER(MIN(Bi–1), Ms(si)) if MIN(Bi–1) ≠ M e(ei–1)
LESSER(Me(ei–1), Ms(si)) otherwise

where the function LESSER returns the smaller between the
two arguments.

5. ORDER-BASED BUFFER-PAGE
REPLACEMENT

Since the multi-dimensional index is disk-resident, buffer
management is important to reduce the number of pages
fetched from the disk, and its performance is influenced sig-
nificantly by the page replacement strategy [23]. The con-
ventional strategy like the Least-Recently-Used (LRU), is
appropriate if the order of page accesses is unpredictable [3].
A salient feature of our method, however, is that it can pre-
dict the order of page access. As mentioned in Section 4.2,
temporal aggregation is performed in the order of the base
intervals for efficiency’s sake. Our page replacement strate-
gy takes advantage of this order.

Let us explain our order-based page replacement strategy
using Figure 8. To calculate an aggregate for the base inter-
val Bi, we need to read the pages containing tuples with the
start time si (e.g. s2, s3, s4) and the pages containing tuples
with the end time ei–1 (e.g. R2, R3, R4, R5, R6). (See the algo-
rithms for COUNT and MIN in Section 4.2.) Therefore, the
disk access performance can be improved by retaining these
pages in the buffer.

If the buffer overflows while aggregating for Bi, a victim
page must be chosen to be replaced. Among the pages read
for the aggregates up to Bi–1, the pages below TJW(Bi–1) (e.g.
R1) are never needed again as the aggregation progresses in
the order of the base intervals Bi, Bi+1, etc. Therefore, they

are the first candidates of the victim. Note that the pages
whose maximum end time is ei–1 (e.g. R2) are needed for the
aggregate for Bi but, once used, would become the first can-
didates of the victim for the aggregate for Bi+1. The pages at
the top of TJW(Bi) (e.g. T, S1) are needed only when the last
base interval is processed and, therefore, are the second can-
didates.

Figure 9 shows Algorithm Pick_Victim, which implements
the page replacement strategy presented here. To pick the
victim page to be replaced, it first looks for a page at a loca-
tion below TJW(Bi) (Line 4). If no such page exists, it
searches TJW(Bi) for a page at the top, whose smallest end
time of the tuples is the largest among all pages (Lines
7–11).

6. PERFORMANCE EVALUATION

We have conducted experiments to evaluate our buffer page
replacement algorithm (see Figure 9). In this section we
describe the experimental setup in Section 6.1 and present
the results in Section 6.2.

6.1 Experimental setup

Experimental data
We use two synthetic data sets (DS1, DS2) generated in a
way similar to the data used by Kline and Snodgrass [13]
and Moon, Lopez, and Immanuel [15]. There are four tem-
poral relations. Each tuple has four attributes: name (4
bytes), salary (4 bytes), start_time (4 bytes), and end_time
(4 bytes). The relation sizes are 1, 4, 16, and 64 Mbytes,
each of which contains 65536, 262144, 1048576, and
4194304 tuples.

The tuples in DS1 are uniformly-distributed with respect
to time. Their start time is selected randomly between 1 and
the following time range (inclusive): 1 million for the 1
Mbyte relation, 4 million for the 4 Mbyte relation, etc. (Note
that we use an integer for the time stamp.) The end time is
selected randomly between the start time + 1 and the start
time + 30% of the time range. The tuples in DS2 are normal-
ly-distributed, thus skewed, with respect to time. The mean
and the standard deviation are 1/4 and 1/8 of the time range
for the start time, and 1/8 and 1/8 of the time range for the
span (= end time – start time).

Performance metric
We use the elapsed time and the number of disk page access-
es as the cost metrics, and measure the performance as the
sum of the costs of five aggregate functions COUNT, SUM,
AVG, MIN, and MAX. To avoid noise, we execute each
function more than three times and calculate an average.

System configuration
The system is configured in Linux Server with 512 Mbyte
RAM and ATA-3 IDE hard disk drive, and uses direct I/O to
eliminate the unpredictable effect of operating system
buffering. The page size is 4 Kbytes for both disk pages and
buffer pages. We implement the algorithms using C/C++ lan-
guage.

8 computer systems science & engineering

J H WOO ET AL

Figure 8 Buffer page management for aggregate for Bi

 pages accessed for an aggregate for Bi-1: R1, R2, R3, R4, S1, S2, S3

pages accessed for an aggregate for Bi: : R2, R3, R4, R5, R6, S2, S3, S4

Bi-1

ei+1

ei

ei-1

ei-2

si-1 si si+1

Bi

TJW(Bi-1)

TJW(Bi)

start time ts

end time

te

TJW(Bi+1) Bi+1

R
R2

R3

R4

R5

R6 R7

S5

S1

S2

S3

S4

R1

T

⎧
⎨
⎩

6.2 Experimental result

We compare our Pick_Victim algorithm (shown in Figure 9)
with the LRU algorithm by executing the aggregate queries
while varying the buffer size. Figures 10 and 11 respectively
show the performance obtained using the data sets DS1 and
DS2 of size 1 Mbytes. The results show that our algorithm is
up to 3.8 times more efficient than the LRU, especially for
smaller buffer sizes. We have tested with other relation sizes
as well, and the results show very similar trend.

7. CONCLUSIONS

We have presented a new temporal aggregation method. It
transforms temporal tuples to two-dimensional points and
stores them through a two-dimensional index. Then, it
calculates the aggregates by identifying the temporal join
window (TJW) of each base interval and joining the tuples in
the window with the interval. The aggregates for base inter-
vals are calculated by incrementally modifying the aggre-
gates from the previous base intervals without re-reading all
tuples in the TJW of the current base interval. Adjacent base
intervals with the same aggregate value are subsequently
merged into a constant interval. We have improved the
aggregation efficiency further by taking advantage of the
order of base intervals in the buffer page replacement.
Experiments show that our buffer page replacement algo-
rithm is superior to the conventional LRU algorithm, espe-
cially for small buffers.

ACKNOWLEDGEMENT

This work was supported by the Korea Science and Engi-
neering Foundation (KOSEF) through the Advanced Infor-
mation Technology Research Center (AITrc).

9

TRANSFORMATION BASED TEMPORAL AGGREGATION

vol 19 no 1 january 2004

 Algorithm Pick_Victim
Input:

• PageTable: a page mapping table (in which each page entry contains the minimum end time (min_te)
and the maximum start time (max_ts) among all tuples in the page)

• Bi: constant interval [si, ei)
Output:

• victim: the victim page
begin
 1: m_te := 0; /* track the smallest end time of tuples */
 2: ei-1 = si; /* the end time of the previous base interval Bi-1 */
 3: for each page entry p in PageTable {
 4 if (p.max_te < ei-1) /* the page is below TJW(Bi-1). */
 5: return p;
 6: else
 7: if (p.min_te > ei and p.max_ts < si) /* the page is in TJW(Bi) */
 8: if (p.min_te > m_te) { /* the pageís min_te is the largest so far */
 9: victim := p;
10: m_te := p.min_te;
11: }
 12: }
13: return victim;

 end

Figure 9 Victim page selection algorithm

Figure 10 Performance comparison of the buffer replacement algorithms
using DS1 of size 21 Mbytes

Figure 11 Performance comparison of the buffer replacement algorithms
using DS2 of size 1 Mbytes

REFERENCES

1 J. L. Bentley Multi-dimensional Binary Search Trees Used for
Associative Searching, Communications of the ACM, Vol. 18,
No. 9, pp. 509–517, 1975.

2 W.A. Burkhard Hashing and Trie Algorithm for Partial Match
Retrieval, ACM Trans. on Database Systems, Vol. 1, No. 2, pp.
175–187, 1976.

3 E. G. Coffman Jr. and P. J. Denning Operating Systems The-
ory, Prentice-Hall, 1973.

4 D. Comer The Ubiquitous B-Tree, ACM Computing Surveys,
Vol. 11, No. 2, pp. 121–137, 1979.

5 R. A. Finkel and J. L. Bentley Quad Trees, a Data Structure
for Retrieval on Composite Keys, ACM Trans. on Database
Systems, Vol. 1, No. 2, pp. 175–187.

6 H. Garcia-Molina, J. D. Ullman, and J. Widom Database
Systems: The Complete Book, Prentice Hall, 2002.

7 Volker Gaede and Oliver Gunther Multidimensional Access
Methods, ACM Computing Surveys, Vol. 30, No. 2, pp.
170–231, 1998.

8 J. A. G. Gendrano, B. C. Huang, J. M. Rodrigue, B. Moon,
and R. T. Snodgrass Parallel Algorithms for Computing Tem-
poral Aggregates, In Proc. IEEE Int’l Conf. on Data Engineer-
ing, Sydney, Austalia, pp. 418–427, 1999.

9 A. Guttman R-trees: a Dynamic Index Structure for Spatial
Searching. In Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, Boston, USA, pp. 47–57, 1984.

10 C. S. Jensen, C. E. Dyreson, M. H. Bohlen et al. The Consen-
sus Glossary of Temporal Database Concepts – February 1998
Version, Temporal Databases: Research and Practice, Lecture
Notes in Computer Science, Vol. 1399, Springer-Verlag, ISBN
3-540-64519-5, pp. 367–405, 1998.

11 C. S. Jensen and R. T. Snodgrass Temporal Data Manage-
ment, IEEE Transacions on Knowledge and Data Engineering,
Vol. 11, No. 1, pp. 36–44, 1999.

12 J. Kim, S. Kang, and M. Kim Effective Temporal Aggrega-
tion Using Point-Based Trees, In Proc. Int’l Conf. on Database
and Expert Systems, Florence, Italy, pp. 1018–1030, 1999.

13 N. Kline and R. T. Snodgrass Computing Temporal Aggre-
gates, In Proc. IEEE Int’l Conf. on Data Engineering, Taipei,
Taiwan, pp. 222–231, 1995.

14 S. Kim and K. Whang Asymptotic Directory Growth of the
Multilevel Grid File, In Proc. Int’l Syp. on Next Generation

Database Systems and Their Applications, Fukuoka, Japan, pp.
257–264, 1993.

15 B. Moon, I. F. V. Lopez and V. Immanuel Scalable Algo-
rithms for Large Temporal Aggregation, In Proc. IEEE Int’l
Conf. on Data Engineering, San Diego, USA, pp. 145–154,
2000.

16 J. Nievergelt, H. Hinterberger and K. Sevcik The Grid File:
An Adaptable, Symmetric, Multikey File Structure, ACM
Trans. on Database Systems, Vol. 9, No. 1, pp. 38–71, 1984.

17 F. P. Preparata and M. I. Shamos Computational Geometry:
An Introduction, Springer-Verlag, Berlin/Heidelberg, Germany,
1985.

18 J. T. Robinson The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes, In Proc. Int’l Conf. on
Management of Data, ACM SIGMOD, New York, USA, pp.
10–18, 1981.

19 R. T. Snodgrass et al. The TSQL2 Temporal Query Language,
Kluwer, 1995.

20 J. Song, K. Whang, Y. Lee, M. Lee and S. Kim Spatial Join
Processing Using Corner Transformation, IEEE Trans. on
Knowledge and Data Engineering, Vol. 11, No. 4, pp. 688–698,
1999.

21 P. A. Tuma Implementing Historical Aggregates in TempIS,
Master’s Thesis, Wayne State Univ., 1992.

22 K. Whang and R. Krishnamurthy Multilevel Grid Files, IBM
Research Report RC11516, 1985.

23 K. Whang and R. Krishnamurthy Query Optimization in a
Memory-Resident Domain Relational Calculus Database Sys-
tem, ACM Trans. on Database Systems, Vol. 15, No. 1, pp.
67–95, 1990.

24 X. Ye and J. A. Keane Processing temporal aggregates in par-
allel, In Proc. IEEE Int’l Conf. on Systems, Man, and Cybernet-
ics, Orlando, USA, pp. 1373–1378, 1997.

25 Y. Wu, S. Jajodia and X. S. Wang Temporal Database Bibli-
ography Update, In Proc. Int’l Conf. on Temporal Databases,
Dagstuhl, Germany, 1997.

26 J. Yang and J. Widom Incremental Computation and Mainte-
nance of Temporal Aggregates, in Proc. IEEE Int’l Conf. on
Data Engineering, Heidelberg, Germany, pp. 51–60, 2001.

27 D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos and B.
Seeger Efficient Computation of Temporal Aggregate with
Range Predicates, ACM Symp. on Principles of Database Sys-
tems, Santa Barbara, USA, 2001.

10 computer systems science & engineering

J H WOO ET AL

