
Transformation of Continuous Aggregation Join
Queries over Data Streams

Tri Minh Tran and Byung Suk Lee

Department of Computer Science, University of Vermont, Burlington VT 05405, USA
{ttran,bslee}@cems.uvm.edu

Abstract. We address continuously processing an aggregation join query over
data streams. Queries of this type involve both join and aggregation operations,
with windows specified on join input streams. To our knowledge, the existing re-
searches address join query optimization and aggregation query optimization as
separate problems. Our observation, however, is that by putting them within the
same scope of query optimization we can generate more efficient query execution
plans. This is through more versatile query transformations, the key idea of which
is to perform aggregation before join so join execution time may be reduced. This
idea itself is not new (already proposed in the database area), but developing the
query transformation rules faces a completely new set of challenges. In this paper,
we first propose a query processing model of an aggregation join query with two
key stream operators: (1) aggregation set update, which produces an aggregation
set of tuples (one tuple per group) and updates it incrementally as new tuples
arrive, and (2) aggregation set join, i.e., join between a stream and an aggrega-
tion set of tuples. Then, we introduce the concrete query transformation rules
specialized to work with streams. The rules are far more compact and yet more
general than the rules proposed in the database area. Then, we present a query
processing algorithm generic to all alternative query execution plans that can be
generated through the transformations, and study the performances of alternative
query execution plans through extensive experiments.

1 Introduction

In this paper, we consider the problem of processing continuous aggregation join
queries over data streams. These queries involve both join and aggregation operations.
(The aggregation may be a grouped aggregation.) Many aggregation join queries are
window-based because joins are blocking operators (i.e., needing a finite set of tuples).
A window, which restricts the number of tuples processed, is a common technique pro-
posed in many existing researches [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Window-based aggregation join queries (called simply “aggregation join queries”
in this paper) are needed in various data stream applications. For example, in a tele-
phone call tracking application [11], a telephony company may want to keep track of the
monthly total calling time on international calls made from each telephone number (i.e.,
subscriber) within a specific area code [11]. As another example, in a network traffic
management application [10], a network administrator may want to monitor packet data
flow through links between different networks [10]. For another example, in an online

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 330–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Transformation of Continuous Aggregation Join Queries over Data Streams 331

auction system which has continuous streams of auction items registered, members (i.e.,
account holders) signing in and bids made may be monitored to build some statistics of
auction activities. Below, let us take a look at an example query for this application.

Example 1. In an online auction application, we may have a continuous query running
on two data streams Bid(ts, auctionID, bidderID, bidPrice) and Auction(ts, auctionID,
sellerID, startPrice)1 and one relation Person(personID, name, state). Users may want
to know, for each auction created up to now by a seller from Vermont, the total number
of bids made in the last one hour. In this case, the query involves a three-way join
(involving two stream windows and one relation) and a grouped aggregation, grouped
by auctionID. The query can be expressed as an aggregation join query as follows.

SELECT A.auctionID, COUNT(B.*)
FROM Auction AS A [WINDOW UNTIL NOW],

Bid AS B [WINDOW 1 HOUR],
Person AS P

WHERE A.auctionID = B.auctionID
AND A.sellerID = P.personID
AND P.state= “VT”

GROUP BY P.auctionID; �

Naturally, efficient processing of these aggregation join queries is very important. One
premise in this paper is that, the queries can be processed more efficiently if the op-
timizations of join and aggregation are handled as one problem. Most of the existing
researches address them as separate problems: for example, joins in [3, 2, 1, 13, 14] and
aggregations in [15, 11, 16, 17, 18]. Two other existing researches [19, 15] address the
problem of efficiently processing aggregation join queries as one, but not as an op-
timization problem per se. Furthermore, their methods can only provide approximate
answers using sketching techniques [15] and discrete cosine transform [19], respec-
tively; thus, they cannot be applied to our problem since they are not window-based
and cannot handle grouped aggregations.

The premise mentioned above opens a door to generating a heuristically more effi-
cient query execution plan (QEP) through query transformations, and this is the focus
of this paper. In the initial QEP of an aggregation join query, joins are performed first
and then aggregation follows. The key idea of query transformation in this paper is to
perform an aggregation before join – in other words, push aggregation down to a join
input in a query execution tree. This transformation generally reduces the join input car-
dinality and results in a more efficient QEP, although this may not be always guaranteed.
In this paper we call the initial QEP a late aggregation plan (LAP) and the transformed
QEP an early aggregation plan (EAP), and call the pushed-down aggregation operator
an early aggregation operator.

Similar query transformation mechanism has been proposed in [20] and [21]. Their
mechanism, however, is for database aggregation join queries. Due to the streaming
nature of data, stream queries are fundamentally different from database queries. First,
tuples arrive continuously and hence the query output must be updated continuously as

1 Based on the schema used by Babu et al. [12].

332 T.M. Tran and B.S. Lee

well. Second, in many cases arriving tuples must be processed on-line and this requires
that the query must be processed incrementally as soon as tuples arrive. These differ-
ences make the transformation rules for database aggregation join queries inapplicable
to stream aggregation join queries.

In order to handle this problem, we introduce two key stream operators for query
processing: an aggregation set update (AS update) and an aggregation set join (AS
join). An AS update operator is used to update aggregate values incrementally as new
tuples arrive on the input. This operator works the same way as the group-by operator
mentioned in [9]. An AS join operator is used to perform a join between a new tuple
arriving at one stream and the output of an early aggregation operator (called an ag-
gregation set) at another stream. Note its distinction from a window join which uses a
window of tuples instead of an aggregation set. To our knowledge, the AS join operator
is a new operator introduced the first time through this paper. An AS update is preceded
by a window join in an LAP, whereas preceded by an AS join in an EAP.

There is a side effect of using the AS join operator. As mentioned earlier, we consider
a window-based join in this paper. A window join is processed as multiple one-way
window joins – that is, each new tuple arriving in one stream is matched with tuples in
the windows of the other streams. By performing early aggregations in an EAP, one or
more of these one-way window joins in an LAP is replaced by one-way AS joins in an
EAP. This results in different join output schemas depending on which window joins
are replaced, because the join output schema of a one-way AS join is different from
that of a window join or another one-way AS join. This side effect can be easily treated
by retaining a late aggregation operator on the query output even after placing an early
aggregation before joins. As a coincidental side benefit, this approach does not require
any constraint between streams, unlike the database case in which either a foreign key
join [20] or a functional dependency [21] is required.

In this paper we first formalize the notions of the aggregation set (AS) and the two
associated operators, AS update and AS join. Then, we propose compact query trans-
formation rules based on the approaches mentioned above, that is, supporting AS up-
date and AS join operators and retaining a late aggregation operator. Additionally, we
present a generic algorithm for executing all alternative QEPs (i.e., LAP and EAPs).
Note that the algorithm works just as well for a stream-relation join as a stream-stream
join, since a relation can be viewed as a window with no update of tuples. (We have also
algebraically proven the equivalence of the generated QEPs, but we omit the details in
this paper due to space limit. Interested readers are referred to [22].) Then, through
experiments we study the efficiencies of alternative QEPs for varying key parameters
(e.g., window size, stream rate, number of groups, join selectivity factor).

To our knowledge, this is the first work addressing query transformation on aggrega-
tion join query over data streams. Main contributions include a formal query processing
model that are suitable for an aggregation join query and transformation rules that are
compact and yet general enough not to assume any constraint among input streams.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 discusses some preliminary concepts. Section 4 describes the query process-
ing model and the key operators. Section 5 proposes the query transformation rules and

Transformation of Continuous Aggregation Join Queries over Data Streams 333

presents the generic query processing algorithm. Section 6 presents the experiments and
the results. Section 7 concludes the paper.

2 Related Work

We discuss related work in two areas: (1) processing join queries and aggregation
queries in data streams and (2) handling early aggregations in the database.

Processing Join and Aggregation in Data Streams

As far as we know, all of the existing data stream query processing systems – such
as Aurora [23], STREAM [24], TelegraphCQ [25], NiagaraCQ [26], Stream Mill [27],
Nile [28], Tribeca [29] and GigaScope [30] – process aggregation join queries by han-
dling join and aggregation separately. Specifically, in all these systems an aggregation
join query is always processed by first processing the join and then passing the out-
put of the join onto the aggregation operator. In Aurora [23] and STREAM [24], query
optimizers use query transformations by reordering filter operators (i.e., selection) and
join operators in a QEP to generate equivalent QEPs. Their reordering, however, is not
applicable between a join operator and an aggregation operator. In the other systems
query optimizers do not even use query transformation at all. Thus, to our knowledge,
our work is the first to allow reordering the join and aggregation operators.

Aside from these comprehensive data stream management systems, join process-
ing and aggregation processing have been researched quite extensively. A large num-
ber of them focus on window join processing [1, 2, 13, 14, 3, 31, 8, 32]. In [1], Kang
et al. propose sliding window two-way join algorithms and develop a unit-time cost
model that estimates the execution time of the join algorithms. Golab et al. [2] ex-
tend Kang et al.’s work to multi-way window join algorithms and propose join ordering
heuristics to reduce the cost. Viglas et al. [13] propose a pipelined multi-way window
join called MJoin. An MJoin assigns a join order for each input stream and generates
join output without maintaining intermediate results. In contrast to MJoin, an XJoin
proposed in [14] is a multi-way join executed in a tree of two-way joins and main-
tains a fully-materialized join results for each intermediate two-way join. Some other
researches [3, 31, 33] address approximate window join processing in the case of lim-
ited system resources. None of these window join researches considers an aggregation
following a join operator.

For window aggregation processing, Li et al. [4] propose a generic window concept
and present an efficient window aggregation technique which computes the aggregate
values in one pass. The key idea is to assign to each tuple a range of the identifiers of
windows to which it belongs. Zhang et al. [34] address the problem of processing multi-
ple aggregation queries that differ only in grouping attributes. Some other researches ad-
dress computing approximate answers to an aggregation query using sampling [35,36],
wavelets [18, 16], histograms [11, 17], and sketching [15, 37].

As mentioned in Introduction, two researches [19, 15] address the problem of pro-
cessing the same type of query as ours. Their approaches, however, are to use approx-
imation techniques using sketching [15] and discrete cosine transform [19]. Moreover,
they do not consider window-based and grouped aggregations in their problems.

334 T.M. Tran and B.S. Lee

Handling Early Aggregation in the Database

The early aggregation idea stems from the idea proposed for database queries [20, 38,
21]. The key idea of performing an early aggregation is to reduce the number of tu-
ples participating in subsequent joins. In [20] the authors present query transformation
rules for three cases depending on which relation the grouping, aggregation, and join
attributes belong to. The authors also introduce a new operator called aggregate join
that performs a join between one relation and the output of an early aggregation on
the other relation. Yan et al. [38, 21] consider more general transformation cases in
which the grouping attributes and the aggregation attributes may belong to more than
one relation. In addition, instead of introducing a new operator as in [20], they use a
“query rewriting” technique which involves reordering the join and aggregation oper-
ators and inserting an additional projection operator to compute the aggregate value
of the reordered operators. As already mentioned, our work is fundamentally different
from their works, as we deal with unbounded continuous data streams, not bounded
finite set of tuples (i.e., relations).

3 Preliminaries

In this section, we present some key concepts needed to understand the rest of the paper.

Data Streams. We consider a data stream S, of an ordered sequence of tuples. Each
tuple in the stream has the schema S(TS, X1, X2, . . . , Xd), where TS is a timestamp
attribute and X1, X2, . . . , Xd are non-timestamp attributes. We denote a tuple of the
above schema as s(ts, x1, x2, . . . , xd), where ts is the value of TS and xi is the value
of Xi for each i = 1, 2, . . . , d. (We use an upper-case letter to denote an attribute and a
lower-case letter to denote the value of an attribute.) We assume that the tuples arrive in
the order of timestamp; handling out-of-order tuples is beyond the scope of this paper.

Windows. Three types of window are considered in our processing model. They are
classified as in [4] depending on how the tuples in the window are updated: sliding
window, tumbling window, and landmark window. A sliding window partitions an in-
coming stream into overlapping blocks, and a tumbling window does that into disjoint
consecutive blocks. A landmark window accumulates all tuples that have arrived since
the start of the query.

Definition 1 (Window). A window WS of size T on stream S at time t is defined
as a set of tuples whose timestamps are in the range of [t − T, t]. That is, WS(t) =
{si | t − T ≤ si.ts < t}. �
Definition 2 (Window increments and decrements). Given a window WS(t1) at time
t1, a window increment, denoted as W+

S (t1, t2), is the set of tuples added to the window
during a time interval [t1, t2], and a window decrement, W−

S (t1, t2), is the set of tuples
removed from the window during the same time interval. �
Given a window WS(t1) at time t1, and a window increment W+

S (t1, t2) and decrement
W−

S (t1, t2) between t1 and t2, the window WS(t2) at time t2 is computed as:

WS(t2) = WS(t1) ∪ W+
S (t1, t2) − W−

S (t1, t2)

Transformation of Continuous Aggregation Join Queries over Data Streams 335

Given the above definitions of window increments and decrements, the tumbling
window and the landmark window can be considered as special cases of the sliding
window. Figure 1 illustrates the three window types with their corresponding incre-
ments and decrements.

tt1 t2 tt1 t2 tt2

WS(t1)

WS(t2)

t1

WS(t1)
WS(t2) WS(t2)WS(t1)

(a) Sliding window (b) Tumbling window (c) Landmark window, WS
-(t1, t2) = Ø

WS
-(t1, t2)

WS
+(t1, t2)

WS
+(t1, t2)

WS
-(t1, t2) WS

+(t1, t2)

tt1 t2 tt1 t2 tt2

WS(t1)

WS(t2)

t1

WS(t1)
WS(t2) WS(t2)WS(t1)

(a) Sliding window (b) Tumbling window (c) Landmark window, WS
-(t1, t2) = Ø

WS
-(t1, t2)

WS
+(t1, t2)

WS
+(t1, t2)

WS
-(t1, t2) WS

+(t1, t2)

Fig. 1. Windows of different types (t1 < t2)

Window Joins. A two-way window join [1] between two streams S1 and S2 with win-
dows WS1 and WS2 , respectively, is computed as follows. For each new tuple s1 in a
window increment of S1, s1 is inserted into WS1 and any expired tuples are removed
from WS1 . Then, WS2 is probed for matching tuples of s1 and matching tuples are ap-
pended to the join output stream. The computation is symmetric for each new tuple s2 in
a window increment of S2. Generalized from this, in a multi-way join among m (m > 2)
streams, for each new tuple sk in a window increment of Sk, matching tuples are found
from the other m − 1 windows and then appended to the output stream. We assume that
the join computation is fast enough to finish before the other m−1 windows are updated.

4 Query Processing Model

In this section we present a model for continuous and incremental processing of aggre-
gation join queries. Key components of the model are the aggregation set, aggregation
set update (AS update) operator and the aggregation set join (AS join) operator. This
model provides a basis for the query transformation rules and the query processing
algorithm presented in Section 5.

The concepts of aggregation set and AS update operator are the same as the con-
cepts of window aggregate and group-by operator mentioned in [9]. These concepts
are refined and presented formally in this paper using the notions of window increment
and window decrement. The AS join is a combination of the window join defined in
Section 3 and the “aggregate join” proposed for database aggregation join queries in [20].

Aggregation Sets
Aggregation of the tuples in a window produces a set of tuples, one tuple for each group.
We call this set of tuples an aggregation set (AS).

Definition 3 (Aggregation set). Consider a set of tuples in a window at time t, denoted
as WS(t). Additionally, consider an aggregation operator, denoted as GAF (A)(WS(t))
where G ≡ (G1, . . . , Gp) is a list of grouping attributes, A is an aggregation attribute,
and F is an aggregation function on A. Then, an aggregation set is defined as a set of
tuples {(g1, . . . , gp, v)} where gi is a value of Gi (i = 1, 2, . . . , p) and v is an aggre-
gate value computed as F (A) for the group (g1, . . . , gp) over WS(t). We denote the

336 T.M. Tran and B.S. Lee

schema of an aggregation set as AS(G, F (A)); here, F (A) denotes an attribute whose
value is v. �

Aggregation Set Update

An aggregation set update operator is used to update the AS as the window content
changes. This is done incrementally without re-evaluating the whole window content.

Definition 4 (Aggregation set update). Consider an aggregation set AS ≡ GAF (A)

(WS(t1)) at time t1, a window increment W+
S (t1, t2) and a window decrement

W−
S (t1, t2) at time t2 (> t1). Then, an AS update operation, denoted by GUF (A)(AS,

W+
S (t1, t2), W−

S (t1, t2)), returns an updated aggregation set AS′ resulting from the
following updates on AS:

– For each tuple s in W+
S (t1, t2), if there exists a tuple l in AS such that l.G = s.G

(i.e., s belongs to a group in AS) then update the aggregate value l.F (A) as follows:
if F is COUNT then increase l.F (A) by one; if F is SUM then increase l.F (A)
by s.A; if F is MIN and s.A < l.F (A) or F is MAX and s.A > l.F (A) then
set l.F (A) to s.A, otherwise no change; (if F is AVG then compute l.F (A) by
maintaining both COUNT and SUM). If there does not exist such a tuple l in AS,
then insert a new tuple l′ with l′.G set to s.G and l′.F (A) set to 1 if F is COUNT
or to s.A if F is in {SUM, AVG, MIN, MAX}.

– For each tuple r in W−
S (t1, t2), find a tuple l in AS such that l.G = r.G (i.e., r

belongs to a group in AS), and then update the aggregate value l.F (A) as follows:
if F is COUNT then decrease l.F (A) by one; if F is SUM then decrease l.F (A)
by s.A; if F is MIN or MAX and r.A = l.F (A) then recompute l.F (A) from the
set WS(t1) − {r}, otherwise no change. �

As we see from the above definition, updating an aggregate value l.F (A) for each tuple
r ∈ W−

S (t1, t2) requires re-evaluating the whole window only if F is MIN or MAX and
r.A = l.F (A). Note that even this situation happens only with a sliding window and
not with a tumbling or a landmark window. In the case of a tumbling window, a window
decrement is discarded and a new aggregation set is generated using the new window
increment only. In the case of a landmark window, there is no window decrement.

Aggregation Set Joins

We first present the coalescing property [20] of an aggregation function; this property
will be used to define the aggregation set join in Definition 6.

Definition 5 (Coalescing property). Consider an aggregation function F on an at-
tribute A. The aggregate of c tuples that have the same value, a, of A is computed using
the following function f(c, a) depending on the type of F .

f(c, a) =

⎧
⎨

⎩

a ∗ c if F ≡ SUM
c if F ≡ COUNT
a if F ∈ {AVG, MAX, MIN} �

Transformation of Continuous Aggregation Join Queries over Data Streams 337

An AS join handles a join between a stream S and an aggregation set AS and computes
the aggregate value of a join output tuple using the coalescing property.

Definition 6 (One-way aggregation set join). Consider two streams S1 and S2 with
their window WS1(t1) and WS2(t1), respectively, at time t1. Additionally, consider the
window increment W+

S1
(t1, t2) and decrement W−

S1
(t1, t2) of S1 at time t2 (> t1). Now,

given an aggregation F (A) specified in the query, let the aggregation set AS2(t1) on
stream S2 be computed as follows depending on whether A is in the schema of S2 or not.

AS2(t1) =
{

GAF (A)(WS2(t1)) if A belongs to S2. (See Definition 3.)
GACOUNT (A)(WS2(t1)) otherwise

Then, a one-way AS join from S1 to AS2 via join attributes S1.J1 and AS2.J2, denoted

as S1
F (A)
�� J1=J2 AS2, is computed as follows.

For each tuple s1 in W+
S1

(t1, t2) and for each tuple r1 in W−
S1

(t1, t2),

1. Find matching tuples from AS2(t1). (Denote each tuple as l.)
2. Return a sequence of tuples where for each tuple (u) the value of F (A) is

set as follows.

u.F (A) =
{

l.F (A) if A belongs to S2
f(c, a) otherwise

where a is the value of s1.A (or r1.A), c is the number of tuples aggre-
gated to l in AS2, and f is the function in the definition of the coalescing
property (Definition 5). �

An extension to a multi-way AS join is straightforward. That is, one-way AS join is
repeated from each stream (Sk, (k ∈ {1, 2, · · · , m}) to the aggregation sets ASi on the
other streams Si, i �= k.

{(ts, A.auctionID,…)}WA {(ts, B.auctionID,…)}

{(A.auctionID, c)} ASout(A.auctionID, COUNT(B.*))

Auction(ts, auctionID,…) A Bib(ts, auctionID,…) B

WB

{(B.auctionID, c)} AS2 (B.auctionID, COUNT(B.*))

(ts,A.auctionID,B.auctionID,c)

COUNT(B.*)

{(ts, A.auctionID,…)}WA {(ts, B.auctionID,…)}

{(A.auctionID, c)} ASout(A.auctionID, COUNT(B.*))

Auction(ts, auctionID,…) A Bib(ts, auctionID,…) B

WB

{(B.auctionID, c)} AS2 (B.auctionID, COUNT(B.*))

(ts,A.auctionID,B.auctionID,c)

COUNT(B.*)

Fig. 2. An example one-way AS join

338 T.M. Tran and B.S. Lee

Example 2. Given the query in Example 1, a one-way AS join between the stream
Auction A and the aggregation set AS2 on Bid B shown in Figure 2:

A
COUNT (∗)

�� A.auctionID=B.auctionID B

where AS2 ≡ B.auctionIDACOUNT (B.∗)(WB(t)). AS2 is then a set of tuples,
{(B.auctionID, c)}. For each tuple (ts, A.auctionID, ...) in W+

A , the one-way AS
join from A to AS2 produces a sequence of output tuples u(ts, A.auctionID,
B.auctionID, c) where A.auctionID = B.auctionID and the aggregate value
equals c (= f(c, a) in Definition 5). Similar steps are taken for each tuple in W−

A . �

5 Query Transformations

In this section, we first propose transformation rules for generating EAPs. We then
present a generic algorithm for executing a query execution plan (QEP), i.e., a late
aggregation plan (LAP) or an early aggregation plan (EAP).

5.1 Transformation Rules

In this section, we propose query transformation rules developed for aggregation join
queries on data streams. As mentioned in the Introduction, there are two technical prob-
lems in order to make query transformation rules work on data streams. First, the ag-
gregation sets in a QEP should be updated incrementally and continuously, both before
and after the transformation. Second, the transformation should cope with the different
schemas of one-way join outputs in an EAP, as the join output schema of one-way AS
join in an EAP differs according to the schema of the aggregation set generated by an
early aggregation operator. Since a join output is a union of multiple one-way (AS or
window) join outputs but join output schema of a one-way AS join is different from
that of a one-way window- or another AS join, the different schemas of one-way join
outputs hinder the union.

To handle the first problem, we use the AS update and AS join operators introduced
in Section 4. Precisely, only the AS update operator is needed in an LAP and both
operators are needed in an EAP. To handle the second problem, in the transformed
plan we always keep a late aggregation (LA) operator in its original position. This LA
operator guarantees that the schema of the aggregation join query output is the same
even though the schemas of one-way join outputs are different. This guarantee is due to
the fact that two different tuples with the same grouping attribute value are put into the
same group.

In an EAP, early aggregation (EA) operators may be placed on any of the input
streams. Once placed on a certain input stream, the operator generates an AS and, thus,
allows for using an AS join to the AS instead of the window join to the input stream
window. Determining the input streams to place EA operators on is based on the re-
sulting EAPs’ execution times as estimated using cost models2. For those EA operators
inserted, their grouping attributes and aggregation functions are determined using the
following EA operator construction rules.

2 In this paper, we focus on query transformations only, cost models are presented in [22].

Transformation of Continuous Aggregation Join Queries over Data Streams 339

Rule 1 (Grouping attribute in an EA operator)
If the EA operator is placed on a stream that has some or all of the grouping attributes
in the query, then use these and the join attributes as the grouping attributes of the EA
operator. Otherwise, use only the join attributes as the grouping attributes of the EA
operator. �

Rule 2 (Aggregation function in an EA operator)
If the EA operator is placed on a stream which has all the aggregation attributes in the
query, then use the aggregation function in the query as the aggregation function of the
EA operator. If the stream has only some (not all) aggregation attributes in the query,
then use both the aggregation function in the query and COUNT(*) as the aggregation
function of the EA operator. Otherwise, use only COUNT(*) as the aggregation function
of the EA operator. �

Note that these transformation rules are far more compact and yet more general than
the transformation rules presented in the database case [20, 21]. For instance, our rules
are applied to each stream without regard to other streams, whereas the database rules
are applicable only if certain constraints hold among relations, such as a referential
integrity [20] or a functional dependency [21]. Moreover, our rules do not depend on
which streams the grouping attributes, join attributes and aggregation attributes belong
to. This thus covers all the cases considered in [21].

Figure 3 illustrates transformations of an aggregation join query considering the most
general case of a two-way join, i.e., both streams have grouping attributes and aggre-
gation attributes. (This case can be reduced to special cases as considered in [20], in
which only one stream has grouping (or aggregation) attributes, by setting one of the
grouping (or aggregation) attributes empty.) The figure shows all four possible QEPs.
The reader is asked to verify that these illustrated transformations conform to the rule
for constructing an EA operator.

With the window join and AS join in place, the four QEPs in Figure 3 are equiv-
alent. (See [22] for a proof of the equivalence.) The following example illustrates the
equivalence of two QEPs shown in Figures 3a and 3c.

Example 3 (LAP vs. EAP). Consider the QEPs shown in Figures 3a and 3c, and as-
sume that both aggregation function F1 and F2 are SUM. Then, the query output ASout

is updated in each QEP as follows. In LAP (Figure 3a), a window join is performed
from S1 to WS2 . Assume that, for each tuple s1(x1, g1, j1, a1) ∈ W+

S1
, the tuple

matches c tuples, {s2(x2i , g2i , j2, a2), i = 1, 2, ..., c} where s2.j2 = s1.j1, in WS2 .
Then, the window join generates c output tuples, {u(x1, g1, j1, a1, x2i , g2i , j2, a2i)|i =
1, 2, ..., c, j2 = j1}. Further assume that, among these c output tuples, cg tuples have
the same value, g2, for g2i , and hence the same value, (g1, g2), for (g1, g2i). Then,
for a tuple in AS(G1, G2, SUM(A1), SUM(A2)) whose value of (G1, G2) equals
(g1, g2), the value of SUM(A1) is increased by a1 ∗ cg and the value of SUM(A2) is
increased by v2 =

∑
a2i , i = 1, 2, ..., cg. In the second QEP (EAP in Figure 3c), an

AS join is performed from S1 to AS2. Assume that, for each tuple s1(x1, g1, j1, a1),
it matches one tuple, l2(g2, j2, v2, cg) where j2 = j1 and

∑
a2i , i = 1, 2, ..., cg, in

AS2(G2, J2, SUM(A2), COUNT (∗)). Then, the AS join generates an output tuple
u(x1, g1, j1, a1 ∗ cg, g2, j1, v2, cg) (see Definition 5 for the coalesced value a1 ∗ cg).

340 T.M. Tran and B.S. Lee

(d) Early aggregation plan (EAP11)

(a) Late aggregation plan (LAP)

(c) Early aggregation plan (EAP01)

(b) Early aggregation plan (EAP10)

Ws1

Ws2
G1,J1UF1(A1), COUNT(*)

J1= J2

AS1

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

Two-way AS join

J1= J2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2) S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1)

G1, G2AF1(A1), F2(A2)

Ws1

Ws2

G2, J2AF2(A2), COUNT(*)

J1= J2

AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F2(A2)

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

G1,J1AF1(A1), COUNT(*)
G2, J2AF2(A2), COUNT(*)

J1= J2

AS1 AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1), F2(A2)

G1, G2AF1(A1), F2(A2)

ASout

ASout

ASoutASout

(EA)

(EA) (EA) (EA)

(d) Early aggregation plan (EAP11)

(a) Late aggregation plan (LAP)

(c) Early aggregation plan (EAP01)

(b) Early aggregation plan (EAP10)

Ws1

Ws2
G1,J1UF1(A1), COUNT(*)

J1= J2

AS1

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

Two-way AS join

J1= J2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2) S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1)

G1, G2AF1(A1), F2(A2)

Ws1

Ws2

G2, J2AF2(A2), COUNT(*)

J1= J2

AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F2(A2)

G1, G2AF1(A1), F2(A2)

Ws1 Ws2

G1,J1AF1(A1), COUNT(*)
G2, J2AF2(A2), COUNT(*)

J1= J2

AS1 AS2

S1(X1, G1, J1, A1) S2(X2, G2, J2, A2)

F1(A1), F2(A2)

G1, G2AF1(A1), F2(A2)

ASout

ASout

ASoutASout

(EA)

(EA) (EA) (EA)

Gi: grouping attributes; Ji: join attributes; Ai: aggregation attributes; Xi: the other attributes;
ASout, AS1, AS2: aggregation sets.

An arrow from an input stream to the window of another stream denotes a window join (see
Section 3) and an arrow from an input stream to the aggregation set of the window on another
stream denotes an AS join (Definition 6).

Fig. 3. Transformations of aggregation (two-way) join QEPs on data streams

Transformation of Continuous Aggregation Join Queries over Data Streams 341

Algorithm: QEP Execution
Inputs:

– WS1 , WS2 , · · · , WSm : join windows.
– ASi1 , ASi2 , · · · , ASip : EA output aggregation sets (p ≤ m).
– W +

Sk
: window increment on Sk.

– W −
Sk

: window decrement on Sk.
– ASout: query output aggregation set.

Output:

– ASout: updated query output aggregation set.
Procedure:
Begin

For each tuple sk in W +
Sk

{
1. If there exists an EA operator on Sk, then with sk find its group in ASk and update

the aggregate value. (AS update on EA output)
2. Add sk to WSk . (Window update)
3. With sk, find matching tuples in either ASj or WSj for each j = 1, 2, ..., k − 1, k +

1, ..., m, depending on whether an EA operator is placed on Sk (then ASj) or not
(then WSj). (Window join or AS join)

4. For each tuple produced in step 3, find its group in ASout and update the aggregate
value. (AS update on query output)

}
For each tuple rk in W −

Sk
{

5. If there exists an EA operator on Sk, then with rk find its group in ASk and update
the aggregate value. (AS update on EA output)

6. Remove rk from WSk . (Window update)
7. With rk, find matching tuples in either WSj or ASj for each j = 1, 2, ..., k − 1, k +

1, ..., m, depending on whether an EA operator is placed on Sk (then ASj) or not
(then WSk). (Window join or AS join)

8. For each tuple produced in step 7, find its group in ASearly and update the aggregate
value. (AS update on query output)

}
End

Fig. 4. A generic QEP-execution algorithm

This tuple is input to the AS update operator, which then makes the same update (i.e.,
a1 ∗ cg and v2) on the aggregation set AS. �

5.2 Generic Algorithm for Query Executions

Figure 4 outlines a high level algorithm for processing tuples with a multi-way join
among m (m ≥ 2) streams S1, S2, . . . , Sm.3 The algorithm is generic enough to cover
any of the possible QEPs. It updates the output aggregation set ASout for each tuple sk

in the window increment W+
Sk

and each tuple rk in the window decrement W−
Sk

. The
algorithm performs (1) AS updates on the output of an EA operator in steps 1 and 5 if
there exists an EA operator on Sk, (2) window updates in steps 2 and 6, (3) either AS

3 This algorithm processes tuples in pipelined fashion, but it may be queue-based as well. The
query transformation works well with both types of algorithms.

342 T.M. Tran and B.S. Lee

joins or window joins in steps 3 and 7 depending on whether an EA operator is placed
on Sk, and (4) AS updates on the query output ASout in steps 4 and 8.

6 Performance Study

In this section, we study the performance of the proposed query transformations, with a
focus on the QEP efficiencies. There are two objectives of the experiments: (1) examine
the performance trends of the alternative QEPs for varying key parameter values; (2)
show the cases of each alternative QEP being the most efficient one in relation to the
parameter values. Section 6.1 describes the experimental setup, and Section 6.2 present
the experiments conducted and their results.

6.1 Experimental Setup

We have built an operational prototype that implements the QEP execution algorithm
(see Figure 4). The prototype has been written in Java 2 SDK 1.4.2, and runs on a
Linux PC with Pentium IV 1.6GHz processor and 512MB RAM. For a join method,
it supports hash join and nested loop join and for an aggregation method, it supports
hash-based grouping. Additionally, it executes a join using sliding windows, of which
tumbling and landmark windows are only special types (see Section 3).

Inputs to the prototype are data streams generated using a data generator4 (described
below), the join arity (i.e., number of data streams) (m), the size of each join window (w1,
w2), and the QEP case number (0 for LAP, 1, 2, 3, ...2m −1 for EAPs). It then processes
the input stream data according to the specified QEP and reports the execution time.

The data generator generates stream data sets as a sequence of tuples. Inputs to the
data generator are the number of tuples in the data set, the number of attributes in the
stream schema, the stream rate (i.e., number of tuples per second), the number of groups
in the stream, and the number of distinct values of the join attribute. (A join selectivity
factor equals the reciprocal of the number of distinct values of the join attribute.) Each
tuple has a timestamp attribute, whose value is determined based on the stream rate.
It also has other attributes such as join attribute, grouping attribute and aggregation
attribute. Values of each of these attributes are assigned randomly with the uniform
distribution. We use the string data type for grouping and join attributes and the integer
data type for aggregation attribute.

6.2 Experiments and Results

In this section, we first investigate the efficiencies of alternative QEPs by varying
streams statistics (i.e. stream rates, join selectivities, number of groups and window
sizes). Then, we build showcases of different alternative QEPs being the most efficient
ones. In all the experiments, the execution time of a QEP is reported per time-unit (sec-
ond). For this, we measure the execution time for tuples arriving in 1000 milliseconds.
We run each experiment three times, for one time-unit at each run, and compute the
average execution time (in seconds).
4 The data generator allows us to vary the input stream statistics so that we can evaluate the

efficiencies of alternative QEPs with different input parameters.

Transformation of Continuous Aggregation Join Queries over Data Streams 343

 2

 4

 6

 8

 10

 1000 2000 3000 4000 5000

E
xe

cu
tio

n
tim

e
(s

ec
)

Window size (tuples)

LAP
EAP10
EAP01
EAP11

 0

 2

 4

 6

 8

 10

 12

 14

 16

3 32 33 34 35 36 37 38 39

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of groups

LAP
EAP10
EAP01
EAP11

(a) Varying window size w1 , w2 = 2000. (b) Varying number of groups g1 , g2 = 1.

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800 900

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.0005 0.005 0.05 0.5

E
xe

cu
tio

n
tim

e
(s

ec
)

Join selectivity factor

LAP
EAP10
EAP01
EAP11

(c) Varying input stream rate λ1 , λ2 = 500. (d) Varying join selectivity factor σ1 = σ2 .
EAP01: an EA operator on S2 only, EAP10: an EA operator on S1 only, EAP11: EA operators on both S1 and S2

Default setting: λ1 = 300, λ2 = 300, w1 = 5000, w2 = 5000, g1 = 150, g2 = 1, σ1 = 0.1, σ2 = 0.1

Fig. 5. Execution times of QEPs (using two-way nested loop join)

Experiment 1: Query Execution Costs for Varying Stream Statistics
In each set of experiments, we measure the execution time of QEPs by varying one of
the four pairs of parameters: (1) window size (w1, w2), (2) number of groups (g1, g2),
(3) stream rate (λ1, λ2), and (4) join selectivity factor (σ1, σ2). Furthermore, for each
pair of parameters we vary only the parameters of stream S1 (i.e., w1, g1, λ1 and σ1),
since the QEPs are symmetric.

Figure 5 shows the results from the four sets of experiments. The curves in each
graph represents the execution times of four alternative QEPs (i.e., LAP, EAP01, EAP10,
EAP11). Due to space limit, we present the results for two-way nested-loop joins only;
the results from using hash joins and three-way joins show the same trends. Interested
readers are referred to [22] for the results of more comprehensive experiments.

Let us now examine the results of each set of experiments for varying each of the four
parameters (i.e., window size, number of groups, stream rate, join selectivity factor). In
the following discussion, we use the name of a QEP (i.e., LAP, EAP01, EAP10, EAP11)
to refer to the cost of executing the QEP.

In Figure 5a, as window size w1 increases, LAP and EAP01 increase linearly. In
contrast, EAP10 and EAP11 initially increase linearly but then stay constant as w1
exceeds 2000. The reason for this is as follows. In LAP and EAP01, there is no EA
operator placed on S1 and, therefore, the execution time depends on w1 only. Unlike

344 T.M. Tran and B.S. Lee

this, in EAP10 and EAP11 which have an EA operator placed on S1, the cost stops
depending on w1 but starts depending on aggregation set size (i.e., |AS1|) (which is
fixed) when w1 is greater than 2000. Additionally, EAPs are always better than LAP
because in the experiment, aggregation set sizes |AS1| and |AS2| are set smaller than
window size w1 and w2.

Figure 5b shows the results of varying the number of groups on stream S1 by a
factor of 3. In this experiment, there is no grouping attribute in stream S2 and, thus,
g2 equals 1. In the figures, as the number of groups g1 increases, EAP10 increases and
approaches LAP and, likewise, EAP11 increases and approaches EAP01. The initial
increase of EAP10 and EAP11 is caused by the increase of the aggregation set size
(|AS1|). But, as g1 becomes large enough (g1 = 38), |AS1| stops depending on g1 and
starts depending on |W1|. As a result, EAP10 and EAP11 lose the advantage of placing
an EA operator on S1.

Figure 5c shows the results of varying stream rate of S1 while fixing the stream
rate of S2. In the figures, as λ1 increases, the costs of all four QEPs increase linearly
but LAP and EAP10 increase faster than EAP01 and EAP11. The reason is that the

 0

 0.5

 1

 1.5

 2

 2.5

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

g1 = 1500, g2 = 1500, g1 = 1, g2 = 1500,

σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500 σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500

(a) LAP is the best. (b) EAP10 is the best.

 0

 0.5

 1

 1.5

 2

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

 0

 5

 10

 15

 20

 25

 30

 100 150 200 250 300 350 400 450 500

E
xe

cu
tio

n
tim

e
(s

ec
)

Stream rate (tuples/sec)

LAP
EAP10
EAP01
EAP11

g1 = 1500, g2 = 1, g1 = 150, g2 = 150,

σ1 = 0.01, σ2 = 0.01, w1 = 500, w2 = 500 σ1 = 0.1, σ2 = 0.1, w1 = w2 = 2000

(c) EAP01 is the best. (d) EAP11 is the best.
EAP01: an EA operator on S2, EAP10: an EA operator on S1, EAP11: EA operators on both S1 and S2.

Default setting: 100 ≤ λ1 ≤ 500, λ2 = 500

Fig. 6. Showcases of different best QEPs (using two-way nested loop join)

Transformation of Continuous Aggregation Join Queries over Data Streams 345

per-tuple processing time for each tuple from S1 in EAP01 and EAP11 is shorter than
that in LAP and EAP10, as it takes shorter to find matching tuples in an aggregation set
AS2 instead of W2.

The results in Figure 5d is for the case of varying join selectivity factors σ1 and σ2
(σ1 = σ2). As the join selectivity factors increase, the costs of all QEPs increase except
for EAP11. The reason is that the cost of window joins in LAP, EAP01 and EAP10
depends on the join selectivity factors but this is not the case for the aggregation set join
in EAP11. Moreover, as the join selectivity factors increase, |AS1| and |AS2| decrease,
thus the cost of EAP11 decreases.

Experiment 2: Showcases of Different Best QEPs
Intuitively, the advantage of an early aggregation is more highlighted when the number
of groups (gi) is smaller or the join selectivity factor (σi) is larger or the window size
(wi) is larger. Specifically, a decrease in the number of groups leads to a decrease of an
EA output aggregation set size in an EAP, thus enhancing the benefit of join reduction
due to early aggregation; on the other hand, an increase in the join selectivity factor or
an increase in the window size leads to an increase of join output tuples in an LAP, thus
increasing the penalty of late aggregation.

Figure 6 shows the cases different QEPs are chosen as the most efficient one. The
result confirms the intuition. That is, EAP11 is the best when both g1 and g2 are low,
EAP10 is the best when g1 is low and g2 is high, EAP01 is the best when g1 is high and
g2 is low, and LAP (or, “EAP00”) is the best when both g1 and g2 are high. In Figure 6d
the scale of the graph is larger than those in the other figures (Figure 6a, b and c). This
is because the execution times are much longer due to the higher join selectivity factors
and larger window sizes used to generate the showcase.

7 Conclusion

In this paper, we focused on the problem of continuously processing an aggregation
join queries on data streams using query transformations. We proposed an incremental
query processing model with two key stream operators: aggregation set update and
aggregation set join. Based on the processing model, we presented query transformation
rules to generate an early aggregation plan equivalent to a late aggregation plan. We then
developed an algorithm for executing the query execution plans. Finally, we conducted
a set of experiments to study the performances of alternative QEPs.

Query transformation has been studied extensively in databases but not in data
streams. To our knowledge, this is the first work addressing query transformation on
aggregation join queries. Our query transformation is compact and yet generic to be
applicable to each stream separately. The results of our experiments indicate that the
query transformation indeed generates alternative QEPs of which the efficiencies are
distinct enough to influence a stream query optimizer.

Query transformation is one step in query optimization. Thus, the future work in-
cludes to develop a comprehensive framework that integrates other components such as
cost models for alternative QEPs and efficient search algorithms for finding an optimal
QEP. The optimizer can run adaptively to switch to a more efficient QEP when input
statistics (e.g., stream rates, number of groups, join selectivity) change significantly.

346 T.M. Tran and B.S. Lee

References

1. Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating window joins over unbounded streams.
In: Proceedings of ICDE, Bangalore, India, pp. 341–352. IEEE Computer Society Press,
Los Alamitos (2003)

2. Golab, L., Ozsu, M.T.: Processing sliding window multi-joins in continuous queries over
data streams. In: Proceedings of VLDB, pp. 500–511. ACM Press, New York (2003)

3. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams. In:
Proceedings of ACM SIGMOD, San Diego, California, pp. 40–51. ACM Press, New York
(2003)

4. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation tech-
niques for window aggregates in data streams. In: Proceedings of SIGMOD, pp. 311–322.
ACM Press, New York (2005)

5. Ayad, A., Naughton, J.F.: Static optimization of conjunctive queries with sliding windows
over infinite streams. In: Proceedings of ACM SIGMOD, pp. 419–430. ACM Press, New
York (2004)

6. Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates. In: Pro-
ceedings of VLDB, pp. 336–347. Morgan Kaufmann, San Francisco (2004)

7. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows. In: Pro-
ceedings of PODS, pp. 286–296. ACM Press, New York (2004)

8. Ding, L., Rundensteiner, E.A.: Evaluating window joins over punctuated streams. In: Pro-
ceedings of CIKM, pp. 98–107. ACM Press, New York (2004)

9. Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Incremental
evaluation of sliding-window queries over data streams. IEEE TKDE 19(1), 57–72 (2007)

10. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proceedings of ACM SIGMOD, Madison, Wisconsin, pp. 1–16. ACM Press,
New York (2002), doi:10.1145/543613.543615

11. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated aggregates over continual data
streams. SIGMOD Record 30(2), 13–24 (2001), doi:10.1145/376284.375665

12. Babu, S., Arasu, A., Widom, J.: CQL: A language for continuous queries over streams and
relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921, pp. 1–19. Springer,
Heidelberg (2004)

13. Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-way join queries
over streaming information sources. In: Proceedings of VLDB, pp. 285–296 (2003)

14. Urhan, T., Franklin, M.J.: Xjoin: A reactively-scheduled pipelined join operator. In: IEEE
Data Enginerring Bullentin, pp. 27–33. IEEE Computer Society Press, Los Alamitos (2000)

15. Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.: Processing complex aggregate queries
over data streams. In: Proceedings of ACM SIGMOD, Madison, Wisconsin, pp. 61–72.
ACM Press, New York (2002)

16. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries. In: Proceedings of VLDB, pp. 79–
88. Morgan Kaufmann, San Francisco (2001)

17. Guha, S., Koudas, N.: Approximating a data stream for querying and estimation: Algo-
rithms and performance evaluation. In: Proceedings of ICDE, pp. 567–579 (2002)

18. Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates of sparse
data using wavelets. In: Proceedings of ACM SIGMOD, pp. 193–204. ACM Press, New
York (1999)

19. Jiang, Z., Luo, C., Hou, W.-C., Yan, F., Zhu, Q.: Estimating aggregate join queries over data
streams using discrete cosine transform. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA
2006. LNCS, vol. 4080, pp. 182–192. Springer, Heidelberg (2006)

Transformation of Continuous Aggregation Join Queries over Data Streams 347

20. Chaudhuri, S., Shim, K.: Including group-by in query optimization. In: Proceedings of
VLDB, pp. 354–366. Morgan Kaufmann, San Francisco (1994)

21. Yan, W.P., Larson, P.-Å.: Eager aggregation and lazy aggregation. In: Proceedings of
VLDB, pp. 345–357. Morgan Kaufmann, San Francisco (1995)

22. Tran, T.M., Lee, B.S.: Transformation of continuous aggregation join queries over data
streams. Technical Report CS-07-02, Department of Computer Science, University of Ver-
mont (2007)

23. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream manage-
ment. The VLDB Journal 12(2), 120–139 (2003)

24. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston,
C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management
in a data stream management system. In: Proceedings of CIDR, pp. 22–34 (2003)

25. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W.,
Krishnamurthy, S., Madden, S.R., Reiss, F., Shah, M.A.: TelegraphCQ: continuous dataflow
processing. In: Proceedings of ACM SIGMOD, San Diego, California, pp. 668–668. ACM
Press, New York (2003)

26. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous query system
for internet databases. In: Proceedings of ACM SIGMOD, Dallas, Texas, United States, pp.
379–390. ACM Press, New York (2000)

27. Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo, C.: A data stream language and system
designed for power and extensibility. In: Proceedings of CIKM, pp. 337–346 (2006)

28. Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K.,
Eltabakh, M., Elfeky, M.G., Ghanem, T.M., Gwadera, R., Ilyas, I.F., Marzouk, M.S., Xiong,
X.: Nile: A query processing engine for data streams. In: Proceedings of ICDE, pp. 851–
863. IEEE Computer Society Press, Los Alamitos (2004)

29. Sullivan, M.: Tribeca: A stream database manager for network traffic analysis. In: Proceed-
ings of VLDB, pp. 594–606. Morgan Kaufmann, San Francisco (1996)

30. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream database for
network applications. In: Proceedings of ACM SIGMOD, San Diego, California, pp. 647–
651. ACM Press, New York (2003)

31. Srivastava, U., Widom, J.: Memory-limited execution of windowed stream joins. In: Pro-
ceedings of VLDB, pp. 324–335. Morgan Kaufmann, San Francisco (2004)

32. Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: Tracking moving
objects in sensor-network databases. In: Proceedings of SSDBM, pp. 75–84 (2003)

33. Ojewole, A., Zhu, Q., Hou, W.-C.: Window join approximation over data streams with
importance semantics. In: Proceedings of CIKM, pp. 112–121 (2006)

34. Zhang, R., Koudas, N., Ooi, B.C., Srivastava, D.: Multiple aggregations over data streams.
In: Proceedings of ACM SIGMOD, pp. 299–310. ACM Press, New York (2005)

35. Tatbul, N., Zdonik, S.B.: Window-aware load shedding for aggregation queries over data
streams. In: Proceedings of VLDB, pp. 799–810 (2006)

36. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over data
streams. In: Proceedings of ICDE, p. 350. IEEE Computer Society Press, Los Alamitos
(2004)

37. Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate aggregation techniques for sen-
sor databases. In: Proceedings of ICDE, pp. 449–460. IEEE Computer Society Press, Los
Alamitos (2004)

38. Yan, W.P., Larson, P.-Å.: Performing group-by before join. In: Proceedings of ICDE, pp.
89–100. IEEE Computer Society Press, Los Alamitos (1994)

	Transformation of Continuous Aggregation Join Queries over Data Streams
	Introduction
	Related Work
	Preliminaries
	Query Processing Model
	Query Transformations
	Transformation Rules
	Generic Algorithm for Query Executions

	Performance Study
	Experimental Setup
	Experiments and Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

