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Abstract
The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in

both univariate and multivariate time series data. This paper introduces TransNAS-TSAD, a framework that synergizes the

transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This

approach effectively tackles the complexities of time series data, balancing computational efficiency with detection

accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models due to its

tailored architectural adaptability and the efficient exploration of complex search spaces, leading to marked improvements

in diverse data scenarios. We also introduce the Efficiency-accuracy-complexity score (EACS) as a composite metric that

balances accuracy, computational efficiency, and model complexity, providing a comprehensive assessment of model

performance. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient

solution for complex real-world applications. This research highlights TransNAS-TSAD’s potential across a wide range of

industry applications and paves the way for future developments in the field.
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1 Introduction

The ubiquity of time series data across various sectors,

ranging from finance [1] and healthcare [2] to infrastruc-

ture [3] and manufacturing [4], underscores its pivotal role

in modern analytics. These type of data are instrumental in

identifying the patterns, dependencies, and anomalies

indicative of significant shifts in system behaviors or the

emergence of critical issues [5, 6].

Traditionally, statistical methods have been the corner-

stone for anomaly detection in time series data, and are

renowned for their robust mathematical frameworks [7–9].

However, the advent of Big Data, characterized by its

significant volume, velocity, and variety, has revealed the

limitations of these traditional methods, including high

false positive rates and missed detections [10, 11].

In response, deep learning has introduced a paradigm

shift, offering enhanced adaptability and accuracy in

anomaly detection tasks [12–14]. This benefits usually

come at a high cost on the computational efficiency due to

the high complexity of the model. Notably, however, the

transformer architecture, with its self-attention mechanism,

has emerged as a groundbreaking development in

enhancing not only the accuracy but also the computational

efficiency. This enabled it to make significant strides not

only in natural language processing but also in time series

analysis [15–17].

Despite the advantages offered by transformer models,

their application to time series anomaly detection neces-

sitates a more dynamic and adaptable framework for fine-

tuning their structures and parameters for optimal perfor-

mance (balancing accuracy and computational effi-

ciency) [18]. Our model, TransNAS-TSAD, combines the
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architectural strengths of transformers (e.g., TranAD) with

the optimization strategy of a neural architecture search

(NAS) to systematically explore a huge number of archi-

tectural configurations. The latter leverages the multi-ob-

jective optimization capabilities of the NSGA-II

algorithm [19, 20], enabling an efficient exploration of

complex search spaces [21, 22]. This represents a sub-

stantial evolution of the TranAD’s static architecture,

facilitating a balance between accuracy and computational

efficiency.

Adapting anomaly detection models to time series data

is inherently complex, especially when addressing multi-

variate series that present high-dimensional challenges and

necessitate sophisticated model architectures [23, 24]. The

selective attention capabilities of the transformer model

offer a compelling solution, provided the architectures are

meticulously tailored to the specific research questions and

dataset characteristics [25].

The convergence of NAS with multi-objective opti-

mization algorithms like NSGA-II marks a strategic evo-

lution in automated model design. This approach provides

a methodical pathway to discovering optimal architectures

that consider multiple, often conflicting, objectives, thereby

enhancing the adaptability and effectiveness of anomaly

detection models [26, 27].

Our research is grounded on three fundamental princi-

ples designed to tackle the inherent challenges of time

series anomaly detection. First, we emphasize the necessity

of developing specialized models tailored to the unique

temporal resolution and dimensional characteristics of time

series data, ensuring they are finely attuned to the intrica-

cies of temporal patterns. Second, we aim to maximize the

utility of transformer architectures, exploiting their

advanced capabilities for deep and nuanced interpretation

of temporal data, which is critical for identifying subtle

anomalies. Lastly, strategic optimization through neural

architecture search (NAS), particularly leveraging the

NSGA-II algorithm, forms the cornerstone of our

methodology. This approach allows us to systematically

refine and perfect our models, ensuring they are not only

highly effective but also optimized for the specific

demands of the datasets they analyze. Together, these

principles guide our pursuit of creating models that are

both innovative and highly adapted to the complex domain

of time series anomaly detection. Our contributions are

delineated as follows:

• We introduce a novel approach that applies NAS with

NSGA-II optimization to specifically fine-tune trans-

former architectures for time series anomaly detection,

showcasing NAS’s adaptability in specialized domains.

• Our experimentation identifies key architectural con-

figurations that elevate detection performance,

highlighting the importance of architectural fine-tuning

in enhancing model efficacy.

• We demonstrate substantial performance improvements

across diverse datasets, proving our optimized models’

superiority over existing methods and illustrating the

benefits of multi-objective optimization for anomaly

detection.

• We strike an optimal balance between analytical

accuracy and computational efficiency, the two perfor-

mance factors important in our work, presenting models

that excel in real-time anomaly detection and are

feasible for practical deployment, emphasizing effi-

ciency in model design.

• The synergy between transformers’ structural strengths

and NAS’s adaptive optimization creates uniquely

effective models for time series anomaly detection,

marking a significant advancement by integrating

architectural innovation with strategic optimization.

2 Related work

The quest to detect and understand anomalies within time

series data spans various domains including, but not limited

to, finance [1], healthcare [2], infrastructure [3], and

manufacturing [4]. This widespread interest underscores

the fundamental role of anomaly detection in predictive

maintenance, fraud detection, and system health monitor-

ing, among other critical applications [5, 6]. In finance, for

example, anomaly detection can signal fraudulent trans-

actions or market manipulations, while in healthcare, it

may indicate abnormal patient conditions that require

immediate attention [1].

Initially, the field of time series anomaly detection

heavily relied on statistical methods, grounded in robust

mathematical frameworks, that have provided deep insights

into data patterns and anomalies [8, 9]. These methods,

while effective for simpler datasets, often assume specific

data distributions or employ distance-based metrics to

identify outliers. However, their application to the high-

dimensional, complex nature of multivariate time series

data reveals significant limitations. The primary challenge

lies not merely in capturing the correlations within the data,

but in effectively managing the intricacies associated with

multi-correlated variables. These complexities can lead to

an increased rate of false positives and missed detections,

as traditional methods struggle to adequately interpret the

nuanced interactions and dependencies that characterize

modern datasets [28, 29].

The emergence of deep learning models, and their

ability to learn high-level representations from massive

amounts of data, have shown remarkable success in
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detecting anomalies in time series data [13]. These models

excel in identifying deviations from frequently occurring

patterns, significantly reducing false positives and

improving detection accuracy [30–32]. A deeper explo-

ration of machine learning models, including specific

architectures and their successes across various applica-

tions, would provide valuable insights [26].

Among the deep learning architectures that have gained

prominence, the transformer architecture introduced by

Vaswani et al. [15] has revolutionized how models process

sequential data. Unlike its predecessors, such as recurrent

neural networks (RNNs) and long short-term memory

(LSTMs), the transformer leverages a self-attention

mechanism, enabling it to capture long-range dependencies

and temporal patterns in data without being hindered by the

sequential processing bottleneck [33–37]. Its application in

time series anomaly detection is particularly promising,

offering a new perspective on modeling temporal anoma-

lies. However, this area remains relatively unexplored, with

significant potential for optimization and adaptation to the

unique characteristics of time series data across different

domains [7].

The neural architecture search (NAS) has emerged as a

transformative approach in automating the design of neural

network architectures [22, 38, 39]. By systematically

exploring a vast space of architectural configurations, NAS

aims to identify models that achieve optimal performance

for a given task. This automation is crucial in deep learn-

ing, where the design and tuning of models are both

resource-intensive and require specialized knowledge

[26, 40, 41]. Recent advancements in NAS have focused on

improving its efficiency, reducing the computational

resources required for the search process, and making state-

of-the-art model architectures accessible for a broader

range of applications [38, 42].

Incorporating multi-objective optimization into NAS,

using algorithms like NSGA-II, represents a significant

leap forward [20, 41]. For time series anomaly detection,

where models must process large volumes of data accu-

rately and with computational efficiency, the ability to find

a nuanced balance between these competing objectives is

crucial [38, 43, 44]. Despite the clear advantages, the

application of multi-objective optimization in NAS for

anomaly detection in time series is ripe for exploration and

offers vast potential for groundbreaking research [26].

Our work seeks to harness the strengths of neural

architecture search (NAS) and transformer models to

directly address the unique challenges associated with

temporal data, crafting models that are finely tuned for

anomaly detection in time series. This integration aims to

develop architectures that excel in both performance and

efficiency, leveraging the latest advancements in the field

[45]. Given the nascent stage of combining NAS with

transformer models for this purpose, our research not only

contributes to the existing body of knowledge but also

opens avenues for future exploration and innovation in

anomaly detection methodologies [46]. By situating our

study within the context of ongoing research efforts and

emerging trends, we aim to advance the state of the art in

anomaly detection within time series data and contribute

meaningfully to the broader discourse in this rapidly

evolving field.

3 Methodology

In this section, we delineate the comprehensive method-

ology employed in our study, designed to effectively detect

and analyze anomalies in multivariate time series data

using the TransNAS-TSAD framework. We commence

with a clear definition of the problem, setting the stage for

the subsequent methodological steps. This is followed by

an in-depth discussion on data refinement techniques,

ensuring that the data are appropriately pre-processed for

our analysis. Next, we present the intricacies of our

transformer architecture, highlighting its design and capa-

bilities. A critical component of our approach is the neural

architecture search (NAS), which employs the NSGA-II

algorithm for optimizing the transformer model. That

description is supplemented by an overview of the evolu-

tionary process that iteratively refines our model architec-

ture. We then transition to discussing advanced anomaly

detection techniques, integrating adversarial elements into

our model. The section culminates with a description of

how we harness the full potential of TransNAS-TSAD for

practical anomaly detection applications, illustrating the

real-world implications of our research.

3.1 Problem definition

Our research pioneers the application of a multi-objective

approach to anomaly detection in multivariate time series

data, utilizing transformer models. The problem is defined

as follows.

Given a sequence of multivariate time series data

S ¼ fx1; x2; . . .; xTg, where each point xt is timestamped t

and resides in an m-dimensional space (xt 2 Rm), our aims

are to perform:

1. Anomaly detection in time series: Using a training time

series S and a test series S0 of length T 0 with similar

modalities, we seek to detect anomalies by predicting a

binary sequence Y ¼ fy1; y2; . . .; yT 0 g, where yt identi-

fies anomalies at timestamp t in S0 (1 indicates an

anomaly).
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2. Anomaly component analysis: Our goal extends to

identifying anomalous components within each data

point of the series, generating a detailed prediction

sequence Y ¼ fy1; y2; . . .; yT 0 g, where each yt pinpoints

the specific anomalous dimensions at timestamp t.

Multi-objective transformer model optimization

At the core of our methodology lies the NSGA-II-based

neural architecture search (NAS), which dynamically

optimizes transformer architectures specifically for anom-

aly detection in time series data. Unlike models such as

TranAD[16], which employs a static architecture across all

datasets, we propose a novel approach that adapts the

model’s structure to suit each dataset’s characteristics. This

dynamic approach ensures that the architecture is opti-

mized for both accuracy and efficiency in each case. Our

multi-objective optimization focuses on:

• Maximizing anomaly detection accuracy: Unlike static

models, we tune the transformer architecture dynami-

cally to achieve high F1 scores across datasets. This

flexibility allows our model to adapt to different

anomaly patterns, enhancing detection accuracy.

• Minimizing architectural complexity: Simultaneously,

we optimize the model’s size and computational

complexity, ensuring efficiency in deployment. This

aspect is critical for practical applications, as our

method achieves high detection accuracy without the

computational overhead typically associated with trans-

former models.

Our NAS-based approach, combined with NSGA-II, offers

a systematic way to explore architectural configurations,

identifying the optimal balance between accuracy and

efficiency, which is a significant advancement over previ-

ous static models.

Data processing and model training

Prior to model training and classification, the time series

data undergo a preprocessing phase where normalization is

applied to ensure uniformity of scale across all series

components. In this study, we employed min-max nor-

malization, which is widely used in time series data pro-

cessing due to its ability to map values to a fixed range,

typically [0,1], eliminating bias from variables with larger

magnitudes and ensuring stability during training. This

technique has been shown to perform well in time series

forecasting models, particularly in neural networks like

LSTMs and transformers [47, 48]. The normalization

process is defined as follows:

xt  
xt �minðSÞ

maxðSÞ �minðSÞ þ �
;

where minðSÞ and maxðSÞ denote the component-wise

minimum and maximum values observed in the training

and testing time series data S, respectively. The term � is a

small constant introduced to prevent division by zero,

ensuring numerical stability.

While alternative normalization techniques, such as

z-score normalization and robust scaling, exist, min-max

normalization was selected for this study because it pro-

vides a simple, yet effective, approach to scaling time

series data without assuming Gaussian distribution [49].

This method also ensures that features are bounded within

a consistent range, which is beneficial for transformer-

based models that rely on stable gradients during

optimization.

Subsequently, the time series is transformed into a set of

overlapping windows, which serve as the input to our

model. A context window of size K is defined preceding

each data point xt, resulting in:

Wt ¼ fxt�Kþ1; . . .; xtg;

where boundary cases are handled by replicating the first

available data point to fill the window, maintaining a fixed

size of K. This approach encapsulates the temporal

dependencies inherent in time series data.

Anomaly scoring and thresholding

Our model assigns an anomaly score to each context

window Wt, rather than providing direct binary labels. This

score is derived from the reconstruction error of the win-

dow, where Ot denotes the reconstructed output corre-

sponding to Wt. A dynamic threshold D is established

based on the score distribution from training data, which

helps differentiate between normal and anomalous

windows.

Unlike traditional fixed-threshold methods commonly

used in anomaly detection, we employ a dynamic thresh-

olding mechanism known as modified Peaks-Over-

Threshold (mPOT). This method allows the threshold to

adapt to variations in the data over time, thereby improving

robustness in scenarios with fluctuating data patterns. The

mPOT approach integrates recent deviation statistics,

ensuring that the model remains responsive to real-time

data trends, which reduces the risk of false positives or

missed detections in rapidly changing environments.

Additionally, our neural architecture search (NAS)

framework ensures that the thresholding mechanism is

optimized for a wide range of datasets, balancing accuracy

and computational efficiency. Through the iterative self-

adversarial phase described in Sect. 3.5, our framework

continuously refines the anomaly scores across multiple

iterations, further enhancing the detection capability by

dynamically adjusting the threshold D. This iterative

refinement is a significant improvement over static meth-

ods like those used in models such as TranAD.

By combining mPOT with adversarial refinement and

adaptive thresholding, we achieve a more flexible and
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responsive anomaly detection system that can handle

evolving data patterns with greater precision.

3.2 TransNAS-TSAD transformer architecture

In the TransNAS-TSAD framework, the transformer

architecture is specially adapted for time series anomaly

detection. While based on the standard transformer archi-

tecture, TransNAS-TSAD introduces flexibility in its con-

figuration to dynamically align with the specific

characteristics of the time series data. This is achieved

through the neural architecture search (NAS), which opti-

mizes the transformer model’s key components for each

dataset rather than relying on a fixed architecture, making

our approach more adaptable compared to static models

like TranAD.

Data augmentation mechanisms within the model:

TransNAS-TSAD integrates specific data augmentation

techniques into the model architecture, which are dynam-

ically selected during training, based on the NAS opti-

mization. These techniques include:

• Gaussian noise augmentation (Optional): Adds Gaus-

sian noise to the input sequence to increase variability

and robustness during training.

• Time warping & time masking augmentation

(Optional): Applies time warping or masking to

improve the model’s generalization to unseen time

series patterns, especially in datasets with irregular time

intervals.

Encoder Operations: Unlike static models, TransNAS-

TSAD dynamically configures the encoder based on the

specific needs of the dataset. The following operations are

part of the encoder, but the neural architecture search

(NAS) determines which components are active and their

configurations:

• Linear embedding (Optional): This operation trans-

forms the input into a higher-dimensional space through

linear mapping. Whether or not this operation is used is

dynamically selected during the NAS process.

• Layer normalization: This operation normalizes each

layer to ensure stability during training and is consis-

tently used in the encoder, but the exact configuration

(e.g., type of normalization) is fine-tuned during the

architecture search.

• Positional encoding: Depending on the dataset charac-

teristics, NAS selects either sinusoidal or Fourier

positional encoding to capture temporal dependencies

in the data effectively.

• Multi-head self-attention: A key feature in TransNAS-

TSAD is the multi-head attention mechanism, which is

aligned with the number of features in the data, inspired

by the TranAD model. It employs the standard scaled-

dot product attention mechanism:

AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffiffiffiffiffiffiffiffiffiffi

dmodel

p
� �

V : ð1Þ

The multi-head attention mechanism is formulated as:

MultiHeadAttðQ;K;VÞ ¼ ConcatðH1;H2; . . .;HhÞ;
ð2Þ

where Hi ¼ AttentionðQi;Ki;ViÞ.
• Feedforward Neural Networks (FFNs) Post-Atten-

tion: After the attention mechanism, the sequence is

passed through a series of feedforward neural networks

(FFNs). Unlike in static models, where the number of

layers and neurons is fixed, TransNAS-TSAD uses NAS

to dynamically select the optimal configuration of

FFNs, balancing between model complexity and

anomaly detection accuracy. This ensures the FFN

layers are tailored to the dataset, making the model both

efficient and accurate.

Decoder operations: The decoder in TransNAS-TSAD

mirrors the complexity of the encoder and is similarly

optimized through NAS. It integrates the encoder’s output,

applies multi-head self-attention, and utilizes feedforward

neural networks. The model can dynamically choose

between using a dual sequential decoder setup or an iter-

ative approach, depending on the dataset and the optimal

configuration selected by NAS. This flexibility allows

TransNAS-TSAD to maximize anomaly detection accuracy

while maintaining computational efficiency across differ-

ent time series datasets.

3.3 Neural architecture search (NAS) framework
for TransNAS-TSAD

The NAS framework shown in Fig. 1 is pivotal in

achieving our primary objective of effectively detecting

anomalies in multivariate time series data. By employing

the NSGA-II algorithm, our NAS process systematically

navigates the vast architectural landscape of transformer

models. This step is essential in identifying an architecture

that not only excels in anomaly detection accuracy but also

aligns with the computational constraints of practical

deployment scenarios. The optimal selection of transformer

architectures through NAS directly contributes to enhanc-

ing the performance and efficiency of the TransNAS-

TSAD framework, thereby fulfilling our goal of developing

a robust and adaptable anomaly detection system.
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Fig. 1 Workflow of the

TransNAS-TSAD process for

time series anomaly detection

using multi-objective neural

architecture search with NSGA-

II optimization

Table 1 Neural architecture search space for TransNAS-TSAD

Parameter type Parameter name Search space Description

Training Learning rate 1� 10�5 to 1� 10�1 (log scale) Rate at which the model learns

Dropout rate 0.1 to 0.5 Regularization to prevent overfitting

Batch size 16 to 128 (step of 16) Number of samples per training step

Gaussian noise 1� 10�4 to 1� 10�1 (log scale) Noise added for robustness

Time warping True, False Augmentation technique for time series

Time masking True, False Augmentation technique to mask intervals

Window size 10 to 30 Length of the input sequence window for the model

Architectural Positional encoding type Sinusoidal, Fourier Encoding type for sequence position

Dimension feedforward 8 to 128 (log scale) Size of the feedforward network

Encoder layers 1 to 3 Number of layers in the encoder

Decoder layers 1 to 3 Number of layers in the decoder

Activation function ReLU, Leaky ReLU, Sigmoid, Tanh Nonlinearity after each layer

Attention type Scaled Dot Product Type of attention mechanism

Number of attention heads Equal to feature dimension Parallel attention layers

Use linear embedding True, False Option to use a linear embedding layer

Layer normalization Layer, Batch, Instance Type of normalization used

Self-conditioning True, False Conditioning strategy for the model

Number of FFN layers 1 to 3 Layers in the feedforward network

Phase type 1phase, 2phase, Iterative Model’s reconstruction and refinement strategy
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3.3.1 Search space definition

The search space within TransNAS-TSAD, outlined in

Table 1, represents a diverse and extensive array of potential

model architectures and hyperparameters. This assortment is

meticulously tailored toward neural network configurations

designed specifically for time-series anomaly detection:

• Architectural parameters: These parameters encompass

the number and types of layers in the encoder and

decoder, optimized attention mechanisms for temporal

data analysis, dimensions of feedforward networks, and

a variety of positional encoding and normalization

methods. Collectively, they enable the model to adapt

its architecture for different characteristics of time-

series data.

• Training hyperparameters: This category includes a

broad spectrum of hyperparameters, such as learning

rates, batch sizes that are adaptable to varying compu-

tational resources, and dropout rates to ensure effective

regularization. Additionally, the window size parame-

ter, ranging from 10 to 30, defines the length of the

input sequence window, which directly influences how

the model processes and learns from temporal patterns.

Data augmentation techniques like time warping and

masking are also part of the search space, enabling the

model to simulate and learn from varied anomaly

scenarios effectively.

The comprehensive nature of the search space in TransNAS-

TSAD allows for the exploration and optimization of a wide

range of models, ensuring that the most suitable architecture

and hyperparameter settings are identified for effective

anomaly detection in different time-series datasets.

3.3.2 TransNAS-TSAD evaluation strategy

The evolutionary optimization strategy of TransNAS-TSAD

entails a rigorous evaluation of models generated with

varying architectural and training hyperparameters. The

multi-objective evaluation focuses on two critical aspects:

the F1 score and the number of model parameters. The F1

score serves as a key indicator of the model’s accuracy in

anomaly detection, balancing precision and recall, while the

number of parameters gauges the model’s architectural

complexity and computational efficiency. The objective is to

identify models that not only demonstrate high proficiency in

accurately detecting anomalies (as reflected in a high F1

score) but also maintain a streamlined architecture (evi-

denced by a lower count of parameters). This dual-criteria

assessment ensures the selection of models that are both

effective in performance and practical in deployment,

aligned with the overarching goal of achieving optimal

anomaly detection with computational resourcefulness.

Multi-objective optimization with NSGA-II

TransNAS-TSAD employs the NSGA-II algorithm, a

widely recognized approach for balancing the objectives of

accuracy and computational efficiency in multi-objective

optimization. Our choice of NSGA-II is supported by

benchmark studies, such as those presented in the work by

Lu et al. [21], which highlight its effectiveness in identi-

fying optimal solutions across various search spaces. This

empirical evidence demonstrates NSGA-II as a suit-

able approach for optimizing the competing demands of

our model architecture. The optimization process in

TransNAS-TSAD is governed by the following equations:

FðxÞ ¼ ½f1ðxÞ; f2ðxÞ�; ð3Þ

where f1ðxÞ is the F1 score and f2ðxÞ is the computational

parameter count (conversely reflecting the computational

efficiency).

Non-dominated sorting and the calculation of crowding

distance are integral parts of NSGA-II:

NonDomSortðXÞ ¼
[

k

i¼1

Fi ð4Þ

dðxÞ ¼
X

k

i¼1

fiðxþÞ � fiðx�Þð Þ ð5Þ

Pareto front exploration and utilization
The Pareto front represents the set of non-dominated

solutions, providing an optimal trade-off between con-

flicting objectives:

P ¼ fx 2 X j6 9y 2 X : FðyÞ � FðxÞg; ð6Þ

where � indicates that y dominates x.

The Pareto front derived from the NAS process provides

a practical framework for model selection:

• Interpretation and analysis: The front is analyzed to

discern architectural trade-offs, allowing stakeholders

to identify models with the desired balance between

accuracy and efficiency.

• Informed selection: Decision-makers can select models

that align with specific performance expectations and

operational constraints by examining the Pareto front.

• Resource allocation: Models on the Pareto front inform

resource allocation, directing investments toward archi-

tectures with the most favorable trade-offs.

Algorithm provides a detailed procedure that encapsulates

our approach within the Optuna framework using NSGA-II

[20] for the multi-objective optimization. This algorithm

highlights, from initialization to final selection, the inte-

gration of the evolutionary search process with trans-

former-specific architecture and hyperparameter tuning.
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Algorithm 1 Multi-Objective NAS for Time Series Anomaly Detection with TransNAS-TSAD

3.3.3 Evolutionary process in TransNAS-TSAD

The evolutionary

process within TransNAS-TSAD is critical in achieving

our overarching goal of refining anomaly detection capa-

bilities. The process has three aspects, summarized below.

• Generation loop: New models are generated, evaluated,

and passed on to each generation iteratively, with

superior architectures refining the Pareto front.

• Early stopping: The process incorporates early stopping

for models that do not show promise, thus conserving

computational resources.

• Final architecture selection: The optimal architecture is

selected from the Pareto front, ensuring an effective

balance between the objectives.

Through iterative refinement and selection of model

architectures, the Generation Loop aspect ensures that our

models are not only accurate in identifying anomalies but

also evolve to become more efficient and adaptable to

various data characteristics. This continuous improvement

and adaptation are key to achieving high-performance
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anomaly detection, which stands at the core of our research

objectives.

3.4 Offline optimization of transformer
architecture for anomaly detection

Central to TransNAS-TSAD is the offline, strategic opti-

mization of the transformer architecture, a process critical

for achieving an effective balance between anomaly

detection accuracy and computational efficiency. The

optimization, guided by neural architecture search (NAS)

using the NSGA-II algorithm, involves:

1. Comprehensive trial-based exploration: In line with

Optuna’s best practices, the process involves conduct-

ing over 100 trials to explore a wide array of

transformer architectures, ensuring a thorough exam-

ination of the solution space.

2. Achieving pareto front efficiency: The key focus of

NAS is to identify and refine a collection of architec-

tures that constitute the Pareto front, representing a

spectrum of high-performance, resource-intensive

models to more balanced and resource-efficient

alternatives.

3. Iterative evolutionary process: Through evolutionary

algorithms, these architectures undergo continuous

adaptation and improvement, exploring innovative

configurations and enhancing accuracy and computa-

tional efficiency with each generation.

Tailoring architectures to specific deployment needs

After the offline NAS process, we are equipped with a

diverse array of transformer architectures, each optimized

for different operational contexts:

• In resource-rich environments: High accuracy (i.e., F1

score) models, though computationally demanding, are

suitable for scenarios where resource is not a

constrained.

• In resource-limited environments: The NAS process

also yields architectures that are either balanced in

terms of accuracy and efficiency or are specifically

optimized for resource-limited environments.

This flexibility allows for the deployment of TransNAS-

TSAD in various settings, ensuring efficient and effective

anomaly detection tailored to the constraints and require-

ments of different deployment environments.

3.5 Advanced anomaly detection
with adversarial elements in TransNAS-TSAD

TransNAS-TSAD represents a breakthrough in the field of

time series anomaly detection by strategically enhancing

adversarial learning paradigms. While it draws

foundational inspiration from the TranAD model’s two-

phase approach, our framework introduces a neural archi-

tecture search (NAS) strategy that effectively incorporates

a third, iterative, self-adversarial phase. This tripartite

approach enables dynamic selection among the conven-

tional two-phase mechanism and our advanced iterative

phase, optimizing detection capabilities for each specific

trial.

The inception of this third phase signifies a substantial

evolution in anomaly detection techniques. By embedding

adversarial elements within all three phases, TransNAS-

TSAD not only retains the strengths of the traditional

encoder-decoder models but also introduces a level of

adaptability and precision previously unattainable. This

method excels in identifying subtle and complex anoma-

lies, leveraging the iterative adversarial training to refine

detection with each iteration.

3.5.1 Three-phase adversarial approach

Drawing from adversarial learning paradigms, the three-

phase approach in TransNAS-TSAD seeks to enhance the

model’s sensitivity to anomalies through competitive

reconstruction stages.

Phase 1-preliminary input reconstruction

This phase, acting as the foundation, aims for a pre-

liminary reconstruction of the input time-series window,

and yields a focus score. The latter is defined by the

deviation of the reconstructed output from the actual input:

Lfocus ¼ kOinitial �Wk2;

where Oinitial is the output from the first phase and W is the

input time-series window. The resultant focus score,

derived from the deviations in this initial reconstruction,

serves as an attention modulator for the subsequent phase.

Phase 2-adversarial, focus-driven reconstruction

Incorporating adversarial elements, this phase utilizes

the focus scores from phase 1. In the adversarial phase, the

second decoder aims to maximize the difference between

its output and the input. Simultaneously, the first decoder

aims to minimize this difference:

Ladv1 ¼ kOadv1 �Wk2

Ladv2 ¼ �kOadv2 �Wk2;

where Oadv1 and Oadv2 are the outputs from the first and

second decoders, respectively, during the adversarial

phase.

Phase 3-Iterative self-adversarial approach

Going beyond the structured two-phase reconstruction

inspired by the TranAD work, TransNAS-TSAD intro-

duces a dynamic iterative approach. This approach,
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embedded with self-adversarial mechanisms, continually

refines its reconstructions.

Iterative refinement:

Starting with an initial reconstruction, the deviation

between the current output and the input provides feedback

for the next iteration:

Literation ¼ Ocurrent �Wk k2

The self-adversarial mechanism can be represented as:

Lself�adv ¼ ðLiteration;prev � Literation;currentÞ2;

where Literation;prev is the loss from the previous iteration and

Literation;current is the loss from the current iteration. The

iterative refinement continues until the change in the loss

between consecutive iterations falls below a predetermined

threshold, signifying convergence. Mathematically, the

convergence criterion can be defined as:

DL ¼ Literation;current � Literation;prev

�

�

�

�:

If DL\�, where � is a small positive value (e.g., 10�5), the

iteration stops, suggesting that further refinement may not

yield significant improvements. After the iterative process

converges, the best anomaly score is determined. The best

score is derived from the iteration with the smallest

reconstruction loss, ensuring that the selected representa-

tion most closely matches the input time-series data.

Adaptable and robust anomaly detection

What sets TransNAS-TSAD apart is its adaptability. The

model is not confined to a fixed number of reconstruction

phases. Depending on the intricacy of the dataset, it can

dynamically adjust, ensuring that even the most subtle

anomalies are not overlooked. Moreover, the incorporation

of adversarial elements, both in the two-phase and iterative

approaches, ensures the model continually challenges

itself, leading to more refined and accurate reconstructions.

TransNAS-TSAD represents a significant advancement in

the realm of time-series anomaly detection. By amalga-

mating auto-regressive inference, adversarial mechanisms,

attention modulation, and adaptive iterations, it offers a

comprehensive solution, adept at detecting both overt and

nuanced anomalies across varied time-series datasets.

3.5.2 Harnessing the power of TransNAS-TSAD for anomaly
detection

Building upon the foundational architecture and adversarial

mechanisms of TransNAS-TSAD, we now delve into the

practical realm of anomaly detection. This section eluci-

dates the methodologies employed to infer anomalies from

time-series data, leveraging the trained transformer model

and various augmentation strategies.

The anomaly scoring mechanism

Every incoming data point, denoted as Ŵ , is assessed for

anomalies by computing a score that quantitatively reflects

its deviation from expected patterns. Here, Ŵ represents

the new window of time series data under consideration.

The anomaly score, s, is calculated as:

s ¼ 1

2
kR1 � Ŵk2

2 þ
1

2
kR̂2 � Ŵk2

2; ð7Þ

where R1 and R̂2 are the reconstructed outputs from the

transformer model, corresponding to different stages of the

inference process.

Dual inference pathways

TransNAS-TSAD uses two distinct inference

methodologies:

• Two-phase approach: A structured two-step inference

process yielding reconstructions ðR1; R̂2Þ.
• Iterative refinement: For scenarios demanding intricate

attention, it engages in iterative inference, perfecting

the anomaly scores with each iteration.

Figure 2 illustrates the anomaly detection process on

dimension 0 of the Server Machine dataset (SMD) test

dataset using TransNAS-TSAD. The upper plot displays

the true data points (in blue) and the predicted values (in

red), while the lower plot indicates the computed anomaly

scores and their corresponding labels, offering a visual

interpretation of the model’s detection capabilities in

identifying anomalies.

Dynamic anomaly thresholding: the sentinel

Central to our thresholding strategy is the peaks over

threshold (POT) method. At its core, POT establishes a

threshold where observations surpassing this mark are

deemed anomalous, allowing for effective discernment of

extreme data points.

Evolutionary in nature, our modified POT (mPOT)

approach ensures adaptability to the ever-changing land-

scape of time-series data:

mPOTðxÞ ¼ POTðxÞ þ a� recent deviationðxÞ; ð8Þ

where a is a weight. The function recent_deviation calcu-

lates the deviation of the latest data points from their

median value. Anomalies are pinpointed whenever any

dimension’s score, si, exceeds this dynamic mPOT

threshold.

3.5.3 Augmentative strategies for enhanced precision

TransNAS-TSAD employs various augmentative strategies

to bolster the precision of the POT method, ensuring that

the anomaly detection mechanism remains sensitive,

adaptable, and robust. These strategies aim to enhance the

detection capabilities by refining the anomaly scores and

the thresholds against which they are evaluated.
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Moving average thresholding (MAT)

MAT is a dynamic thresholding technique that com-

plements the POT method. Instead of using a static

threshold, MAT calculates a moving average of recent

anomaly scores to adaptively set the threshold. This

dynamic adjustment ensures that the threshold is respon-

sive to emerging data trends and patterns, enhancing its

relevance and accuracy. The moving average threshold at

time t is given by:

MATðtÞ ¼ 1

N

X

t

i¼ t�N
si; ð9Þ

where si is the anomaly score at time i and N represents the

window size for the moving average.

Rolling statistics for nuanced detection

Rolling statistics, particularly the rolling mean and

standard deviation, provide additional context to the POT

method by capturing temporal dependencies and trends in

the data. These statistics are instrumental in uncovering

subtle anomalies that might otherwise be overlooked. For

each data point at time t, the rolling mean lðtÞ and rolling

standard deviation rðtÞ are computed as:

lðtÞ ¼ 1

W

X

t

i¼t�W
xi and rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

W

X

t

i¼t�W
ðxi � lðtÞÞ2

s

;

ð10Þ

where xi represents the data point at time i and W is the

rolling window size. These rolling statistics are

incorporated into the feature set, enhancing the model’s

ability to discern intricate data variations and improving

the relevance of the anomaly scores generated for the POT

method.

4 Experimental setup for TransNAS-TSAD

We evaluate the performance of TransNAS-TSAD against

a suite of established benchmark models, including Tra-

nAD [16], LSTM-NDT [50], DAGMM [51], OmniAno-

maly [52], MSCRED [53], MAD-GAN [54], USAD [55],

CAE-M [56]), and GDN [57]. To ensure a fair comparison,

we utilize the hyperparameter configurations as specified in

the original publications of these models, relying on their

publicly available implementations.

The experimental infrastructure comprises a Google

Colab Pro environment, leveraging a NVIDIA Tesla T4

GPU (16GB memory) and an Intel Xeon E5-2670 v3 CPU

(8 cores, 51GB memory). The NSGA-II-based NAS algo-

rithm and data management operations are implemented in

Python, utilizing robust libraries such as PyTorch for deep

learning, Optuna for hyperparameter optimization, and

pandas for data handling.

A pivotal element of our methodology is the neural

architecture search (NAS), which automates the architec-

tural design by navigating a comprehensive search space of

architectural and training hyperparameters, shown in

Table 1. This search space is crafted to enable the NAS

Fig. 2 Anomaly detection in

TransNAS-TSAD on dimension

0 of the SMD test dataset,

depicting true versus predicted

values and identified anomalies

Neural Computing and Applications (2025) 37:2455–2477 2465

123



algorithm to adapt the model architecture to the unique

characteristics of each dataset. Consistent with the prac-

tices in OmniAnomaly and TranAD, we apply an enhanced

version of the peaks over threshold (POT) method [9]

across all datasets with a uniform coefficient of 10�4. This

enhancement incorporates our previously described aug-

mentative strategies, further fine-tuning the low quantile

parameter for each specific dataset to align with established

benchmarks and ensure equitable comparative analysis.

4.1 Datasets

Our study employs a suite of datasets selected to chal-

lenge and validate the robustness of the time series

anomaly detection methods across a variety of real-world

scenarios. These datasets, renowned for their complexity

and diversity, allow for an effective benchmarking of our

TransNAS-TSAD approach against existing methodolo-

gies. See Table 2 for summary statistics.

• Numenta anomaly benchmark (NAB) dataset: This

dataset encompasses a wide range of real-world data,

including temperature sensor readings, cloud machine

CPU utilization, service request latencies, and taxi

demand data in New York City. It is important to note

some anomalies in labeling within this dataset are

excluded from analyses, particularly in the NYC-taxi

traces [58, 59].

• HexagonML (UCR) dataset: Featured in the KDD 2021

cup, this dataset comprises a diverse collection of

univariate time series. In our research, we selectively

use natural data representations derived from real-world

sources, focusing specifically on the InternalBleeding

and ECG datasets. Consequently, we did not include

any synthetic sequences that are also part of the

HexagonML (UCR) dataset [60].

• MIT-BIH supraventricular arrhythmia database (MBA)

dataset: This dataset includes electrocardiogram record-

ings from four patients, featuring anomalies such as

supraventricular contractions or premature heartbeats.

It’s a well-recognized dataset in data management

studies [61, 62].

• Soil moisture active passive (SMAP) dataset: This

NASA-provided dataset includes global measurements

of soil moisture in the top 5 cm of Earth’s soil surface,

collected approximately every three days by the SMAP

satellite. It is designed to enhance our understanding of

water, carbon, and energy cycles[50].

• Mars science laboratory (MSL) dataset: Similar to the

SMAP dataset, the MSL dataset includes sensor and

actuator data from the Mars rover.[50] Due to the

presence of many trivial sequences, only specific non-

trivial sequences are typically analyzed such as (A4, C2

and T1) pointed by [16, 59].

• Secure water treatment (SWaT) dataset: This dataset is

derived from a real-world water treatment plant,

including data from seven days of normal operations

and four days under abnormal conditions. It features

readings from various sensors and actuators [63].

• Water distribution (WADI) dataset: An expansion of the

SWaT dataset, WADI includes a larger array of sensors

and actuators. The dataset spans a longer period, with

14 days of normal operation and two days under attack

scenarios [64].

• Server machine dataset (SMD): Covering five weeks of

data, this dataset includes resource utilization traces

from 28 machines in a compute cluster. Only specific

non-trivial sequences are used for analysis [52].

4.2 Evaluation criteria

We employ key metrics aligned with the objectives of the

TransNAS-TSAD framework. These metrics are selected

to optimize anomaly detection effectiveness, considering

practical deployment aspects. The F1 score, defined as the

harmonic mean of precision and recall, is central to our

evaluation strategy. It is an accuracy measure that balances

the trade-off between false positives and false negatives to

help address the challenge of imbalanced datasets common

in anomaly detection.

Table 2 Dataset statistics
Dataset Train size Test size Dimensions Sequences Anomalies (%)

NAB 4033 4033 1 6 0.92

UCR 1600 5900 1 4 1.88

MBA 100,000 100,000 2 8 0.14

SMAP 135,183 427,617 25 55 13.13

MSL 58,317 73,729 55 3 10.72

SWaT 496,800 449,919 51 1 11.98

WADI 1,048,571 172,801 123 1 5.99

SMD 708,405 708,420 38 4 4.16
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4.2.1 Introducing the efficiency-accuracy-complexity score
(EACS)

Model complexity is frequently measured by the parameter

count, a metric that, while useful, does not fully capture the

capabilities of transformer-based models like TransNAS-

TSAD. Despite their high parameter count, these models

are highly effective at capturing complex data patterns, a

strength that justifies their complexity. Their advanced

processing capabilities, facilitated by parallelization, make

them adept at handling scenarios that demand high accu-

racy, even when computational resources are abundant.

Therefore, when we report the parameter count of Trans-

NAS-TSAD, it is within the broader context of its

sophisticated functionality. Additionally, our evaluation

emphasizes not only the parameter count but also the F1

score and Efficiency-Accuracy-Complexity Score (EACS),

ensuring that our assessment considers both the model’s

anomaly detection effectiveness and its deployability.

While other metrics like ROC/AUC are valuable, our

focused approach aligns with the specific objectives of

TransNAS-TSAD, aiming for a balanced evaluation of its

performance.

The weights for the Efficiency-Accuracy-Complexity

Score (EACS) are set based on the relative importance of

each factor-accuracy, training efficiency, and model com-

plexity-in real-world deployment scenarios. Typically, the

weights are chosen from a range of 0 to 1, with the sum of

weights equal to 1. For instance, in applications where

accuracy is of paramount importance, the accuracy weight

(wa) is set higher, often between 0.4 to 0.6, while the

weights for training time (wt) and model complexity (wp)

are slightly lower, ranging from 0.2 to 0.4. This weighting

scheme is flexible, allowing it to be adjusted based on

specific deployment needs, balancing performance and

resource constraints. In this study, we set the weights as

follows: wa ¼ 0:4, wt ¼ 0:4, and wp ¼ 0:2, reflecting the

need for high accuracy while maintaining practical effi-

ciency and manageable model complexity for deployment.

To conduct a fair and comparative assessment across

models, we have calculated the number of parameters,

training time, and F1 score for each benchmark model as

well as for the best model instance obtained from Trans-

NAS-TSAD for each dataset. The maximum values for F1

score, training time, and parameter count-represented as

F1max;Tmax; Pmax-are the highest values observed among

all models compared for each specific dataset. This nor-

malization ensures a fair comparison across models. The

EACS is defined as:

EACS ¼ wa �
F1

F1max

� �

þ wt � 1� Ttrain

Tmax

� �

þ wp � 1� Pcount

Pmax

� �

ð11Þ

where F1 is the model accuracy given as the F1 score, Ttrain

is the training time, and Pcount is the parameter count of the

model which indicates the complexity of the model, and

wa, wt, and wp are, respectively, the weights of the corre-

sponding performance factors. These weights were chosen

to reflect the importance of accuracy and training efficiency

in practical deployments, which are often prioritized over

the complexity of the model.

5 Results

Evaluating TransNAS-TSAD: precision, recall, and F1

score analysis

The evaluation of anomaly detection models, as shown

in Table 3, measures TransNAS-TSAD’s performance

across diverse datasets including NAB, UCR, MBA,

SMAP, MSL, SWaT, WADI, and SMD, using precision,

recall, and F1 scores as benchmarks. Bold values in the

tables indicate the best performance for each dataset,

highlighting superior F1 scores. TransNAS-TSAD

demonstrated high F1 scores in datasets such as NAB,

UCR, MBA, and SMAP, benefiting from its advanced data

processing techniques that adeptly handle complex patterns

in both univariate and multivariate time series. This dis-

tinguishes it from models like OmniAnomaly and

MSCRED. For the MSL dataset, the TranAD model

slightly outperforms TransNAS-TSAD (0.9494 vs. 0.9482

in the F1 score), likely due to TranAD’s parameters being

finely tuned to MSL’s unique characteristics. Despite

conducting over 100 trials per dataset, this suggests that

even more exhaustive optimization could potentially

unlock further improvements for TransNAS-TSAD. Its

robust performance in the SWaT dataset, with an F1 score

of 0.8314, underscores its versatility in various industrial

contexts. In the cases of WADI and SMD, where Trans-

NAS-TSAD achieves F1 scores of 0.8400 and 0.9986,

respectively, the significant improvements-such as a 40%

increase over baseline in WADI-are attributable to its

comprehensive search space and optimization strategies,

enabling effective model tuning. This evaluation under-

scores the potential benefits of extending our optimization

framework to achieve even greater model refinement.

The variable performance of models like LSTM-NDT

and DAGMM across different datasets points to their

methodological strengths and constraints. For example, the

LSTM-NDT’s reduced efficacy likely stems from the

method’s nonparametric thresholding and resulting sensi-

tivity to large differences in anomaly patterns; and the

DAGMM struggles with longer sequences, in part, due to

its reliance on a singular GRU model, which limits its
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capacity to accurately map extended temporal dynamics.

Moreover, TransNAS-TSAD demonstrates enhanced per-

formance over innovative yet less adaptable models such as

MAD-GAN and USAD, and while CAE-M and GDN show

potential in specific scenarios, they generally fall short of

matching TransNAS-TSAD’s applicability and perfor-

mance across the datasets reviewed, highlighting the value

of integrating adversarial training and iterative optimiza-

tion into the TransNAS-TSAD’s framework.

In-depth analysis of training efficiency and EACS in

anomaly detection models

Table 4 presents a comprehensive analysis that com-

pares the Efficiency-Accuracy-Complexity Score (EACS)

among various anomaly detection models, including

TransNAS-TSAD. As discussed earlier in Section 4.2.1,

EACS is a composite score that balances accuracy (F1

score), training efficiency, and model complexity to assess

the overall practicality of a model in real-world deploy-

ments. This balance is critical, especially in operational

environments that require rapid deployment and frequent

updates, as highlighted by several studies [65–67]. In this

analysis, TransNAS-TSAD emerges as a standout per-

former, achieving high EACS values across multiple

datasets, indicating its ability to maintain strong model

performance while ensuring operational efficiency.

Specifically, TransNAS-TSAD delivers high F1 scores

of 94.11% and 99.10% on the NAB and UCR datasets,

respectively, while maintaining brief training periods of

2.70 and 2.24 s. This translates into EACS values of 0.9742

and 0.9922, showcasing TransNAS-TSAD’s ability to

adapt quickly to complex data while balancing accuracy

and efficiency. The trend—high accuracies combined with

short training times—remains consistent across other

datasets, including MBA and SMAP, where TransNAS-

TSAD records EACS scores of 0.9932 and 0.9734,

respectively.

EACS helps to provide insight into trade-offs between

performance and resource consumption. For example,

models like MSCRED, despite achieving commendable F1

scores, experience a notable decrease in EACS due to

Table 3 Benchmarking TransNAS-TSAD against the baseline models: A summary of precision (P), recall (R), and F1 scores showcases the

advanced anomaly detection capabilities of TransNAS-TSAD, derived via NSGA-II-based NAS, across diverse datasets

Method NAB UCR MBA SMAP

P R F1 P R F1 P R F1 P R F1

LSTM-NDT 0.6400 0.6667 0.6531 0.5231 0.8294 0.5231 0.9207 0.9718 0.9456 0.8523 0.7326 0.7879

DAGMM 0.7622 0.7292 0.7453 0.5337 0.9718 0.5337 0.9475 0.9900 0.9683 0.8069 0.9891 0.8888

OmniAnomaly 0.8421 0.6667 0.7442 0.8346 0.9999 0.8346 0.8561 1.000 0.9225 0.8130 0.9419 0.8728

MSCRED 0.8522 0.6700 0.7502 0.5441 0.9718 0.5441 0.9272 1.0000 0.9623 0.8175 0.9216 0.8664

MAD-GAN 0.8666 0.7012 0.7752 0.8538 0.9891 0.8538 0.9396 1.0000 0.9689 0.8157 0.9216 0.8654

USAD 0.8421 0.6667 0.7442 0.8952 1.0000 0.8952 0.8953 0.9989 0.9443 0.7480 0.9627 0.8419

CAE-M 0.7918 0.8019 0.7968 0.6981 1.0000 0.6981 0.8442 0.9997 0.9154 0.8193 0.9567 0.8827

GDN 0.8129 0.7872 0.7998 0.6894 0.9988 0.6894 0.8832 0.9892 0.9332 0.7480 0.9891 0.8518

TranAD 0.8889 0.9892 0.9364 0.9407 1.0000 0.9407 0.9569 1.0000 0.9780 0.8043 0.9999 0.8915

TransNAS-TSAD 0.8888 1.0000 0.9411 0.9823 1.0000 0.9910 0.9726 1.0000 0.9861 0.9066 1.0000 0.9510

Method MSL SWaT WADI SMD

P R F1 P R F1 P R F1 P R F1

LSTM-NDT 0.6288 1.0000 0.7721 0.7778 0.5109 0.6167 0.0138 0.7823 0.0271 0.9736 0.8440 0.9042

DAGMM 0.7363 1.0000 0.8482 0.9933 0.6879 0.8128 0.0760 0.9981 0.1412 0.9103 0.9914 0.9491

OmniAnomaly 0.7848 0.9924 0.8765 0.9782 0.6957 0.8131 0.3158 0.6541 0.426 0.8881 0.9985 0.9401

MSCRED 0.8912 0.9862 0.93693 0.9992 0.6770 0.8072 0.2513 0.7319 0.3741 0.7276 0.9974 0.8414

MAD-GAN 0.8516 0.9930 0.9169 0.9593 0.6957 0.8065 0.2233 0.9124 0.3588 0.9991 0.8440 0.915

USAD 0.7949 0.9912 0.8822 0.9977 0.6879 0.8143 0.1873 0.8296 0.3056 0.9060 0.9974 0.9495

CAE-M 0.7751 1.0000 0.8733 0.9697 0.6957 0.8101 0.2782 0.7918 0.4117 0.9082 0.9671 0.9367

GDN 0.9308 0.9892 0.9591 0.9697 0.6957 0.8101 0.2912 0.7931 0.4260 0.7170 0.9974 0.8342

TranAD 0.9038 0.9999 0.9494 0.9760 0.6997 0.8151 0.3529 0.8296 0.4951 0.9262 0.9974 0.9605

TransNAS-

TSAD

0.9567 1.000 0.9482 0.9415 0.7624 0.8314 0.8508 0.8295 0.8400 0.9985 0.9988 0.9986
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Table 4 Comparative analysis of the Efficiency-Accuracy-Complex-

ity Score (EACS) across various anomaly detection models, high-

lighting the performance of TransNAS-TSAD. The EACS is

calculated by normalizing and weighting F1 scores (0.4), training

times (0.4), and parameter counts (0.2), demonstrating the balanced

efficiency and accuracy of TransNAS-TSAD against benchmark

models across multiple datasets

Method NAB UCR

F1 % Training time (sec) # Params EACS F1 % Training Time (sec) # Params EACS

LSTM-NDT 65.31 23.40 1710 0.8424 52.31 11.14 1765 0.7985

DAGMM 74.53 64.50 1266 0.8467 53.37 27.50 1214 0.7919

OmniAnomaly 74.42 88.70 13,717 0.8250 83.46 38.21 13,025 0.8863

MSCRED 75.02 503.60 1,237,377 0.3001 54.41 559.60 128,655 0.2176

MAD-GAN 77.52 53.90 838 0.8671 85.38 31.50 822 0.9177

USAD 74.42 65.40 1359 0.8455 89.52 54.23 1359 0.9172

CAE-M 79.68 33.60 7229 0.8909 69.81 22.10 7365 0.8520

GDN 79.98 131.60 574 0.8153 68.94 64.70 566 0.8286

TranAD 93.64 3.37 615 0.9718 94.07 1.14 619 0.9745

TransNAS-TSAD 94.11 2.70 285 0.9742 99.10 2.24 1690 0.9922

Method MBA SMAP

F1 % Training time (sec) # Params EACS F1 % Training Time (sec) # Params EACS

LSTM-NDT 94.56 47.80 18,641 0.9520 78.79 36.43 29,146 0.8459

DAGMM 96.83 92.36 2448 0.9394 88.80 26.60 7266 0.9050

OmniAnomaly 92.25 197.66 25,474 0.8649 87.28 66.77 16,813 0.8230

MSCRED 96.23 774.99 2,441,778 0.3849 86.64 25.70 8,237,452 0.6982

MAD-GAN 96.89 229.78 1877 0.8688 86.54 41.26 6718 0.8683

USAD 94.43 191.26 1609 0.8789 84.19 49.22 7395 0.8439

CAE-M 91.54 89.66 15,411 0.9186 88.27 212.51 7229 0.5529

GDN 93.32 203.45 1106 0.8682 85.18 104.50 2974 0.7440

TranAD 97.80 5.11 1298 0.9885 89.15 5.62 62,271 0.9445

TransNAS-TSAD 98.61 2.27 593 0.9932 94.60 3.19 39,045 0.9734

Method MSL SWaT

F1 % Training time (sec) # Params EACS F1 % Training Time (sec) # Params EACS

LSTM-NDT 77.21 37.80 61,856 0.8887 66.70 41.50 72,854 0.7957

DAGMM 84.82 25.66 18,756 0.9258 81.28 29.66 16,558 0.8748

OmniAnomaly 87.65 29.69 39,753 0.9348 81.31 40.20 36,541 0.8568

MSCRED 93.63 40.70 18,476,728 0.7535 80.72 236.80 14,227,264 0.3229

MAD-GAN 91.69 32.64 17,446 0.9497 80.65 34.70 15,958 0.8638

USAD 88.22 29.60 14,859 0.9374 81.43 35.81 12,502 0.8651

CAE-M 87.33 774.60 204,687 0.5471 81.01 71.22 194,525 0.8010

GDN 95.91 121.80 153,541 0.9191 81.01 83.55 115,442 0.7813

TranAD 94.94 6.88 272,181 0.9733 81.53 2.10 31,336 0.9221

TransNAS-TSAD 94.82 5.44 236,491 0.9739 83.14 1.60 13,464 0.9297

Method WADI SMD

F1 % Training time (sec) # Params EACS F1 % Training Time (sec) # Params EACS

LSTM-NDT 2.71 422.67 133,712 0.5753 90.42 460.70 42,853 0.9100

DAGMM 14.12 246.32 39,387 0.6498 94.91 337.90 10,516 0.9420

OmniAnomaly 42.60 361.60 39,753 0.7794 94.01 311.20 22,941 0.9412
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prolonged training times (e.g., 774.99 s for MBA). This

contrast emphasizes the advantage of TransNAS-TSAD,

which achieves superior efficiency by optimizing both

model complexity and training time while maintaining

competitive F1 scores.

Moreover, EACS emphasizes the importance of practi-

cal deployability, which is particularly evident in datasets

with challenging environments like SWaT and WADI.

Here, TransNAS-TSAD not only sustains high F1 scores

but also significantly reduces training times, achieving

EACS scores of 0.9297 and 0.7883, respectively. This

balance makes TransNAS-TSAD more suitable for envi-

ronments where both accuracy and efficiency are required.

While models like GDN and TranAD perform well in

specific datasets, they do not consistently match Trans-

NAS-TSAD in training efficiency across the board. EACS

serves as an important metric in this evaluation, as it

highlights cases where models with high accuracy may fall

short due to resource demands, providing a more compre-

hensive evaluation of their practical applicability.. This

underscores the value of considering training time, model

size, and accuracy together when deploying anomaly

detection models in real-world scenarios.

5.1 Optimal model configurations identified
by TransNAS-TSAD

Table 5 showcases the culmination of TransNAS-TSAD’s

NSGA-II optimization process, highlighting the training

and architectural hyperparameters of models that achieved

the best balance between high F1 scores and low parameter

counts. These configurations represent models uniquely

suited to each dataset’s anomaly detection needs.

A key observation is the diversity in architectural

parameters across datasets, reflecting TransNAS-TSAD’s

adeptness in tailoring models to specific data characteris-

tics. For example, in the SMAP dataset, the model employs

a relatively simple architecture with fewer encoder and

decoder layers, which is effective in handling the envi-

ronmental time series data of this dataset. In contrast, the

WADI dataset, known for its complex sensor network,

necessitates a more intricate model structure, evident in its

higher number of attention heads and the use of a two-

phase reconstruction and refinement strategy.

Similarly, the variation in window sizes, ranging from

12 data points for SMD to 30 data points for WADI,

underscores the model’s flexibility in adapting to the

temporal scale of different datasets. Larger window sizes in

datasets like WADI allow the model to capture longer-term

dependencies and subtle anomalies in extensive time series

data, a crucial requirement for sophisticated water-related

infrastructures.

The adaptability of TransNAS-TSAD is further

demonstrated in its choice of positional encoding and layer

normalization techniques, which vary significantly among

datasets. For instance, the sinusoidal positional encoding in

SMAP and NAB caters to their unique temporal patterns,

while the Fourier positional encoding in UCR and WADI

aligns with the datasets’ complex spectral characteristics.

These results from TransNAS-TSAD’s NAS process

validate the framework’s ability to not only fine-tune

hyperparameters for operational efficiency, but also to

intricately adapt its architectural design to the nuanced

demands of various time series anomaly detection scenar-

ios, ensuring optimal detection performance across a broad

spectrum of datasets.

5.2 Architectural and training hyperparameter
importance for F1 score optimization

The optimization of F1 scores in the TransNAS-TSAD

model shown in Fig. 3 is critically analyzed through

hyperparameter importance plots for four datasets: NAB,

MBA, SMAP, and WADI. These plots offer quantitative

insights into the relative impact of various hyperparameters

Table 4 (continued)

Method WADI SMD

F1 % Training time (sec) # Params EACS F1 % Training Time (sec) # Params EACS

MSCRED 37.41 1884.25 75,530 0.6716 84.14 349.77 14,237,356 0.6978

MAD-GAN 35.88 321.20 35,764 0.7500 91.50 424.60 9903 0.9188

USAD 30.56 389.72 32,859 0.7214 94.95 328.77 10,609 0.9432

CAE-M 41.17 7724.92 388,905 0.3503 93.67 3606.90 114,219 0.5731

GDN 42.60 6047.12 287,082 0.4559 83.42 1000.40 7255 0.8226

TranAD 49.51 177.60 1,378,173 0.6645 96.05 56.70 135,110 0.9760

TransNAS-TSAD 84.35 227.50 1,701,515 0.7883 99.81 52.40 132,050 0.9916
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on the F1 score, aiding the fine-tuning process in our NAS-

driven anomaly detection model.

For the NAB dataset, gaussian_noise and acti-

vation_function are the most influential hyperpa-

rameters, with importances of 0.18 and 0.15, respectively.

The incorporation of gaussian_noise enhances the

model’s generalization capabilities, essential for robust-

ness, while the choice of activation_function is

key for capturing the data’s nonlinear relationships.

The MBA dataset’s analysis underscores the importance

of activation_function as 0.11, num_feedfor-

ward_layers as 0.07, and dropout_rate as 0.07,

indicating the need for a complex model architecture to

effectively learn from multivariate ECG time series.

In the SMAP dataset, gaussian_noise with

importance 0.53 highlights the model’s ability to handle

noisy environmental data effectively. Additionally,

batch_size with importance 0.07 influences the mod-

el’s performance, reflecting the impact of batch processing

on training.

The WADI dataset, with its extensive sensor network,

prioritizes activation_function with importance

0.16 and dropout_rate with importance 0.08 to

maintain model robustness and prevent overfitting in high-

dimensional spaces.

The recurrence of activation_function and

dropout_rate across datasets emphasizes their role in

nonlinear data transformation and regularization. This

pattern reflects the impact of data quality and structure on

the model’s learning efficacy.

This hyperparameter analysis illuminates the tailored

performance of TransNAS-TSAD across varied datasets,

with each dataset’s specifics dictating the importance of

particular hyperparameters. This not only affirms the

model’s adaptability but also its capacity for ongoing

enhancement, ensuring it remains adept at confronting the

evolving complexities of time series data.

5.3 Pareto front analysis for model optimization

Building upon the insights from the hyperparameter

importance analysis, the Pareto front optimization results

for the TransNAS-TSAD model are depicted in Fig. 4. The

Pareto front plots for the NAB, MBA, SMAP, and WADI

datasets underscore the delicate balance between model

complexity, as measured by the number of parameters, and

the model’s effectiveness, as quantified by the F1 score.

For the NAB dataset, the Pareto front indicates a dense

congregation of model configurations. A significant num-

ber of these configurations exhibit a high parameter count

without a corresponding increase in the F1 score, sug-

gesting a potential plateau in performance gains relative to

complexity. This observation prompts a critical evaluation

of model parsimony, encouraging the selection of simpler

Table 5 Hyperparameter optimization results: Detailed summary of the optimal training and architectural hyperparameters identified for each

dataset, demonstrating the adaptive precision of TransNAS-TSAD in time series anomaly detection

Arch and training params SMAP UCR MBA SWaT MSL SMD NAB WADI

Learning rate 0.0002128 0.0019997 0.003441 0.0000403 0.006192 0.0002273 0.006924 0.0015406

Dropout Rate 0.2353 0.4474 0.1795 0.3836 0.3730 0.1554 0.4560 0.2886

Dim Feedforward 101 124 41 42 121 86 10 24

Batch Size 32 48 16 32 32 48 96 128

Encoder Layers 2 1 3 2 2 3 1 2

Decoder Layers 1 2 1 3 3 1 2 1

Activation Func sigmoid leaky_relu tanh tanh leaky_relu sigmoid relu leaky_relu

Time Warping False True True True True False False True

Time Masking True True False True True False True False

Gaussian Noise 0.000151 0.027956 0.007925 0.058019 0.000428 0.000628 0.000119 0.001042

Linear Embedding False True False False True True True True

Phase Type 2phase iterative iterative 2phase 2phase 2phase iterative 2Phase

Self-Conditioning False True False True True False True False

Layer Norm False False False True True True False False

Pos. Enc. Type sinusoidal fourier fourier sinusoidal fourier sinusoidal sinusoidal sinusoidal

FFN Layers 1 1 1 3 2 3 1 1

Attn Heads 25 1 2 51 55 38 1 127

Window Size 10 20 14 22 26 12 18 26
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models that maintain performance while mitigating the risk

of over-fitting.

In the MBA dataset, the dispersion of trials across the

Pareto front reflects a comprehensive exploration of the

architectural space. Interestingly, several models achieve

commendable F1 scores without a proportionate surge in

parameters, highlighting efficient architectural choices that

capture the essential dynamics of ECG time series data

without unnecessary complexity.

The SMAP dataset presents an outlier model with a

substantial number of parameters yet achieving a high F1

score. This result may point to an overfitting scenario

where the model’s complexity does not translate into

generalized performance. Such an insight is invaluable for

guiding the model selection process toward architectures

that balance accuracy with generalization.

The Pareto front for the WADI dataset, characterized by

its complex sensor network, illustrates the necessity of

sophisticated models to enhance the F1 score. The trend of

increasing model complexity to achieve incremental

improvements in performance is evident, underlining the

inherent challenges of anomaly detection in high-dimen-

sional industrial control systems.

These Pareto fronts provide a visual and quantitative

tool for identifying optimal model configurations that

achieve a balance between accuracy and complexity (as the

converse of efficiency). They serve as a decision-making

Fig. 3 Analysis of hyperparameter importance for F1 score opti-

mization in TransNAS-TSAD across four datasets (NAB, MBA,

SMAP, and WADI). The plots illustrate the relative impact of

different hyperparameters on the F1 score, guiding the model’s fine-

tuning process for effective anomaly detection in diverse time series

datasets
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aid for selecting models that align with the practical

demands of anomaly detection in diverse environments.

The findings from the Pareto analysis are integral to the

ongoing development of the TransNAS-TSAD model

within the broader scope of our research. They contribute

to understanding how different model architectures per-

form across various datasets, and offer a pathway to

enhancing the model’s adaptability and ensuring its con-

tinued efficacy in the face of evolving data challenges.

6 Discussion: challenges and future
directions

TransNAS-TSAD represents a significant advancement in

anomaly detection within time series data, primarily

through its innovative integration of advanced adversarial

learning paradigms, NSGA-II optimization, and trans-

former architecture optimization. This confluence of tech-

nologies marks a substantial leap forward, particularly in

the detection of subtle and complex anomalies that have

typically eluded traditional methods.

A pivotal challenge addressed by TransNAS-TSAD is

the balance between detection accuracy and computational

efficiency. The NSGA-II algorithm plays a critical role in

Fig. 4 Pareto front plots illustrating the trade-off between F1 score and number of parameters for NAB, MBA, SMAP, and WADI datasets in the

TransNAS-TSAD optimization process
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optimizing model performance, without incurring exces-

sive computational demands. This aspect is particularly

crucial in real-world applications where resources are finite

and efficiency is paramount.

The adaptability of TransNAS-TSAD is further exem-

plified in its dynamic adjustment capabilities, allowing it to

effectively respond to the unique characteristics of differ-

ent datasets. This adaptability is essential in the domain of

anomaly detection, where dataset variability can present

diverse challenges. Additionally, the iterative self-adver-

sarial approach employed by TransNAS-TSAD signifi-

cantly enhances detection accuracy, showcasing the

model’s sophisticated capabilities in identifying anomalies.

However, challenges remain, particularly in the realm of

ensuring model generalization across a diverse array of

datasets. The Pareto front analysis within TransNAS-

TSAD has highlighted a delicate balance between model

complexity and effectiveness. Some configurations risk

overfitting, which is a pertinent issue for future research

endeavors. Improving generalization capabilities, without

compromising detection accuracy, remains a key area for

further investigation.

Looking ahead, several promising avenues for

enhancement and innovation present themselves. Enhanced

real-time data processing capabilities, particularly for

applications in environmental monitoring and industrial

control systems, represent a significant area for advance-

ment. Techniques from data assimilation and online

learning could be effectively integrated into TransNAS-

TSAD to address these challenges. Additionally, the

development and implementation of dynamic thresholding

strategies, such as the moving average thresholding (MAT)

and the incorporation of rolling statistics, offer exciting

prospects.

Furthermore, the exploration of hybrid systems that

synergize machine learning with simulation approaches,

along with advancements in neuro-symbolic systems, could

substantially enhance the model’s adaptability and effec-

tiveness across various scenarios. Finally, a human-centric

approach to machine learning, integrating human feedback

in a more intuitive and formalized manner, remains a sig-

nificant challenge. TransNAS-TSAD stands to benefit

greatly from such integration, enhancing not only the

interpretability but also the overall usability of the model in

real-world applications.

As the landscape of time series anomaly detection

continues to evolve, so too will the strategies and

methodologies embodied in TransNAS-TSAD, ensuring its

continued relevance and efficacy in this dynamic field.

7 Conclusion

TransNAS-TSAD signifies a notable contribution in the

realm of time series anomaly detection by merging trans-

former architecture with neural architecture search and

NSGA-II optimization, achieving superior performance

across diverse univariate and multivariate datasets. Its

robustness in accurately detecting anomalies highlights the

effectiveness of this integration, effectively addressing the

dual challenge of maintaining accuracy while ensuring

computational efficiency-key for practical applications.

This framework is further distinguished by its incorpora-

tion of advanced adversarial learning paradigms, enabling

the detection of nuanced anomalies and marking a signif-

icant step forward from traditional methods. As the land-

scape of data analysis evolves, TransNAS-TSAD not only

sets new performance benchmarks in anomaly detection

but also opens up exciting avenues for future research,

particularly in enhancing real-time processing and inte-

grating human-centric approaches to machine learning. The

principles and approaches embodied in TransNAS-TSAD

are paving the way for innovative applications across

various sectors, shaping the future of machine learning

with its groundbreaking methodologies.
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